
Lp Functions

Given a measure space (X,µ) and a real number p ∈ [1,∞), recall that the Lp-norm

of a measurable function f : X → R is defined by

‖f‖p =

(∫
X

|f |p dµ
)1/p

Note that the Lp-norm of a function f may be either finite or infinite. The Lp

functions are those for which the p-norm is finite.

Definition: Lp Function

Let (X,µ) be a measure space, and let p ∈ [1,∞). An Lp function on X is a

measurable function f on X for which∫
X

|f |p dµ < ∞.

Like any measurable function, and Lp function is allowed to take values of ±∞.

However, it follows from the definition of an Lp function that it must take finite values

almost everywhere, so there is not harm in restricting to Lp functions X → R.

It is easy to see that any scalar multiple of an Lp is again Lp. Moreover, if f and

g are Lp functions, then by Minkowski’s inequality

‖f + g‖p ≤ ‖f‖p + ‖g‖p < ∞

so f + g is an Lp function. Thus the set of Lp functions forms a vector space.

EXAMPLE 1 Lp Functions on [0, 1]

Any bounded function on [0, 1] is automatically Lp for every value of p. However it is

possible for the p-norm of a measurable function on [0, 1] to be infinite. For example,
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let f : [0, 1]→ R be the function

f(x) =
1

x

where the value of f(0) is immaterial. Then by the monotone convergence theorem,∫
[0,1]

|f | dm = lim
a→0+

∫
[a,1]

1

x
dm(x) = lim

a→0+

[
log x

]1
a

= ∞

so f is not L1. Indeed, it is easy to check that f is not Lp for any p ∈ [1,∞).

A function with a vertical asymptote does not automatically have infinite p-norm.

For example, if

f(x) =
1√
x

then f has a vertical asymptote at x = 0, but∫
[0,1]

|f | dm = lim
a→0+

∫
[a,1]

1√
x
dm(x) = lim

a→0+

[
2
√
x
]1
a

= 2.

In general, ∫
[0,1]

1

xr
dm(x) =

∞ if r ≥ 1

1/(1− r) if r < 1.

It follows that the function f(x) = 1/xr is Lp if and only if pr < 1, i.e. if and only

if p < 1/r. For example, f(x) = 1/
√
x is Lp for all p ∈ [1, 2), but is not Lp for any

p ∈ [2,∞). �

The last example suggests that it should be harder for a function to be Lp the

larger we make p. The following proposition confirms this intuition.

Proposition 1 Relation Between Lp and Lq

Let (X,µ) be a measure space, and let 1 ≤ p ≤ q <∞. If µ(X) = 1, then

‖f‖p ≤ ‖f‖q

for every measurable function f . More generally, if 0 < µ(X) <∞, then

‖f‖p ≤ µ(X)r ‖f‖q

for every measurable function f , where r = (1/p) − (1/q), and hence every Lq

function is also Lp.
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PROOF The case where µ(X) = 1 is the generalized mean inequality for the p-mean

and the q-mean. For 0 < µ(X) <∞, let C = µ(X), and let ν be the measure

dν =
1

C
dµ.

Then ν(X) = 1, so by the generalized mean inequality(∫
X

|f |p dµ
)1/p

= C1/p

(∫
X

|f |p dν
)1/p

≤ C1/p

(∫
X

|f |q dν
)1/q

= C1/pC−1/q
(∫

X

|f |q dµ
)1/q

. �

Note that this proposition only applies in the case where µ(X) is finite. As the

following example shows, the relationship between Lp and Lq functions can be more

complicated when µ(X) =∞.

EXAMPLE 2 Horizontal Asymptotes

Let f : [1,∞)→ R be the function

f(x) =
1

x
.

Then f is not L1, since by the monotone convergence theorem∫
[1,∞)

|f | dm = lim
b→∞

∫
[1,b]

1

x
dm(x) = lim

b→∞

[
log x

]b
1

= ∞.

However f is L2, since∫
[1,∞)

|f |2 dm = lim
b→∞

∫
[1,b]

1

x2
dm(x) = lim

b→∞

[
−1

x

]b
1

= 1.

In general, ∫
[1,∞)

1

xr
dm(x) =

1/(r − 1) if r > 1

∞ if r ≤ 1.

Thus f(x) = 1/xr is Lp if and only if pr > 1, i.e. if and only if p > 1/r. �

Thus, for horizontal asymptotes it is easier for a function to be Lp the larger the

value of p. Intuitively, this is because numbers close to 0 get smaller when taken to

a larger power, so |f |p will be closer to the x-axis the larger the value of p.
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`p Sequences

An important special case of Lp functions is for the measure space (N, µ), where µ is

counting measure on N. In this case, a measurable function f on N is just a sequence

f(1), f(2), f(3), . . .

and the Lebesgue integral is the same as the sum of the series∫
N
f dµ =

∑
n∈N

f(n).

The definition of an Lp function on N takes the following form.

Definition: `p-Norm and `p Sequences

If p ∈ [1,∞), the `p-norm of a sequence {an} of real numbers is defined by the

formula

‖{an}‖p =

(∑
n∈N

|an|p
)1/p

.

An `p sequence is a sequence {an} of real numbers for which∑
n∈N

|an|p < ∞.

Sequences behave in a similar manner to functions with horizontal asymptotes.

EXAMPLE 3 P -series

Recall that the p-series
∞∑
n=1

1

np

converges if and only if p > 1. It follows that the sequence {1/np} is `1 if and only

if p > 1. For example,{
1

n2

}
is `1 but

{
1

n

}
and

{
1√
n

}
are not.

Moreover, since (1/nr)p = 1/nrp, we find that {1/nr} is `p if and only if p > 1/r.

Thus {
1

n

}
is `2 but not `1,
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and {
1√
n

}
is `3 but not `2. �

All of this is very similar to our analysis of the function 1/xp on [1,∞]. Indeed,

it follows from the integral test that∫ ∞
1

1

xp
dx < ∞ if and only if

∞∑
n=1

1

np
< ∞

so there is a strong theoretical relationship between these two cases.

Proposition 2 Relationship Between `p and `q

If 1 ≤ p < q <∞, then every `p sequence is also `q.

PROOF Let {an} be an `p sequence. Then∑
n∈N

|an|p

converges, so it must be the case that an → 0 as n → ∞. In particular, there exists

an N ∈ N such that |an| < 1 for all n ≥ N . Then |an|q < |an|p for all n ≥ N , so∑
n∈N

|an|q

converges by the comparison test. �

Incidentally, Hölder’s inequality is very interesting for sequences, since it essen-

tially functions as a new convergence test for series.
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Theorem 3 Hölder’s Inequality for Sequences

Let {an} and {bn} be sequences of real numbers, and let p, q ∈ [1,∞) so that

1/p+ 1/q = 1. If the series

∞∑
n=1

|an|p and
∞∑
n=1

|bn|p

both converge, then the series
∞∑
n=1

anbn

converges absolutely, and∣∣∣∣∣
∞∑
n=1

anbn

∣∣∣∣∣ ≤
(
∞∑
n=1

|an|p
)1/p( ∞∑

n=1

|bn|q
)1/q

.

Corollary 4 Cauchy-Schwarz Inequality for Sequences

Let {an} and {bn} be sequences of real numbers. If the series

∞∑
n=1

a2n and
∞∑
n=1

b2n

both converge, then the series
∞∑
n=1

anbn

converges absolutely, and(
∞∑
n=1

anbn

)2

≤

(
∞∑
n=1

a2n

)(
∞∑
n=1

b2n

)
.
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Lp Completeness

It is possible to generalize the completeness theorem to Lp.

Definition: Lp Sequences

Let (X,µ) be a measure space, let {fn} be a sequence of measurable functions on X,

and let p ∈ [1,∞).

1. We say that {fn} is an Lp Cauchy sequence if for every ε > 0 there exists

an N ∈ N so that

i, j ≥ N ⇒ ‖fi − fj‖p < ε.

2. We say that {fn} has bounded Lp-variation if∑
n∈N

‖fn+1 − fn‖p < ∞.

3. We say that {fn} converges in Lp to a measurable function f if

lim
n→∞

‖fn − f‖p = 0.

Theorem 5 Lp Convergence Criterion

Let (X,µ) be a measure space, and let {fn} be a sequence of measurable func-

tions on X with bounded Lp-variation. Then {fn} converges pointwise almost

everywhere to a measurable function f , and fn → f in Lp.

PROOF Let

M =
∑
n∈N

‖fn+1 − fn‖p < ∞.

and let

g =
∞∑
n=1

|fn+1 − fn| and gN =
N∑

n=1

|fn+1 − fn|

for each N ∈ N. By Minkowski’s inequality,

‖gN‖p ≤
N∑

n=1

‖fn+1 − fn‖p ≤ M
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for all N ∈ N. By the monotone convergence theorem, it follows that∫
X

gp dµ =

∫
X

lim
N→∞

gpN dµ = lim
N→∞

∫
X

gpN dµ = lim
N→∞

‖gN‖pp ≤ Mp < ∞.

From this we conclude that g(x) <∞ for almost all x ∈ X, so {fn(x)} has bounded

variation for almost all x ∈ X, and hence {fn(x)} converges pointwise almost every-

where.

Let f be the pointwise limit of the sequence {fn}, and note that for each n ∈ N,

f − fn = lim
N→∞

fN+1 − fn = lim
N→∞

N∑
k=n

(fk+1 − fk) =
∞∑
k=n

(fk+1 − fk)

almost everywhere. Then

|f − fn|p =

∣∣∣∣∣
∞∑
k=n

(
fk+1 − fk

)∣∣∣∣∣
p

≤

(
∞∑
k=n

|fk+1 − fk|

)p

≤ gp

almost everywhere, so by the dominated convergence theorem

lim
n→∞

∫
X

|f − fn|p dµ =

∫
X

lim
n→∞

|f − fn|p dµ = 0.

Thus fn → f in Lp. �

Lp completeness follows easily. We leave the proof to the reader.

Theorem 6 Lp Completeness

Let (X,µ) be a measure space, and let {fn} be an Lp Cauchy sequence on X.

Then {fn} converges in Lp to some measurable function f on X.
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The L∞ Norm

It is possible to extend the Lp norms in a natural way to the case p =∞.

Definition: L∞-Norm

Let (X,µ) be a measure space, and let f be a measurable function on X. The

L∞-norm of f is defined as follows:

‖f‖∞ = min
{
M ∈ [0,∞]

∣∣ |f | ≤M almost everywhere
}
.

We say that f is an L∞ function if ‖f‖∞ <∞.

Note that the set{
M ∈ [0,∞]

∣∣ |f | ≤M almost everywhere
}

really does have a minimum element, for if |f | ≤ M + 1/n almost everywhere for all

n ∈ N, then it follows that |f | ≤M almost everywhere.

The L∞-norm ‖f |∞ is sometimes called the essential supremum of |f |, and

L∞ functions are sometimes said to be essentially bounded or bounded almost

everywhere. Note that a continuous function on R is L∞ if and only if it is bounded,

in which case ‖f‖∞ is equal to the supremum of |f |.
Much of what we have done for p ∈ [1,∞) also works for p =∞. We list some of

the results, and leave the proofs to the reader:

Minkowski’s Inequality. If f and g are L∞ functions, then f + g is L∞, and

‖f + g‖∞ ≤ ‖f‖∞ + ‖g‖∞.

Hölder’s Inequality. If f is an L1 function and g is an L∞ function, then fg is

Lebesgue integrable and

|〈f, g〉| ≤ ‖f‖1 ‖g‖∞.

L∞ Convergence. If {fn} is a sequence of functions, we say that {fn} converges

in L∞ to a function f if

lim
n→∞

‖fn − f‖∞ = 0.

This turns out to be the same as uniform convergence almost everywhere,

i.e. fn → f in L∞ if and only if there exists a set Z of measure zero such

that fn → f uniformly on Zc.
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L∞ Completeness. If {fn} is an L∞ Cauchy sequence of measurable functions,

then {fn}∞ converges in L∞ to some measurable function f .

Relation Between L∞ and Lp If µ(X) = 1, then ‖f‖p ≤ ‖f‖∞ for any measur-

able function f on X. More generally, if 0 < µ(X) <∞ then

‖f‖p ≤ µ(X)1/p ‖f‖∞

for all p, so any L∞ function on X is also Lp for all p ∈ [1,∞).

In the case of sequences, the L∞ norm takes the following form.

Definition: `∞-Norm

Let {an} be a sequence of real numbers. The `∞-norm of {an} is defined as follows:

‖{an}‖∞ = sup
n∈N
|an|

Thus an `∞ sequence is the same as a bounded sequence. Note that if p ∈ [1,∞),

then any `p sequence must be `∞, since any `p sequence must converge to zero.

Exercises

For the following exercises, let (X,µ) be a measure space.

1. Let f : [0,∞) → R be the function f(x) = e−x. For what values of p is f an

Lp function?

2. Let f : (0,∞)→ R be the function

f(x) =

{
x−1/3 0 < x < 1,

x−1/2 1 ≤ x <∞.

For what values of p is f an Lp function?

3. Let f : [0, 1]→ [0,∞] be the function f(x) = − log x, with f(0) =∞.

(a) Show that f is L1.

(b) Show that f is Lp for all p ∈ [1,∞). (Hint: Substitute u = 1/x.)
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4. For what values of p is {
1

(n2 + 1)1/3

}
an `p sequence?

5. For what values of p is {
1√

n log n

}
an `p sequence?

6. Prove that every Lp Cauchy sequence has a subsequence of bounded Lp-variation.

7. Prove the Lp completeness theorem (Theorem 6).

8. If f and g are measurable functions on X, prove that ‖f+g‖∞ ≤ ‖f‖∞+‖g‖∞.

9. If f is an L1 function on X and g is an L∞ function on X, prove that fg is

Lebesgue integrable and |〈f, g〉| ≤ ‖f‖1 ‖g‖∞.

10. Let {fn} be a sequence of measurable functions on X, and let f be a measurable

function on X. Prove that fn → f in L∞ if and only if fn → f uniformly almost

everywhere.

11. If 0 < µ(X) <∞ and f is a measurable function on X, prove that

‖f‖p < µ(X)1/p ‖f‖∞

for all p ∈ [1,∞).

12. Prove that every L∞ Cauchy sequence of measurable functions converges uni-

formly almost everywhere.
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