THEOREM OF THE DAY

The Descartes Circle Theorem If four circles forming a Descartes configuration have respective curvatures b_{1}, b_{2}, b_{3} and b_{4}, then

$$
b_{1}^{2}+b_{2}^{2}+b_{3}^{2}+b_{4}^{2}=\frac{1}{2}\left(b_{1}+b_{2}+b_{3}+b_{4}\right)^{2}
$$

A Descartes configuration of circles consists of four mutually tangent circles in the plane. Descartes was concerned with configurations such as that at A in the above display, with bend, or curvature, defined as the reciprocal of radius. For example, the circles at A might have radii $1 / 4,1 / 12,1 / 13$ and $1 / 61$.
Then $\left(b_{1}+b_{2}+b_{3}+b_{4}\right)^{2} / 2=(4+12+13+61)^{2} / 2=8100 / 2=4050$ and $16+144+169+3721=4050$ also, conforming to Descartes' theorem. If we adopt the convention that negative curvature corresponds to the interior of a circle being outside it, then configuration B is equally valid. For example the circles at B might have radii $-1 / 7$ (the outside circle) and $1 / 12,1 / 17$ and $1 / 24$ (the inside circles). Then $(-7+12+17+24)^{2} / 2=1058=49+144+289+576$ as required. If horizontal lines are taken as circles of infinite radius-"zero bend's a dead straight line"-then the configurations at C and D are again valid. But configuration E is not valid. As the third stanza of Soddy's poem celebrates, configurations of five spheres in \mathbb{R}^{3} can also be made to work, the fraction in the theorem becoming $1 / 3$; with the fraction $1 / n$, we can go to n dimensions; and adding curvature of space into the equation, even non-Euclidean Descartes Circle Theorems obtain!

Although he did not prove it completely, this result appears originally in a letter sent by René Descartes to Princess Elisabeth of Bohemia in 1643. There have been many rediscoveries with complete proofs, Jakob Steiner's, in 1826, being perhaps the first. The \mathbb{R}^{n} version is due to Thorold Gosset in 1937, with $n=3$ being given by Robert Lachlan in 1886.

Web link: arxiv.org/abs/math/0101066. Additions by Gosset and Fred Lunnon to Soddy's poem, which is reproduced courtesy of Nature Publishing Group, can be found here: pballew.blogspot.com/2014/10/the-kiss-precise-soddys-circle-theorem.html.

$$
\text { Further reading: Introduction to Circle Packing: The Theory of Discrete Analytic Functions, by Kenneth Stephenson, CUP, } 2005 .
$$

