Minkowski weights and the Grothendieck Group

Aniket Shah

Ohio State University

Abstract

For a fan Δ, we introduce a ring of Grothendieck weights $\operatorname{GW}(\Delta)$. When Δ is proper, we show that $\mathrm{GW}(\Delta)$ is isomorphic to the operational K theory of the associated toric variety. We demonstrate that GW (Δ) admits a Riemann-Roch morphism from the ring of Minkowski weights on Δ, and a forgetful map from the ring of piecewise exponential functions $\operatorname{PExp}(\Delta)$. We provide applications to lattice point counting and the study of vector bundles on toric surfaces.

Motivation

Let X be an algebraic variety. Recall $A_{*}(X)$ which generated by classes $[V]$ for each k-dimensional subvariety of X, modulo relations given by rational equivalences

- for X singular, $A_{*}(X)$ is no longer a ring instead we use the operational Chow ring $A^{*}(X)$ originally introduced by [FM]
- $A^{*}(X) \cong A_{*}(X)$ when X is smooth

Now, suppose X is complete and toric:

- then $A^{*}(X)$ is isomorphic to the ring $M W^{*}(\Delta)$ of Minkowski weights on Δ - these are functions from Δ to \mathbb{Z} that satisfy a balancing

condition

- the balancing condition for Minkowski weights also appears in tropical intersection theory.

Figure 1: A Minkowski weight

A zoo of K-Theories

The Grothendieck group of coherent sheaves $K_{0}(X)$ is generated by $[\mathcal{F}]$ for each coherent sheaf \mathcal{F}, modulo relations from short exact sequences. This is a ring via $[\mathcal{F}][\mathcal{G}]=\left[\mathcal{F} \otimes^{L} \mathcal{G}\right]$ when X is smooth but not in general (analogous to the Chow groups). There are other theories which are always ring-valued:

- $K^{\circ}(X)$: this functor is simple to define (replace "coherent sheaf" with "vector bundle," in the previous paragraph), but is badly-behaved
$=\operatorname{opK}^{\circ}(X)$: this functor is harder to define and coarser than algebraic K-theory, but rectifies some of these issues (see [AP])
- By [AP]: When X is a complete toric variety, $\operatorname{opK}^{\circ}(X) \cong \operatorname{Hom}_{\mathbb{Z}}\left(K_{\mathrm{o}}(X), \mathbb{Z}\right)$

Toric varieties and Grothendieck
weights
Recall that a toric variety is a normal algebraic variety with the action of $\left(\mathbb{C}^{*}\right)^{n}$, such that there is a dense orbit.

- a toric variety $X \leftrightarrow$ a polyhedral fan Δ

Let X be a toric variety, and let Δ be its fan. Then:

- $K_{\circ}(X)$ is generated by the classes $\left[\mathcal{O}_{V(\sigma)}\right]$
- ensures there is an inclusion
$\operatorname{Hom}_{\mathbb{Z}}\left(K_{\circ}(X), \mathbb{Z}\right) \hookrightarrow\{c: \Delta \rightarrow \mathbb{Z}\}$ sending c to the function sending σ to $c\left(\left[\mathcal{F}_{\sigma}\right]\right)$
- we define Grothendieck weights on Δ denoted GW (Δ) - as the image of $\operatorname{Hom}_{\mathbb{Z}}\left(K_{\circ}(X), \mathbb{Z}\right)$ via this map

Theorem

Let Δ be a fan. Then we give an explicit list of relations on $c: \Delta \rightarrow \mathbb{Z}$ that is equivalent to c being a Grothendieck weight. When Δ is complete, this gives a presentation of $\mathrm{opK}^{\circ}(X)$.

Another presentation

A fan Δ is simplicial if each $\sigma \in \Delta$ is generated by some subset of a \mathbb{Q}-basis, and it is projective if it is the dual fan of a lattice polytope P. In this case, the fan Δ is indexed by faces F of P.

- If Δ is projective, then an element $c \in \operatorname{GW}(\Delta)$ is polytopal if there exists a lattice polytope P with normal fan Δ, such $c\left(\sigma_{F}\right)$ is the number of lattice points in F.

Theorem

If Δ is projective and simplicial, then polytopal Grothendieck weights generate $\mathrm{GW}(\Delta) \mathbb{Q}$ as a \mathbb{Q} vector space.

Example

Figure 2: A Grothendieck weight

Product formula
For Minkowski weights, the product is given by the "displacement rule". For Grothendieck weights:

Theorem

Let Δ be a fan. There is an explicit formula for the product on $G W(\Delta)$. When X is complete, this rule is compatible with the product on $\mathrm{opK}^{\circ}(X)$.

Applications

Though $\operatorname{opK}^{\circ}(X)$ is coarser than $K^{\circ}(X)$, there are still relationships between the two invariants (see [AP],[AGP]) and their equivariant analogues:

Theorem

Let Δ be a fan. There exists a complete (simplicial) toric surface X on which $\operatorname{opK}_{T}^{\circ}(X)$ does not surject onto $\mathrm{op}^{\circ}(X)$. This implies that this toric surface X has a vector bundle with no resolution by T-equivariant vector bundles.

A Square

Let X be complete toric. Then, there is a RiemannRoch square - vertical maps are forgetful and horizontal maps are the operational Riemann-Roch of [AGP]:

References

[^0]
[^0]: A. Shah. Minkowski weights and the Grothendieck group of a toric variety. In preparation.

