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Chip-Firing on Graphs

The divisor theory of graphs views a finite connected graph G = (V,E) as a discrete
version of a Riemann surface. Fix n = |V | and a sink vertex q ∈ V .

Terminology

A divisorD on G is an element of Div(G) := ZV =
{∑

v∈V D(v)v : D(v) ∈ Z
}
,

and the degree of a divisor D is deg(D) :=
∑

v∈V D(v).

The Laplacian of G is the map L : ZV → ZV where Lii is the valence of vi and
Lij (i 6= j) is −#{edges between vi and vj}. We say D is linearly equivalent to
E, written D ∼ E, if there is a vector f such that D + Lf = E. For instance,
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The Jacobian (or critical) group Jac(G) of G is the torsion part of coker(L).

Our Project

A divisor D is effective if D(v) ≥ 0 for every v ∈ V . As in the case of Riemann
surfaces, we are interested in the complete linear system of D:

|D| := {E ∈ Div(G) : E is effective and E ∼ D} .

Question: For any divisor D on any graph G, what is the cardinality of |D|?
Approach: Effective divisors can be partitioned by Jac(G): for each [D] ∈ Jac(G),

E[D] : = ∪k≥0|D + kq|
= {E ∈ Div(G) : E is effective and E − deg(E)q ∼ D} .

Goal: For each [D] ∈ Jac(G), compute generating functions

Λ[D](z) :=
∑
k≥0

#|D + kq|zk.

Primary and Secondary Divisors

Theorem. For every graph G there is a finite set of primary divisors P ⊂ E[0] and
for every [D] ∈ Jac(G), there is a finite set secondary divisors: S[D] ⊂ E[D] such that
each E ∈ E[D] can be written uniquely as

E = F +
∑
P∈P

aPP

with F ∈ S[D] and aP ∈ Z≥0 for all P ∈ P .

Corollary.

Λ[D](z) :=

∞∑
k=0

#|D + kq|zk =

∑
F∈S[D]

zdeg(F )∏
P∈P(1− zdeg(P ))

Lattice Points in Polyhedra

Effective divisors are determined by a system of linear equations, which define a polytope
PD := {f ∈ Rn× : Lf ≥ −D and fn = 0} ⊂ Rn−1.

Introducing another parameter for degree gives the polyhedron
KD := {(f, t) ∈ Rn × R : Lf + tq ≥ −D and fn = 0} ⊂ Rn.

Theorem. KD is a rational simplicial pointed cone and there are bijections

E[D]←→ lattice points of KD
primary divisors P ←→ integer generating rays pf KD

secondary divisors S[D]←→ lattice points of fundamental parallelepiped of KD

Corollary. The integer-point transform of KD rediscovers Λ[D](z)

Example

Consider G = C3, the cycle graph on 3 vertices (labeled clockwise), and D = v1−v3.

Primary Divisors P for G: Secondary Divisors SD for D:
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We project KD into R2 by its first two coordinates to get the cone K̃D shown below.
Note that Π̃ ∩ Z2 bijects with S[D] and the generating rays correspond to the second
two primary divisors. The intersection of K̃D with the plane at height k has integer
points in bijection with the elements of the complete linear system |D + kq|.
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Invariant Theory

A finite group Γ ≤ GLn(C) acts on C[x1, . . . , xn]. For a character χ : Γ→ C×,
C[x1, . . . , xn]Γχ := {f ∈ C[x1, . . . , xn] : γ · f = χ(γ)f for all γ ∈ Γ} ,

and is generated by finite sets of algebraically independent primary invariants in
C[x1, . . . , xn]Γ and χ-relative invariants in C[x1, . . . , xn]Γχ.

How does this connect to divisors on graphs?

For a fixed q ∈ V , the projection Zn ∼= Div(G) −→ Jac(G) induces a map:
ρ : Jac(G)∗ ↪→ Div(G)∗ ∼= (C×)n ⊂ GL(Cn).

Γ := ρ(Jac(G)∗) naturally acts on C[x1, . . . , xn] by matrix multiplication
Every [D] ∈ Jac(G) can be realized as a character [D] : Γ→ C× by

[D] : ρ(ϕ) 7→ ϕ([D]).

Theorem. For every [D] ∈ Jac(G), there are bijections
E[D]←→ monomial C-basis for C[x]Γ[D]

primary divisors P ←→ monomial primary invariants in C[x]Γ

secondary divisors S[D]←→ monomial [D]-relative invariants in C[x]Γ[D]

Corollary. Molien’s Theorem gives a new expression for Λ[D](z) :

Λ[D](z) :=

∞∑
k=0

#|D + kq|zk =
1

| Jac(G)|
∑

ϕ∈Jac(G)∗

ϕ([D])

det(In − zρ(ϕ))
.

Connection to Necklaces

Theorem. On the cyclic graph with n vertices,
#|kq| = number of binary necklaces with n black beads and k white beads.

In the case that n and k are coprime, we have a combinatorial bijection, demonstrated
below when k = 4 and n = 3:
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