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Abstract. We consider the problem of learning to performinformation extractionin domains where linguistic
processing is problematic, such as Usenet posts, email, and finger plan files. In place of syntactic and semantic
information, other sources of information can be used, such as term frequency, typography, formatting, and
mark-up. We describe four learning approaches to this problem, each drawn from a different paradigm: a rote
learner, a term-space learner based on Naive Bayes, an approach using grammatical induction, and a relational
rule learner. Experiments on 14 information extraction problems defined over four diverse document collections
demonstrate the effectiveness of these approaches. Finally, we describe a multistrategy approach which combines
these learners and yields performance competitive with or better than the best of them. This technique is modular
and flexible, and could find application in other machine learning problems.
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1. Introduction

If I were in the market for a bargain computer, then I would benefit from a program that
monitors newsgroups where computers are offered for sale until it finds a suitable one for
me. The design of such a program is essentially aninformation extraction(IE) problem. We
know what each document (post) says in general terms; it describes a computer. Information
extraction is the problem of summarizing the essential details particular to a given docu-
ment. An individual summary produced by our program will take the form of a template
with typed slots, in which each slot is filled by a fragment of text from the document (e.g.,
type: “Pentium”; speed: “200 MHz.”; disksize: “1.5Gig”; etc.).

Existing work in IE can give us some good ideas about how this agent should be con-
structed, but we will find large portions of it inapplicable. Most of this work assumes that
we can perform syntactic and semantic processing of a document. Unfortunately, not only
do we find strange, syntactically intractable constructions like news headers and user signa-
tures in news posts, but sometimes the body of a message lacks even a single grammatical
construct. How should our agent handle the “messy” text it is likely to encounter? How
can it exploit whatever conventions of presentation are typical of postings for this news-
group? More interestingly, are there general machine learning methods we can use totrain
a generic agent for use in this and similarly informal domains?

Our research addresses this question. We are interested in designing machine learning
components for information extraction which are as flexible as possible, which can exploit
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syntactic and semantic information when it is available, but which do not depend on its
availability. Other sources of useful information include:

• Term frequency statistics
• Typography (e.g.,capitalizedandnumeric)
• Meta-text, such as HTML tags
• Formatting and layout

We are investigating the usefulness of these kinds of information by designing learning
components that exploit them. Our ultimate goal is a multistrategy learning system which can
be easily ported to new domains and can exploit new kinds of structure as it is encountered.

1.1. Background

The grand challenge, in which information extraction plays a part, is the development
of automatic methods for themanagementof text, rather than just its transmission, stor-
age, or display. Efforts to meet this challenge are nearly as old as computer science itself.
The decades-old discipline ofinformation retrieval(IR) has developed automatic methods,
typically of a statistical flavor, for indexing large document collections and classifying doc-
uments. The complementary endeavor ofnatural language processing(NLP) has sought to
model human language processing—with some success, but also with a hard-won appreci-
ation of the magnitude of the task.

The much younger field of information extraction lies somewhere in between these two
older endeavors, in terms of both difficulty and emphasis. IE can be regarded as a kind
of cheap, directed natural language understanding. IE assumes the existence of a set of
documents from a limited domain of discourse, in which each document describes one or
more entities or events that are similar to those described in other documents but that differ
in the details. A prototypical example is a collection of newswire articles on Latin American
terrorism; each document is presumed to describe one or more terroristic acts.1 Also defined
for a given IE task is atemplate, which is a case frame (or set of case frames) that is to hold
the information contained in a single article. In the terrorism example, this template might
have slots for the perpetrator, victim, and instrument of the terroristic act, as well as the
date on which it occurred. An IE system designed for this problem needs to “understand”
an article only enough to populate the slots in this template correctly. Most of these slots
can typically be filled with fragments of text taken verbatim from the document, whence
the name “information extraction.”

There are many variations of the IE problem, which has evolved over the decade during
which it has been recognized as a distinct endeavor. Some of this evolution can be traced
in the proceedings of the Message Understanding Conference (MUC) (1992, 1993, 1995),
the premier forum for research in conventional IE. In its hardest form, IE involves recog-
nizing multiple entities in a document and identifying their relationship in the populated
template. On the other end of the spectrum is the problem of generic entity recognition, in
which the type of the entity is relevant, but not its particular role in the document. Recog-
nizing company names is an example of this kind of problem. Typically, there are multiple
distinct sub-tasks, such as relevancy filtering, extraction, anaphora resolution, and template
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merging, which together contribute to the successful performance of a given task (Cardie,
1997). Central to any IE effort, however, is the problem of extraction, of mapping text
fragments to the slots they must fill in a correctly populated template. We will use the term
information extractionto refer to this smaller, more focused problem.

As recent research in the IE community has shown, machine learning (ML) can be of
service, both in performing this fragment-to-slot mapping (Kim & Moldovan, 1995; Riloff,
1996; Soderland, 1996), and in solving associated tasks (Aone & Benett, 1996; Cardie,
1993; McCarthy & Lehnert, 1995; Riloff & Lehnert, 1994; Soderland & Lehnert, 1994). At
the same time, ML researchers have become increasingly aware of the IE task as a source
of interesting problems (Califf, 1998). This development is part of a general growth of
interest on the part of the ML community in problems involving text, which in turn can be
attributed to the growth of the Internet and the Web as a source of problem domains. In
fact, some ML researchers, in pursuit of automated methods for handling certain Web and
Internet problems related to data mining, have discovered their affinity to research done
in IE (Doorenbos, Etzioni, & Weld, 1997; Kushmerick, 1997; Soderland, 1997). Thus, a
natural meeting appears to be in progress, between IE researchers, who have discovered
the utility of ML methods, and ML researchers, who, as part of an interest in data mining
and textual problems, have come to appreciate IE as a source of domains to motivate the
refinement of existing ML methods and the development of new ones.

The result appears to be a broadening in scope of the IE problem. Although traditional
research in IE has involved domains characterized by well-formed prose, and has focused on
the adaptation of NLP techniques to the IE problem, many domains for which IE solutions
would be useful, such as those consisting of Web pages and Usenet postings, do not have
this character. In many cases, it may be hard to analyze the syntax of such documents
with existing techniques. Grammar and good style are often sacrificed for more superficial
organizational resources, such as simple labels, layout patterns, and mark-up tags. It is
not the case that a document from such a domain is formless; rather, standard prose is
replaced by domain-specific conventions of language and layout. Researchers have shown
for particular types of domain that these conventions and devices can be used to learn how
to perform extraction (Califf, 1998; Doorenbos, Etzioni, & Weld 1997; Kushmerick, 1997;
Soderland, 1997).

1.2. Problem definition

In this paper we explore one variation of the slot-filling problem:Find the best unbroken
fragment of text to fill a given slot in the answer template.We call the target slot afieldand
a text fragment that correctly fills it aninstanceof this field. Note that in order to study the
behavior of the algorithms we develop, we have simplified the larger problem in at least
two ways:

• We consider each field-learning problem in isolation. A typical IE problem involves
multiple fields. These fields interact within the text in interesting ways. The best possible
approach to the template-filling problem undoubtedly considers and seeks to exploit these
interactions.
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• In general, a field may have multiple instantiations in a file. In most cases, we concentrate
on fields which either are not instantiated or have a unique instantiation in a document. For
example, a Web page describing a computer science research project at a university usually
lists the names of all members (i.e., all instances of the project-member field). In contrast,
the project title, although it may appear several times in the page, is presumed to have a
single canonical form.

Although these are not the most general assumptions, they are nevertheless sufficient to
cover a wide range of IE tasks and to motivate the development of effective algorithms.

1.3. Example domain

One of the domains with which we have experimented consists of 485 electronic seminar
announcements taken from the online environment of a large university. As motivation,
we imagine an intelligent agent that can monitor university bulletin boards and summarize
upcoming seminars for its user. Such an agent might also attempt to infer whether a seminar
is interesting, and might insert details of the seminar, when ordered to do so, into the
appropriate slot of the user’s electronic calendar. In our collection, these details are presented
in a variety of ways, as Table 1 indicates. More often than not, they do not occur in full,
grammatical sentences.

What sort of information might an IE system use to process documents in such a domain
effectively? Table 2 shows two “views” of a single seminar announcement drawn from our
collection, a view in which literal tokens have been replaced by typographic abstractions
and the “human” view. It is an interesting exercise to attempt to locate relevant seminar
details, such as talk title, speaker, and start time, in the restricted view. This exercise makes
clear that, although it may not be possible to locate these details with perfect accuracy, much
important information is nevertheless retained in the abstract view. It may be surprising how
important layout and typographic information is in the presentation of important details.

The apparent diversity of clues useful in performing information extraction in this domain
motivates our research. We seek to construct a flexible architecture which can exploit useful
clues in whatever form they naturally occur. Our effort has two primary aspects:

1. Multistrategy learning. There is reason to believe that no single document representation
is best for all IE problems. We hypothesize that, by using learners from diverse paradigms
to solve different aspects of an IE problem, we can achieve better results than from any
single learner.

2. Feature engineering. The notion from ML of afeature setis particularly attractive, since
it holds out hope of quick adaptation to domains containing novel structures. We have
designed a relational rule learner, similar in spirit to FOIL (Quinlan, 1990). One input
to the learner is a set of features to be used in learning. These features are intended to
capture aspects of the kind of information hinted at in Table 2.

To date, we have experimented with the use of four kinds of information: raw term statis-
tics, typography, syntax and semantics, and HTML mark-up. Our research has involved the
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Table 1. Excerpts from three seminar announcements, illustrating the range of styles and devices used to convey
essential details.

Name: Dr. Jeffrey D. Hermes

Affiliation: Department of Autoimmune Diseases Research & Biophysical Chemistry

Merck Research Laboratories

Title: "MHC Class II: A Target for Specific Immunomodulation of the

Immune Response"

Host/e-mail: Robert Murphy, murphy@a.cfr.cmu.edu

Date: Wednesday, May 3, 1995

Time: 3:30 p.m.

Place: Mellon Institute Conference Room

Sponsor: MERCK RESEARCH LABORATORIES

Professor John Skvoretz, U. of South Carolina, Columbia, will present

a seminar entitled "Embedded Commitment," on Thursday, May 4th from

4-5:30 in PH 223D.

Laura Petitto

Department of Psychology

McGill University

Thursday, May 4, 1995

12:00 pm

Baker Hall 355

development of four machine learning components, each drawn from a different paradigm,
and each shown to be effective for parts of the overall IE problem. Each learner is designed
to learn to identify instances of a field. In the remainder of the paper we discuss each of
these learners in turn, and provide evidence of their usefulness for extraction problems
defined over several different domains. In Section 2, four different learning approaches are
described. In Section 3 these learners are tested on fields from three information extraction
domains. Finally, in Section 4 we attempt to achieve extraction performance superior to that
of any individual learner by combining their predictions.

2. Learning to perform information extraction

Information extraction is essentially a kind of text classification. Consider the problem of
identifying the name of the speaker in a seminar announcement. One way to approach
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this problem is to design a component which, when presented with an arbitrary fragment,
outputsyesif it is the speaker’s name, andno if it is not. More generally, we can ask that it
output a real number, which is its confidence that a fragment is the speaker’s name. Now,
armed with such a component, we can present it with every appropriately sized fragment
and keep the fragment for which its confidence is highest.

Given this approach, the problem of learning to identify field instances boils down to
mapping a piece of text to a real number. This is the same I/O behavior as any number
of techniques developed for the information retrieval and document classification tasks. In
information retrieval, for example, the central task is to rank documents in order of relevance
to some query (van Rijsbergen, 1979). This typically involves assigning a real number to a
document which represents its degree of relevance.

Each of the learners described in this section assumes this approach. In particular, testing
is always performed at the fragment level. Note that a fragment is a subsequence of tokens
within a document. The context of a fragment is available to a learner, though a learner may
choose or be designed to ignore it.

2.1. Rote learning

Perhaps the simplest possible learning approach to the IE problem is to memorize field
instances verbatim, without any contextual tokens. Presented with a novel document, this
approach simply matches text fragments against its “learned” dictionary, saying “field in-
stance” to any matching fragments and rejecting all others. We can say a test fragment
“matches” a dictionary entry if it contains the same tokens in the same order, modulo
capitalization.

More generally, we can estimate the probability that the matched fragment is indeed
a field instance. The dictionary learner we experiment with here, which we call ROTE,
does exactly this. For each text fragment in its dictionary, we count the number of times it
appears as a field instance (p) and the total number of occurrences in any context (t). Its
confidence in a prediction is then the valuep/t , smoothed for overall frequency. We use
Laplace estimates under the assumption that this is a two-class problem,field instanceand
non-field instance. Thus, the actual confidence ROTE outputs is(p+ 1)/(t + 2).

This approach, simple as it is, is nevertheless surprisingly applicable in a wide variety
of domains. Of course, its applicability depends on the nature of the problem, but at the
very least a ROTE prediction, especially a high-confidence one, is a valuable piece of infor-
mation. Because of the simplicity of the assumptions that go into a prediction, confidence
correlates well with actual probability of correctness.

2.2. Term-space learning

We base our term-space learner on the Naive Bayes class of algorithms as typically used
in document classification. Consider the problem of identifying the speaker in a seminar
announcement. In this case a hypothesis takes the form, “the text fragment starting at tokeni
and consisting ofk tokens is the speaker.” (Call this hypothesisHi,k.) In the case of a seminar
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announcement file, for example,H309,2 might represent our expectation that a speaker field
consists of the 2 tokens starting with the 309th token.

Bayes’ Rule tells us how to combine prior expectations (Pr(Hi,k)) and current evidence
(Pr(D | Hi,k)) to form an estimate of field membership:

Pr(Hi,k | D) = Pr(D | Hi,k)Pr(Hi,k)

Pr(D)
(1)

In our implementation, we assume that the two components that a hypothesis comprises,
position and length, are independent, and we estimate them separately:

Pr(Hi,k) = Pr(position= i )Pr(length= k) (2)

In a typical IE problem field instances are short and do not vary too much in length. Thus,
simply tabulating the number of times instances of lengthk are seen during training, and
dividing this number by the total number of training instances, yields a good estimate for
the length prior.

In order to estimate the position prior, we sort training instances inton bins, based on
their position, wheren is much smaller than the typical document size. During testing,
we use a frequency polygon drawn over these bin counts to estimate the position prior. In
the experiments reported here, bins are of size 20. Training instances beginning at indexes
0 through 19 are sorted into the first bin, instances at indexes 20 through 39 are sorted
into the second bin, and so on for instances at later positions. This tabulation yields a
positional histogram. Position estimates for test instances located at bin midpoints are
estimated directly from these counts; estimates for instances falling between bin midpoints
are estimated by linear interpolation between midpoints.

The data likelihood (Pr(D | Hi,k)) is a product of three separate estimates:

Pr(D | Hi,k) = Pr(before| Hi,k)Pr(in | Hi,k)Pr(after| Hi,k) (3)

Here, “before,” “in,” and “after” are shorthand for the events in which we observe the given
tokens occurring before, in, and after a candidate instance, respectively. The probability
Pr(before| Hi,k) is a product of individual term probabilities:

Pr(before| Hi,k) =
w∏

j=1

Bj
(
t(i− j )

)
G
(
t(i− j )

) (4)

wherew is the pre-specified context window size (w = 4 in these experiments),ti is term
numberi in the document,Bi (t) is a count of the number of times the termt occurred in the
i th slot before field instances in training, andG(t) is a count of the number of times termt
occurred anywhere in documents in the training collection. The fraction calculated within
the product is smoothed usingm-estimates. Calculations for Pr(after| Hi,k) are handled
analogously. Calculations for Pr(in | Hi,k) are similar, only normalized for length. Rather
than a product, we take the average of the in-field term probabilities and multiply them by
the average length of field instances. This prevents short fragments from being preferred
over long ones.
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Note that a true Bayesian approach, instead ofG(t), would have the number of training
instances in the denominator. Our reason for deviating is strictly empirical. We found that
the formula used works substantially better than a more principled approach (Freitag, 1999).
We can justify it as a heuristic by drawing parallels to TFIDF. Using the overall frequency
of a termt in the denominator has an effect similar to using the document frequency of a
word in an application of TFIDF.

Unlike ROTE, this algorithm, which we will call BAYES, offers an estimate forany
fragment. Because we want learners to reject all fragments in a document if a field is
not instantiated in it, this is undesirable. The final step in training, therefore, involves the
setting of a confidence threshold, below which BAYES will reject a fragment. Using its
learned classifier, BAYES computes its confidence for all field instances in the training
set. The threshold is a user-controlled parameter (call itγ ) times the lowest field instance
confidence (expressed as a log probability). Thus, ifγ is set to 1.0, BAYES extracts only
fragments for which it is at least as confident as some training field instance.

The settings we used in the experiments described in Section 3 for BAYES and the BAYES-
grammatical inference hybrid described in the next section were based on early experiments
in the seminar announcement domain. A window size of 4 was used. Form-estimates we
setm to 10. BAYES’s confidence threshold parameterγ was set to 2.0. This setting strongly
favors recall over precision, but we take pains to adopt performance measures, such as peak
F1, that normalize BAYES’s overemphasis on recall.

2.3. Learning abstract structure with grammatical inference

Although BAYES is surprisingly good at identifying field instances, it can have difficulty
identifying boundaries precisely, particularly when faced with low-frequency tokens. Often,
BAYES extracts an unintelligible piece of an instance, or a fragment containing tokens from
the surrounding text which a human would consider trivial to filter out (see Table 3).

BAYES’s alignment difficulty is greatest for a field that typically contains tokens drawn
from a large set of candidates (e.g., the speaker field; the names of people exhibit a wide
variety), since the low frequency of a token’s occurrence in the training set renders BAYES’s
probability estimates less reliable. It also has trouble extracting fields which tend to be
surrounded by linguistic clues, i.e., embedded in grammatical text, rather than predictable
labels or highly stereotypic language.

It is hard to avoid the impression that a simple notion of the appropriate form of a field
might improve the alignment of the fields shown in Table 3. In no case in the training set,
for instance, is there a seminar speaker whose name consists of two letters terminated by a
period (i.e., “Dr. ”), and we might expect a learning system to recognize that the fragment
Dr. is always followed by additional tokens. Similarly, almost without exception, names do
not contain numerals, while seminar locations usually do. It is this hole in BAYES’s ability
that we hope to fill withgrammatical inference(GI). Our solution is to add a term to the
product that constitutes BAYES’s estimate for a fragment:

Pr(H | D) = Pr(position)Pr(length)Pr(terms)Pr(structure) (5)
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Table 3. Examples of poor alignment from actual tests of BAYES. Each fragment is BAYES’s top prediction for
some document.

Location

Confidence: -89.69

Fragment: GSIA 259 Refreshments served

Confidence: -77.30

Fragment: Mellon Institute.

Speaker

Confidence: -68.97

Fragment: Dr.

Confidence: -80.84

Fragment: Antal Bejczy Lecture Nov. 11

Note that theposition, length, andtermscomponents together make up BAYES. BAYES is run
exactly as described in the previous section, but its estimate for a fragment is multiplied with
the new term, one that estimates the likelihood that the fragment has the right structure.
This structure estimate is produced by a probabilistic learned grammar for the field in
question.

2.3.1. Alergia. In broad terms, the grammatical inference problem is this: Given a set of
sequences from some formal language, induce a grammar for the language. A common
approach to the problem of learningregular grammars (i.e., finite state automata) is to
construct a maximally specific grammar (called thecanonical acceptor) which accepts
only the input sequences and generalize it by merging the states in this grammar. How this
merging is conducted is a detail of the particular algorithm.

In our experiments we employ ALERGIA (Carrasco & Oncina, 1994). Given the canonical
acceptor, ALERGIA makes one pass through the set of pairs of states, asking for each pair,
X andY, whetherX andY are functionally equivalent. If two states are deemed equivalent,
they are merged. Incoming transitions are set to point to the new, merged state. Pairs of
outgoing transitions with the same label are combined, and the states they point to are also
merged. This process continues recursively until all descendants of the initial pair of states
are visited.

State equivalence depends on a comparison of the behaviors of the respective states.
Because the automaton processed by ALERGIA is stochastic, a probability is associated with
each action possible from a state. Two states are deemed equivalent if each state assigns the
same probability to each possible action:

• They accept (i.e., terminate) with the same probability.
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• The two transitions passing out of the states for any given symbol have the same proba-
bility, andthe states arrived at by following these transitions are also equivalent.

ALERGIA keeps track of these probabilities by means of frequency statistics. The following
counts, taken from the training sequences, are kept for each state:

• the number of times it was visited
• the number of times it accepted (was the terminal state)
• for each outgoing transition, the number of times it was followed

Whenever two states are merged during training, each count in the new state is the sum of
the corresponding counts in the original states.

Of course, probabilities estimated from these counts will rarely satisfy the criteria for state
equivalence because of statistical uncertainties due to finite data. ALERGIA uses Hoeffding
bounds, a statistical test used to determine whether the observed behavior of a Bernoulli
variable agrees with some given probability, to soften the equivalence requirement. Suppose
States 1 and 2 have been visitedn1 andn2 times, and accepted (terminated)f1 and f2 times,
respectively. The two states are judgedcompatible, in terms of their acceptance behavior,
if: ∣∣∣∣ f1

n1
− f2

n2

∣∣∣∣ <
√

1

2
log

2

α

(
1√
n1
+ 1√

n2

)
(6)

The same test is used to compare pairs of transitions. Theα parameter controls the certainty
of the equivalence judgment. Lower values ofα cause more states to be judged equivalent
and result in more aggressive generalization. Thus,α is a “knob” which must be set before
training can occur. Successful inference depends on choosing an appropriate value.

It is straightforward to use the various counts contained in the eventual grammar to
generate a probability that a test string belongs to the language encoded by the automaton.
It is this probability, produced by an automaton learned over field instances, which we use
for Pr(structure) in Eq. (5).

2.3.2. Inferring transducers. Before we can apply grammatical inference to this problem,
we must settle on a representation for field instances, analphabetto be used in labeling
state transitions. One possibility would be to regard a field instance as a sequence of ASCII
characters, perhaps allowing generalization to exploit some abstract character classes, as
do Goan, Benson, and Etzioni (1996) This would result in a relatively large alphabet and
long sequences, and would probably require a large amount of data to permit effective
generalization. What is more, it would obscure certain structural features of tokens, such
as whether they are capitalized, which are not apparent at the character level. Another
possibility is to use the unprocessed output of the tokenizer used by BAYES and ROTE. This
should result in reasonable behavior but low coverage; in fact, it would amount to a variation
of ROTE. It is more important to obtain high coverage, however, since for any fragment we
want some estimate of the appropriateness of its structure for the field we are trying to learn.
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A more interesting idea, therefore, is to replace tokens with symbols that correspond
to abstract token features, where abstraction is controlled by the structure of the field in
question. For example, we would like to transduce the seminar speaker fragment, “Dr.
Koltanowski ,” to something like

[token = Dr, token = ., capitalized = true]

i.e., a three-symbol sequence that effectively retains important, high-frequency tokens, but
which replaces low-frequency tokens with abstractions that are relevant to the speaker field.
Under this scheme, a field instance consisting of five tokens becomes a sequence of five
symbols, each symbol the canonical representation of the corresponding token. We will call
a procedure that transforms text in this way analphabet transducer.

Because we want transduction to adapt to features of the field to be learned, we take a
learning approach. We make the simplifying assumption that the right abstraction can be
chosen for each token in isolation, i.e., that we need not consider its context in deciding
how to represent it. For each field we construct adecision list, which is a sequence of
pattern/emission rules. Table 4 shows part of a sample list for the location field. To transduce
a token, we compare it with each pattern in turn until a matching one is found. The token
is then replaced with the corresponding symbol. If no matching pattern is found, the token
is replaced with the symbolunknown . For example, given the word “Hall”, the list in
Table 4 emits the symbolword+hall ; given “5409”, it emitsquad-digit+true ; and
given “Baker”, it emitscapitalized+true .

We construct decision lists greedily, using a covering approach. One input to the procedure
is a set of features to consider in forming patterns. In the experiments reported here, we used
the 26 features shown in Table 5, all of which are readily computable by direct inspection of
a token. Next, all field tokens in the set of training documents are collected into a working
set of examples. At each step, a feature-value pattern that matches some of the tokens is
appended to the end of the list, and all matching tokens are removed from our working set.
This process repeats until either too few tokens remain in the working set or the decision
list has reached a pre-specified length.

How should we choose the patterns to add to our list? Should we prefer a large list
(alphabet) or a small one? Is it important that the patterns used are those that tend to
distinguish field tokens from non-field tokens? Or is it sufficient to choose patterns which

Table 4. Excerpt from one decision list inferred for the location field.

If Emit

word= “wean” word+wean

word= “hall” word+hall

triple-digit= true triple-digit+true

quad-digit= true quad-digit+true

capitalized= true capitalized+true

. . .
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Table 5. The features used in the seminar announcement experiments, both for inferring alphabet transducers
and training SRV. Theword feature returns the literal token, modulo capitalization. Here,long means longer than
four characters in length.

word single digit p long char p punctuationp

singletonp double char p long digit p hybrid anum p

doubletonp double digit p capitalized p a then num p

tripletonp triple char p all upper case p num then a p

quadrupletonp triple digit p all lower case p multi word cap p

longp quadruple char p numericp

single char p quadruple digit p sentence punct p

distribute field tokens evenly? We experiment with three basic approaches:

• Spread evenly.We decide how many symbols (k) we want in our alphabet prior to inference
of the decision list. At each stepi , choose the feature-value test that comes closest to
matching 1/(k− i − 1) of the remaining field tokens.
• Information gain.Non-field tokens are also counted. Choose the feature-value pair that

maximizesp(log(p/n)− log( f/t)), wherep is the number of matching field tokens,n
is the number of matching tokens overall,f is the number of field tokens remaining, and
t is the total number of uncovered tokens overall.
• M-estimates.Non-field tokens are again counted. Choose the feature-value pair that

maximizesp+m/t
n+m , for a small value ofm (m= 3 in these experiments).

The results of these experiments, as well as experiments with ALERGIA’s generalization
parameterα, are presented in Section 3.5.

2.4. Relational learning for information extraction

Experimental results will show that the addition of grammatical inference to BAYES can
yield substantial improvements. Nevertheless, the approach leaves a few things to be desired:

• Although the combination of BAYES and GI works, the way in which the two learners
are combined is somewhat arbitrary. There is no guarantee that simply dropping the
language-membership estimate of the GI learner into BAYES’s large product assigns it its
proper weight in the overall estimate.
• GI must express its patterns in terms of all tokens in a field. It may be the case, however,

that only certain aspects of some tokens are important. If this is so, then the requirement
that all tokens are accounted for could hamper generalization.
• Training occurs in two phases, inferring a transducer and building a grammar. Thus, the

decision about which token features to use is decoupled from the process of building a
classifier to recognize field instances.
• Although BAYES has a notion of field context, the GI method we use here does not. Thus,

any interesting abstract patterns in contextual tokens are lost.
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In summary, the use of abstract token features ought to play a direct part in the construction
of a classifier to recognize field instances.

In order to meet this requirement, we look to the family ofsymbolicinductive learners,
which includes decision tree learners, such as C4.5 (Quinlan, 1993), covering algorithms,
such as AQ (Michalski, 1983) and CN2 (Clark & Boswell, 1991), and inductive logic
programming (ILP) orrelational learners, such as FOIL (Quinlan, 1990). A learner in this
family typically takes two kinds of input: a representation language and a set of examples
to be used in training. These examples are explicitly or implicitly divided inton classes.
The goal of the learner is to produce a set of logical rules (or their functional equivalent) to
classify a novel example into one of these classes.

Covering algorithms are designed to produce sets of rules for binary (positive vs. negative)
classification problems. The outer loop of a covering algorithm repeatedly learns a rule,
each iteration producing a rule that “covers” part of the training set not covered by previous
rules. As each rule is produced, positive examples of the target class which are covered by
the rule are removed from consideration. The process repeats with the remaining positive
examples until the set of positive examples is exhausted.

The details of individual rule construction vary with the algorithm. The learner to be
presented in this section, SRV, is atop-down, greedyrule learner. Learners in this class
initialize a rule with an empty list of antecedents, such thatall examples satisfy the rule, and
iteratively add conjunctive tests, at each step choosing the test that maximizes an objective
function. The objective function is designed to ensure that the learner will choose tests
that include many positive examples and exclude many negative ones, while maintaining
good overall coverage. This process of adding to the list of antecedents continues until
some stopping criterion is satisfied. One simple criterion is that the rule match only positive
examples.

Tests in a propositional covering algorithm are typically limited to asserting that a feature
has some value. Inrelational learning(i.e., inductive logic programming), the set of features
which define examples is augmented with abackground theory, which defines how these
features are related to each other, and to other, more abstract concepts. In addition to
positing a feature-value test while constructing a classification rule, a relational learner can
also derive “new” features from its background theory. This facility seems appropriate for
the IE problem, where examples (field instances) are embedded in a larger structure and
implicitly related to the text that surrounds them in a number of ways (e.g., contiguity and
linguistic syntax). While it is not a general-purpose relational learner, SRV is designed to
exploit such relational structure in a way specific to the information extraction problem.

2.4.1. Example space.Covering algorithms, as noted, require that a problem space be cast
as a set of examples, positive and negative. Apositiveexample for SRV is simply an instance
of the target field. Any other unbroken sequence of tokens is potentially a negative example.
We assume that only fragments of appropriate size—fragments having no fewer tokens than
the smallest training field instance, and no more than the largest—are candidate instances.
All non-instance fragments from the training documents that meet this criterion constitute
the set of negative examples. Table 6 shows how the two example sets are constructed from
a hypothetical seminar announcement excerpt.
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Table 6. A text fragment and some of the examples it generates—one positive example, and many negative ones.
How many negative examples are generated starting with any given token depends on the range in lengths of
training field instances.

Fragment: ... will meet in Baker Hall 300 , at 3:30 ...

Positive example: Baker Hall 300

Negative examples: will meet

will meet in

...

meet in

meet in Baker

...

Baker Hall 300,

Baker Hall 300, at

...

Hall 300

...

Note that, even with the fragment-size heuristic, the set of negative examples is likely to
be very large, typically several orders of magnitude larger than the set of positive examples.
And each such fragment that satisfies the antecedents in the rule under construction is
examined as part of the search for the next literal.2 The search is usually not as expensive
as it might appear, however, since the fact that fragments overlap so densely makes some
efficient shortcuts possible in common situations. For simplicity of presentation, we will
assume that examples are explicitly enumerated, but much more efficient implementations
are in fact possible.

2.4.2. Features. In a traditional covering algorithm, such as CN2, features are all defined
with respect to examples. If our object is to classify animals, for example, we use features
of individual animals, such ashas spine? andlives in water?. Unfortunately, multi-term
text fragments are difficult to describe in terms of simple features. In contrast, individual
terms (or tokens), lend themselves readily to feature design. Given a token drawn from
a document, a number of obvious feature types suggest themselves, such as length (e.g.,
single-character-word), character type (e.g.,numeric), typography (e.g.,capitalized), part
of speech (e.g.,verb), and lexical content (e.g.,geographical-place). Thus, as with the
transducer inferring algorithms presented in Section 2.3, SRV takes as input features defined
over tokens. For experiments with the seminar announcements, we provided SRV with
exactly the same 26 features used in the GI setting (Table 5).

To these 26 features we add two additional features of a different character. Whereas the
typical SRV feature is a function which takes a token and returns a categorical (typically
Boolean) value, the featuresprev token andnext token correspond to functions which take
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a token and return another token. We call the former featuressimplefeatures; the latter
arerelational features. These two relational features only capture contiguity, but it is not
difficult to see how one might implement syntactic relations (e.g.,subject verb).

2.4.3. Rule construction. SRV proceeds “top down,” starting with null rules that cover
the entire set of examples—all negative examples and any positive examples not covered
by already induced rules—and adding literals greedily, attempting thereby to “cover” as
many positive examples as possible, while weeding out covered negative examples. There
are five predicates which SRV can use.

• length(Relop, N): The number of tokens in a fragment is less than, greater than, or equal
to some integer. For example, the assertionlength(>, 2) restricts attention to fragments
containing three or more tokens.
• some(Var, Path, Feat, Value): A token in the sequence is constrained to pass a feature-

value test. For example,some(?A, [ ], capitalizedp, true) means “the fragment contains
some token that is capitalized.” One argument to this predicate is a variable. Each distinct
variable in a rule must bind to a distinct token in a fragment. The Path argument is used
to exploit relational structure in the domain. Its use is described below.
• every(Feat, Value): Every token in a fragment must pass some feature-value test. For

example,every(numericp, false) means “every token in the fragment is non-numeric.”
• position(Var, From, Relop, N): A token bound by asome-literal in the current rule must

be positioned the specified distance from either the beginning or end of the sequence.
For example,position(?A, fromfirst, <, 2) means “the token bound to ?A by one or more
some-literals in the current rule is either the first or second token in the fragment.”
• relpos(Var1, Var2, Relop, N): Two tokens bound by distinct variables in the current rule

occur in the specified order and with the specified separation. For example,relpos(?A,
?B, =, 1) means “the token bound to ?A immediately precedes the token bound to ?B.”

Relational features are used only in thePath argument to thesome-predicate. This
argument can be empty, in which case asome-literal is asserting a feature-value test for
a token actually occurring within a field, or it can be a list of relational features, in which
case it is positing both a relationship between a field token and some other nearby token,
as well as a feature-value for the other token. For instance, the assertion

some(?A, [ ], capitalizedp, true)

means “the fragment contains some token (?A) that is capitalized.” In contrast, the assertion

some(?A, [prev token prev token], capitalizedp, true)

means “There is some token in the fragment preceded by a capitalized token two tokens
back.” There is no limit to the number of relational features the learner can string together in
this way. Thus, it is possible in principle for the learner to exploit relations between tokens
quite distant from each other.
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The most important function of the path argument is to allow the learner to expand its
consideration of relevant field structure to the text outside the field instance. These relational
paths are powerful, but also potentially very costly in terms of search effort. We limit the
cost heuristically. SRV works with a set of paths it is allowed to consider in creatingsome-
literals. For each rule, this set initially contains only the null-path and all paths of length one
(e.g.,[prev token]). Whenever SRV actually uses a path by adding asome-literal containing
it to the rule under construction, it adds to this working set all paths created by appending
any single relational feature to the path it used. In effect, SRV grows its consideration of
surrounding context from field instances outward. The rate of growth is governed by how
useful it has already found context to be, and how little use it is able to make of structure
within the field.

When deciding which literal to add to the rule under construction, SRV uses the same gain
metric as FOIL. In describing FOIL, Quinlan (1990) defines a function which characterizes
the information contained in the ratio of positive to negative examples in a set of examples:

I (S) = − log2(P(S))

(P(S)+ N(S))
(7)

whereP(S) andN(S) are the number of positive and negative examples, respectively, in
the setS. SupposeS corresponds to a set of examples covered by some partially formed
rule, and letSA stand for the subset ofS covered by the rule when the literalA is added.
Then the gain metric used in SRV and FOIL is:

Gain(A) = P(SA)(I (S)− I (SA)) (8)

In order to calculate the gain of candidate literals, the entire set of examples matching the
current rule must be examined. In practice, this entails loading and scanning each document
in the training set. A hash table is used to account for candidate literals; with each such literal
is associated a record holding two numbers, the number of positive and negative examples
the literal matches. For each currently covered example in the training set, SRV updates the
entry of every possible literal that matches the example, incrementing either the positive or
negative count, depending on the example’s label. After processing the training documents
and tabulating these numbers for each candidate literal, SRV scans the hash table to select
one literal maximizing the gain criterion.

Construction of a rule stops if it achieves purity—if it matches only positive examples.
Often, however, especially after easy patterns have been captured by earlier rules in a training
session, it may be difficult or impossible for a rule learner to reach purity. In such cases, in
an effort to weed out negative examples, a rule learner may induce rules that cover very few
positive examples. Not only is the probable lack of generality of such rules undesirable, but
they consume a lot of search effort without advancing the learner’s cause much. In order to
avoid this situation, SRV discards any literal that covers fewer than five positive examples.

2.4.4. Rule accuracy estimation.The final training step is rule validation. A randomly
selected portion (one-third, in this case) of the training data is set aside for validation
prior to training. After training on the remaining data, the number of matches and correct
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predictions is tabulated for each learned rule, and these numbers are used to estimate its
accuracy. In order to get as much out of the training data as possible, this procedure—
training and validation—is repeated three times, once for each of three partitions of the
training data. The resulting validated rule sets are merged into a single rule set, which is
used for prediction.

At testing time, associated with each rule are two counts: the number of times it matched
any fragment in the validation set, and the number of times itcorrectlymatched. The rule’s
confidence is anm-estimate, based on these two numbers, of the probability that the rule
is correct, given that it matches a fragment. All candidate fragments in a test document are
compared with all rules to look for a match. If at least one matching rule is found, SRV
predicts that the fragment is a field instance and returns a confidence with this prediction.
This confidence is a combination of the confidences ofall matching rules. SupposeC is
this set of confidence scores. The combined confidence is:

Ccombined= 1−
∏
c∈C

(1− c) (9)

In other words, the rules are treated as independent predictors. Although this independence
assumption is problematic, given the way in which validation is performed, we have found
that this approach works better than, say, taking the confidence of the highest-accuracy rule.

3. Experiments

To gauge the performance of the four learners, we experimented with a number of field
extraction problems defined for several different domains.

3.1. Domains

Three document collections and four problem domains formed the basis of the individual
extraction tasks addressed in these experiments. The three collections from which docu-
ments were drawn differ widely in terms of the purpose of individual documents and the
regularity of their structure.

The seminar announcement collection consists of 485 electronic bulletin board postings
distributed in the local environment at Carnegie Mellon University. The purpose of each
document in this collection is to announce or relate details of an upcoming talk or semi-
nar. Announcements follow no prescribed pattern; documents are free-form Usenet-style
postings. We annotated these documents for four fields:speaker, the name of a seminar’s
speaker;location, the location (i.e., room and number) of the seminar;stime, the start time;
andetime, the end time.

The acquisitions collection consists of 600 documents belonging to the “acquisition” class
in the Reuters corpus (Lewis, 1992). These are newswire articles that describe a corporate
merger or acquisition at some stage of completion. We defined a total of ten fields for this
collection, of which five are used for the experiments in this section:acquired, the official
name of the company or resource in the process of being acquired;purchaser, the official
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name of the purchaser;acqabr, the short form ofacquired, as typically used in the body
of the article (e.g., “IBM” for “International Business Machines Inc”);dlramt, the amount
paid for the acquisition; andstatus, a short phrase indicating the status of negotiations.

The university Web page collection is a sample of pages from a large collection of univer-
sity pages assembled by the World Wide Knowledge Base project (WebKB) (Craven et al.,
1998). As part of an effort to classify Web pages automatically, WebKB manually assigned
each of several thousand pages downloaded from four major university computer science
departments to one of six classes: student, faculty, course, research project, departmental
home page, and “other.” From this collection we created two sub-domains, one consisting
of 105 course pages, the other of 96 research project pages. The course pages were tagged
for three fields:crsNumber, the official number of a course, as assigned by the university
(e.g., “CS 534”);crsTitle, the official title of the course; andcrsInst, the names of course
instructors and teaching assistants. The project pages were tagged for two fields:projTitle,
the title of the research project; andprojMember, the names of the project’s members.

3.2. Framework

The same experimental procedure was followed for each domain. We generated five random
partitions of each collection into training and testing sets of equal size. Given a particular
field, each learner was trained and tested five times, once for each partition. Reported scores
represent performance over the union of the five test partitions.

3.3. Basic results

We measure the performance of learners in terms of two complementary metrics, precision
and recall. A learner is said to have handled a document correctly when its most confident
prediction for the document exactly identifies a field instance.3 Precisionis the number of
correct predictions divided by the number of documents for which a learner offered some
prediction.Recallis the number of correct predictions divided by the number of documents
that have at least one field instance.

Note that these definitions regard the document as the unit of performance. This is
appropriate when all instances of a field in a document refer to the same underlying entity,
as is the case for most of these fields. For example, although the name of a seminar’s speaker
may occur several times in a document, and may have several distinct forms (e.g., “John
Doe” and “Prof. John Doe”), each form refers to the same person and is assumed to be
equally useful as the result of an extraction.

Two of the fields,crsInst andprojMember, do not have this characteristic. We expect the
search for members in a research project page to return multiple answers, each corresponding
to a different person. For these two fields the unit of performance measurement is the
individual prediction/field instance. The number of correct predictions is the number of
predictions over all documents that exactly identified a field instance.Precision is the
number of correct predictions divided by the total number of predictions made by a learner.
Recallis the number of correct predictions divided by the total number of field instances in
the test corpus.
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Because precision and recall measure complementary aspects of a learner’s performance,
it is misleading to present either result without the other. What is more, because the learners
described here are designed to produce a confidence with each prediction, any single preci-
sion/recall result is only part of the story. By applying a confidence threshold to a learner’s
predictions and ignoring all predictions having lower confidence, we can produce a learner
that achieves lower recall and, typically, higher precision. In other words, we can often trade
recall for precision, or vice versa.

A performance measure frequently encountered in information retrieval and information
extraction is theF-measure (van Rijsbergen, 1979), which allows researchers to report a
single number that combines precision and recall:

F = (β2+ 1.0)P R

(β2P)+ R
(10)

The parameterβ determines how much to favor recall over precision. It is typical for
researchers in information extraction to report the F1 score of a system (β = 1), which
weights precision and recall equally. We use thepeak F1score as the primary metric with
which to compare learners. Figures 1 through 3 compare the four learners according to their
peak F1 performance in the three domains. To generate this score, precision is sampled
at 1% recall intervals and at full recall. The number reported is simply the maximum of
the F1 scores calculated in this way. It is important to report the peak F1 score, especially
for the two learners based on BAYES, because their prediction thresholds are set to low

Figure 1. Peak F1 scores of the four learners on the seminar announcement fields.

Figure 2. Peak F1 scores of the four learners on five fields from the acquisitions domain.
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Figure 3. Peak F1 scores of the four learners on fields from the WebKB domains. SRV is tested both with the
default featureset and with HTML-specific features.

values—they are optimized for recall. With several fields—notablyetime—these learners
issue many low confidence predictions and lose many precision points at the high-recall end
of their precision/recall curve. The peak F1 score reflects the true power of these learners
on such fields.

Two comments about these results are in order. The label “BAYES+CA” stands for BAYES

augmented with the “canonical acceptor,” the ALERGIA grammar prior to any state merging.
Our experiments with grammatical inference, presented in Section 3.5, yielded the surpris-
ing result that the canonical acceptor outperformed any grammar produced as a result of
state merging, when combined with BAYES. Therefore, we use this particular configuration
when comparing with other learning approaches. Also, in figure 3, results are shown for a
fifth learning approach, labeled “SRV+HTML”. This stands for SRV run on a feature set
augmented with HTML-specific features. Details are presented in Section 3.4.

Table 7 shows the precision and recall scores of all learners on all fields. These are full-
recall results; the recall scores reported are the highest the respective learners were able
to achieve. In contrast, Table 8 compares precision performance at a fixed recall level of
25%. In each case, the predicions of highest confidence are gathered, such that 25% recall is
achieved, and the precision at this point is measured. Tables 7 and 8 are provided in lieu of
precision-recall graphs; each column is equivalent to sampling precision levels at a single
point on the recall axis of such a graph. Because the results in Table 8 involve a single
statistic, we have included error margins at the 95% confidence level.

We will discuss these results in Section 3.6. Nevertheless, we can already draw one
important conclusion: although performance varies from problem to problem—as does the
best-to-worst learner ranking—SRV and BAYES+CA generally outperform the other two
learners. As we will see in Section 4, however, this does not mean that the two lesser learners
are useless; we will find that a combination of all learners is consistently better than any
individual one.

3.4. Designing features for HTML

SRV’s default feature set is not optimal for use with some information extraction tasks
involving HTML, as is made clear by the last two rows in each of the above tables. Although
SRV’s performance using its default feature set can be competitive with the best of the other
approaches, it benefits significantly from the introduction of HTML-specific features. This
is perhaps not surprising. The default features, as shown in Table 5, reflect none of the
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Table 7. Precision and recall of four learners on fields from three domains. BAYES+CA is BAYES augmented
with the canonical acceptor using them-estimate transduction method. Note that the fields “course instructor”
and “project member” were evaluated using an instance/prediction-based metric, rather than a document-based
metric.

Prec Rec Prec Rec Prec Rec Prec Rec Prec Rec

speaker location stime etime

ROTE 55.1 6.8 89.5 58.1 73.7 73.4 37.4 71.6

BAYES 34.5 25.6 57.3 58.8 98.2 98.2 49.5 95.7

BAYES+CA 46.5 53.6 67.6 67.5 94.2 94.1 39.8 84.8

SRV 54.4 58.4 74.5 70.1 98.6 98.4 67.3 92.6

acquired purchaser acqabr dlramt status

ROTE 55.9 11.5 43.2 10.6 26.2 13.9 58.7 37.2 43.1 52.3

BAYES 22.2 21.6 37.6 41.3 24.1 33.0 50.3 47.8 32.0 42.1

BAYES+CA 27.0 27.3 35.9 39.5 30.7 42.1 31.1 64.6 36.7 48.3

SRV 40.7 39.4 45.2 48.6 32.9 44.9 48.1 67.0 39.0 45.0

crsNumber crsTitle projTitle crsInst projMember

ROTE 70.8 21.6 44.3 23.8 37.5 9.3 71.8 11.9 74.8 11.4

BAYES 56.4 59.7 38.0 44.4 10.6 12.9 8.7 48.3 15.4 19.9

BAYES+CA 85.2 90.3 31.2 36.4 14.0 17.0 7.7 59.6 23.7 38.4

SRV 84.1 87.3 33.0 34.6 7.7 9.3 20.6 53.2 26.2 35.2

SRV+HTML 84.0 89.0 45.7 50.0 26.3 31.4 21.6 55.9 30.0 41.1

HTML-specific structure that is immediately evident to the viewer of a Web page and that
page designers rely on to facilitate presentation.

Table 9 shows the features that were added to the default feature set to generate the
results reported in the rows labeled “SRV+HTML.” Two basic types of simple feature
were introduced. Thein features returntrue for any token occurring within the scope of
the corresponding tag. Theafter features returntrueonly for the single token following the
corresponding tag. Most of the simple features shown in Table 9 are derived directly from
HTML tags in this way. In addition, a couple of simple features generalize more primitive
features. The featurein emphatic, for example, is a disjunction ofin i, in em, in b, and
in strong. Finally, several relational features (the features in bold face in the figure) were
added which capture relations between tokens occurring together in HTML tables. (Recall
that by relational feature we mean a function such asprev token that maps a token to
another token in the same document.)

3.5. Experiments with grammatical inference

The learner labeled “BAYES+CA” in the above tables represents BAYES augmented with a
fragment grammar, as described in Section 2.3. As the label suggests, the particular grammar
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Table 8. Precision of four learners at the approximate 25% recall level. Error margins represent the 95% confi-
dence level. Missing values indicate a learner did not achieve the desired recall level.

speaker location stime etime

ROTE — 99.0± 1.2 78.2± 4.0 79.4± 5.7

BAYES 36.1± 3.5 97.7± 1.7 100.0± 0.0 100.0± 0.0

BAYES+CA 80.4± 4.3 99.3± 0.9 100.0± 0.0 100.0± 0.0

SRV 79.9± 4.4 98.6± 1.3 100.0± 0.0 100.0± 0.0

acquired purchaser acqabr dlramt status

ROTE — — — 73.4± 5.7 69.7± 4.5

BAYES — 52.3± 3.8 40.2± 3.7 74.0± 5.8 51.0± 4.1

BAYES+CA 28.6± 2.5 55.4± 3.9 49.6± 4.2 78.6± 5.6 61.9± 4.4

SRV 53.3± 3.7 59.0± 4.0 53.7± 4.3 72.1± 5.9 70.0± 4.5

crsNumber crsTitle projTitle crsInst projMember

ROTE — — — — —

BAYES 85.5± 8.3 71.1± 10.2 — 53.3± 6.3 —

BAYES+CA 96.8± 4.4 68.4± 10.3 — 71.1± 6.6 55.7± 3.3

SRV 92.2± 6.6 43.5± 8.7 — 43.8± 5.7 36.8± 2.6

SRV+HTML 92.2± 6.6 96.4± 4.9 42.9± 9.2 63.4± 6.6 56.9± 3.3

Table 9. HTML features added to the core feature set. Features in bold face are relational.

in title in a in h

in h1 in h2 in h3

in list in tt in table

in b in i in font

in center in strong in em

in emphatic after br after hr

after p after li after td

after th after td or th

table next col table prev col

table next row table prev row

table row header tablecol header

used was the “canonical acceptor,” a grammar that accepts no example that is not in the
training set. Examples, in this case, are fragments that have been generated by a transducer
produced using them-estimate method.

This particular configuration was determined to be the best by a set of experiments
involving the seminar announcement fields in which we tried all combinations of several
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transduction methods and several settings of ALERGIA’s generalization parameter,α. Specif-
ically, we tried five methods for generating transducers:

M-estimates Usem-estimates, as described in Section 2.3, withmset to 3. The small value
of m favors low-coverage tests and larger alphabets.

Information gain Use information gain, as described above. Likem-estimates, this prefers
tests that favor field tokens over non-field tokens, but with a bias for high-coverage tests
and larger alphabets.

Spread 5 Choose tests that spread field tokens as evenly as possible into five bins. As
discussed in Section 2.3, this method does not consider non-field tokens.

Spread 10 Like Spread 5, but spread over 10 bins.
Spread 20 Like Spread 5, but spread over 20 bins.

For each transducer, we tried four settings ofα: canonical acceptor, 0.9, 0.8, and 0.5. Note
that the canonical acceptor is not equivalent to ROTE, since the transduction step abstracts
over the raw field instances. The other settings correspond to increasingly aggressive settings
of the generalization parameter; lower settings yield smaller, more general grammars.

Figure 4 shows the effect of various settings ofα with transduction method fixed as
m-estimates, and figure 5 shows the effect of various transduction methods using the canon-
ical acceptor grammar. The evidence from these results argues in favor of our choice of
m-estimate transduction, on the one hand, and using the canonical acceptor, on the other,
as the best representative configuration of “BAYES+ALERGIA” for comparisons with other

Figure 4. Average peak F1 score on the seminar announcement fields at various settings of ALERGIA’s general-
ization parameterα. Both the performance of ALERGIA alone and BAYES augmented with ALERGIA is shown. The
m-estimate transducer was used to generate all alphabets.

Figure 5. Average peak F1 score on the seminar announcement fields using various alphabet transduction meth-
ods. The canonical acceptor was used in all cases.
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Table 10. Average size of decision lists generated using information gain andm-estimate metrics on the four
seminar announcement fields.

speaker location stime etime

I. Gain 3.2 13.4 7.2 6.6

M. Est. 34.8 48.2 24.8 20.8

learning methods. It is interesting to note in passing that, although ALERGIA does poorly
as a standalone predictor, its combination with BAYES yields one of the best learners we
tested.

What are the factors that influence a good transduction for this problem? Is the size of
the resulting alphabet important? Is it important to choose a transduction method that seeks
to distinguish field tokens from non-field tokens? In conjunction with figure 5, Table 10
provides some insight. Alphabet (decision list) size is clearly a factor that influences the
usefulness of the resulting grammar. This result ran counter to our expectations. We were
concerned that large alphabets would stand in the way of effective generalization over the
essential elements of field structure. Note that performance does not increase monotonically
with alphabet size for all fields. Thus, it is not sufficient to have a large alphabet. However,
it seems safe to say that, without a transduction method that optimizes for the main task
(i.e., extraction), larger alphabet sizes increase the likelihood that important feature-value
pairs are part of the transducer.

3.6. Discussion

In terms of both precision and recall, SRV tends to outperform the other learners tested
here. SRV achieved the highest peak F1 score on 10 of the 14 fields. Part of SRV’s power
undoubtedly stems from its access to abstract features of tokens—access that two of the
learners lack entirely, and that the third uses as part of an auxiliary task. Perhaps a fair
comparison would somehow make these features available to ROTE and BAYES. It is not at
all clear, however, how this might be managed without redesigning these two learners in
a fundamental way. Moreover, as we argue in Section 4, by spending effort on optimizing
individual learners we may be missing an opportunity to improve by combining learners.

SRV belongs to a family of algorithms—therelational family—that is very flexible
with respect to the encoding of domain knowledge. A measure of its ability to exploit
such knowledge is its performance on the WebKB fields. We note substantial performance
improvements on most of these fields when HTML-specific features are provided to SRV.
As discussed in Section 3.4, the features added for these particular runs were relatively
obvious reflections of HTML structure. Implementing such a feature involves writing a
function in C and compiling it into SRV.

The performance of BAYES+CA is comparable with, if usually lower than, that of SRV.
The decomposition it embodies appears to be an effective one: BAYES, to locate approx-
imately where field instances occur, and grammatical inference, to select fragments with
the most appropriate structure. In a sense, BAYES+CA shows what happens when abstract
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features are provided to BAYES. And inasmuch as we cannot claim to have discovered the
best method for constructing the grammars used by BAYES+CA, it would not be surprising
if an algorithm similar to BAYES+CA reached performance levels as high as SRV’s.

Perhaps the most important conclusion is that there is no single best learning approach
to these extraction tasks. On thestatus field, in fact, the simplest approach, ROTE, achieves
the highest F1 score. It might be argued that this makesstatus less interesting as a test of
learner generalization, but this would miss an important point: information extraction is not
a problem susceptible to a single approach. Even a single field may comprise a number of
sub-problems, each of which should be handled differently. Consider the performance of
ROTE on thelocation field in Tables 7 and 8. Although ROTE does not achieve the recall
levels reached by other learners on this field, there is some subset of location instances for
which it is to be trusted over other learners. The question is how to know when to trust it.

4. A multistrategy approach

If forced at this point to choose a single learner from the four presented, we would recom-
mend a relational approach like SRV. In light of the above considerations, however, a better
recommendation might be “don’t choose.” Rather than use a single learner, would it not be
better to use an automated approach for choosing among the learners for a given task, or
even for combining their predictions in an attempt to achieve performance superior to any
individual learner? Might we expect such a strategy to yield improved performance?

4.1. Opportunity

Either of two conditions might hamper or degrade our ability to realize combined perfor-
mance better than that of the best individual learner:

1. The best learners may be close to a performance ceiling beyond which it is difficult to
climb without a more sophisticated handling, such as one involving natural language
understanding.

2. The best learners may simply subsume the others, predicting correctly on all document
for which the lesser learners predict correctly.

If either of these conditions obtain, then probably the best we can do is to select the most
consistent learner. If, on the other hand, individual learners solve different parts of the
problem space, then there is hope for performance superior to that achieved by any single
learner.

Table 11 suggests that such improvement is indeed possible. Taking thespeaker field
as a target, it shows a lack of agreement among learners on a surprisingly high fraction
of documents. Performance numbers shown for SRV and BAYES+CA may leave the mis-
leading impression that their document-by-document behavior is similar. This table shows
that it clearly is not. In fact, of the 757 documents for which at least one of these learners
predicted correctly, only 399 were handled correctly by both. If we possessed an oracle for
this field which, in every case where the two learners disagreed, told us which of the two to
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Table 11. Outcome contingency table for the speaker field. IfR is the row learner andC is the column learner,
then the entry in(R,C) is the probability thatR handled a document correctly,giventhatC handled it correctly.

ROTE BAYES BAYES+CA SRV

ROTE 1 0.22 0.12 0.09

BAYES 0.81 1 0.40 0.30

BAYES+CA 0.93 0.85 1 0.66

SRV 0.81 0.68 0.72 1

trust, we could achieve 68% precision at 73% recall. Compare this with the performance of
SRV, which manages 54% precision at 58% recall. And surprisingly, the oracular figure is
not necessarily an upper bound. Both SRV and BAYES+CA make predictions which have
confidence levels that are too low to figure in the results. In cases where top predictions
from both learners disagree and are both wrong, they may be issuing predictions of lower
confidence which agree on the correct fragment. Thus, although both individual learners
may be wrong, it may be possible nevertheless to combine them for a correct prediction.

Here, we sketch a strategy for combining learners which we have given fuller treatment
elsewhere (Freitag, 1998). Our idea is a particular variety of multistrategy learning which
treats individual learners as black boxes and attempts to work only with their outputs. Our
idea is to use the precision/recall behavior of a learner and statistical methods to build a
model to map prediction confidence to probability of correctness.

4.2. Combining learners

A key assumption of our approach is that the probability that a learner’s prediction is
correct increases with increasing confidence. We can observe a decline in precision scores
with increased recall by comparing Tables 8 and 7, suggesting that this assumption is at
least partly warranted. Note that we donot assume that the confidence scores themselves
bear any resemblance to true probabilities. The scores produced by BAYES, for example,
are large negative log probabilities.

The idea, briefly, is this:For each learner, use regression to model the relationship
between confidence scores and probability of correctness.Given such models, we can treat
the predictions for a given fragment as probabilistic estimates that it is an instance. The
specific steps involved in our approach are:

1. Validate performance on a hold-out set.Reserve a part of the training set for validation.
After training each learner, store its predictions, with confidences, on the hold-out set.

2. Use regression to map confidences to probabilities.Based on the learner’s performance
on the hold-out set, attempt to model how its performance varies with confidence.

3. Use the regression models and calculated probabilities to make the best choice on
the test set.Having used the validation set to calibrate learner confidence scores, we
re-train all learners on the entire training set and use the regression models to combine
their predictions on the test set.
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4.3. Experiments

We present one combining strategy which has been consistently effective across all informa-
tion extraction tasks with which we have experimented. In the modeling step we withhold
one third of the training data and train all learners on the remaining two thirds. We then use
linear regression to model the relationship between confidence and probability of correct-
ness. For a given learner, the range between the lowest and highest confidence predictions
seen on the validation set is divided into 10 intervals of equal size. Predictions are then
distributed into 10 bins, depending on which interval they fall into. Once all predictions
have been collected from a learner, we use the bins to generate ten datapoints(x, y) for
regression, wherex is the midpoint of an interval andy is the ratio in the corresponding
bin of number of correct predictions to total number of predictions. Linear regression over
these datapoints then completes the modeling step.

The number of bins is a parameter with which we briefly experimented in preliminary
work—enough to determine that the quality of results does indeed depend on it.4 The
number 10 worked well on several fields, so we kept it fixed in later experiments. Ideally,
this number would be set independently for each learner and field.

Given a field, the regression step yields a linear equation for each individual learner. The
confidence of any prediction by a learner on a test fragment is now converted to a probability
estimate by means of the respective equation. If a test fragment has drawn only a single
learner’s prediction, then the output confidence is simply this estimate. The interesting
question is what to do with multiple predictions for a single fragment. SupposeP is the
set of probabilities (mapped using the regression model from confidence scores associated
with learner predictions) for a given fragment. Our combined estimate of the probability
that the fragment is an instances is:

Pout = 1−
∏
p∈P

(1− p) (11)

This is the same as Eq. (9), which is used to combine the confidence scores of multiple
matching rules in SRV. Given a document, the confidences derived in this way are used to
re-sort all fragments extracted by any of the individual learners.

Table 12 shows the result, by means of peak F1 scores, of this procedure on the 14 fields.
ROTE, BAYES, BAYES+CA, and SRV were all used as input to the combining method. For
the WebKB fields we used the HTML-specific feature set in training SRV. Improvement
over the best individual learner is seen for all but one field; in some cases improvement is
substantial.

5. Related work

None of the individual learning methods described in this paper is completely new, either
as a general machine learning approach or as applied to the information extraction problem.
Several MUC researchers mention system components that have a form or function similar
to one of the learners presented here.
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Table 12. Peak F1 scores of the multistrategy approach compared with that of the best individual learner.
Individual scores marked (?) belong to BAYES+CA; the score marked (??) belongs to ROTE; all other individual
scores belong to SRV.

speaker location stime etime

Best individual 58.3 73.7 98.5 94.0

Combined 66.2 79.7 99.3 94.3

acquired purchaser acqabr dlramt status

Best individual 40.7 47.9 39.6 60.8? 50.9??

Combined 45.6 51.8 43.1 64.3? 58.6??

crsNumber crsTitle projTitle crsInst projMember

Best individual 89.9? 55.9 33.7 48.1? 41.1

Combined 88.9? 62.0 34.1 49.8? 45.5

An important component in many MUC systems is a domain-specific dictionary con-
taining keywords and phrases peculiar to the target domain (Noah & Weeks, 1993; Muraki,
Doi, & Ando, 1993). These dictionaries are typically constructed by hand. ROTE can be
regarded as an automated method for constructing such a dictionary. To our knowledge,
the performance of approaches like ROTE for information extraction has not been studied.
ROTE, as a general machine learning approach, is a convenient baseline against which more
sophisticated approaches can be compared (Mitchell, 1997). It can be regarded as a degen-
erate form of several learning approaches, such ask-nearest neighbor (Duda & Hart, 1973)
or decision table learning (Kohavi, 1995).

Naive Bayes also can be regarded as a baseline method (Mitchell, 1997). Unlike ROTE,
however, Naive Bayes can be competitive with more powerful methods (Domingos &
Pazzani, 1996). The idea of a Bayesian method for text classification is almost as old as the
idea of automatic text classification itself (Maron, 1961). Lewis discusses the uses of such
methods for text classification and retrieval (1992) and provides a large list of pointers to
related research (1997). In the MUC context, statistical methods have been used for various
sub-tasks of the larger information extraction problem, including pre-extraction filtering
(Cowie et al., 1993), syntax modeling (Weischedel et al., 1993), and slot filling (August &
Dolan, 1992).

Beginning with Gold (1967), the problem of grammatical inference has both undergone
considerable theoretical development and found diverse application (Vidal, 1994). The
state-merging methodology, as exemplified by ALERGIA, is not the only viable approach to
the problem. Error-correcting grammatical inference is one common alternative (Rulot &
Vidal, 1988). Stochastic regular grammars are closely related to Markov models, a family
of algorithms that appear to be suitable for use in information extraction (Rabiner & Juang,
1986).

Rivest introduces the notion of decision lists and discusses the classk-DL of decision
lists having conjunctive clauses of sizek at each decision. In these terms, the algorithm



198 D. FREITAG

described here produces lists belonging to 1-DL. In broader terms, the phrase “decision list”
is frequently used to describe algorithms in the covering family, such as AQ (Michalski,
1983), CN2 (Clark & Boswell, 1991), and FOIL (Quinlan, 1990).

Finite state machines have been used to model linguistic syntax in at least one success-
ful MUC system (Appelt et al., 1993), but they appear to have been manually designed.
Kushmerick discusses learning patterns from a sub-class of the regular languages, specifi-
cally for the purpose of performing extraction from Internet documents (Kushmerick, 1997).
In contrast with the experiments described here, his work on wrapper induction works di-
rectly with the source text and focuses on learning discriminative contextual patterns. Closer
to the work presented here are systems described by Goan et al. (1996), and Bikel et al.
(1997), each of which uses grammatical inference in conjunction with some kind of ab-
straction over textual units—over characters in the former, tokens in the latter—for the
named entity extraction task. In the former, ALERGIA is modified to explore a pre-defined
character-type hierarchy. In the latter, a static, manually defined decision list is used to
abstract over tokens.

Rule-learning symbolic algorithms have been successfully applied to both the document
classification problem (Apt´e, Damerau, & Weiss, 1994; Cohen & Singer, 1996) and NLP
tasks related to information extraction (Cardie, Aone & Bennett, 1996; McCarthy & Lehnert,
1995). Early work in learning extraction patterns focused on the induction of simple rule-
like features, which were then manually installed into larger information extraction systems
(Riloff, 1996; Kim & Molfobsn, 1995).

CRYSTAL was the first system to treat the information extraction (i.e., “slot-filling”)
task as a supervised learning problem in its own right (Soderland, 1996). CRYSTAL is a
covering algorithm, which conducts a specific-to-general (bottom-up) search for extraction
rules. Rules in CRYSTAL are generalized sentence fragments. The feature space CRYSTAL
searches is implicit. It consists of literal terms, syntactic relations, and semantic noun classes.
A potential strength of the approach taken by CRYSTAL, compared with SRV, is its ability
to generate rules to extract instances of multiple fields in concert. Each unique combination
of fields encountered together in some sentence in the training data is treated as a separate
learning problem.

RAPIER is closest to the approach described here (Califf, 1998). RAPIER is a relational
learner designed to handle informal text, such as that found in Usenet job postings. Like
CRYSTAL, RAPIER searches for rules bottom up. Unlike CRYSTAL, RAPIER searches the
less structured space of unparsed text fragments. RAPIER is relational in that it in principle
can exploit unbounded context surrounding field instances. It generalizes by dropping con-
straints from, or introducing disjunctions of constraints to, overly specific rules. Constraints
are either actual terms, which must appear in the text for a rule to match, or part-of-speech
labels. It appears, however, that RAPIER could be adapted to exploit the kind of typographic
information used by SRV.

Of the work presented in this paper, the combination of BAYES with grammatical infer-
ence is most similar to what has traditionally been calledmultistrategy learning(Michalski
& Tecuci, 1994). Originally, the term was most often used to refer to the combination of
analytical and inductive methods, but the combination of inductive methods having dif-
ferent biases is consistent with the term “multistrategy.” This has been called “empirical
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multistrategy learning” (Domingos, 1996). We have also used the term “multistrategy learn-
ing” to refer to our framework in which individual learners are used as input to a combining
method, which treats them as black boxes and attempts to model their behavior in pursuit of
improved performance. Similar work has been calledmeta-learning(Chan & Stolfo, 1993).
Cross-validation has been shown to be an effective way toselectfrom among multiple can-
didate learning methods (Schaffer, 1993). In the cited study, however, a single learner is
selected for an entire test set, and no attempt is made to combine learner predictions for
individual examples.

6. Conclusion

It is possible to perform information extraction from informal text of the sort commonly
found in the online environment, such as email, Usenet posts, and plan files, even in the
absence of syntactic and semantic information. Machine learning is a rich source of ideas
for algorithms that can betrainedto perform this extraction. With the right machine learn-
ing techniques, very simple document representations make it possible to train effective
extractors. Here, we have shown how to create such extractors using only a term-space rep-
resentation and how to exploit typographic information in the form of simple token features.

Learning methods motivated by ideas in document classification, grammatical inference,
and inductive logic programming, all have a part to play in this problem. However, in no
case does any single algorithm subsume all the others. Rather, different algorithms solve
different parts of the greater problem. This has led us to look for effective multistrategy
approaches which can take the predictions of all available learners under advisement and
produce extractors as good as or better than the best individual learner. We have described
in outline one such approach.

However, we do not hold all pieces to this puzzle. A number of areas remain to be explored
or fleshed out:

From field to record.We have treated each field in a domain as a separate task and target for
learning. While this decomposition lends clarity to our study, it leaves open the question
how single field results should be combined to produce a complete record—and how
learning might exploit co-occurrence of fields in a document.

Loose multistrategy learning.We feel we have only begun to explore the potential of the
ideas presented in the last section. This notion ofloose multistrategy learning, in which
the output behavior of learners is modeled and used to combine predictions, seems to
hold promise for problems other than information extraction. And while it may be strictly
less powerful than more traditional multistrategy approaches, it is flexible and modular.
Both the details of how regression is to be conducted, as well as the right methods to use
in combining predictions, need to be explored.

Grammatical inference.Our experiments suggest that much of the power of representing
field structure lies in the transduction step. We believe that integrating this step with
construction of the grammar would lead to an improvement in performance.

Layout. One source of information potentially useful for information extraction is document
formatting. We have not yet attempted to exploit this source of information. Perhaps
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ideas similar to those motivating our experiments with grammatical inference would
prove useful.

Bayes.The way in which BAYES represents field instances is arbitrary. Rather than a fixed-
size context window, it might be useful to have the context window size depend on the
problem. Similarly, we are interested in ways to treat multi-term contextual fragments
as features, rather than each term separately.

SRV.We continue to seek better ways to combine independently learned and validated
rule sets. The work of other researchers interested in using covering algorithms for
information extraction also suggests ways in which SRV might be extended.

The notion of information extraction is an important one for many applications on the
research horizon. As the discipline broadens in scope to include problems that bear less
and less resemblance to those explored in MUC, new sources of information and problem
representations become important. Machine learning will enable us to construct systems
which can quickly adapt to these changing conditions.

Acknowledgments

Thanks are due to Tom Mitchell, under whose advisorship this work was conducted, and
to the other members of the WebKB and text learning groups at CMU for data and ideas.
Thanks also to William Cohen and the anonymous reviewers for their meticulous comments
and suggestions. This research was supported in part by the DARPA HPKB program under
contract F30602-97-1-0215.

Notes

1. In general, documents from other domains may also be present in a collection, so that some sort of filtering
must be performed either before or during extraction. For the purposes of this paper, we will consider this
task ancillary to the problem of extraction and not discuss it further.

2. In keeping with common usage in relational learning, we call the individual antecedents in a ruleliterals.
The space from which candidate literals are selected is defined bypredicates, named templates that define
the arity and semantics of literals.

3. Note that the requirement that predictionsexactlymatch instances potentially discards many useful predictions.
Indeed, some of the learners, particularly BAYES, see sizable jumps in both precision and recall when the
criterion of correctness is that a predictionoverlapsa field instance.

4. One might also treat the predictions themselves as datapoints. In our experiments, this resulted in performance
inferior to that of the binning method.
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