(c)The Author(s) This article is published with open access \square^{11}

A New Proof and Some Generalizations of the Bottema Theorem

Nguyen Ngoc Giang
Banking University of Ho Chi Minh City
36 Ton That Dam street, district 1,
Ho Chi Minh City, Vietnam nguyenngocgiang.net@gmail.com

Abstract. The article gives a new proof and some new generalizations of the Bottema theorem.

Keywords. Bottema theorem, similar rectangulars.

1. Introduction

The Bottema theorem is a famous one which has many applications in solving problems. they find out many proofs of the Bottema theorem such as the synthetic solution, complex solution and analytic solution nowadays. This article gives some new proofs of generalizations of the Bottema theorem.

Theorem 1.1. (The Bottema theorem)
Given a triangle $A B C$. Two vertices A, B are fixed and the vertex C is movable. Two squares $A C B_{c} B_{a}$ and $B C A_{c} A_{b}$ are constructed on two sides $C A, C B$ having the same orientation. Prove that the midpoint M of $A_{b} B_{a}$ does no depend on the position of point C.

2. Theorems

Let W, U, V be the projections from M, B_{a}, A_{b} to $A B$, respectively. We have:

$$
\begin{equation*}
\overrightarrow{W M}=\frac{1}{2}\left(\overrightarrow{U B_{a}}+\overrightarrow{V A_{b}}\right) \tag{1}
\end{equation*}
$$

We have:

$$
\begin{align*}
& \overrightarrow{U B_{a}}=\overrightarrow{U A}+\overrightarrow{A B_{a}} \tag{2}\\
& \overrightarrow{V A_{b}}=\overrightarrow{V B}+\overrightarrow{B A_{b}} \tag{3}
\end{align*}
$$

[^0]Considering the rotation of vectors with angle -90°, we have:

$$
\begin{equation*}
\overrightarrow{U A} \rightarrow C Z\left(\text { since } \Delta A B_{a} U=\Delta C A Z\right) \tag{4}
\end{equation*}
$$

$$
\begin{gather*}
\overrightarrow{V B} \rightarrow \overrightarrow{Z C}\left(\text { since } \Delta B A_{b} V=\Delta C B Z\right) \tag{6}\\
\overrightarrow{B A_{b}} \rightarrow \overrightarrow{C B} \tag{7}
\end{gather*}
$$

Since (1), (2), (3), (4), (5), (6), (7), we have:

$$
\begin{aligned}
\overrightarrow{W M}= & \frac{1}{2}\left(\overrightarrow{U B_{a}}+\overrightarrow{V A_{b}}\right)=\frac{1}{2}\left(\overrightarrow{U A}+\overrightarrow{A B_{a}}+\overrightarrow{V B}+\overrightarrow{B A_{b}}\right) \\
& \rightarrow \frac{1}{2}(\overrightarrow{C Z}+\overrightarrow{A C}+\overrightarrow{Z C}+\overrightarrow{C B})=\frac{1}{2} \overrightarrow{A B}
\end{aligned}
$$

From the above we have $A U=C Z=B V$. It follows that W is the midpoint of $U V$ then W is the midpoint of $A B$. Since $W M=\frac{1}{2} A B ; W M \perp A B, W$ is the midpoint of fixed segment $A B$, it follows M is fixed (Q. E. D).
The Bottema theorem only considers two squares rotated about the vertex C (as the above figure). We know that square is a special rectangular. If two arbitrary rectangulars are rotated about the vertex C then the above thing is true? We go to the following problem:

Theorem 2.1. (The generalization 1) (Source: The Cut-the-knot)
Given a triangle $A B C$. Two vertices A, B are fixed and the vertex C is movable. Two similar rectangulars $A C B_{c} B_{a}$ and $B C A_{c} A_{b}$ are constructed on two sides $C A, C B$ having the same orientation such that $C A, C B$. Prove that the midpoint M of $A_{b} B_{a}$ does not depend on the position of point C.

Solution 1

Drop the perpendicular lines $B_{a} U, M W, A V, C Z$ to $A B$. We see that $M W$ is the midline of trapezium $B_{a} U V A_{b}$ which satisfies that:

$$
\begin{equation*}
M W=\frac{B_{a} U+A_{b} V}{2} \tag{8}
\end{equation*}
$$

Since the right triangles $U B_{a} U, A Z C$ and $B A_{b} V, B C Z$ are similar, we have:
$\frac{U B_{a}}{A Z}=\frac{A B_{a}}{A C}=\frac{B A_{b}}{B C}=\frac{V A_{b}}{B Z}=k(k$ is the similar ratio of two rectangulars $)$.
Since $\frac{U B_{a}}{A Z}=\frac{V A_{b}}{B Z}=\frac{U B_{a}+V A_{b}}{A Z+B Z}=\frac{2 M W}{A B}=k \Rightarrow M W=\frac{k A B}{2}=$ const.
Thus $M W$ is constant, W is fixed, it follows M is fixed.
The above problem is proved by the synthetic method. We can use the roation of vectors to prove this theorem with new and interesting aspects.

Solution 2

Let W, U, V be the projections from W, U, V to $A B$. We have:

$$
\begin{equation*}
\overrightarrow{W M}=\frac{1}{2}\left(\overrightarrow{U B_{a}}+\overrightarrow{V A_{b}}\right) \tag{9}
\end{equation*}
$$

We also have:

$$
\begin{align*}
& \overrightarrow{U B_{a}}=\overrightarrow{U A}+\overrightarrow{A B_{a}} \tag{10}\\
& \overrightarrow{V A_{b}}=\overrightarrow{V B}+\overrightarrow{B A_{b}} \tag{11}
\end{align*}
$$

Let k be the ratio of two sides of the rectangulars: $k=\frac{A B_{a}}{A C}=\frac{B A_{b}}{B C}$. Considering the rotation of vectors with angle -90°, we have:

$$
\begin{equation*}
\overrightarrow{V B} \rightarrow k \overrightarrow{Z C}\left(\text { since } \Delta B A_{b} V \sim \Delta C B Z\right) \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
\overrightarrow{U A} \rightarrow k C Z\left(\text { since } \triangle A B_{a} U \sim \Delta C A Z\right) \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
\Delta A B_{a} U \sim \Delta C A Z \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
\overrightarrow{B A_{b}} \rightarrow k \overrightarrow{C B} \tag{15}
\end{equation*}
$$

Since (9), (10), (11), (12), (13), (14), (15), we have:

$$
\begin{aligned}
\overrightarrow{W M}= & \frac{1}{2}\left(\overrightarrow{U B_{a}}+\overrightarrow{V A_{b}}\right)=\frac{1}{2}\left(\overrightarrow{U A}+\overrightarrow{A B_{a}}+\overrightarrow{V B}+\overrightarrow{B A_{b}}\right) \\
& \rightarrow \frac{1}{2}(k \overrightarrow{C Z}+k \overrightarrow{A C}+k \overrightarrow{Z C}+k \overrightarrow{C B})=\frac{1}{2} k \overrightarrow{A B}
\end{aligned}
$$

From the above we have $A U=k C Z=B V$. It follows that W is the midpoint of $U V$ then W is the midpoint of $A B$. Since $W M=\frac{1}{2} A B ; W M \perp A B, W$ is the midpoint of fixed segment $A B$. Thus M is fixed (Q. E. D).
We see that two right angles $\widehat{C A B_{a}}$ and $\widehat{C B A_{b}}$ are supplemental and $\frac{U B_{a}}{A Z}=$ $\frac{V A_{b}}{B Z}=k$. If we consider two arbitrary angles $\widehat{C A B_{a}}$ and $\widehat{C B A_{b}}$ are supplemental and $\frac{U B_{a}}{A Z}=\frac{V A_{b}}{B Z}=k$ then we obtain the generalization of theorem 2 as follows:

Theorem 2.2. (The generalization 2) (Source: The Cut-the-knot)
Given a triangle $A B C$. Two vertices A, B are fixed and the vertex C is movable. Two triangles $C A B_{a}$ and $C B A_{b}$ are constructed on two sides $C A, C B$ having the same orientation such that $\widehat{C A B_{a}}=\alpha$ is supplemental with $\widehat{A_{b} B C}=\pi-\alpha=$ β and $\frac{A B_{a}}{C A}=\frac{B A_{b}}{C B}=k$. Prove that the midpoint M of segment $A_{b} B_{a}$ does not depend on the position of point C.

Let B^{\prime}, B_{c} be the images of points B, C under the rotation A with rotated angle $\left(\overrightarrow{A C}, \overrightarrow{A B_{a}}\right)=\alpha$.
Similarly, $A^{\prime}, A_{\subsetneq}$ are the images of points A, C under the rotation B with rotated angle $\left(\overrightarrow{B C}, \overrightarrow{B A_{b}}\right)=\alpha-\pi=-\beta$.
Since $A B B^{\prime}, B B^{\prime} A^{\prime}$ are isosceless, it follows $A B^{\prime}=A B=A^{\prime} B$. We ea sily prove that $A B^{\prime} / / B A^{\prime}$. It follows the quadrilateral $A B^{\prime} A^{\prime} B$ is paralleogram having two equal adjacent sides. It follows that $A B^{\prime} A^{\prime} B$ is a lozenge. It follows $A A^{\prime} \perp B B^{\prime}$ at N. According to the property of rotation, N is the intersection point of two lines connecting the image A^{\prime} with preimage A and the image B^{\prime} with preimage B under two above rotations, so the rotation $Q_{(N, \alpha+\beta)}$ is the product of two rotations $Q_{(B, \beta)} \circ Q_{(A, \alpha)}$.

We have that C is the image of A_{c} under the rotation $Q_{(B, \beta)} ; B_{c}$ is the image of C under the rotation $Q_{(A, \alpha)}$.
Considering the rotation $Q_{(N, \alpha+\beta)}$, we have $A_{c} \mapsto B_{c}$. Since $\alpha+\beta=\pi$, B_{c}, N, A_{c} are collinear and N is the midpoint of $B C$.
Since the lozenge $A B A^{\prime} B^{\prime}$ have fixed vertices, it follows N is a fixed point.
Since C^{\prime} is the midpoint of $A B$, we go to prove that C^{\prime}, M, N are collinear. We have:

$$
\begin{equation*}
\frac{A B_{a}}{A C}=\frac{A B_{a}}{A B_{c}}=k \Rightarrow \overrightarrow{A B_{a}}=k \overrightarrow{A B_{c}} \tag{18}
\end{equation*}
$$

$$
\begin{align*}
& \overrightarrow{C^{\prime} M}=\frac{1}{2}\left(\overrightarrow{A B_{a}}+\overrightarrow{B A_{b}}\right) \tag{16}\\
& \overrightarrow{C^{\prime} N}=\frac{1}{2}\left(\overrightarrow{A B_{c}}+\overrightarrow{B A_{c}}\right) \tag{17}
\end{align*}
$$

$$
\begin{equation*}
\frac{B A_{b}}{B C}=\frac{B A_{b}}{B A_{c}}=k \Rightarrow \overrightarrow{B A_{b}}=k \overrightarrow{B A_{c}} \tag{19}
\end{equation*}
$$

Since (16), (17), (18), (19) we have: $\overrightarrow{C^{\prime} M}=k \overrightarrow{C^{\prime} N}$, it follows that C^{\prime}, M, N are collinear. Since C^{\prime}, N is fixed, M is fixed.

We have some small discoveries about the Bottema theorem. The different solutions, generalized problems make us interesting. The following is a problem for the readers.

Problem 4

Given a triangle $A B C$. Two vertices A, B are fixed and the vertex C is moveable. Two triangles $C A B_{a}$ and $C B A_{b}$ are constructed on two sides $C A, C B$ of triangle $A B C$ having the same orientation such that $\widehat{C A B_{a}}+\widehat{C B A_{b}}=180^{\circ}$.
a) Prove that the circle $\left(A C B_{a}\right)$ meets the circle $\left(B C A_{b}\right)$ at the second point P lying on the line $A_{b} B_{a}$.
b) Find the locus of point P when C is movable.

References

[1] https://www.cut-the-knot.org/m/Geometry/GeneralBottema.shtml

[^0]: ${ }^{1}$ This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

