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Abstract

Sokoban is a challenging single-player game
— for both man and machine. The simplic-
ity of the rules belies the complexity of the
game. This paper describes our program,
Rolling Stone, a first attempt to solve Sokoban
problems. Adapting and extending the stan-
dard single-agent search techniques in the lit-
erature, we are able to optimally solve 12 of 90
problems from a standard test suite. This re-
sult demonstrates how difficult a game Sokoban
really is for computers to solve, and underlines
the need for more sophisticated search tech-
niques, including planning.

Keywords: single agent search, heuristic search,
Sokoban, macro moves, deadlocks

1 Introduction

Sokoban is a popular one-player computer game. The
game apparently originated in Japan, although the orig-
inal author is unknown. The game’s appeal comes from
the simplicity of the rules and the intellectual challenge
offered by deceptively easy problems.

The rules of the game are quite simple.  Fig-
ure 1 shows a sample Sokoban problem (problem
1 of the standard 90-problem suite available at
http://xsokoban.lcs.mit.edu/xsokoban.html). The play-
ing area consists of rooms and passageways, laid out on a
rectangular grid of size 20x20 or less. Littered through-
out the playing area are stones (shown as circular discs)
and goals (shaded squares). There is a man whose job
it 1s to move each stone to a goal square. The man can
only push one stone at a time and must push from be-
hind the stone. A square can only be occupied by one of
a wall, stone or man at any time. Getting all the stones
to the goal nodes can be quite challenging; doing this in
the minimum number of moves is much more difficult.

To refer to squares in a Sokoban problem, we use a
coordinate notation. The horizontal axis is labeled from
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Figure 1: Sokoban problem 1 with one solution

“A” to “T”, and the vertical axis from “a” to “t” (assum-

ing the maximum sized 20x20 problem), starting in the
upper left corner. A move consists of pushing a stone
from one square to another. For example, in Figure 1
the move Fh-Eh moves the stone on Fh left one square.
We use Fh-FEh-Dh to indicate a sequence of pushes of the
same stone. A move, of course, is only legal if there is
a valid path by which the man can move behind the
stone and push it. Thus, although we only indicate
stone moves (such as Fh-Eh), implicit in this is the man’s
moves from its current position to the appropriate square
to do the push (for Fh-Fh the man would have to move
from Li to Gh via the squares Lh, Kh, Jh, Ih and Hh).

The standard 90 problems range from easy (such
as problem 1 above) to difficult (requiring hun-
dreds of stone pushes). A global score file 1is
maintained showing who has solved which prob-



lems and how efficient their solution is (also at
http://xsokoban.lcs.mit.edu/xsokoban.html). Thus
solving a problem is only part of the satisfaction; im-
proving on your solution is equally important.

Sokoban has been shown to be NP-hard [Culberson,
1997; Dor and Zwick, 1995]. [Dor and Zwick, 1995] show
that the game is an instance of a motion planning prob-
lem, and compare the game to other motion planning
problems in the literature. For example, Sokoban is sim-
ilar to Wilfong’s work with movable obstacles, where the
man is allowed to hold on to the obstacle and move with
it, as if they were one object [Wilfong, 1988]. Sokoban
can be compared to the problem of having a robot in a
warehouse move a number of specified goods from their
current location to their final destination, subject to the
topology of the warehouse and any obstacles in the way.
When viewed in this context, Sokoban is an excellent ex-
ample of using a game as an experimental test-bed for
mainstream research in artificial intelligence.

In this paper, we adapt and enhance the standard
single-agent search techniques to try to solve Sokoban
problems. Our program, Rolling Stone, is able to op-
timally solve 12 of the 90 benchmark problems. Al-
though this sounds rather poor, to the best of our knowl-
edge it is the best reported result to date. We be-
lieve our techniques can be extended and more problems
will be solved. However, we also conclude that some
of the Sokoban problems are so difficult so as to be ef-
fectively unsolvable using standard single-agent search
techniques.

Note that there are two definitions of an optimal solu-
tion to a Sokoban problem: the number of stone pushes
and the number of man movements. For a few problems
there is one solution that optimizes both; in general they
conflict. In this paper, we have chosen to optimize the
number of stone pushes. Both optimization problems are
computationally equivalent. Using a single-agent search
algorithm, such as IDA* [Korf, 1985a), stone pushes
change the lower bound estimate of the solution length
by at most one. Optimizing the man movements involves
using non-unitary changes to the lower bound (the num-
ber of man movements it takes to position the man be-
hind a stone to do the push).

2 Why is Sokoban So Interesting?

Although the authors are well-versed in single-agent
search, 1t quickly became obvious that Sokoban is not
an ordinary single-agent search problem. Much of the
single-agent search literature concentrates on “simple”
problems, such as the sliding tile puzzles or Rubik’s
Cube. In this section, we argue that the complexity of
Sokoban works against the standard search techniques
in the literature.
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Figure 2: Sokoban problem 50

2.1 Lower Bound

In general, it is hard to get a tight lower bound on the
solution length for Sokoban problems. The tighter the
bound, the more efficient a single-agent search algorithm
can be. The stones can have complex interactions, with
long elaborate maneuvers often being required to reposi-
tion stones. For example, in problem 50 (see Figure 2),
the solution requires moving stones through and away
from the goal squares to make room for other stones.
Our best lower bound is 96 stone pushes (see section 3),
whereas the best human solution required 374 moves —
clearly a large gap, and an imposing obstacle to an effi-
cient IDA* search. For some problems, without a deep
understanding of the problem and its solution, it is very
difficult to get a reasonable bound.

2.2 Deadlock

In most of the single-agent search problems studied in
the literature, all state transitions preserve the solvabil-
ity of the problem (but not necessarily the optimality
of the solution). In Sokoban, moves can lead to states
that provably cannot lead to solutions. We call these
states deadlocks because one or more stones will never
be able to progress to the goal. Deadlocks can be trivial
as, for example, moving a stone into a corner (in Fig-
ure 1, moving He-Hb' creates a deadlock state; the man
can never get behind the stone to push it out). Others
involve interaction with other stones (in Figure 1, mov-
ing Fe-Fd'creates a deadlock). Some deadlocks can be

!This is in fact an illegal move in that position, since the
man can’t reach the stone. We assume here, that the stone
on Fh was not in the maze.



wide ranging and quite subtle, involving complex inter-
actions of stones over a large portion of the playing area.
Any programming solution to Sokoban must be able to
detect deadlock states so that unnecessary search can be
curtailed.

2.3 Large Branching Factor

Sliding tile puzzles have a maximum branching factor
of four. Rubik’s Cube has a branching factor of 18. In
contrast, each stone in Sokoban has a maximum of four
possible moves. In the set of 90 problems, the number
of stones ranges from 6 to 34. With 34 stones, the max-
imum branching factor is 136, although undoubtedly in
most positions the effective branching factor would be
somewhat less than that. Nevertheless, the large branch-
ing factor severely limits the search depth that can be
reached.

The large branching factor gives rise to a surprising
result. Consider problem 51 (Figure 3). Our program
computes the lower bound as 118 moves. Since human
players have solved it in 118 moves, we can conclude
that the optimal solution requires exactly 118 moves.
Knowing the solution length is only part of the answer
— one has to find the sequence of moves to solve the
problem. In fact, problem 51 is very difficult to solve
because of the large branching factor. Although TDA*
will never make a non-optimal move, it has no idea what
order to consider the moves in. An incorrect sequence of
moves can lead eventually to deadlock. For this problem,
to IDA* one optimal move is as good as another. The
program builds a huge tree, trying all the optimal moves
in all possible orders. Hence, even though we have the
right lower bound, the program builds an exponentially
large tree. Our program currently cannot solve problem

51.

3 Towards Solving Sokoban

Although we believe that standard search algorithms,
such as IDA* will be inadequate to solving all 90
Sokoban problems, as a first step we decided to invest our
efforts in pushing the IDA* technology as far as possible.
Our goal is to eventually demonstrate the inadequacy of
single-agent search techniques for this puzzle. This sec-
tion discusses our work with IDA* and the problems we
are encountering.

3.1 Lower Bound

A naive but computationally inexpensive lower bound
is the sum over the distances of all the stones to their
respective closest goal. It is clear however that only one
stone can go to any one goal in any solution. Since there
are as many stones as there are goals and every stone has
to be assigned to a goal, we are trying to find a minimum
cost (distance) perfect matching on a complete bipartite
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Figure 3: Sokoban problem 51

graph. Edges between stones and goals are weighted by
the distance between them, infinity if the stone cannot
reach a goal.

Essentially the problem can be summarized as follows.
There are n stones and n goals. For each stone, there is a
minimum number of moves that is required to maneuver
that stone to each goal. For each stone and for each goal,
then, there is a distance (cost) of achieving that goal.
The problem then is to find the assignment of goals to
stones that minimizes the sum of the costs.

Minimum cost perfect matching for a bipartite graph
can be solved using minimum cost augmentation [Kuhn,
1955]. Given n nodes in a graph and m edges, then the
cost of computing the minimal cost matching is O(n*m#
l0g(24m/n)n). Since we have a complete bipartite graph,
m = n?/4 and the complexity is O(n® x log(24njan).
Clearly this is an expensive computation, especially if it
has to be computed for every node in the search. How-
ever, there are several optimizations that can reduce the
overall cost. First, during the search we only need to
update the matching, since only one stone has changed
its weight to the goals. This requires finding a negative
cost cycle [Klein, 1967] involving the stone moved. Sec-
ond, we are looking for a perfect matching, which con-
siderably reduces the number of possible cycles to check.
Even with these optimizations, the cost of maintaining
the lower bound dominates the execution time of our
program. Most of the lower bounds used in single-agent
search in the literature, such as the Manhattan distance
used for sliding tile puzzles, are trivial in comparison.

One advantage of the minimum matching lower bound
is that it correctly returns the parity of the solution
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Figure 4: Sokoban problem 80

length (Manhattan distance in sliding tile puzzles also
has this property). Thus, if the lower bound is an odd
number, the solution length must also be odd. Using
IDA*, this property allows us to iterate by two at a time.

There are a number of ways to improve the minimum
matching lower bound. Here we introduce two useful
enhancements. First, if two adjacent stones are in each
other’s way towards reaching their goal, then we can
penalize this position by increasing the lower bound ap-
propriately. We call this enhancement linear conflicts
because of its similarity to the linear conflicts enhance-
ment in sliding-tile puzzles [Hansson et al., 1992]. Prob-
lem 80 (Figure 4) shows an obvious example. The four
stones on If, Ig, Th and [Ii are obstructing each others’
optimal path to the goals?. We have to move two stones
off their optimal paths to be able to solve this problem
(for example, Ig-Hg to allow the man to push If, and Ii-
Hi to move the stone on Ih). In each case, an additional
two moves are required. In addition, the stones on Cd
and Ce have a linear conflict. Hence, in this example,
the lower bound will be increased by six.

The second enhancement notes that sometimes stones
on walls have to be backed out of a room, and then
pushed back in just to re-orient the position of the man.
This is illustrated by problem 4 in Figure 5. The stones
on Ge, Gg, Dh and El have a backout conflict. Consider
the stone on (g, while pretending there are no other
stones on the board. The man must move the stone to a
room entrance (Gg-Gf), push it out of the room (Gf-FYf-
Ef-Df), and then push it back into the room it came from
(Df-Ef-Gf-Hf). This elaborate maneuver is required be-
cause the man has to be on the left side of the stone to
be able to push 1t off the wall. In this problem, there 1s

2The optimal path is defined as the route a stone would
would take if no other stone were in the maze obstructing its
movements.
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Figure 5: Sokoban problem 4

only one way to get to the left of the stone — by backing
it out and then back into the room.

Table 1 shows the effectiveness of our lower bound
estimate. The table shows the lower bound achieved
by minimum matching, inclusion of the linear conflicts
enhancement, inclusion of the backout enhancement, and
the combination of all three features. The upper bound
is obtained from the global Sokoban score file. Since this
file represents the best that human players have been
able to achieve, it is an upper bound on the solution.
The table 1s sorted according to the last column, which
shows the difference between the lower and upper bound.
Clearly for some problems (notably problem 50) there is
a huge gap. Note that the real gap might be smaller,
as 1t is likely that some of the hard problems have been
non-optimally solved by the human players.

3.2 Transposition Table

The search tree is really a graph. Two different sequences
of moves can reach the same position. The search effort
can be considerably reduced by eliminating duplicate
nodes from the search. A common technique is to use a
large hash table, called the transposition table, to main-
tain a history of nodes visited [Slate and Atkin, 1977].
Each entry in the table includes a position and informa-
tion on the parameters that the position was searched
with. Transposition tables have been used for a variety
of single-agent search problems [Reinefeld and Marsland,
1994].

One subtlety of Sokoban is that saving exact positions
in the transposition misses many transpositions. While
the exact positions of the stones is critical, the exact
position of the man is not. Two positions, A and B,
are identical if both positions have stones on the same
squares and if the man in A can move to the location
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51 118 118 118 118 118
55 118 118 120 120 120
78 134 134 136 136 136
53 186 186 186 186 186
83 190 194 190 194 194
48 200 200 200 200 200
80 219 225 225 231 231
4 331 331 355 355 | 355
1 95 95 95 95 97
2 119 119 129 129 131
3 128 132 128 132 134
58 189 189 197 197 | 199
6 104 106 104 106 110
5 135 137 137 139 143
60 148 148 148 148 152
70 329 329 329 329 | 333
63 425 427 425 427 | 431
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k4 360 360 360 360 | 374 14
35 362 364 362 364 | 378 14
36 501 507 501 507 | 521 14
34 152 154 152 154 170 16
41 201 203 219 221 237 16
45 274 276 282 284 | 300 16
19 278 280 282 286 | 302 16
22 306 308 306 308 | 324 16
20 302 304 444 446 | 462 16
18 90 90 106 106 124 18
21 123 127 127 131 149 18
13 220 220 220 220 238 18
31 228 232 228 232 250 18
64 331 331 367 367 | 385 18
25 326 330 364 368 | 386 18
90 436 436 442 442 | 460 18
10 494 496 494 494 | 512 18
49 96 96 104 104 124 20

Table 1: Lower bounds

of the man in B. Thus, when finding a match in the
transposition table, a computation must be performed
to determine the reachability of the man. In this way,
the table can be made more useful, by allowing a table
entry to match a class of positions.

3.3 Deadlock Tables

Our initial attempt at avoiding deadlock was to hand
code into Rolling Stone a set of tests for simple deadlock
patterns. This quickly proved to be of limited value,
since 1t missed many frequently occurring patterns, and
the cost of computing the deadlock test grew as each test
was added. Instead, we opted for a more “brute-force”
approach.

Rolling Stone includes what we call deadlock tables.
An off-line search is used to enumerate all possible com-
binations of walls, stones and empty squares for a fixed-
size region. For each combination of squares and square
contents, a small search is performed to determine if
deadlock is present or not. This information is stored

in a tree data structure. There are many optimizations
that make the computation of the tree very efficient. For
our experiments, we built a deadlock table for a region
of 5x4 squares (4.6 megabytes in size).

When a move Xz-Yy is made, the destination square
YYis used as a base square in the deadlock table and the
direction of the stone move is used to rotate the region,
such that it is oriented correctly. Figure 6 shows how
the bx4 deadlock table is mapped on to square Fyg, with
the stone being pushed in from Fh. Note that the table
can be used to cover other regions as well®. To maximize
the usage of the table, reflections along the direction the
stone was moved in are considered.

Although a 5x4 region may sound like a significant
portion of the 20x20 playing area, in fact many deadlocks
encountered in the test suite extend well beyond the area
covered by our deadlock tables. Unfortunately, it is not

*We are currently using a second, smaller table, covering
a slightly different region.
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Fh-Fgin problem 1

practical to build larger tables.

Note that if a deadlock table pattern covers a por-
tion of the board containing a goal node, most of the
effectiveness of the deadlock table is lost. Once a stone
is on a goal square, it need never move again. Hence,
the normal conditions for deadlock do not apply. Usu-
ally moving a stone into a corner is a mistake, but if
the square is a goal node, then the deadlock created is
irrelevant.

3.4 Move Ordering

We have experimented with ordering the moves at inte-
rior nodes of the search. For IDA*, move ordering makes
no difference to the search, except for the last iteration.
Since the last iteration i1s aborted once the solution is
found, it can make a big difference in performance if the
solution is found earlier rather than later ([Reinefeld and
Marsland, 1994] comment on the effectiveness of move
ordering in single-agent search). One could argue that
our inability to solve problem 51 (Figure 3) is solely a
problem of move ordering. For this problem, we have
the correct lower bound — it 1s just a matter of finding
the right sequence of moves.

We are currently using a move ordering schema that
we call inertia. Looking at the solution for problem 1
(Figure 1), one observes that there are long runs where
the same stone is repeatedly pushed. Hence, moves are
ordered to preserve the inertia of the previous move —
move the same man in the same direction if possible.

3.5 Macro Moves

Macro moves have been described in the literature [Korf,
1985b]. Although they are typically associated with non-
optimal problem solving, we have chosen to investigate
a series of macro moves that preserve solution optimal-
ity. We implemented the following two macros in Rolling
Stone.

Tunnel Macros: In Figure 1, consider the conse-
quences of the man pushing a stone from Jh to Kh. The
man can never get to the other side of the stone, mean-
ing the stone can only be pushed to the right. Eventu-
ally, the stone on Kh must be moved further: Jh-Kh-Lh-
Mh-Nh-Oh-Ph. Once the commitment is made (Jh-Kh),
there is no point in delaying a sequence of moves that
must eventually be made. Hence, we generate a macro
move that moves the stone from Jh to Ph in a single
move.

The above example is an instance of our tunnel macro.
If a stone is pushed into a one-way tunnel (a tunnel con-
sisting of articulation points* of the underlying graph
of the maze), then the man has to push it all the way
through to the other end. Hence this sequence of moves
is collapsed into a single macro move. Note that this
implies that macro moves have a non-unitary impact on
the lower bound estimate.

Goal Macros: As soon as a stone is pushed into a
room that contains all the goals (extended as far back as
the entrance to the room is one square wide), then the
single-square move is substituted with a macro move to
move the stone directly to a goal node. Unlike with the
tunnel macro, if a goal macro is present, it is the only
move generated. This 1s illustrated using Figure 1. If a
stone 1s pushed onto Mh from the left, then this move 1s
substituted with the goal macro move. This pushes the
stone all the way to the next highest priority empty goal
square. The goals are prioritized in a pre-search phase.
This is necessary to guarantee that stones are moved to
goals in an order that precludes deadlock.

In Figure 1 a special case can be observed: the end of
the tunnel macro overlaps with the beginning of the goal
macro. The macro substitution routine will discover the
overlap and chain both macros together. The effect is
that one longer macro move is executed. In the solution
given in Figure 1, the macro moves are underlined (an
underlined move should be treated as a single move).

Figure 7 shows the dramatic impact this has on the
search. At each node in the figure, the individual moves
of the stone are considered. There are two stones that
can each make 3 moves, a, b, ¢ for the first stone, and
d, e, ffor the second stone. The top tree in Figure 7
shows the search tree with no macro moves; essentially
all moves are tried, whenever possible, in all possible
variations. The left lower tree shows the search tree, if
a-b-c is a tunnel macro and the lower right tree if a-b-¢
is goal macro.

3.6 Goal Ordering

Since our deadlock tables exclude goal squares, special
care has to be taken to avoid deadlocks in goal areas.

*Squares that divide the graph into two disjoint pieces.
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Figure 7: The impact of macro moves

Currently, we implemented a goal prioritization that en-
sures that the goal macros are moving the stones to the
right goal squares at the right moment. We do not have
a general implementation yet and can only handle the
special case where all the goals are in one room with a
single entrance. A generalization of this is discussed in
Section 5.

4 Experimental Results

Table 2 shows the results of running Rolling Stone on
the 90-position test suite. The table shows the minimum
matching lower bound with all enhancements (Best LB),
the last iteration of IDA* when the search was stopped
(Final Tter.), the upper bound of the solution length as
given by humans (Upper Bound), and the difference be-
tween final iteration and upper bound (Difference) as a
rough indicator of how close we are to solving each prob-
lem. All problems were searched for up to 10,000,000
nodes.

The last column (Result) gives the results of the
search. A search is either open (the default), the search
has narrowed the range of possible solution values, length
solved (shown by an asterisk), the optimal solution
length has been found, or solved, where the solution
length and solution moves have been found (the size of
the search tree is given). Of the 90 problems, 12 have
been solved and 17 have their optimal solution length
computed.

These results illustrate just how difficult Sokoban re-

ally 1s. Even with a good lower bound heuristic and
many enhancements to dramatically reduce the search
cost, most problems are still too difficult to solve. Look-
ing at the results, one can see that some problems (such
as problem 50) aren’t going to be solved by our current
implementation.

Table 3 attempts to quantify the benefits of the various
enhancements made to IDA*. The table shows the re-
sults for IDA* using minimum matching enhanced with:
a transposition table (128k entries — TT), deadlock table
(5x4 region — DT), macro moves (goal and tunnel macros
— MM), linear conflicts and backout enhancements (CB),
and inertia move ordering (IN). The ALL column is the
number of nodes searched by Rolling Stone with all the
above features enabled. The columns thereafter show
the tree size when one of these features is disabled. The
search was stopped if it reached 20 million nodes with-
out finding a solution. Only the 12 problems that Rolling
Stone can solve are included.

These experiments highlight several interesting points:

1. Because of macro moves, the size of the search tree
for problem 1 is smaller than the solution path
length!

2. The program can find very deep solutions with nom-
inal depth. For example, the solution to problem 4
1s 355 moves, and yet it is found by building a tree
that is only 185 moves deep!

3. Transpositions tables are much more effective than
seen in other single-agent and two-player games. For
example, removing transposition tables for problem
6 increases the search by at least a factor of 5,650!

Each of our enhancements has a dramatic impact on the
search tree size (depending on the problem).

Rolling Stone spends 90% of its execution time updat-
ing the lower bound. Clearly this is an area requiring
further attention.

5 Enhancing the Current Program

Our program is still in its infancy and our list of things
to experiment with is long. The following details some
of the ways we intend to extend our implementation.

e While the deadlock tables have been beneficial to
Rolling Stone’s performance, the 5x4 area is insuf-
ficient to detect many frequently occurring dead-
locks. Although it is possible to build a 5X5 table
(given sufficient computing resources), it is unrea-
sonable to expect a larger table. The current table
contains all possible combinations of stones, walls
and empty squares. However, the Sokoban prob-
lems are not randomly created — the positions have
structure. To help detect larger deadlocks, we pro-
pose having a deadlock table of rooms. The table



# | Best LB | Final Upper Differ- Result # | Best LB | Final Upper Differ- Result
Iter. Bound ence Iter. Bound ence

1 95 97 97 0 73 46 223 233 247 14

2 129 131 131 0 1,646 47 199 203 209 6

3 132 134 134 0 877 48 200 200 200 0 *

4 355 355 355 0 230,747 49 104 122 124 2

5 139 141 143 2 50 96 98 374 276

6 106 110 110 0 3541 51 118 118 118 0 *

7 80 88 88 0 4,635,479 52 367 385 429 44

8 220 224 230 6 53 186 186 186 0 *

9 229 235 237 2 54 177 177 187 10

10 494 494 512 18 55 120 120 120 0 *

11 207 221 241 20 56 193 193 203 10

12 206 210 214 4 57 217 223 225 2

13 220 220 238 18 58 197 197 199 2

14 231 233 239 6 59 218 220 230 10

15 96 102 124 22 60 148 148 152 4

16 162 168 188 20 61 243 247 263 16

17 201 213 213 0 6,052,056 62 237 239 245 6

18 106 112 124 12 63 427 427 431 4

19 286 290 302 12 64 367 373 385 12

20 446 450 462 12 65 203 209 211 2

21 131 143 149 6 66 187 189 341 152

22 308 310 324 14 67 377 387 401 14

23 424 424 448 24 68 321 325 343 18

24 518 520 544 24 69 213 213 443 230

25 368 370 386 16 70 329 329 333 4

26 157 171 195 24 71 294 294 308 14

27 353 357 363 6 72 288 290 296 6

28 286 290 308 18 73 437 439 441 2

29 122 130 166 36 74 170 182 214 32

30 359 381 465 84 75 263 277 297 20

31 232 236 250 14 76 194 196 206 10

32 113 129 139 10 77 360 362 374 12

33 150 156 180 24 78 136 136 136 0 154

34 154 162 170 8 79 166 172 174 2

35 364 368 378 10 80 231 231 231 0 476

36 507 507 521 14 81 167 173 173 0 *

37 242 244 294 50 82 135 143 143 0 3,690,687

38 73 81 81 0 102,667 83 194 194 194 0 388

39 652 660 674 14 84 149 151 155 4

40 310 312 324 12 85 303 305 329 24

41 221 223 237 14 86 122 128 134 6

42 208 208 228 20 87 221 225 235 10

43 132 138 146 8 88 316 318 390 72

44 167 169 179 10 89 353 355 383 28

45 284 284 300 16 90 442 450 460 10

Table 2: Experimental Results
[Problem |  ALL | ALL-TT | ALL-DT | ALL-MM | ALLCB |  ALLN |

1 73 73 82 116 73 312
2 1,646 1,036,503 6,868 14,247,731 | >20,000,000 1,798
3 877 49 885 15,297 16,319 97,243 1,471
4 230,747 | >20,000,000 | >20,000,000 | >20,000,000 | >20,000,000 891,180
6 3,541 | >20,000,000 4,520 | >20,000,000 4,558 3,573
7| 4,635,479 | >20,000,000 | >20,000,000 | 4,635,479 | >20,000,000 | 5,274,788
17 | 6,052,056 | >20,000,000 | 13,827,703 | >20,000,000 | >20,000,000 | 14,935,980
38 | 102,667 | >20,000,000 | 8,784,788 102,667 734,592 | >20,000,000
78 154 154 154 154 1,397 67,729
80 476 476 476 677 | >20,000,000 67,808
82 | 3,690,687 | >20,000,000 | 8,902,706 | >20,000,000 | 14,002,015 | 3,681,313
83 388 1,727 412 764 23,117 696

Table 3: Experimental Data




would support a collection of commonly occurring
room topologies and for each room type (including
its shape, enclosed obstacles, number of room en-
trances, and the entrance positions) enumerate all
possible deadlock scenarios. Although this does not
solve the deadlock problem in general, it will allow
us to find some deadlocks that we currently cannot.

The goal macro is currently restricted to having all
the goals in a single room. Most problems have goal
nodes scattered throughout the puzzle or goal ar-
eas have several entrances, meaning the goal macros
cannot be used. We have designed a new algorithm
that allows us to handle all goal nodes, regardless
of the location. It involves two pre-search computa-
tions. First, each collection of goal nodes must have
a perimeter defined around them. When a stone
moves to that perimeter, then the goal macro is in-
voked. The trick is to extend the perimeter back as
far from the goals as possible. Second, many small
searches are needed to identify any constraints on
the ordering in which stones can be placed onto goal
nodes. We believe that successfully implementing
this algorithm will more than double the number of
problems we can solve.

One should also note, however, that although goal
macros are a powerful tool that can be used to solve
most of the Sokoban problems, there are some in-
sidious problems (such as problem 50) where goal
macros will effectively exclude the solution from the
search. Clearly, more work needs to be done to iden-
tify the conditions under which goal macros do not
apply.

Our version of IDA* considers all legal moves in
a position (modulo goal macros). For many prob-
lems, local regional searches make more sense. Typ-
ically, a man rearranges some stones in a region.
Once done, then it moves on to another region. It
malkes sense to do local searches rather than global
searches. A challenge here will be to preserve the
optimality of solutions.

The idea of partition search may be useful for
Sokoban [Ginsberg, 1996). For example, partition
search could be used to discover previously seen
deadlock states, where irrelevant stones are in dif-
ferent positions.

A pre-search analysis of a problem can reveal con-
straints that can be used throughout the search. For
example, in Figure 3 the stone on Kh cannot move
to a goal until the stones on E: and I: are out of
the way. Knowing that this is a pre-requisite for Kh
to move, there is no point in even considering legal
moves for that stone until the right opportunity.

e The preceding, of course, suggests that planning will
be an essential component in any program that can
successfully solve all 90 problems. Currently, we be-
lieve brute-force search is incapable of solving prob-
lem 50. A goal-driven search based on a plan is
mandatory.

e Sofar, we have constrained our work by requiring an
optimal solution. Introducing non-optimality allows
us to be more aggressive in the types of macros we
might use and in estimating lower bounds.

e Looking at the solution for Figure 1, one quickly
discovers that having placed one stone into a goal,
other stones follow similar paths. This is a recurring
theme in many of the test problems. One thing we
are investigating is dynamically learning repeated
sequences of moves and modifying the search to
treat them as macros.

e Sokoban can also be solved using a backward search.
The search can start with all the stones on goal
nodes. Now the man pulls stones instead of pushing
them. The backward search may be useful for dis-
covering some properties of the correct order than
stones must be placed in the goal area(s) (the in-
verse of how a backward search can pull them out).
This 1s an interesting approach that needs further
consideration.

6 Other Sokoban Programs

We know of several attempts to build a program to solve
Sokoban problems, however Andrew Myers’ program is
the only one that appears to be successful (it has solved
nine problems).

Myers writes [Myers, 1997] that his: “...program uses
a breadth-first A* search, with a simpler heuristic to se-
lect the next state to examine. A compact transposition
table stores the states. When the solver runs out of mem-
ory, it discards some states below the 10th percentile in
moves made. This feature allows the program to handle
levels like level 51. The solver tries to minimize both
moves and pushes. It does not support macro moves.

“The heuristic estimates both the number of stone
pushes and the number of man movements needed to
complete the puzzle. The number of pushes is estimated
more quickly but less accurately, taking advantage of
the usual clustering of the goal spaces in one area of
the board. The estimate has two parts: the number of
moves and pushes needed to push a ball to the near-
est goal square, and the number of pushes needed to
push a ball to each goal square from the nearest non-
goal square. In addition, the estimator compensates for
the ball that 1s optimal for the man to push next. The
estimate is summed quickly, using approximately 700K
of pre-computed tables. The estimate does not consider



linear conflicts, which would probably help. The heuris-
tic is not monotonic; a conservative, monotonic estimate
is used to discard suboptimal states.

“Deadlocks are automatically identified for 3x3 re-
gions, and also for certain goal locations that can never
be filled. A goal location can only be filled if in one of the
four directions, the two immediately adjacent squares
can be made empty. If a immovable ball is placed in ei-
ther square, the state is deadlocked. An optional dead-
lock table allows easy specification of complex deadlock
conditions by hand. However, the program does not at-
tempt to automatically fill the deadlock table.”

7 Conclusions and Future Work

Sokoban is a challenging puzzle — for both man and ma-
chine. The traditional enhanced single-agent search al-
gorithms seem inadequate to solve the entire 90-problem
test suite. Currently we intend to push the established
search techniques to their limit, before turning to other
approaches.
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