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ABSTRACT A new approach to identify and diagnose the quality of extensive and multivariate data is 

presented, using the gage repeatability and reproducibility (GR&R) study through the weighting of rotated 

factor scores. The proposal uses axis rotation to improve the explanation and interpretations of latent 

information, providing a statistically appropriate alternative when dealing with two or more correlated data 

sets. To analyze data with a significant variance-covariance structure, factor analysis (FA) is applied for 

calculating the eigenvalues and extracting of the rotated scores. Once obtained, these scores are then weighted 

with their respective eigenvalue for each factor. This procedure results in a single response vector, which is 

capable of properly interpreting all of the quality responses analyzed. To illustrate an application of the 

method, a real data set from a resistance spot welding process is selected, and two different types of rotation 

are compared. The proposed method provided an output that contemplated all of the significant variability of 

the data in a unique and significant way. In addition, the method enabled a reduction in the data 

dimensionality, thus minimizing the time for analysis and computational effort. 

INDEX TERMS Multivariate measurement system, repeatability and reproducibility, orthogonal rotation, 

weighted factor analysis, resistance spot welding.

I. INTRODUCTION 

Multivariate statistical techniques are widely used to analyze 

data that has a significant variance-covariance structure [1]. 

Such methods have been applied in many engineering 

problems to improve the interpretation of extensive and 

correlated data. In fact, several studies already use 

multivariate strategies in a handful of applications, such as 

flux-cored arc welding process [2], moving average control 

chart [3], design of experiments on clustering methods [4] 

and applications in process monitoring [5,6]. Such 

approaches are also used in the energy [7], healthcare [8] and 

economy [9] sectors. Among several methods, some of them 

stand out in view of their characteristics. The principal 

component analysis (PCA), for instance, is a multivariate 

strategy that reduces the data dimensionality and promotes 

uncorrelated vectors, considering its variance-covariance 

structure [10,11]. PCA has been used in several applications 

focused on quality improvement, such as the studies of [12–

16]. 

Another widely used approach is the factor analysis (FA), 

which promotes the grouping of characteristics based on 

their explanation level [17]. FA has some advantages over 

the PCA technique. FA provides a better interpretation and 

explanation of the data with a simpler structure [1]. FA also 

enables the reduction of repetitive information between 

variables, using a smaller amount of latent variables [18]. 

Another advantage is that FA allows the grouping of the 

variables observed in relation to the factor loads. For 

example, in a suitable application, one factor would have a 

high factor load value, while the other factors would have 

small or moderate loads [1]. Such a characteristic would 

favor the simplicity of the structure and, consequently, the 

explanation of the data. However, this structure is not always 

obtained [17], so it is often recommended to use methods to 

rotate the axes of the factors to improve the explanation of 

the variables. The purpose of this rotation approach is to 

acquire a simple data structure, with easy interpretation of 

the observed variables [19].  

The use of multivariate strategies in engineering 

problems is a modern practice, as it is in optimization 

methods [20,21]. However, searching to improve the process 

mailto:fabricio.alvesdealmeida@gmail.com


This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3019031, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017) 

2 VOLUME XX, 2017 

using optimization and other strategies may not bring enough 

results, since the variability is often attributed to the 

measurement process [22]. If this variability is not identified 

and properly diagnosed in the measurement process, this 

portion of variance can contaminate the decision-making 

process made based on the data, which may lead to results 

that do not correspond to the reality of the process. Among 

the techniques developed to analyze the measurement 

system, Woodal and Borror [23] highlight the gage 

repeatability and reproducibility study (GR&R) as the best 

option to analyze its capability. This technique allows the 

analysis of variability within each system and also between 

them, in addition to analyzing the consistency of the 

measurements of the operators with themselves [17]. 

When verifying the methods used in GR&R studies, 

Burdick et al. [24] state that the analysis of variance 

(ANOVA) method is the most used. However, when 

performing a statistical process control for correlated data, 

using univariate techniques, a type I error may occur. 

Industrial processes have multiple responses of interest and 

the ANOVA method promotes univariate analyzes, that is, 

one variable at a time. In addition to requiring a longer 

amount of time (depending on the number of responses), the 

ANOVA method neglects the variance-covariance structure 

of the data [17]. As an alternative, many authors have 

proposed the use of different multivariate methods in the 

GR&R study, such as the multivariate analysis of variance 

(MANOVA) [25], principal component analysis [26] and 

factor analysis [17,27]. Among the variations of these 

techniques, Almeida et al. [27] presented a combination of 

the factor analysis strategy and GR&R study, weighting the 

factor scores by the eigenvalue to improve the precision of a 

textured fiber bobbins measurement system, called weighted 

factor scores method (WF). However, the authors considered 

the factor scores without rotation, that is, without improving 

the explanation of the observed variables.  

In order to contribute to GR&R strategies applied with 

factor analysis, this study presents a new approach based on 

rotated factor scores (quartimax and varimax), weighting by 

their respective eigenvalues. For this application, a data 

collection that follows the guidelines of a measurement 

system analysis is considered. Then, it should be analyzed 

whether the data are suitable for the application of FA. If data 

are suitable, some rotation method is then applied to improve 

the explanation of latent variables, i.e., simplifying its 

structure based on the principles of parsimony [28]. Finding 

a simpler structure, one should extract the rotated scores and 

calculate the eigenvalues for each factor. From this 

information, each factor is weighted by its respective 

eigenvalue, creating a unique response vector, capable of 

adequately representing the critical-to-quality characteristics 

(CTQ). Such procedure enables the estimation of the 

variation components and then the calculation of the 

multivariate indicators to evaluate the measurement system. 

This approach is called weighting of rotated factor scores 

(WRF). Based on this, the quality of the data will be 

evaluated in an appropriate way, given its structure of 

variance-covariance. In addition, this approach will promote 

a minimization in time and computational effort, due to the 

reduced dimensionality of the data and the evaluation. As a 

rotation strategy, the authors used the orthogonal rotation 

methods most applied in the literature, such as the quartimax 

and varimax method. To demonstrate the behavior of this 

proposal in real industrial processes, we will apply this 

approach in a resistance spot welding (RSW) process, 

analyzing the following geometric characteristics: 

indentation depth, penetration and nugget width. A study that 

performs the weighting of rotated factor scores applied to the 

GR&R study or any other application in industrial processes 

has not been found in the literature yet. 

In general, the contributions of this paper can be 

summarized as follows:  

1) A new proposal to verify the measurement system for 

extensive and correlated data is presented;  

2) The use of orthogonal rotation methods promotes a better 

interpretation of latent variables, providing a simpler loading 

structure to assess data quality;  

3) The weighting through the eigenvalues of each factor 

gives the corresponding degree of importance to each 

response cluster. In addition, the data set is properly 

represented by a single vector of responses;  

4) The proposed method reduces the computational effort 

(representing several responses in a few factors), in addition 

to minimizing the analysis time (in which all CTQ’s are 

represented in a single vector, which explains all responses 

appropriately). 

The following section presents the theoretical 

background for the strategies used. In Section 3, a discussion 

of the new approach with rotated and weighted factor scores 

is presented. Section 4 describes the application and results 

in the RSW process. Section 5 presents the conclusions.  
 
II. THEORETICAL BACKGROUND 

A. GAGE REPEATABILITY AND REPRODUCTIBILITY 

The GR&R method is an extensively used strategy to analyze 

the two precision components of a measurement system: 

repeatability and reproducibility. Repeatability refers to the 

variation resulting from the measurement device, while 

reproducibility indicates the variation generated by the 

measurement system [29]. GR&R can be treated as a 

particular case of the two-way analysis of variance with 

random effects [10]. Suppose factor A denotes a set of 

several parts while factor B indicates a certain number of 

operators that carry out the measurements. Since operators 

and parts can be selected from a large set of options, they can 

be considered random factors, and the model for this research 

can be observed in Eq. (1), 
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where y expresses the response variable, μ represents the 

mean value and τi ~N(0,στ), βj ~N(0,σβ), and τβij ~N(0,στβ) 

represent, respectively, the random variable for each part, for 

the operator and for the interaction. Finally, εijk ~N(0,σε) 

indicates the estimated error term and a, b and n refer, in the 

following order, to the number of parts, operators, and 

replicas. The total variance 𝜎𝑦
2 can be defined as per Eq. (2). 

The formula considers the independent normally distributed 

data with null mean and the variances 2 2 2

( ), ,      indicating 

the variation components. 

 
2 2 2 2 2

( )y e      = + + +  (2) 

 

Considering the random model for the analysis of 

variance, it is easy to verify that it is similar to the fixed 

models. It is important to highlight, however, that they differ 

regarding the nature of the random effects mean square. 

Failing to reject the null hypothesis indicates that there is not 

enough evidence of a significant variability between the 

population and the sample data, whereas the null hypothesis 

rejection evinces otherwise [30]. Adopting these concepts 

for the GR&R analysis allows the generalization of operators 

and sets of parts. Eq. (3) shows the sum of squares and the 

associated mean squares expected for random effects terms. 

This estimation leads to the components of variance. In a 

similar way, Table 1, Table 2 and Table 3 present the 

expressions required to perform the GR&R study. 
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TABLE 1. Two-way ANOVA for random effects (Part I). 
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TABLE 2. Two-way ANOVA for random effects (Part II). 
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Eq. (4) shows how to obtain the percentage of variation 

which allows to adequately evaluate and classify the 

measurement system. The number of distinct categories 

(ndc) identified by the measurement system is calculated 
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using Eq. (5). Table 4 indicates the acceptance criteria of the 

established measurement system [31]. 
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TABLE 3. Percentage of contribution and study variation for GR&R. 
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Table 4. Classification criteria for the measurement system 

 

Measurement System Assessment %GR&R 

Acceptable < 10% 

Marginal 10% to 30% 

Unacceptable > 30% 

ndc > 5 

 

B. FACTOR ANALYSIS 

Factor analysis (FA) is a multivariate statistical technique 

that describes the covariance relationships among the 

response variables (yi, i = 1, 2, …, p), gathering variables that 

are highly correlated in a same factor (fj, j = 1, 2, …, m) [1]. 

When m < p, these factors are unobservable variables, also 

known as latent variables or common factors. The FA model 

can be represented through a linear relationship, as shown in 

Eq. (6), 

 

εLFμY +=−  (6) 

 

where Y is an observable random vector with p response 

variables, μ(p×1) is the vector of population means, L 

represents the matrix of factor loadings with dimension p × 

m (Eq. (7)), F(m×1) indicates the random vector containing the 

unobservable latent variables, and ε(p×1) is a random vector of 

additional sources of variation (errors), also known as 

vector-specific factors. The matrix L is composed of the 

factor loadings lij that comprises the correlation or the 

covariance between the response Yi and the common factor fj 

[18]. 
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Applying the FA requires the original response variables 

to be adequate [1]. Such adequacy can be evaluated using the 

Bartlett sphericity test. This test considers the test statistic 
2

 ;
 to verify whether the correlation matrix is an identity 

matrix, with α as the level of significance and a number of ν 

= p (p – 1)/2 degrees of freedom. This test also assumes that 

the dataset Y = [Y1, Y2, ..., Yp]T follows a normal multivariate 

distribution. In this sense, the null hypothesis that the 

correlation matrix is equal to the identity matrix is not 

rejected. In other words, the data is considered not correlated 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3019031, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017) 

2 VOLUME XX, 2017 

when ( ) 
2

21

2

− pp; , and the value of 
2 is obtained 

from Eq. (8) [18]. 
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Another way to verify the adequacy of the data is through 

the KMO index as shown in Eq. (9), where rij are the sample 

correlation matrices R and qij are the anti-image correlation 

matrices Q [18]. Although it ranges from 0 to 1, values 

greater than 0.5 already indicates the suitability of the 

original responses set. 
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FA’s mathematical emphasis is in expressing the 

population covariance Σ(p×p) through a matrix in terms of a 

specific variance matrix, where the terms of the main 

diagonal contains the errors, while the values outside it are 

null. The population parameters are not known, so the Σ 

matrix can be estimated by the sample covariance matrix 

S(p×p). Nevertheless, it is highly recommended to model the 

sample correlation matrix R(p×p) instead of S. Most problems 

involving multivariate analyses contain response variables 

with diverging scales, which makes the correlation more 

adequate since it is not sensitive to these discrepancies. The 

matrix R can be calculated by Eq. (10), 

 

ΨLLR += T  (10) 

 

where L represents the matrix of factor loadings with 

dimension p × m and ψi is a part of the total variance of Yi 

explained by the specific factor εi [18]. 

The Principal Component (PC) is one the most used 

methods to estimate the above-mentioned matrix L. It 

determines the factor loads and the specific variances 

through the spectral decomposition of S or R matrices [1]. 

Thereby, the matrix L can be calculated as presented in Eq. 

(11): 

 

 mmmm eeeΛPL  ,,, 2211
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where mP  represents the matrix p × m of the first m 

normalized eigenvectors (ei) of R, and mΛ  indicates the 

diagonal matrix m × m of the eigenvalues (λi) of the same 

matrix R. Considering Eqs. (10) and (11) it is possible to 

obtain the specific variances, as shown in Eq. (12). 

 

( )T
LLRΨ −= diag  (12) 

 

The FA theory states that the number of factors m is 

necessarily less than p, which also allows the reduction of 

the problem dimension. The issue of determining how many 

factors should be used to represent the data set can be solved 

using several criteria. Nevertheless, the main requirement is 

that m must present a cumulative variation rate ≥ 80% and, 

in view of the sample correlation matrix, m must have 

eigenvalues greater than the mean eigenvalues, i.e., λi ≥ 1 

[18]. 

 

C. ORTHOGONAL ROTATION METHODS 

The rotation of the factor loads is a widespread practice to 

deal with the difficulty on factor loads interpretation, since it 

facilitates the association of the common factors to the 

response variables utilizing a simpler load structure [19]. The 

rotated factor load matrix Lº can reproduce either S or R, 

while maintains the estimation of the communalities and 

specific variances, since Lº = LT, and T is an orthogonal 

matrix for rotating L [34]. Among the rotation methods, the 

most used are: quartimax and varimax method. 

An approach commonly used for rotating the axes is the 

quartimax method. The quartimax approach is characterized 

as a type of orthogonal rotation that aims to simplify the 

columns of a factor matrix [32], minimizing the cross-

product term, according to Eq. (13) [33]. 
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However, some rotation methods may perform better 

than others, depending on the data structure. The varimax 

method selects an orthogonal matrix T to create rotational 

factor loads that promote maximization of the objective 

function indicated in Eq. (14), where 2

iijij hll  =
~ , in other 

words, it represents the relation between the rotated factor 

load and the ith commonality. 
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Since FA produces latent variables, it is usual to obtain 

estimated values for them (factor scores) to conduct further 

analysis. According to Johnson and Wichern [1], minimizing 

the sum of squared residuals of the factor model leads to the 

estimation of the common factors. Eq. (15) shows how the 

rotated factor scores are obtained. 

 

( ) 1−
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(15) 

 

where F(n×m) is the matrix containing the estimation of the 

rotated latent variables R, Z(n×p) is the matrix of the 
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standardized values of the response variables, and n is the 

number of observations in each response variable. 

III. GR&R THROUGH THE WEIGHTING OF LATENT 
VARIABLES UNDER ORTHOGONAL ROTATION 

In this study, the authors propose the combination of the axis 

rotation strategy with the GR&R measurement system 

analysis. After properly selecting the operators, collecting 

parts and measuring the CTQ (correctly defining a GR&R 

study), one should initially check whether the data is 

appropriate for the use of the FA strategy. Thus, the Bartlett 

sphericity test and the Kaiser-Meyer-Olkin (KMO) index are 

performed. If the data set is not adequate, another 

multivariate strategy, such as PCA or MANOVA, should be 

used. However, if the data are suitable, the proposed method 

can be continued. The number of factors to must be equal of 

higher than 2 to perform the rotation of the axes.  

The ordinary least squares method (OLS) is usually 

adopted when factor scores are obtained using the principal 

components [1] and, in this approach, the goal is to minimize 

the sum of squares of the residuals of the factor model. More 

specifically, if y-μ = LF + ε is the definition of the factor 

model, then the residue vector is ε = y-μ-LF. Then, the 

minimization function is described in Eq. (16). 

 

( ) ( )LFμyLFμyεε −−−−=
TT

 (16) 

 

Thus, before extracting the factor scores (Eq. (15)), axis 

rotation should be performed to improve data interpretation.  

The rotated factor load (Lº) maintains estimates of 

specific commonalities and variances, such as Lº = LT, 

where T is an orthogonal matrix for rotating L. In this sense, 

the orthogonal rotation metrics can be tried out, envisioning  

 

 

the method that best simplifies the data structure. 

Therefore, one can contemplate the use of methods 

consolidated in the literature, such as quartimax (Eq. (13)) 

and varimax (Eq. (14)). 

Considering one of the rotation methods described 

previously, the scores of rotated factors should be extracted. 

Assuming that the first-order partial derivate of Eq. (16) 

related to the matrix of factor scores F are null, then F is 

estimated by Eq. (15). Then, it is possible to create a new 

WRF vector, which can be described as Eq. (17). 
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It is possible to use the eigenvalues to establish the weights 

of their respective factors. The result is a univariate variable, 

as shown in Eq. (18). 
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At this stage, the analysis of variance (ANOVA) for 

random effects can be applied to the weighted factor under 

rotation (WRF). Then, the variation components of the 

GR&R study are obtained once the factor scores are 

extracted. Eq. (19) presents the WRF model for the 

measurement system. 
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In Eq. (19), μ is the expected value for WRF and τi, βj, 

τβij, and εijk refer to random effects with null expected values 

and variances στ
2, σβ

2, στβ
2, and σε

2 respectively. For scenarios 

in which the interaction is not significant, then WRF is 

estimated using Eq. (20). 
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The variance components for the GR&R study are 

presented in Table 5, where MSA, MSB and MSAB represent 

the mean squares for the part factor, operator factor, 

interaction term, respectively, and MSE the mean square for 

the error term. Based on the previous analyses, the 

measurement system must be classified by the contributions 

to the percentage of variability (%R&Rm) and also the 

number of distinct categories (ndcm). These indicators are 

described respectively in Eqs. (21) and (22). The evaluation 

criteria are the same as those described in Table 4, based on 

the AIAG [31].   
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To visually represent the method and, consequently, 

facilitate its understanding, Fig. 1 illustrates the flowchart of 

the proposed approach, contemplating the steps for applying 

the method. Analogously, Table 6 describes the pseudocode 

for implementing the gage study proposal through weighted 

of factors scores under orthogonal rotations. 

 

IV. NUMERICAL EXAMPLE: A RSW PROCESS 

In order to demonstrate the application of this 

improvement, the approach was applied in a resistance spot 

welding process, evaluating the following critical-to-quality 

characteristics: indentation depth (ID), penetration (P) and 

nugget width (NW). The planning was carried out from the 

design of experiments (DOE) strategy, specifically by a 

fractional factorial design indicated in [34]. Data collection 

followed appropriate planning for a GR&R study using eight 

parts (a), four different operators (b) and three replicates (n) 

for three distinct quality characteristics, totaling 288 

measurement data. All measurements were performed 

randomly, adapted from [17] and available in Table 7. The 

ID measurement was performed on the upper face of the 

specimen, for it presents a higher indentation depth value, 

according to the specification suggested by Almeida et al. 

[22]. 

 

 
FIGURE 1. Detailed flowchart for conducting WRF approach 
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TABLE 6. Pseudocode for implementation of WRF approach 

 

Pseudocode:  

Input: Data for measurement system 

Output: Multivariate indices estimations 

1: 𝑦1, 𝑦2, …, 𝑦𝑝 ← original response variables (𝑖 = 1,2, … , 𝑝) 

2: 

3: 

𝑓1, 𝑓2, …, 𝑓𝑚 ← latent variables (𝑗 = 1,2, … , 𝑚) 

𝑛 ←  sample size of the dataset 

4: 𝑅 ← correlation matrix  

5: BST ←  − [𝑛 − 1
(2𝑝+5)

6
] ln|𝑅|  

6: 𝑟𝑖𝑗 ← sample correlation matrices R 

7: 𝑞𝑖𝑗 ← anti-image correlation matrices Q 

8: 𝑢 ← 0 

9: 𝑤 ← 0 

10: for 𝑖 = 1 to 𝑝  

11: for 𝑗 = 1 to 𝑚 

12: if 𝑖 ≠ 𝑗 

13: 𝑢 = 𝑢 + 𝑟𝑖𝑗
2  

14: 𝑤 = 𝑤 + 𝑞𝑖𝑗
2  

15: end if 

16: end for  

17: end for 

18: KMO ←  
𝑢

𝑢+𝑤
 

19: if (BST, KMO) indicate suitable data 

20: 𝑠1, 𝑠2, …, 𝑠𝑚 ← rotated factor scores 

21: 𝑒 ← eigenvalues vector 

22: WRF ←  ∑ [𝜆𝑚𝑭𝑚]𝑚
𝑖=1  

23: 𝑣 ← variance components estimation 

24: 𝑥 ← multivariate indices estimation 

25: 
𝑅𝑅𝑚 ←  √

𝜎𝑀𝑆
2

(𝜎𝑃
2+𝜎𝑀𝑆

2 )
× 100  

26: if 𝑅𝑅𝑚 <  10  

27: 𝑎𝑐𝑐𝑒𝑝𝑡𝑅𝑅 ←  0    //acceptable 

28: else if 𝑅𝑅𝑚 >  30 

29: 𝑎𝑐𝑐𝑒𝑝𝑡𝑅𝑅 ←  1    //unacceptable 

30: else 

31: 𝑎𝑐𝑐𝑒𝑝𝑡𝑅𝑅 ←  2    //marginal 

32: end if 

33: end if 

34: 

𝑁𝐷𝐶𝑚 ←  √2 × [
𝜎𝜏

2

(𝜎𝛽
2+𝜎𝜏𝛽

2 )+𝜎𝜀
2
]  

35: if 𝑛𝑑𝑐 > 5 

36: 𝑎𝑐𝑐𝑒𝑝𝑡𝑁𝐷𝐶 ←  0    //acceptable 

37: else 

38: 𝑎𝑐𝑐𝑒𝑝𝑡𝑁𝐷𝐶 ←  1    //unacceptable 

39: end if 

40: end if 
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TABLE 7. Measurements of CTQ’s for the RSW process 

 

n a 
b = A  b = B  b = C  b = D 

ID P NW  ID P NW  ID P NW  ID P NW 

1 1 0.191 0.988 4.295  0.202 0.978 4.324  0.201 0.949 4.344  0.192 0.969 4.384 

2 1 0.202 0.978 4.274  0.191 0.978 4.325  0.192 0.958 4.354  0.191 0.988 4.354 

3 1 0.192 0.958 4.353  0.202 0.968 4.294  0.191 0.947 4.354  0.192 0.986 4.384 

1 2 0.211 1.116 4.654  0.202 1.139 4.744  0.212 1.117 4.734  0.212 1.119 4.724 

2 2 0.212 1.108 4.724  0.212 1.138 4.725  0.222 1.117 4.725  0.202 1.137 4.844 

3 2 0.212 1.127 4.784  0.221 1.127 4.754  0.222 1.116 4.734  0.212 1.126 4.854 

1 3 0.131 1.026 3.534  0.133 1.057 3.605  0.122 1.018 3.645  0.122 1.049 3.674 

2 3 0.121 1.018 3.664  0.122 1.057 3.615  0.121 1.018 3.635  0.131 1.058 3.674 

3 3 0.123 1.018 3.644  0.122 1.048 3.565  0.132 1.019 3.644  0.132 1.046 3.655 

1 4 0.069 0.977 3.544  0.071 0.988 3.575  0.069 0.969 3.534  0.068 0.968 3.525 

2 4 0.072 0.987 3.544  0.069 0.987 3.546  0.069 0.967 3.564  0.072 0.978 3.574 

3 4 0.070 0.967 3.564  0.071 0.956 3.534  0.071 0.958 3.514  0.072 0.967 3.574 

1 5 0.252 1.189 4.585  0.262 1.176 4.554  0.262 1.188 4.614  0.272 1.198 4.534 

2 5 0.252 1.200 4.514  0.261 1.198 4.544  0.251 1.197 4.644  0.271 1.199 4.524 

3 5 0.261 1.209 4.524  0.271 1.178 4.564  0.261 1.207 4.585  0.252 1.198 4.624 

1 6 0.202 1.098 3.805  0.191 1.097 3.795  0.202 1.089 3.844  0.202 1.108 3.844 

2 6 0.192 1.098 3.784  0.192 1.107 3.804  0.201 1.099 3.833  0.202 1.117 3.875 

3 6 0.202 1.087 3.795  0.201 1.088 3.825  0.202 1.079 3.834  0.193 1.108 3.874 

1 7 0.169 1.159 4.794  0.182 1.147 4.824  0.168 1.147 4.835  0.171 1.168 4.814 

2 7 0.172 1.167 4.864  0.172 1.179 4.805  0.173 1.137 4.814  0.164 1.167 4.925 

3 7 0.172 1.159 4.794  0.171 1.137 4.814  0.171 1.139 4.825  0.171 1.158 4.844 

1 8 0.142 1.139 4.074  0.141 1.158 4.145  0.141 1.127 4.184  0.138 1.128 4.124 

2 8 0.143 1.138 4.165  0.141 1.149 4.124  0.142 1.137 4.164  0.142 1.158 4.195 

3 8 0.142 1.128 4.085  0.142 1.138 4.134  0.139 1.138 4.094  0.143 1.149 4.184 
All values were measured on the millimeter scale 

 

A. METHOD WITH VARIMAX ROTATION 

Given the measurement data for the GR&R study, the 

method described in section 3 was applied to the selected 

data set. All analyzes were performed using the Minitab18®, 

R Studio® and Visual Basic for Applications (VBA®) 

software. The first step was to verify that the data are suitable 

for the application of the FA. Since the data set was not 

considered as a multivariate normal distribution, the KMO 

indicator was used. The individual test values showed KMO 

equal to 0.8; 0.67 and 0.79 for ID, P and NW, respectively. 

The overall KMO is equal to 0.75, so it is possible to infer 

that all data are suitable for application of the multivariate 

FA strategy. 

The next step was to apply the multivariate strategy. 

Given the Kaiser criterion [1], it was verified that the CTQs 

can be represented by two factors, RF1-v and RF2-v. Then, the 

scores of the rotated factors and the eigenvalues were 

extracted by the varimax method considering two factors. To 

demonstrate the influence of score rotation, Table 8 presents 

the factor loadings and communalities for the original 

(unrotated) and rotated method. Factor loadings with values 

close to 1 or -1 indicate that this factor significantly 

influences the variable. As a result, it was possible to observe 

that the rotation of the scores provided a better explanation 

of the data, where RF1-v adequately explained the ID and NW 

characteristics, while RF2-v explained the characteristic P. 

With regards to the original approach (unrotated), note that 

F1 holds the explanation of all CTQs, keeping F2 with low 

explanation in its factor loadings. This behavior can be 

verified by the variability explained by each factor 

(variance), i.e., F1 unrotated has higher value than RF1 

(rotated). However, when evaluating F2, the original method 

has a low value (0.4240), because this factor does not 

adequately explain any of the CTQs. When analyzing RF2-v 

with the varimax rotation, the variance of this factor is 

greater than 1, indicating that RF2-v is significant according 

to the Kaiser criterion [1]. These results indicate that the 

rotation of the axes promoted a simpler interpretation of the 

data, favoring their explanation. It is important to highlight 

that the variance values are equal to the eigenvalues for the 

unrotated approach. 
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TABLE 8. Factor loadings and communalities for unrotated and varimax rotation 

 

Unrotated factor scores    Varimax Rotation 

Variable F1 F2 Communality  Variable RF1-V RF2-V Communality 

ID 0.877 -0.307 0.862  ID 0.884 0.285 0.862 

NW 0.885 -0.206 0.827  NW 0.830 0.370 0.827 

P 0.843 0.536 0.997   P 0.348 0.936 0.997 

Variance 2.262 0.424 2.686  Variance 1.591 1.095 2.686 

% Var 0.754 0.141 0.895   % Var 0.530 0.365 0.895 

 

Table 9 presents the rotated factor scores for RF1-v and 

RF2-v, representing the CTQs. Based on these values, the 

WRFv vector was obtained using Eq. (23), which represents 

all the quality characteristics analyzed by a single vector. 

Given the values of the WRF vector (Table 9), one can 

estimate the variance components for the WRFv vector. 

Based on the analysis of variance, and considering a 

confidence level of 95%, the interaction term is not 

significant for the study (p-value equal to 0.387), as 

illustrated in Fig. 2. Thus, by removing the interaction term, 

new results for the analysis of variance were obtained as 

presented in Table 10. 

 

 

 
TABLE 9. Rotated factor scores and WRF vector scores for varimax approach 

 

n a 
b = A   b = B   b = C   b = D 

F1-v F2-v WRFv   F1-v F2-v WRFv   F1-v F2-v WRFv   F1-v F2-v WRFv 

1 1 0.9433 -1.6491 1.4347  1.1913 -1.8881 1.8944  1.3725 -2.3369 2.1140  1.1798 -1.9830 1.8282 

2 1 1.1305 -1.8748 1.7625  1.0439 -1.8252 1.5875  1.2058 -2.1411 1.8198  1.0225 -1.6808 1.6005 

3 1 1.2057 -2.1364 1.8216  1.2030 -2.0270 1.8619  1.2631 -2.3042 1.8804  1.0869 -1.7200 1.7294 

1 2 0.9272 0.0760 2.1299  0.7974 0.4422 1.9915  1.0469 0.0453 2.3875  1.0173 0.0840 2.3370 

2 2 1.0761 -0.0747 2.4027  0.9118 0.3783 2.2230  1.1685 -0.0055 2.6411  0.9284 0.3901 2.2658 

3 2 1.0476 0.1889 2.4500  1.1360 0.1389 2.6289  1.1840 -0.0255 2.6676  1.1419 0.1581 2.6503 

1 3 -1.0560 -0.4585 -2.5833  -1.1180 -0.0222 -2.5386  -0.9951 -0.5629 -2.4899  -1.1377 -0.0995 -2.6159 

2 3 -0.9754 -0.5656 -2.4465  -1.2602 0.0446 -2.8320  -1.0124 -0.5564 -2.5261  -1.0655 -0.0150 -2.4167 

3 3 -0.9815 -0.5719 -2.4630  -1.2744 -0.0776 -2.9159  -0.8706 -0.6025 -2.2250  -1.0127 -0.1900 -2.3717 

1 4 -1.6021 -0.8241 -3.9738  -1.5869 -0.6926 -3.8836  -1.5575 -0.9525 -3.9273  -1.5864 -0.9543 -3.9934 

2 4 -1.6091 -0.7007 -3.9373  -1.6545 -0.6706 -4.0273  -1.5135 -0.9912 -3.8443  -1.5277 -0.8376 -3.8113 

3 4 -1.4938 -0.9989 -3.8030  -1.4634 -1.1565 -3.8010  -1.5036 -1.1195 -3.8763  -1.4590 -1.0071 -3.7278 

1 5 0.9719 0.9512 2.6021  1.1362 0.7105 2.8716  1.1482 0.8679 2.9655  1.1209 0.9843 2.9532 

2 5 0.8252 1.1389 2.3497  0.9922 1.0474 2.6888  0.9889 1.0669 2.6896  1.0905 1.0171 2.8983 

3 5 0.8990 1.2317 2.5560  1.2709 0.6728 3.1603  0.9920 1.1737 2.7418  0.9690 1.0822 2.6510 

1 6 -0.1775 0.1164 -0.3521  -0.3230 0.1679 -0.6594  -0.0791 -0.0219 -0.1884  -0.1814 0.2656 -0.2978 

2 6 -0.3378 0.1871 -0.6848  -0.3709 0.3267 -0.7006  -0.1520 0.1265 -0.2903  -0.1951 0.3840 -0.2784 

3 6 -0.1274 -0.0421 -0.3060  -0.1005 -0.0338 -0.2416  -0.0323 -0.1816 -0.1501  -0.2640 0.3016 -0.4693 

1 7 0.2988 0.9393 1.0742  0.5792 0.6691 1.5940  0.4091 0.7527 1.2446  0.3015 1.0626 1.1327 

2 7 0.3739 1.0326 1.2836  0.2319 1.2263 1.0446  0.4983 0.5809 1.3736  0.3506 1.0546 1.2402 

3 7 0.3417 0.9185 1.1625  0.4815 0.5860 1.3377  0.4787 0.6181 1.3450  0.3930 0.9007 1.2710 

1 8 -0.8769 1.0282 -1.5478  -0.9009 1.3026 -1.4856  -0.6776 0.8143 -1.1875  -0.8062 0.8763 -1.4523 

2 8 -0.7385 0.9827 -1.2539  -0.8795 1.1721 -1.4926  -0.7480 0.9793 -1.2769  -0.8375 1.2920 -1.3468 

3 8 -0.7997 0.8601 -1.4443   -0.7962 0.9997 -1.3774   -0.8789 1.0243 -1.5540   -0.7763 1.1396 -1.2730 
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FIGURE 2. Interaction plot for parts and operators for WRF approach. 

 

 
TABLE 10. Analysis of variance for WRFv scores. 

 

Source DF SS MS F P 

Parts 7 500.546 71.507 2631.44 0.000 

Operators 3 0.415 0.139 5.10 0.003 

Repeatability 85 2.310 0.027   

Total 95 503.271       

 

Based on Table 10, the parts and the operators reject the 

null hypothesis that the average of the groups are equal (p-

value < 0.05). With this information, it was possible to 

estimate multivariate indicators for the WRFv vector based 

on varimax rotation. From the available metrics, the 

indicators show that the repeatability and reproducibility 

study can be classified as acceptable, where the value of 

%R&R equals 7.29% and number of distinct categories 

identified by the system greater than 5, as suggested by 

AIAG [31]. Table 11 describes these results. 

By evaluating the data individually, the ID and NW 

characteristics present less variability compared to the P 

characteristic. This explains the grouping created by the 

rotation of the scores, favoring the interpretation of the data 

with greater similarity. In addition, it was possible to verify 

that the eigenvalue for RF1-v (which explains ID and NW) 

presented a higher value, prioritizing the weighting of this 

factor in relation to RF2-v, which represents only the 

characteristic with greater variability.   

To demonstrate and verify the consistency of the 

measurement amplitude for the WRFv vector with varimax 

rotation, Fig. 3 illustrates the R-control chart. This chart 

presents the operators’ ranges, which shows that all operators 

presented measurements within the upper and lower control 

limits. More specifically, operators C and D presented 

greater stability in their measurements than operators A and 

B. 
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FIGURE. 3. R-control chart for the GR&R-WRF 

 

 
TABLE 11. Variance components and gage evaluation for WRF 

 

Source VarComp   %Contribution   StdDev (SD)   %Study Var 

Total Gage R&R 0.03181  0.53  0.17836  7.29 

  Repeatability 0.02717  0.45  0.16485  6.74 

  Reproducibility 0.00464  0.08  0.0681  2.78 

    Operator 0.00464  0.08  0.0681  2.78 

Part-To-Part 5.95662  99.47  2.44062  99.73 

Total Variation 5.98843   100   2.44713   100 

ndc  19 

 

To properly represent data variability, Fig. 4 illustrates 

the confidence regions of the data through the confidence 

ellipses originally proposed in the WF method. Given the 

confidence ellipses for ndcm, proposed by Almeida et al. 

[27], notice the data for ID×NW have narrower ellipses, 

indicating the most precise intervals, as well as non-

overlapping ellipses. However, when checking the relation 

NW×P and P×ID, we verified the presence of overlapping 

ellipses, as well as larger confidence regions, indicating a 

high variability due to the presence of the quality 

characteristic P. 

B. COMPARISON WITH QUARTIMAX ROTATION 

The factor scores were also extracted using the quartimax 

method, which is the most used rotation method. Table 12 

presents the loadings and communalities factor for 

quartimax rotation. Notice the subtle difference in the 

structure of the factor loads, where the loads for RF1-Q 

present higher values for the characteristics ID and NW, 

when compared to the varimax method (see Table 8). 

However, there is a disparity when comparing the loadings 

of the second factor between quartimax and varimax. The 

behavior for RF2-v of varimax showed a higher loading, better 

balancing the factors in relation to the quartimax method 

(such difference is visible due to the balance of the total 

variance explained). Hence, although the quartimax method 

favors the explanation for ID and NW, compared to the RF1-

Q, such rotation presents an unsatisfactory result when 

loading the variable P, inferring a more confusing structure 

to interpret this variable. To better illustrate this loading 

behavior, Fig. 5 and Fig. 6 presents the loads and groupings 

for both rotation methods.  

 
TABLE 12. Factor loadings and communalities for quartimax 

rotation 
 

Quartimax Rotation 

Variable RF1-Q RF2-Q Communality 

ID 0.929 0.008 0.862 

NW 0.903 0.106 0.827 

P 0.611 0.790 0.997 

Variance 2.051 0.635 2.686 

% Var 0.684 0.212 0.895 

 

Given the eigenvalues and the scores rotated by the 

quartimax method (additional data available in the 

supplementary material), the WRFQ vector was calculated 

using Eq. (24). It is important to note that the eigenvalues for 

quartimax rotation remain the same, since the extraction of 

both is based on principal components. Based on the results, 

the variance components were estimated, where the 

interaction term was not significant (p-value equal to 0.472), 

confirming what had already been verified when using 

varimax rotation. In view of the results, it is inferred again 

that the parts and the operators reject the null hypothesis that 

the average of the groups are equal (p-value equal to 0.000). 

However, presenting p-value for operators subtly lower than 

that verified in varimax rotation.  
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FIGURE. 4. 95% confidence ellipses for (a) ID×NW, (b) P×NW and (c) ID×P. 
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FIGURE 5. Loadings for varimax rotation 

 
 

FIGURE 6. Loadings for quartimax rotation 
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Based on the multivariate indicators, the WRFQ method 

also presented an acceptable classification, with %R&Rm 

equal to 5.58% and ndcm equal to 25. Although the WRFQ, 

values, in this particular case, are more attractive from the 

manager's point of view (due to the low variability presented 

in the study), such behavior is not ideal. This can be easily 

explained by comparing the loading values for quartimax 

rotation, where the quartimax method prioritized the loading 

for the ID and NW responses, which showed less variability 

in the study. Howeber, the variable P, grouped in the second 

factor, presented less load with the quartimax rotation. The 

total explained variance values (%Var from Tables 8 and 12) 

confirm this statement. Thus, in this measurement study with 

quartimax rotation, there is a confusing structure and poor 

simplification, with an imbalance in the prioritization of 

observable variables. Additionally, the variable P, which has 

greater variability (see Fig. 4), was less prioritized.  

However, it is important to note that such results do not 

detract from the quartimax method for use. The choice of the 

rotation method varies according to the data analyzed [32], 

whose degree of explanation and simplicity may vary. 

Thereunto, one must analyze the data structure before 

choosing the option that will stand out and present the best 

results, favoring the decision maker and the evaluation of the 

quality of extensive and correlated data. 

V. CONCLUSIONS 

Given the need to use appropriate strategies to consider 

the structure of variance-covariance matrix of the data, 

multivariate techniques can enhance studies related to the 

measurement system and data quality. This study sought to 

present an approach to contribute to the metrics of 

multivariate measurement system, using the FA technique 

with orthogonal rotations. In addition, the weighting of the 

rotated scores by the respective eigenvalues was added to 

form a single vector of responses, which adequately 

represented all the responses of interest. The behavior of the 

method was demonstrated for the RSW process and, from 

that, the following conclusions can be reached: 

• The method proved to be a suitable alternative to analyze 

the measurement system for data with a significant 

variance-covariance structure, improving performance 

and precision in multivariate measurement system 

assessment; 

• The proposed approach presented the possibility of a 

single metric, filling the gaps of other methods of GR&R 

with FA. Thus, WRF contemplates the use of orthogonal 

rotations (to improve interpretation) and the weighting of 

factors (attributing the degree of importance associated 

with the eigenvalue). This procedure creates a unique 

analysis for the variability of the measurement system; 

• The application carried out in the RSW process showed 

that the method improved the interpretation and 

explanation of latent variables, simplifying the data 

structure using the varimax method. This rotation method 

stood out for this data set, as it presented a greater balance 

in the division of factor loadings for the geometric 

characteristics of the process; 

• When comparing the case study using the quartimax 

method, it was found that it may not be the best choice 

for this particular data set, since it presented moderate 

loads for the variable P, which has the greatest 

variability. As a consequence, the quartimax rotation 

promoted a more confusing loading structure, prioritizing 

the variables explained in the first factor. However, it is 

important to note that the quartimax method can be a 

useful option for future applications in different 

processes and data sets; 

• The use of the FA method with extraction by principal 

components provided a minimization in the data 

dimension and, consequently, in the computational effort 

for processing. In addition, the analysis time has been 

significantly reduced (approximately a 75% reduction), 

since the method promotes a single response vector that 

represents all the variables observed in a significant way. 

 

Finally, as future suggestions, the method can be 

extended to different applications, industrial or from other 

segments. In addition, the authors suggest comparisons with 

other unusual rotation methods available in the literature and 

other applications focused on process quality. 
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