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A lecture of two times 45 minutes. Audience: bachelor, master and PhD students, plus
maybe some lecturers.

This text was very quickly written on November 3. Apologies for typesetting, style, etc.

1 Goal of the lectures

The goal of these two lectures is to show that for each n ≥ 5 there is a polynomial equation
in one variable that cannot be solved by radicals, over some extension of Q. This is called the
Abel-Ruffini theorem. Ruffini seemed to have proved this first, in 1799, but his notation for
permutations was not understandable, and maybe he even had no notation. Then Abel proved
this more rigorously in 1823, and it was greatly clarified by Galois around 1830.

I encourage everyone here to read more about this in any book on algebra that you can
get. It is probably better to get a book that treats all details, so, Jacobson’s Basic Algebra 1
is easier than Lang’s Algebra. Maybe Gallian’s “Contemporary Abstract Algebra” is easier.

2 Linear and quadratic equations

This is what most people learn in highschool. The equation

ax+ b = 0,

where a 6= 0 and b are real numbers, and x is the variable to be solved, has a unique solution:

x = −b/a.

It also turns out that we can do this with R replaced by any field: we only need the operations
+, −, · and /. The quadratic equation already makes it natural for us to consider fields in
which all square roots exist, for example the field C. The equation

ax2 + bx+ c = 0,

with a 6= 0, b and c in a field F , has the solutions:

−b±
√
b2 − 4ac

2a
.

One says that already Babylonians were able to solve quadratic equations. This was around
2000 BC.
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3 Equations of degree 3 and 4

In the Italian renaissance, the equations of degree 3 and 4 were solved. Tartaglia and del Ferro
discovered how to solve degree 3 equations. This happened around 1500. They kept their
solutions secret, but Cardano wrote them up in his book “Ars Magna”. Ferrari found how to
solve degree 4 equations. It seems that the reduction from degree 4 to degree 3 was known
before degree 3 equations could be solved.

What is common in both cases (degree 3 and degree 4) is that the roots are obtained by
applying the operations +, −, · and /, and 3rd roots for degree 3, and 3rd and 4th roots for
degree 4.

People then tried to solve equations of degree 5 and higher, hoping for formulas of the same
kind. They hoped that one could solve the degree n equation by radicals, meaning the field
operations plus rth roots, for all positiveintegers r.

4 The Abel-Ruffini theorem

4.1 Theorem. (Abel-Ruffini) Let n ≥ 5. Then there exist a0, . . . , an−1 in C such that no
root in C of the equation xn+an−1x

n−1 +· · ·+a1x+a0 can be obtained from {0, 1, a0, . . . , an−1},
in a finite number of steps, using the operations +, −, · and /, and ()1/r (with choice) for all
r ≥ 1 in Z.

Our goal is to prove this theorem. I hope that it is not too ambitious. We will first develop
Galois theory for subfields of C.

5 Galois theory for subfields of C
5.1 Definition. A subfield of C is a subset F ⊂ C that contains 0 and 1 and is closed under
+, −, · and /.

5.2 Proposition. Let F ⊂ C be a subfield. Then (F, 0, 1,+,−, ·, /) is a field.

Let F and E be subfields of C with F ⊂ E; E is called an extension of F . Then E is an F -
vector space, and dimF (E) is called the degree of E over F . The extension is finite if dimF (E)
is finite.

5.3 Theorem. Let F1 ⊂ F2 ⊂ F3 ⊂ C be subfields. Let (vi)i∈I be an F1-basis of F2, and let
(wj)j∈J be an F2-basis of F3. Then (viwj)(i,j)∈I×J is an F1-basis of F3.

Proof. This is a very good exercise in applying definitions. I think that no idea is required.
�

5.4 Remark. Just this theorem, plus the irreducibility of x3 − 3x + 1 in Q[x] which has
cos(2π/9) as root, plus simple considerations on coordinates of points constructible with ruler
and compass, show that the angle 2π/3 cannot be trisected with ruler and compass.

5.5 Definition. Let F ⊂ C be a subfield, and let S ⊂ C be a subset. Then the subfield of
C generated over F by S is the smallest subfield F (S) of C containing F and S. It is the
intersection of all such subfields, and it consists of the fractions a/b with a and b 6= 0 of the
form

∑
finite fi

∏
finite sj

2



5.6 Theorem. Let F ⊂ E be a finite extension of subfields of C, and let α ∈ E. Then there is
a unique ring morphism φ : F [x]→ E such that φ|F = idF and φ(x) = α. The image of φ is the
subfield F (α). The kernel of φ is non-zero (because the (αn)n are not F -linearly independent,
E is finite dimensional as F -vector space). Hence there is a unique fα,F in F [x], monic, such
that ker(φ) = (fα,F ). This fα,F is called the minimum polynomial of α over F .

The morphism φ factors as follows:

F [x]
φ // //

����

F (α) // // E

F [x]/(fα,F )
88 φ

88 88

In particular, F [x]/(fα,F ) is a field, hence fα,F is irreducible.

The following theorem is very important.

5.7 Theorem. Let F ⊂ E be a finite extension of subfields of C. Let σ : F → C be a morphism
of rings (that is, an embedding of fields). We define:

HomF,σ(E,C) := {τ : E → C : τ |F = σ}.

Then #HomF,σ(E,C) = dimF (E), and for all α ∈ E, the set {τ(α) : τ ∈ HomF,σ(E,C)} is the
set of roots in C of σ(fα,F ).

Proof. Induction on dimF (E). It is true if dimF (E) = 1. Assume now that dimF (E) > 1.
Take α in E such that α 6∈ F . Then we have

F ⊂ F (α) ⊂ E, dimF (E) = dimF F (α) · dimF (α) E > dimF (α)(E).

Theorem 5.6 gives an isomorphism φ : F [x]/(fα,F ) → F (α). The universal properties of
F → F [x] and F [x]→ F [x]/(fα,F ) give a bijection between the set of τ : F (α)→ C extending
σ and the set of roots of σ(fα,F ) in C, of which there are exactly deg(fα,F ) = dimF F (α). For
each τ : F (α) → C extending σ, there are, by induction, exactly dimF (α) E extensions of τ to
an ε : E → C. Hence

#HomF,σ(E,C) = dimF F (α) · dimF (α) E = dimF E.

The second statement follows from the fact that all τ ’s have an extension to an ε. �

5.8 Definition. For F ⊂ E a finite extension of subfields of C, we define

AutF (E) := {σ ∈ Aut(E) : σ|F = idF}.

5.9 Corollary. Situation as in Definition 5.8. Then #AutF (E) ≤ dimF (E).

Proof. This is because AutF (E) is the subset of HomF,incl(E,C) of the τ with τ(E) = E. �

5.10 Definition. Let F ⊂ E be a finite extension of subfields of C. This extension is Galois
if #AutF (E) = dimF (E).

5.11 Proposition. Let F ⊂ E be a finite extension of subfields of C.

1. The extension F ⊂ E is Galois if and only if AutF (E) = HomF,incl(E,C).
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2. If F ⊂ E is Galois, then for all α ∈ E,

RootsC(fα,F ) = {σ(α) : σ ∈ AutF (E)} = AutF (E)·α.

3. If f is in F [x], and E = F (RootsC(f)), then F ⊂ E is Galois.

Proof. The first statement is the definition of Galois extension, plus the fact that AutF (E) is
the subset of HomF,incl(E,C) of the τ with τ(E) = E. The second statement is the definition
of Galois, plus the last statement of Theorem 5.7. The third statement holds because every
τ : E → C such that τ |F = injF has τ(E) = E. �

5.12 Definition. Let E be a field, and let G be a group acting on E by automorphisms. Then
we define the invariant subfield EG := {x ∈ E : for all g in G, g·x = x}.

5.13 Proposition. Let F ⊂ E be a finite Galois extension of subfields of C, G := AutF (E).
Then EG = F .

Proof. Suppose α ∈ E with α 6∈ F . Then F (α) is bigger than F , hence deg(fα,F ) > 1, and
there is a β ∈ RootsC(fα,F ) with β 6= α. By Proposition 5.11 there is a σ in AutF (E) such that
σ(α) = β. �

5.14 Proposition. Let F ⊂ E be a finite extension of subfields of C, and let G be a subgroup
of AutF (E). Let K := EG. Then dimK E = #G.

Proof. Corollary 5.9 says that dimK E ≥ #G. To prove that dimK E = #G it suffices to
prove that dimK E ≤ #G. I think this part of the proof is due to Emil Artin. Let n := #G.
It suffices to show that all n + 1-tuples (x0, . . . , xn) in En are K-linearly dependent. So, let
x0, . . . , xn be in E. We want to show that there is a non-zero (λ0, . . . , λn) in Kn+1 such that
λ0x0 + · · ·+ λnxn = 0. Write G = {σ1 = idE, σ2, . . . , σn}.

Consider the system of linear equations over E (the σi(xj) are the coefficients):
σ1(x0)λ0 + · · ·+ σ1(xn)λn = 0

...

σn(x0)λ0 + · · ·+ σn(xn)λn = 0

It has the property that if (λ0, . . . , λn) is a solution, and σ ∈ G, then (σ(λ0), . . . , σ(λn)) is
also a solution. Also, this system has more variables than equations, hence there are non-zero
solutions in En. Let (λ0, . . . , λn) be a non-zero solution with minimal number of non-zero
coefficients. Renumbering the xi, we may assume that λ0 6= 0, and dividing by λ0, we may
assume that λ0 = 1. We claim that then (λ0, . . . , λn) is in Kn+1. Suppose not. We may assume
that λ1 6∈ K. Then there is a σ in G with σ(λ1) 6= λ1. Then (λ0 − σ(λ0), . . . , λn − σ(λn)) is a
non-trivial solution (λn − σ(λn) 6= 0) with fewer non-zero coefficients (λ0 − σ(λ0) = 0). �

5.15 Proposition. Let F ⊂ E be a Galois extension of subfields of C. Let K be a subfield of
C with F ⊂ K ⊂ E. Then the extension K ⊂ E is Galois.

Proof. As F ⊂ E is Galois, every τ : E → C such that τ |F = injF has τ(E) = E (see
Proposition 5.11). Hence certainly for every τ : E → C such that τ |K = injK we have τ(E) = E.
Hence the conclusion. �

5.16 Proposition. Let F ⊂ E be a finite extension of subfields of C. The following conditions
are equivalent:
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1. F ⊂ E is Galois,

2. for all α ∈ E, fα,F splits over E, that is, RootsC(fα,F ) ⊂ E.

If F ⊂ E is Galois, then for every α in E we have RootsC(fα,F ) = RootsE(fα,F ) = AutF (E)·α.

Proof. Let us prove that (1) implies (2). Write G := AutF (E). Let α ∈ E. Proposition 5.11
says that RootsC(fα,F ) ⊂ E.

Let us prove that (2) implies (1). Induction on dimF (E). It is true if dimF (E) = 1. Assume
now that dimF (E) > 1. Let α ∈ E such that α 6∈ F . Then #HomF,inj(F (α), E) = dimF F (α),
using Theorem 5.6. By induction, F (α) ⊂ E is Galois (we use that for all β ∈ E,
fβ,F (α) divides fα,F , hence splits in E). Hence for every τ in HomF,inj(F (α), E) we have
#HomF (α),τ (E,E) = dimF (α) E. We get #AutF (E) = dimF E. �

5.17 Theorem. (Galois correspondence) Let F ⊂ E be a Galois extension of subfields of
C. Let G := AutF (E). Then the following maps f and g

{K ⊂ C subfield s.t. F ⊂ K ⊂ E}
g // {H ⊂ G subgroup}
f
oo

are inverses of each other, and they reverse the orderings by inclusion on both sides. More-
over, for each K in the left set, #AutK(E) = dimK E, and for each H in the right set,
dimEH E = #H.

Proof. Let K1 and K2 be in the left set, with K1 ⊂ K2. Then AutK2E ⊂ AutK1E. Hence g
reverses inclusions.

Let H1 and H2 be in the right set, with H1 ⊂ H2. Then EH2 ⊂ EH1 , hence f reverses
inclusions.

Let K be in the left set. Then we have f(g(K)) = EAutK(E) ⊃ K. We
also have #g(K) = dimK(E) by Proposition 5.15. Then Proposition 5.14 gives us
dimf(g(K))E = #g(K) = dimK(E). Together with the inclusion K ⊂ f(g(K)) this gives
f(g(K)) = K.

Let H be in the right set. Then g(f(H)) = AutEH (E) ⊃ H. We also have dimf(H) E = #H
by Proposition 5.14. Then Proposition 5.15 gives us #Autf(H)(E) = dimf(H) E = #H. To-
gether with the inclusion H ⊂ g(f(H)) this gives g(f(H)) = H. �

6 Sketch of the proof of the Abel-Ruffini theorem

Let F ⊂ C be a subfield, and let f be in F [x]. Then the extension F ⊂ F (RootsC(f)) is
Galois (Proposition 5.11), and is called the splitting field of f over F . The Galois group
AutFF (RootsC(f)) is called the Galois group of f over F . It acts on RootsC(f). Nowadays,
for F = Q and finite extensions of Q, there exist good algorithms to compute these groups (for
example in SAGE, pari/gp, Magma, and who knows).

6.1 Proposition. Let F ⊂ K ⊂ E be finite extensions of subfields of C, with F ⊂ E Galois
and F ⊂ K Galois. Then the morphism f : AutF (E) → AutF (K) that sends σ to σ|K is a
surjective morphism of groups. In particular: AutF (K) is a quotient of AutF (E), and Aut(K(E)
is a normal subgroup of AutF (E).

Let F ⊂ C be a subfield, and f ∈ F [x]. Suppose that all roots of f in C can be obtained
by radicals from F and the coefficients of f . Then these radicals, when taking all the choices
of the roots that are taken, and also all the roots of the “conjugates” of the roots that are
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taken (see “normal closure” in any textbook), generate a Galois extension F ⊂ E such that
F (RootsC(f)) ⊂ E. Hence the Galois group of f over F is then a quotient of Aut)F (E). We
will show that AutF (E) is solvable.

6.2 Definition. A solvable finite group is a finite group G such that there exists an n ≥ 1 and
subgroups

G = G0 ⊃ G1 ⊃ · · · ⊃ Gr = {1},

such that each Gi+1 is normal in Gi and each Gi/Gi+1 is abelian.

We will show two ingredients for the proof that solvability by radicals implies that the Galois
group is solvable.

6.3 Theorem. Let F ⊂ C be a subfield, n ≥ 1, and f := xn − 1 in F [x]. Then RootsC(f) is
the cyclic subgroup of C× generated by z := e2πi/n. Then AutFF (RootsC(f)) acts on RootsC(f)
by automorphisms, hence by a morphism to (Z/nZ)×. This morphism is injective.

Proof. This is a good exercise. �

6.4 Theorem. Let F ⊂ C be a subfield, a ∈ F , n ≥ 1 and f := xn − a in F [x]. Let b ∈ C
be one root of f , and z = e2πi/n. Then Roots(f) = {zjb : j ∈ Z/nZ}. Let E := F (RootsC(f)).
Assume that F contains z. Then the map AutF (E)→ µn(C) to the group of nth roots of unity
in C given by σ 7→ σ(b)/b is an injective morphism of groups, independent of the choice of b.

Proof. This is also a very good exercise. �

Let us now show that non-solvable groups occur as Galois groups of polynomials of all
degrees n ≥ 5. We take it as a fact that for n ≥ 5 the group An is simple and non-abelian,
hence Sn non-solvable.

6.5 Theorem. Let n ≥ 5. Let r1, . . . , rn be algebraically independent elements of C, and
let E := Q(r1, . . . , rn). Let Sn act on E via its permutation action on the set of ri. Let
F := ESn . Then AutF (E) = Sn, and F = Q(p1, . . . , pn), where pi =

∑
j1<···<ji rj1 · · · rji

are the elementary symmetric polynomials in the ri, and E = F (RootsC(f)), where
f = (x− r1) · · · (x− rn) = xn − pn−1x

n−1 + · · ·+ (−1)npn.

6.6 Remark. Also over Q these Galois groups occur, and they are even the most occurring
Galois groups. For example, the Galois group over Q of x5− x+ 1 is S5 (computation done by
pari/gp).
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