Cyclic Sieving, Necklaces, and Bracelets
 Eric Stucky ${ }^{\dagger}$
 University of Minnesota - Twin Cities

Background

Given a sequence $\alpha=\left(\alpha_{1}, \ldots, \alpha_{r}\right)$ of nonnegative integers that sums to n, the multinomial coefficient

$$
\binom{n}{\alpha}=\binom{n}{\alpha_{1}, \ldots, \alpha_{r}}=\frac{n!}{\alpha_{1}!\cdots \alpha_{r}!}
$$

is a positive integer, counting the set X_{α} of words having exactly α_{i} occurrences of the letter i for each $i=1,2, \ldots, r$. The symmetric group S_{n} acts on the set of such words by permuting positions, and when restricting this action to the cyclic subgroup $C=\langle c\rangle$ generated by $c=(1,2, \ldots, n)$, the orbits are called α-necklaces. The C-action on X_{α} will be free if and only if $\operatorname{gcd}(\alpha)=\operatorname{gcd}\left(\alpha_{1}, \ldots, \alpha_{r}\right)=1$, and thus the number of α-necklaces in this case is given by $C(\alpha)=\frac{1}{n}\binom{n}{\alpha}$.

When $\alpha=(a, a+1)$, this is the well-known Catalan number. For example, when $\alpha=(3,4)$, there are $C(3,4)=\frac{1}{7}\binom{7}{3}=\frac{1}{4}\binom{6}{3}=5$ such necklaces with 3 black beads and 4 white beads, shown here:

We will write $C(\alpha ; q)$ to mean the natural q-analogue of $C(\alpha)$; that is:

$$
C(\alpha ; q)=\frac{1}{[n]_{q}}\left[\begin{array}{l}
n \\
\alpha
\end{array}\right]_{q}
$$

In their paper defining cyclic sieving, Reiner, Stanton, and White showed that $C(\alpha ; q)$ is a polynomial whenever $\operatorname{gcd}(\alpha)=1$.

Cyclic Sieving

Recall that for a cyclic group $C=\langle\tau\rangle$ of order m acting on a set X, and a polynomial $f \in \mathbb{Z}[q]$ (not necessarily nonnegative), the triple (X, f, C) exhibits the cyclic sieving phenomenon if for every integer d we have that $\left|\left\{x \in X: \tau^{d}(x)=x\right\}\right|=f\left(e^{\frac{2 \pi i}{m}}\right)$.

Theorem. Fix a positive integer $m \geq 2$, and suppose that either $n \equiv 1 \bmod m$, or n is even and $n \equiv 2 \bmod m$. Let α be a sequence of nonnegative integers with $\operatorname{gcd}(\alpha)=1$, which is not $(\ell, \ell, \ldots, \ell, 2)$ for any divisor ℓ of m. Further assume that $\tau \in N_{S_{n}}(C)$ has order m and cycle type

$$
\operatorname{cyc}(\tau)= \begin{cases}\left(m^{\frac{n-1}{m}}, 1\right) & \text { if } n \equiv 1 \bmod m \\ \left(m^{\frac{n-2}{m}}, 1,1\right) & \text { if } n \equiv 2 \bmod m\end{cases}
$$

Then the triple $\left(C \backslash X_{\alpha}, C(\alpha ; q),\langle\tau\rangle\right)$ exhibits the cyclic sieving phenomenon, where $\langle\tau\rangle \cong \mathbb{Z} / m \mathbb{Z}$ acts on $C \backslash X_{\alpha}$ via $\tau C w=C(\tau w)$.

In particular, there are involutions $\tau \in N_{S_{n}}(C)$ which act on necklaces by reflection; orbits for this τ-action are called bracelets. We say that a bracelet is asymmetric if it is a τ-orbit of necklaces of size two.

[^0]In the example of $\alpha=(3,4)$, we have

$$
C(\alpha ; q)=\frac{1}{[7]_{q}}\left[\begin{array}{l}
7 \\
3
\end{array}\right]_{q}=1+q^{2}+q^{3}+q^{4}+q^{6}
$$

with $a_{0}+a_{2}+a_{4}+a_{6}=4$ and $a_{1}+a_{3}+a_{5}=1$. This agrees with the fact that the five necklaces shown above give rise to four bracelets, only one of which is asymmetric, namely the bracelet shown here:

Parity-Unimodality

Say that a polynomial $X(q)=\sum_{i} a_{i} q^{i}$ is parity-unimodal if both subsequences $\left(a_{0}, a_{2}, a_{4}, \ldots\right)$ and $\left(a_{1}, a_{3}, a_{5}, \ldots\right)$ are unimodal.

Conjecture. $C(\alpha ; q)$ is parity-unimodal when $\operatorname{gcd}(\alpha)=1$.

This conjecture has been checked for all relevant compositions α of $n \leq 30$. Moreover, known results in the theory of rational Cherednik algebras imply the conjecture for certain three-term sequences:

Theorem. Let a, b, and k be positive integers satisfying $\operatorname{gcd}(a, b)=1$ and $0 \leq k \leq a<b$. Then the "rational q-Schröder polynomial" $C(k, a-k, b-k ; q)$ is parity-unimodal.

Together with a result of Proctor, this suggests that there may be two "natural" Peck posets, on rational Schröder bracelets and asymmetric bracelets, whose rank sizes are $\left(a_{0}, a_{2}, a_{4}, \ldots\right)$ and $\left(a_{1}, a_{3}, a_{5}, \ldots\right)$.

When $k=0$ and $a=3$, these bracelets are in natural bijection with partitions λ of b with at most 3 rows. These partitions form a ranked interval in the dominance order with has rank sizes $\left(a_{0}, a_{2}, a_{4}, \ldots\right)$. Moreover, restricting to the odd bracelets also gives a ranked poset, with rank sizes $\left(a_{1}, a_{3}, a_{5}, \ldots\right)$, and both of these posets have symmetric chain decompositions. The interval for $b=8$ is shown above.

Acknowledgements

This work was partially supported by NSF grant DMS-1601961 and NSF RTG grant DMS-1745638.

[^0]: Corollary. When $\operatorname{gcd}(\alpha)=1$, the set of α-necklaces, the polynomial $C(\alpha ; q)=\sum_{i} a_{i} q^{i}$, and the τ-action by reflection exhibits the cyclic sieving phenomenon. That is, the coefficient sums $a_{0}+a_{2}+a_{4}+\cdots$ and $a_{1}+a_{3}+a_{5}+\cdots$ count the total number of bracelets, and the number of asymmetric bracelets, respectively.

