Introduction

The Edelman-Greene statistic of S. Billey-B. Pawlowski measures the "shortness" of the Schur expansion of a Stanley symmetric function. We show that the maximum value of this statistic on per
mutations of Coxeter length n is the number of involutions in the mutations of Coxeter length n is the number of involutions in the symmetric group S_{n}, and explicitly describe the permutations that
attain this maximum. Our proof confirms a recent conjecture of C. Monical, B. Pankow, and A. Yong: we give an explicit combina torial injection between a certain collections of Edelman-Greene tableaux and standard Young tableaux.

Background

Reduced Words

S_{n} is the set of permutations on $\{1,2, \ldots, n\}$, and $S_{\infty}=\cup_{n=1}^{\infty} S_{n}$. For $n \in \mathbb{N}$, the simple transposition $s_{n}: \in S_{n+1}$ is the permutation expressed in cycle notation as ($n, n+1$).
Any permutation can be expressed as the product of simple trans positions. The minimum length of such an expression for $w \in S$ is the Coxeter length $\ell(w)$. Any expression of w using $\ell(w)$ sim ple transpositions is called a reduced word for w. The set of all reduced words for w is denoted $\operatorname{Red}(w)$.
Example $1 s_{1} s_{2} s_{3} \in \operatorname{Red}(2341)$, but $s_{1} s_{2} s_{1} s_{2} \notin \operatorname{Red}(312)$, since $s_{2} s_{1}$ Example $1 s_{1} s_{2} s_{3} \in \operatorname{Red}(2341)$, but $s_{1} s_{2} s_{1} s_{2} \notin \operatorname{Red}(312)$,
is an equivalent expression for 312 of shorter length.

Tits Lemma gives all the ways that reduced words can be trans formed:

Lemma 1 One can go from any element of $\operatorname{Red}(w)$ to any othe using the following two relations.

$$
\begin{gathered}
s_{i} s_{j}=s_{j} s_{i} \text { for all }|i-j| \geq 2 \\
s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}
\end{gathered}
$$

Additionally, define $\operatorname{lnv}(n)$ to be the number of involutions (permutations that are their own inverses) of S_{n}.

The Edelman-Greene Statistic
For a partition λ and $w \in S_{\infty}$, an Edelman-Greene tableau (or EG tableau) of type (λ, w) is a filling of the cells of a Young diagram λ such that the cells are strictly increasing on rows and columns, and that if $i_{1}, i_{2}, \ldots, i_{1}$ is the sequence that re$s_{i}, s_{i_{2}} \ldots s_{i} \in \operatorname{Red}(w)$. Let EG (λ, w) be the set of these tableaux.

Example 2 Because $s_{5} 5_{7} s_{1} s_{3}, s_{3} s_{7} s_{1} s_{5} \in \operatorname{Red}(21436587)$,
$\left\{\begin{array}{llll}1 & 3 \\ 5 & 7\end{array}, \frac{1}{1} \begin{array}{l}3 \\ \hline\end{array}\right\} \subseteq \operatorname{FG}(21436587, \square)$
The Edelman-Greene statistic is defined by

$$
\mathrm{EG}(w)=\sum_{\lambda, \lambda} a_{w, \lambda} \text { where } a_{w, \lambda}:=|\mathrm{EG}(\lambda, w)|
$$

Standardization

For a fixed λ, recall that a semi-standard Young tableau is a labeling of the cells of λ that is non-decreasing on rows and strictly ing of the cells of λ with 1 and a standard Yount and columns.
Let $\operatorname{SSYT}(\lambda)$ and $\operatorname{SYT}(\lambda)$ be the sets of all semi-standard Young tableaux and standard Young tableaux of shape λ respectively.

Suppose $T \in \operatorname{SSYT}(\lambda)$ and k_{i} is the number of i 's appearing in T. Now replace all 1 's in T from left to right by $1,2, \ldots, k_{1}$. Then replace all of the (original) 2's in T by $k_{1}+1, k_{1}+2, \ldots, k_{1}+k_{2}$, etc. he result of this procedure is sta ()$^{\prime}$, applied to T.

Example 3

$$
\begin{aligned}
& \operatorname{std}\left(\begin{array}{lllll}
1 & 2 & 3 & 4 \\
2 & 5 & & \\
3 & & &
\end{array}\right)=\begin{array}{lllll}
1 & 3 & 3 & 6 \\
2 & 7 & & \\
4 & & & \\
1 & &
\end{array} \\
& \operatorname{std}\left(\begin{array}{lll|l}
1 & 3 & 3 & 6
\end{array}\right)=\begin{array}{lllll}
1 & 2 & 3 & 4
\end{array}
\end{aligned}
$$

Since $\operatorname{EG}(w, \lambda) \subseteq \operatorname{SSYT}(\lambda)$, one can talk about the standardization map restricted to $\mathrm{EG}(w, \lambda)$. This map is in fact an injection, as conjectured by C. Monical, B. Pankow, and A. Yong

Theorem 1 For any partition λ and $w \in S_{\infty}$
std : $\mathrm{EG}(w, \lambda) \rightarrow \operatorname{SYT}(\lambda)$
is an injection.

Total Commutativity and λ-Maximality
We define $w \in S_{\infty}$ to be totally commutative if

$$
\exists s_{i_{1}} \ldots s_{i_{(w)}} \in \operatorname{Red}(w) \text { with }\left|i_{j}-i_{k}\right| \geq 2 \forall j \neq k
$$

Example $4 s_{3} s_{1} s_{5} \in \operatorname{Red}(214365)$, so 214365 is totally commutative. However, 32154 is not totally commutative, as
$\operatorname{Red}(32154)=\left\{s_{1} s_{2} s_{4}, s_{4} s_{1} s_{2}\right\}$

Because std : $\mathrm{EG}(w, \lambda) \rightarrow \mathrm{SYT}(\lambda)$ is an injection,

$$
a_{w, \lambda}=|\operatorname{EG}(w, \lambda)| \leq|\operatorname{SYT}(\lambda)|:=f^{\lambda}
$$

For a Young diagram λ, define $w \in S_{\infty}$ to be λ-maximal $a_{w, \lambda}=f^{\lambda}$, or equivalently std : $\mathrm{EG}(\lambda) \rightarrow \mathrm{SYT}(\lambda)$ is a bijection. It is in fact possible to exactly classify which w are λ-maximal for any given λ or for any given w.
Theorem 2 All totally commutative permutations w are λ-maximal whenever $|\lambda|=\ell(w)$.

Theorem 3 If any element of $\operatorname{Red}(w)$ repeats a simple transposi tion, then w is not λ-maximal for any λ.

Theorem 4 If $\lambda=(n)$ for some $n \in \mathbb{N}$, then w is λ-maximal if and only if $\exists i_{1}>i_{2}>\cdots>i_{n}$ such that $s_{i_{1}} s_{i_{2}} \ldots s_{i_{n}} \in \operatorname{Red}(w)$.

Theorem 5 If $\lambda=(1)^{n}$ for some $n \in \mathbb{N}$, then w is λ-maximal if and only if $\exists i_{1}<i_{2}<\cdots<i_{n}$ such that $s_{i_{1}} s_{2_{2}} \cdots s_{i_{n}} \in \operatorname{Red}(w)$.
In particular, the conditions in both of the previous 2 theorems are satisfied by all totally commutative permutations $w \in S_{\infty}$ with $\ell(w)=n$.

Theorem 6 If λ has more than one row and more than one col umn, w is λ-maximal if and only if λ is totally commutative and $\ell(w)=|\lambda|$.

The Main Theorem

The above theorems, combined with the fact that $\sum_{|\lambda|=n} f^{\lambda}=$ $\operatorname{lnv}(n)$, provide an upper bound for the Edelman-Green statis tic, and exactly characterize the permutations that maximize the statistic.
Theorem 7

$$
\max \left\{\mathrm{EG}(w): w \in S_{\infty}, \ell(w)=n\right\}=\operatorname{inv}(n)
$$

And the maximum is attained by $w \in S_{\infty}$ if and only w is totally commutative.

Outside Connections

First, B. Pawlowski has proved that $\mathbb{E}[E G] \geq(0.072)(1.299)^{m}$ where the expectation is taken over $w \in S_{m}[6$, Theorem 3.2.7). More
is "typically" exponentially large on S_{m} [4, Theorem 1.1]. In comparison, the above theorem combined with a using a standard estimate (using Stirling's formula) for inv (n) gives

$$
\max \left\{\mathrm{EG}(w): w \in S_{\infty}, \ell(w)=n\right\} \sim\left(\frac{n}{e}\right)^{\frac{n}{2}} \frac{e^{\sqrt{n}}}{(4 e)^{\frac{1}{4}}}
$$

Second, in [5], maximums for the Littlewood-Richardson coefficients and their generalization, the Kronecker coefficients, wer determined. We remark that the $a_{w, \lambda}$'s are also generalizations of the Littlewood-Richardson coefficients; this follows from [1, Corol lary 2.4]
Finally, the results of V. Reiner-M. Shimozono (specifically [7 Theorem 33]) appear related to ours. Our work does not depend on their paper and is combinatorial and self-contained.

References

[1] S. Billey, W. Jockusch and R. P. Stanley, Some combinato rial properties of Schubert polynomials, J. Algebraic Com bin. 2(1993), no. 4, 345-374.
2] S. Billey and B. Pawlowski, Permutation patterns, Stanley sym metric functions, and generalized Specht modules, J. Combin. Theory Ser. A 127 (2014), 85120.
[3] P. Edelman and C. Greene, Balanced tableaux, Adv. in Math 63 (1987), no. 1, 42-99.
[4] C. Monical, B. Pankow, A. Yong, Reduced word enu meration, Complexity, and Randomization, preprint, 2019 arXiv:1901.03247
[5]. Pak, G. Panova and D. Yeliussizov, On the largest Kronecker and Littlewood-Richardson coefficients, arXiv:1804.04693
[6] B. Pawlowski, Permutation diagrams in symmetric function the
6] B. Pawlowski, Permutation diagrams in symmetric function the
ory and Schubert calculus, PhD thesis, University of Washing ton, 2014
[7] V. Reiner and M. Shimozono, Plactification, J. Algebraic Com bin. 4:4 (1995), 331351
8] R. P. Stanley, Enumerative Combinatorics, Vol. 2. With a fore word by Gian-Carlo Rota and appendix 1 by Sergey Fomin Cambridge Studies in Advanced Mathematics, 62. Cambridg
University Press, Cambridge, 1999. xii+581 pp.

Acknowledgments

Special thanks to Alexander Yong for introducing me to the probpm and teaching me all the necessary background information.

