L^{p} Functions

Given a measure space (X, μ) and a real number $p \in[1, \infty)$, recall that the \boldsymbol{L}^{p}-norm of a measurable function $f: X \rightarrow \mathbb{R}$ is defined by

$$
\|f\|_{p}=\left(\int_{X}|f|^{p} d \mu\right)^{1 / p}
$$

Note that the L^{p}-norm of a function f may be either finite or infinite. The L^{p} functions are those for which the p-norm is finite.

Definition: L^{p} Function

Let (X, μ) be a measure space, and let $p \in[1, \infty)$. An L^{p} function on X is a measurable function f on X for which

$$
\int_{X}|f|^{p} d \mu<\infty
$$

Like any measurable function, and L^{p} function is allowed to take values of $\pm \infty$. However, it follows from the definition of an L^{p} function that it must take finite values almost everywhere, so there is not harm in restricting to L^{p} functions $X \rightarrow \mathbb{R}$.

It is easy to see that any scalar multiple of an L^{p} is again L^{p}. Moreover, if f and g are L^{p} functions, then by Minkowski's inequality

$$
\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p}<\infty
$$

so $f+g$ is an L^{p} function. Thus the set of L^{p} functions forms a vector space.

EXAMPLE $1 \quad L^{p}$ Functions on $[0,1]$
Any bounded function on $[0,1]$ is automatically L^{p} for every value of p. However it is possible for the p-norm of a measurable function on $[0,1]$ to be infinite. For example,
let $f:[0,1] \rightarrow \mathbb{R}$ be the function

$$
f(x)=\frac{1}{x}
$$

where the value of $f(0)$ is immaterial. Then by the monotone convergence theorem,

$$
\int_{[0,1]}|f| d m=\lim _{a \rightarrow 0^{+}} \int_{[a, 1]} \frac{1}{x} d m(x)=\lim _{a \rightarrow 0^{+}}[\log x]_{a}^{1}=\infty
$$

so f is not L^{1}. Indeed, it is easy to check that f is not L^{p} for any $p \in[1, \infty)$.
A function with a vertical asymptote does not automatically have infinite p-norm. For example, if

$$
f(x)=\frac{1}{\sqrt{x}}
$$

then f has a vertical asymptote at $x=0$, but

$$
\int_{[0,1]}|f| d m=\lim _{a \rightarrow 0^{+}} \int_{[a, 1]} \frac{1}{\sqrt{x}} d m(x)=\lim _{a \rightarrow 0^{+}}[2 \sqrt{x}]_{a}^{1}=2 .
$$

In general,

$$
\int_{[0,1]} \frac{1}{x^{r}} d m(x)= \begin{cases}\infty & \text { if } r \geq 1 \\ 1 /(1-r) & \text { if } r<1\end{cases}
$$

It follows that the function $f(x)=1 / x^{r}$ is L^{p} if and only if $p r<1$, i.e. if and only if $p<1 / r$. For example, $f(x)=1 / \sqrt{x}$ is L^{p} for all $p \in[1,2)$, but is not L^{p} for any $p \in[2, \infty)$.

The last example suggests that it should be harder for a function to be L^{p} the larger we make p. The following proposition confirms this intuition.

Proposition 1 Relation Between L^{p} and L^{q}

Let (X, μ) be a measure space, and let $1 \leq p \leq q<\infty$. If $\mu(X)=1$, then

$$
\|f\|_{p} \leq\|f\|_{q}
$$

for every measurable function f. More generally, if $0<\mu(X)<\infty$, then

$$
\|f\|_{p} \leq \mu(X)^{r}\|f\|_{q}
$$

for every measurable function f, where $r=(1 / p)-(1 / q)$, and hence every L^{q} function is also L^{p}.

PROOF The case where $\mu(X)=1$ is the generalized mean inequality for the p-mean and the q-mean. For $0<\mu(X)<\infty$, let $C=\mu(X)$, and let ν be the measure

$$
d \nu=\frac{1}{C} d \mu
$$

Then $\nu(X)=1$, so by the generalized mean inequality

$$
\begin{aligned}
\left(\int_{X}|f|_{p} d \mu\right)^{1 / p}=C^{1 / p} & \left(\int_{X}|f|^{p} d \nu\right)^{1 / p} \\
& \leq C^{1 / p}\left(\int_{X}|f|^{q} d \nu\right)^{1 / q}=C^{1 / p} C^{-1 / q}\left(\int_{X}|f|^{q} d \mu\right)^{1 / q}
\end{aligned}
$$

Note that this proposition only applies in the case where $\mu(X)$ is finite. As the following example shows, the relationship between L^{p} and L^{q} functions can be more complicated when $\mu(X)=\infty$.

EXAMPLE 2 Horizontal Asymptotes

Let $f:[1, \infty) \rightarrow \mathbb{R}$ be the function

$$
f(x)=\frac{1}{x}
$$

Then f is not L^{1}, since by the monotone convergence theorem

$$
\int_{[1, \infty)}|f| d m=\lim _{b \rightarrow \infty} \int_{[1, b]} \frac{1}{x} d m(x)=\lim _{b \rightarrow \infty}[\log x]_{1}^{b}=\infty .
$$

However f is L^{2}, since

$$
\int_{[1, \infty)}|f|^{2} d m=\lim _{b \rightarrow \infty} \int_{[1, b]} \frac{1}{x^{2}} d m(x)=\lim _{b \rightarrow \infty}\left[-\frac{1}{x}\right]_{1}^{b}=1 .
$$

In general,

$$
\int_{[1, \infty)} \frac{1}{x^{r}} d m(x)= \begin{cases}1 /(r-1) & \text { if } r>1 \\ \infty & \text { if } r \leq 1\end{cases}
$$

Thus $f(x)=1 / x^{r}$ is L^{p} if and only if $p r>1$, i.e. if and only if $p>1 / r$.

Thus, for horizontal asymptotes it is easier for a function to be L^{p} the larger the value of p. Intuitively, this is because numbers close to 0 get smaller when taken to a larger power, so $|f|^{p}$ will be closer to the x-axis the larger the value of p.

ℓ^{p} Sequences

An important special case of L^{p} functions is for the measure space (\mathbb{N}, μ), where μ is counting measure on \mathbb{N}. In this case, a measurable function f on \mathbb{N} is just a sequence

$$
f(1), \quad f(2), \quad f(3), \quad \cdots
$$

and the Lebesgue integral is the same as the sum of the series

$$
\int_{\mathbb{N}} f d \mu=\sum_{n \in \mathbb{N}} f(n) .
$$

The definition of an L^{p} function on \mathbb{N} takes the following form.

Definition: ℓ^{p}-Norm and ℓ^{p} Sequences

If $p \in[1, \infty)$, the ℓ^{p}-norm of a sequence $\left\{a_{n}\right\}$ of real numbers is defined by the formula

$$
\left\|\left\{a_{n}\right\}\right\|_{p}=\left(\sum_{n \in \mathbb{N}}\left|a_{n}\right|^{p}\right)^{1 / p} .
$$

An ℓ^{p} sequence is a sequence $\left\{a_{n}\right\}$ of real numbers for which

$$
\sum_{n \in N}\left|a_{n}\right|^{p}<\infty
$$

Sequences behave in a similar manner to functions with horizontal asymptotes.

EXAMPLE $3 \quad P$-series

Recall that the \boldsymbol{p}-series

$$
\sum_{n=1}^{\infty} \frac{1}{n^{p}}
$$

converges if and only if $p>1$. It follows that the sequence $\left\{1 / n^{p}\right\}$ is ℓ^{1} if and only if $p>1$. For example,

$$
\left\{\frac{1}{n^{2}}\right\} \text { is } \ell^{1} \quad \text { but } \quad\left\{\frac{1}{n}\right\} \text { and }\left\{\frac{1}{\sqrt{n}}\right\} \text { are not. }
$$

Moreover, since $\left(1 / n^{r}\right)^{p}=1 / n^{r p}$, we find that $\left\{1 / n^{r}\right\}$ is ℓ^{p} if and only if $p>1 / r$. Thus

$$
\left\{\frac{1}{n}\right\} \text { is } \ell^{2} \text { but not } \ell^{1}
$$

and

$$
\left\{\frac{1}{\sqrt{n}}\right\} \text { is } \ell^{3} \text { but not } \ell^{2} .
$$

All of this is very similar to our analysis of the function $1 / x^{p}$ on $[1, \infty]$. Indeed, it follows from the integral test that

$$
\int_{1}^{\infty} \frac{1}{x^{p}} d x<\infty \quad \text { if and only if } \quad \sum_{n=1}^{\infty} \frac{1}{n^{p}}<\infty
$$

so there is a strong theoretical relationship between these two cases.

Proposition 2 Relationship Between ℓ^{p} and ℓ^{q}

If $1 \leq p<q<\infty$, then every ℓ^{p} sequence is also ℓ^{q}.

PROOF Let $\left\{a_{n}\right\}$ be an ℓ^{p} sequence. Then

$$
\sum_{n \in \mathbb{N}}\left|a_{n}\right|^{p}
$$

converges, so it must be the case that $a_{n} \rightarrow 0$ as $n \rightarrow \infty$. In particular, there exists an $N \in \mathbb{N}$ such that $\left|a_{n}\right|<1$ for all $n \geq N$. Then $\left|a_{n}\right|^{q}<\left|a_{n}\right|^{p}$ for all $n \geq N$, so

$$
\sum_{n \in \mathbb{N}}\left|a_{n}\right|^{q}
$$

converges by the comparison test.

Incidentally, Hölder's inequality is very interesting for sequences, since it essentially functions as a new convergence test for series.

Theorem 3 Hölder's Inequality for Sequences

Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be sequences of real numbers, and let $p, q \in[1, \infty)$ so that $1 / p+1 / q=1$. If the series

$$
\sum_{n=1}^{\infty}\left|a_{n}\right|^{p} \quad \text { and } \quad \sum_{n=1}^{\infty}\left|b_{n}\right|^{p}
$$

both converge, then the series

$$
\sum_{n=1}^{\infty} a_{n} b_{n}
$$

converges absolutely, and

$$
\left|\sum_{n=1}^{\infty} a_{n} b_{n}\right| \leq\left(\sum_{n=1}^{\infty}\left|a_{n}\right|^{p}\right)^{1 / p}\left(\sum_{n=1}^{\infty}\left|b_{n}\right|^{q}\right)^{1 / q} .
$$

Corollary 4 Cauchy-Schwarz Inequality for Sequences

Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be sequences of real numbers. If the series

$$
\sum_{n=1}^{\infty} a_{n}^{2} \quad \text { and } \quad \sum_{n=1}^{\infty} b_{n}^{2}
$$

both converge, then the series

$$
\sum_{n=1}^{\infty} a_{n} b_{n}
$$

converges absolutely, and

$$
\left(\sum_{n=1}^{\infty} a_{n} b_{n}\right)^{2} \leq\left(\sum_{n=1}^{\infty} a_{n}^{2}\right)\left(\sum_{n=1}^{\infty} b_{n}^{2}\right) .
$$

L^{p} Completeness

It is possible to generalize the completeness theorem to L^{p}.

Definition: L^{p} Sequences

Let (X, μ) be a measure space, let $\left\{f_{n}\right\}$ be a sequence of measurable functions on X, and let $p \in[1, \infty)$.

1. We say that $\left\{f_{n}\right\}$ is an \boldsymbol{L}^{p} Cauchy sequence if for every $\epsilon>0$ there exists an $N \in \mathbb{N}$ so that

$$
i, j \geq N \quad \Rightarrow \quad\left\|f_{i}-f_{j}\right\|_{p}<\epsilon
$$

2. We say that $\left\{f_{n}\right\}$ has bounded \boldsymbol{L}^{p}-variation if

$$
\sum_{n \in \mathbb{N}}\left\|f_{n+1}-f_{n}\right\|_{p}<\infty
$$

3. We say that $\left\{f_{n}\right\}$ converges in $\boldsymbol{L}^{\boldsymbol{p}}$ to a measurable function f if

$$
\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{p}=0
$$

Theorem $5 L^{p}$ Convergence Criterion

Let (X, μ) be a measure space, and let $\left\{f_{n}\right\}$ be a sequence of measurable functions on X with bounded L^{p}-variation. Then $\left\{f_{n}\right\}$ converges pointwise almost everywhere to a measurable function f, and $f_{n} \rightarrow f$ in L^{p}.

PROOF Let

$$
M=\sum_{n \in \mathbb{N}}\left\|f_{n+1}-f_{n}\right\|_{p}<\infty .
$$

and let

$$
g=\sum_{n=1}^{\infty}\left|f_{n+1}-f_{n}\right| \quad \text { and } \quad g_{N}=\sum_{n=1}^{N}\left|f_{n+1}-f_{n}\right|
$$

for each $N \in \mathbb{N}$. By Minkowski's inequality,

$$
\left\|g_{N}\right\|_{p} \leq \sum_{n=1}^{N}\left\|f_{n+1}-f_{n}\right\|_{p} \leq M
$$

for all $N \in \mathbb{N}$. By the monotone convergence theorem, it follows that

$$
\int_{X} g^{p} d \mu=\int_{X} \lim _{N \rightarrow \infty} g_{N}^{p} d \mu=\lim _{N \rightarrow \infty} \int_{X} g_{N}^{p} d \mu=\lim _{N \rightarrow \infty}\left\|g_{N}\right\|_{p}^{p} \leq M^{p}<\infty
$$

From this we conclude that $g(x)<\infty$ for almost all $x \in X$, so $\left\{f_{n}(x)\right\}$ has bounded variation for almost all $x \in X$, and hence $\left\{f_{n}(x)\right\}$ converges pointwise almost everywhere.

Let f be the pointwise limit of the sequence $\left\{f_{n}\right\}$, and note that for each $n \in \mathbb{N}$,

$$
f-f_{n}=\lim _{N \rightarrow \infty} f_{N+1}-f_{n}=\lim _{N \rightarrow \infty} \sum_{k=n}^{N}\left(f_{k+1}-f_{k}\right)=\sum_{k=n}^{\infty}\left(f_{k+1}-f_{k}\right)
$$

almost everywhere. Then

$$
\left|f-f_{n}\right|^{p}=\left|\sum_{k=n}^{\infty}\left(f_{k+1}-f_{k}\right)\right|^{p} \leq\left(\sum_{k=n}^{\infty}\left|f_{k+1}-f_{k}\right|\right)^{p} \leq g^{p}
$$

almost everywhere, so by the dominated convergence theorem

$$
\lim _{n \rightarrow \infty} \int_{X}\left|f-f_{n}\right|^{p} d \mu=\int_{X} \lim _{n \rightarrow \infty}\left|f-f_{n}\right|^{p} d \mu=0
$$

Thus $f_{n} \rightarrow f$ in L^{p}.
L^{p} completeness follows easily. We leave the proof to the reader.

Theorem $6 L^{p}$ Completeness

Let (X, μ) be a measure space, and let $\left\{f_{n}\right\}$ be an L^{p} Cauchy sequence on X. Then $\left\{f_{n}\right\}$ converges in L^{p} to some measurable function f on X.

The L^{∞} Norm

It is possible to extend the L^{p} norms in a natural way to the case $p=\infty$.

Definition: \boldsymbol{L}^{∞}-Norm

Let (X, μ) be a measure space, and let f be a measurable function on X. The \boldsymbol{L}^{∞}-norm of f is defined as follows:

$$
\|f\|_{\infty}=\min \{M \in[0, \infty]| | f \mid \leq M \text { almost everywhere }\}
$$

We say that f is an \boldsymbol{L}^{∞} function if $\|f\|_{\infty}<\infty$.

Note that the set

$$
\{M \in[0, \infty]||f| \leq M \text { almost everywhere }\}
$$

really does have a minimum element, for if $|f| \leq M+1 / n$ almost everywhere for all $n \in \mathbb{N}$, then it follows that $|f| \leq M$ almost everywhere.

The L^{∞}-norm $\|\left. f\right|_{\infty}$ is sometimes called the essential supremum of $|f|$, and L^{∞} functions are sometimes said to be essentially bounded or bounded almost everywhere. Note that a continuous function on \mathbb{R} is L^{∞} if and only if it is bounded, in which case $\|f\|_{\infty}$ is equal to the supremum of $|f|$.

Much of what we have done for $p \in[1, \infty)$ also works for $p=\infty$. We list some of the results, and leave the proofs to the reader:

Minkowski's Inequality. If f and g are L^{∞} functions, then $f+g$ is L^{∞}, and

$$
\|f+g\|_{\infty} \leq\|f\|_{\infty}+\|g\|_{\infty}
$$

Hölder's Inequality. If f is an L^{1} function and g is an L^{∞} function, then $f g$ is Lebesgue integrable and

$$
|\langle f, g\rangle| \leq\|f\|_{1}\|g\|_{\infty}
$$

\boldsymbol{L}^{∞} Convergence. If $\left\{f_{n}\right\}$ is a sequence of functions, we say that $\left\{f_{n}\right\}$ converges in \boldsymbol{L}^{∞} to a function f if

$$
\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{\infty}=0
$$

This turns out to be the same as uniform convergence almost everywhere, i.e. $f_{n} \rightarrow f$ in L^{∞} if and only if there exists a set Z of measure zero such that $f_{n} \rightarrow f$ uniformly on Z^{c}.
\boldsymbol{L}^{∞} Completeness. If $\left\{f_{n}\right\}$ is an L^{∞} Cauchy sequence of measurable functions, then $\left\{f_{n}\right\}_{\infty}$ converges in L^{∞} to some measurable function f.

Relation Between \boldsymbol{L}^{∞} and \boldsymbol{L}^{p} If $\mu(X)=1$, then $\|f\|_{p} \leq\|f\|_{\infty}$ for any measurable function f on X. More generally, if $0<\mu(X)<\infty$ then

$$
\|f\|_{p} \leq \mu(X)^{1 / p}\|f\|_{\infty}
$$

for all p, so any L^{∞} function on X is also L^{p} for all $p \in[1, \infty)$.
In the case of sequences, the L^{∞} norm takes the following form.

Definition: ℓ^{∞}-Norm

Let $\left\{a_{n}\right\}$ be a sequence of real numbers. The $\boldsymbol{\ell}^{\infty}$-norm of $\left\{a_{n}\right\}$ is defined as follows:

$$
\left\|\left\{a_{n}\right\}\right\|_{\infty}=\sup _{n \in \mathbb{N}}\left|a_{n}\right|
$$

Thus an ℓ^{∞} sequence is the same as a bounded sequence. Note that if $p \in[1, \infty)$, then any ℓ^{p} sequence must be ℓ^{∞}, since any ℓ^{p} sequence must converge to zero.

Exercises

For the following exercises, let (X, μ) be a measure space.

1. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be the function $f(x)=e^{-x}$. For what values of p is f an L^{p} function?
2. Let $f:(0, \infty) \rightarrow \mathbb{R}$ be the function

$$
f(x)= \begin{cases}x^{-1 / 3} & 0<x<1 \\ x^{-1 / 2} & 1 \leq x<\infty\end{cases}
$$

For what values of p is f an L^{p} function?
3. Let $f:[0,1] \rightarrow[0, \infty]$ be the function $f(x)=-\log x$, with $f(0)=\infty$.
(a) Show that f is L^{1}.
(b) Show that f is L^{p} for all $p \in[1, \infty)$. (Hint: Substitute $u=1 / x$.)
4. For what values of p is

$$
\left\{\frac{1}{\left(n^{2}+1\right)^{1 / 3}}\right\}
$$

an ℓ^{p} sequence?
5. For what values of p is

$$
\left\{\frac{1}{\sqrt{n} \log n}\right\}
$$

an ℓ^{p} sequence?
6. Prove that every L^{p} Cauchy sequence has a subsequence of bounded L^{p}-variation.
7. Prove the L^{p} completeness theorem (Theorem 6).
8. If f and g are measurable functions on X, prove that $\|f+g\|_{\infty} \leq\|f\|_{\infty}+\|g\|_{\infty}$.
9. If f is an L^{1} function on X and g is an L^{∞} function on X, prove that $f g$ is Lebesgue integrable and $|\langle f, g\rangle| \leq\|f\|_{1}\|g\|_{\infty}$.
10. Let $\left\{f_{n}\right\}$ be a sequence of measurable functions on X, and let f be a measurable function on X. Prove that $f_{n} \rightarrow f$ in L^{∞} if and only if $f_{n} \rightarrow f$ uniformly almost everywhere.
11. If $0<\mu(X)<\infty$ and f is a measurable function on X, prove that

$$
\|f\|_{p}<\mu(X)^{1 / p}\|f\|_{\infty}
$$

for all $p \in[1, \infty)$.
12. Prove that every L^{∞} Cauchy sequence of measurable functions converges uniformly almost everywhere.

