

Abstract

For a fan Δ , we introduce a ring of Grothendieck weights $GW(\Delta)$. When Δ is proper, we show that $GW(\Delta)$ is isomorphic to the operational Ktheory of the associated toric variety. We demonstrate that $GW(\Delta)$ admits a Riemann-Roch morphism from the ring of Minkowski weights on Δ , and a forgetful map from the ring of piecewise exponential functions $PExp(\Delta)$. We provide applications to lattice point counting and the study of vector bundles on toric surfaces.

Motivation

Let X be an algebraic variety. Recall $A_*(X)$ which generated by classes [V] for each k-dimensional subvariety of X, modulo relations given by rational equivalences

- for X singular, $A_*(X)$ is no longer a ring instead we use the operational Chow ring $A^*(X)$ originally introduced by [FM]
- $A^*(X) \cong A_*(X)$ when X is smooth

Now, suppose X is complete and toric:

- then $A^*(X)$ is isomorphic to the ring $MW^*(\Delta)$ of Minkowski weights on Δ - these are functions from Δ to \mathbb{Z} that satisfy a **balancing** condition
- the balancing condition for Minkowski weights also appears in tropical intersection theory.

Figure 1: A Minkowski weight

Minkowski weights and the Grothendieck Group

Aniket Shah

Ohio State University

The Grothendieck group of coherent sheaves
$K_{\circ}(X)$ is generated by $[\mathcal{F}]$ for each coherent sheaf
\mathcal{F} , modulo relations from short exact sequences.
This is a ring via $[\mathcal{F}][\mathcal{G}] = [\mathcal{F} \otimes^L \mathcal{G}]$ when X is
smooth but not in general (analogous to the Chow
groups). There are other theories which are always
ring-valued:
• $K^{\circ}(X)$: this functor is simple to define (replace
"coherent sheaf" with "vector bundle," in the
previous paragraph), but is badly-behaved
• $opK^{\circ}(X)$: this functor is harder to define and
coarser than algebraic K -theory, but rectifies
some of these issues (see [AP])
• By $[AP]$: When X is a complete toric variety.
$\operatorname{opK}^{\circ}(X) \cong Hom_{\mathbb{Z}}(K_{\circ}(X),\mathbb{Z})$

Theorem

Let Δ be a fan. Then we give an explicit list of relations on $c: \Delta \to \mathbb{Z}$ that is equivalent to c being a Grothendieck weight. When Δ is complete, this gives a presentation of $opK^{\circ}(X)$.

Another presentation

A fan Δ is *simplicial* if each $\sigma \in \Delta$ is generated by some subset of a \mathbb{Q} -basis, and it is *projective* if it is the dual fan of a lattice polytope P. In this case, the fan Δ is indexed by faces F of P.

• If Δ is projective, then an element $c \in \mathrm{GW}(\Delta)$ is *polytopal* if there exists a lattice polytope P with normal fan Δ , such $c(\sigma_F)$ is the number of lattice points in F.

Theorem

If Δ is projective and simplicial, then polytopal Grothendieck weights generate $\mathrm{GW}(\Delta)_{\mathbb{O}}$ as a \mathbb{Q} vector space.

Toric varieties and Grothendieck weights

ecall that a **toric variety** is a normal algebraic ariety with the action of $(\mathbb{C}^*)^n$, such that there is dense orbit.

toric variety $X \leftrightarrow$ a polyhedral fan Δ

et X be a toric variety, and let Δ be its fan. Then:

 $K_{\circ}(X)$ is generated by the classes $[\mathcal{O}_{V(\sigma)}]$ ensures there is an inclusion $Hom_{\mathbb{Z}}(K_{\circ}(X),\mathbb{Z}) \hookrightarrow \{c : \Delta \to \mathbb{Z}\}$ sending c to the function sending σ to $c([\mathcal{F}_{\sigma}])$ we define **Grothendieck weights** on Δ – denoted $GW(\Delta)$ – as the image of $Hom_{\mathbb{Z}}(K_{\circ}(X),\mathbb{Z})$ via this map

Example

Figure 2: A Grothendieck weight

Let Δ be a fan. There is an explicit formula for the product on $GW(\Delta)$. When X is complete, this rule is compatible with the product on $\operatorname{opK}^{\circ}(X).$

Though $\operatorname{opK}^{\circ}(X)$ is coarser than $K^{\circ}(X)$, there are still relationships between the two invariants (see [AP], [AGP]) and their equivariant analogues:

Let Δ be a fan. There exists a complete (simplicial) toric surface X on which $\operatorname{opK}^{\circ}_{T}(X)$ does not surject onto $opK^{\circ}(X)$. This implies that this toric surface X has a vector bundle with no resolution by T-equivariant vector bundles.

[AGP]:

Product formula

For Minkowski weights, the product is given by the "displacement rule". For Grothendieck weights:

Theorem

Applications

Theorem

A Square

Let X be complete toric. Then, there is a Riemann-Roch square – vertical maps are forgetful and horizontal maps are the operational Riemann-Roch of

References

A. Shah. Minkowski weights and the Grothendieck group of a toric variety. In preparation.