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INTRODUCTION

The Edelman-Greene statistic of S. Billey-B. Pawlowski measures
the “shortness” of the Schur expansion of a Stanley symmetric
function. We show that the maximum value of this statistic on per-
mutations of Coxeter length n is the number of involutions in the
symmetric group Sn, and explicitly describe the permutations that
attain this maximum. Our proof confirms a recent conjecture of
C. Monical, B. Pankow, and A. Yong: we give an explicit combina-
torial injection between a certain collections of Edelman-Greene
tableaux and standard Young tableaux.

BACKGROUND

Reduced Words

Sn is the set of permutations on {1, 2, . . . , n}, and S∞ = ∪∞n=1Sn.
For n ∈ N, the simple transposition sn :∈ Sn+1 is the permutation
expressed in cycle notation as (n, n + 1).

Any permutation can be expressed as the product of simple trans-
positions. The minimum length of such an expression for w ∈ S∞
is the Coxeter length `(w). Any expression of w using `(w) sim-
ple transpositions is called a reduced word for w. The set of all
reduced words for w is denoted Red(w).

Example 1 s1s2s3 ∈ Red(2341), but s1s2s1s2 6∈ Red(312), since s2s1
is an equivalent expression for 312 of shorter length.

Tits Lemma gives all the ways that reduced words can be trans-
formed:

Lemma 1 One can go from any element of Red(w) to any other
using the following two relations:

sisj = sjsi for all |i− j| ≥ 2

sisi+1si = si+1sisi+1

Additionally, define Inv(n) to be the number of involutions (permu-
tations that are their own inverses) of Sn.

The Edelman-Greene Statistic

For a partition λ and w ∈ S∞, an Edelman-Greene tableau (or
EG tableau) of type (λ,w) is a filling of the cells of a Young
diagram λ such that the cells are strictly increasing on rows
and columns, and that if i1, i2, . . . , i|λ| is the sequence that re-
sults from reading the tableau top-to-bottom and right-to-left, then
si1si2 . . . si|λ| ∈ Red(w). Let EG(λ,w) be the set of these tableaux.

Example 2 Because s5s7s1s3, s3s7s1s5 ∈ Red(21436587),{
1 3
5 7

, 1 5
3 7

}
⊆ EG(21436587, )

The Edelman-Greene statistic is defined by

EG(w) =
∑
λ

aw,λ , where aw,λ := |EG(λ,w)|

Standardization

For a fixed λ, recall that a semi-standard Young tableau is a la-
beling of the cells of λ that is non-decreasing on rows and strictly
increasing on columns, and a standard Young tableau is a label-
ing of the cells of λ with 1, . . . , |λ| that is strictly increasing on rows
and columns.

Let SSYT(λ) and SYT(λ) be the sets of all semi-standard Young
tableaux and standard Young tableaux of shape λ respectively.

Suppose T ∈ SSYT(λ) and ki is the number of i’s appearing in
T . Now replace all 1’s in T from left to right by 1, 2, . . . , k1. Then
replace all of the (original) 2’s in T by k1+1, k1+2, . . . , k1+k2, etc.
The result of this procedure is std(T ), the standardization map
applied to T .

Example 3

std

(
1 2 3 4
2 5
3

)
=

1 3 5 6
2 7
4

std( 1 3 3 6 ) = 1 2 3 4

Since EG(w, λ) ⊆ SSYT(λ), one can talk about the standardization
map restricted to EG(w, λ). This map is in fact an injection, as
conjectured by C. Monical, B. Pankow, and A. Yong.

Theorem 1 For any partition λ and w ∈ S∞,

std : EG(w, λ)→ SYT(λ)

is an injection.

Total Commutativity and λ-Maximality

We define w ∈ S∞ to be totally commutative if

∃si1 . . . si`(w) ∈ Red(w) with |ij − ik| ≥ 2 ∀ j 6= k

Example 4 s3s1s5 ∈ Red(214365), so 214365 is totally commutative.
However, 32154 is not totally commutative, as

Red(32154) = {s1s2s4, s4s1s2}

Because std : EG(w, λ)→ SYT(λ) is an injection,

aw,λ = |EG(w, λ)| ≤ |SYT(λ)| := fλ

For a Young diagram λ, define w ∈ S∞ to be λ-maximal if
aw,λ = fλ, or equivalently std : EG(λ)→ SYT(λ) is a bijection.

It is in fact possible to exactly classify which w are λ-maximal for
any given λ or for any given w.

Theorem 2 All totally commutative permutations w are λ-maximal
whenever |λ| = `(w).

Theorem 3 If any element of Red(w) repeats a simple transposi-
tion, then w is not λ-maximal for any λ.

Theorem 4 If λ = (n) for some n ∈ N, then w is λ-maximal if and
only if ∃ i1 > i2 > · · · > in such that si1si2 . . . sin ∈ Red(w).

Theorem 5 If λ = (1)n for some n ∈ N, then w is λ-maximal if and
only if ∃ i1 < i2 < · · · < in such that si1si2 . . . sin ∈ Red(w).

In particular, the conditions in both of the previous 2 theorems
are satisfied by all totally commutative permutations w ∈ S∞ with
`(w) = n.

Theorem 6 If λ has more than one row and more than one col-
umn, w is λ-maximal if and only if λ is totally commutative and
`(w) = |λ|.

The Main Theorem

The above theorems, combined with the fact that
∑
|λ|=n f

λ =

Inv(n), provide an upper bound for the Edelman-Green statis-
tic, and exactly characterize the permutations that maximize the
statistic.

Theorem 7

max{EG(w) : w ∈ S∞, `(w) = n} = inv(n)

And the maximum is attained by w ∈ S∞ if and only w is totally
commutative.

Outside Connections

First, B. Pawlowski has proved that E[EG] ≥ (0.072)(1.299)m where
the expectation is taken over w ∈ Sm [6, Theorem 3.2.7]). More
recently, C. Monical, B. Pankow, and A. Yong show that EG(w)

is ”typically” exponentially large on Sm [4, Theorem 1.1]. In com-
parison, the above theorem combined with a using a standard
estimate (using Stirling’s formula) for inv(n) gives

max{EG(w) : w ∈ S∞, `(w) = n} ∼
(n
e

)n
2 e
√
n

(4e)
1
4

Second, in [5], maximums for the Littlewood-Richardson coeffi-
cients and their generalization, the Kronecker coefficients, were
determined. We remark that the aw,λ’s are also generalizations of
the Littlewood-Richardson coefficients; this follows from [1, Corol-
lary 2.4].

Finally, the results of V. Reiner-M. Shimozono (specifically [7,
Theorem 33]) appear related to ours. Our work does not depend
on their paper and is combinatorial and self-contained.
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