
Sokoban: A Challenging Single-Agent Search ProblemAndreas Junghanns, Jonathan Schae�erUniversity of AlbertaDept. of Computing ScienceEdmonton, AlbertaCANADA T6G 2H1Email: fandreas, jonathang@cs.ualberta.caAbstractSokoban is a challenging single-player game{ for both man and machine. The simplic-ity of the rules belies the complexity of thegame. This paper describes our program,Rolling Stone, a �rst attempt to solve Sokobanproblems. Adapting and extending the stan-dard single-agent search techniques in the lit-erature, we are able to optimally solve 12 of 90problems from a standard test suite. This re-sult demonstrates how di�cult a game Sokobanreally is for computers to solve, and underlinesthe need for more sophisticated search tech-niques, including planning.Keywords: single agent search, heuristic search,Sokoban, macro moves, deadlocks1 IntroductionSokoban is a popular one-player computer game. Thegame apparently originated in Japan, although the orig-inal author is unknown. The game's appeal comes fromthe simplicity of the rules and the intellectual challengeo�ered by deceptively easy problems.The rules of the game are quite simple. Fig-ure 1 shows a sample Sokoban problem (problem1 of the standard 90-problem suite available athttp://xsokoban.lcs.mit.edu/xsokoban.html). The play-ing area consists of rooms and passageways, laid out on arectangular grid of size 20x20 or less. Littered through-out the playing area are stones (shown as circular discs)and goals (shaded squares). There is a man whose jobit is to move each stone to a goal square. The man canonly push one stone at a time and must push from be-hind the stone. A square can only be occupied by one ofa wall, stone or man at any time. Getting all the stonesto the goal nodes can be quite challenging; doing this inthe minimum number of moves is much more di�cult.To refer to squares in a Sokoban problem, we use acoordinate notation. The horizontal axis is labeled from
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He-Ge Hd-Hc-Hd Fe-Ff-Fg Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-Nh-Oh-Ph-Qh-Rh-Rg Fg-Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-Nh-Oh-Ph-Qh-Qi-Ri Fc-Fd-Fe-Ff-Fg-Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-Nh-Oh-Ph-Qh-Qg Ge-Fe-Ff-Fg-Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-Nh-Oh-Ph-Qh-Rh Hd-He-Ge-Fe-Ff-Fg-Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-Nh-Oh-Ph-Pi-QiCh-Dh-Eh-Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-Nh-Oh-Ph-QhFigure 1: Sokoban problem 1 with one solution\A" to \T", and the vertical axis from \a" to \t" (assum-ing the maximum sized 20x20 problem), starting in theupper left corner. A move consists of pushing a stonefrom one square to another. For example, in Figure 1the move Fh-Eh moves the stone on Fh left one square.We use Fh-Eh-Dh to indicate a sequence of pushes of thesame stone. A move, of course, is only legal if there isa valid path by which the man can move behind thestone and push it. Thus, although we only indicatestone moves (such as Fh-Eh), implicit in this is the man'smoves from its current position to the appropriate squareto do the push (for Fh-Eh the man would have to movefrom Li to Gh via the squares Lh, Kh, Jh, Ih and Hh).The standard 90 problems range from easy (suchas problem 1 above) to di�cult (requiring hun-dreds of stone pushes). A global score �le ismaintained showing who has solved which prob-



lems and how e�cient their solution is (also athttp://xsokoban.lcs.mit.edu/xsokoban.html). Thussolving a problem is only part of the satisfaction; im-proving on your solution is equally important.Sokoban has been shown to be NP-hard [Culberson,1997; Dor and Zwick, 1995]. [Dor and Zwick, 1995] showthat the game is an instance of a motion planning prob-lem, and compare the game to other motion planningproblems in the literature. For example, Sokoban is sim-ilar to Wilfong's work with movable obstacles, where theman is allowed to hold on to the obstacle and move withit, as if they were one object [Wilfong, 1988]. Sokobancan be compared to the problem of having a robot in awarehouse move a number of speci�ed goods from theircurrent location to their �nal destination, subject to thetopology of the warehouse and any obstacles in the way.When viewed in this context, Sokoban is an excellent ex-ample of using a game as an experimental test-bed formainstream research in arti�cial intelligence.In this paper, we adapt and enhance the standardsingle-agent search techniques to try to solve Sokobanproblems. Our program, Rolling Stone, is able to op-timally solve 12 of the 90 benchmark problems. Al-though this sounds rather poor, to the best of our knowl-edge it is the best reported result to date. We be-lieve our techniques can be extended and more problemswill be solved. However, we also conclude that someof the Sokoban problems are so di�cult so as to be ef-fectively unsolvable using standard single-agent searchtechniques.Note that there are two de�nitions of an optimal solu-tion to a Sokoban problem: the number of stone pushesand the number of man movements. For a few problemsthere is one solution that optimizes both; in general theycon
ict. In this paper, we have chosen to optimize thenumber of stone pushes. Both optimization problems arecomputationally equivalent. Using a single-agent searchalgorithm, such as IDA* [Korf, 1985a], stone pusheschange the lower bound estimate of the solution lengthby at most one. Optimizing the manmovements involvesusing non-unitary changes to the lower bound (the num-ber of man movements it takes to position the man be-hind a stone to do the push).2 Why is Sokoban So Interesting?Although the authors are well-versed in single-agentsearch, it quickly became obvious that Sokoban is notan ordinary single-agent search problem. Much of thesingle-agent search literature concentrates on \simple"problems, such as the sliding tile puzzles or Rubik'sCube. In this section, we argue that the complexity ofSokoban works against the standard search techniquesin the literature.
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p Figure 2: Sokoban problem 502.1 Lower BoundIn general, it is hard to get a tight lower bound on thesolution length for Sokoban problems. The tighter thebound, the more e�cient a single-agent search algorithmcan be. The stones can have complex interactions, withlong elaborate maneuvers often being required to reposi-tion stones. For example, in problem 50 (see Figure 2),the solution requires moving stones through and awayfrom the goal squares to make room for other stones.Our best lower bound is 96 stone pushes (see section 3),whereas the best human solution required 374 moves {clearly a large gap, and an imposing obstacle to an e�-cient IDA* search. For some problems, without a deepunderstanding of the problem and its solution, it is verydi�cult to get a reasonable bound.2.2 DeadlockIn most of the single-agent search problems studied inthe literature, all state transitions preserve the solvabil-ity of the problem (but not necessarily the optimalityof the solution). In Sokoban, moves can lead to statesthat provably cannot lead to solutions. We call thesestates deadlocks because one or more stones will neverbe able to progress to the goal. Deadlocks can be trivialas, for example, moving a stone into a corner (in Fig-ure 1, moving Hc-Hb1 creates a deadlock state; the mancan never get behind the stone to push it out). Othersinvolve interaction with other stones (in Figure 1, mov-ing Fe-Fd1creates a deadlock). Some deadlocks can be1This is in fact an illegal move in that position, since theman can't reach the stone. We assume here, that the stoneon Fh was not in the maze.



wide ranging and quite subtle, involving complex inter-actions of stones over a large portion of the playing area.Any programming solution to Sokoban must be able todetect deadlock states so that unnecessary search can becurtailed.2.3 Large Branching FactorSliding tile puzzles have a maximum branching factorof four. Rubik's Cube has a branching factor of 18. Incontrast, each stone in Sokoban has a maximum of fourpossible moves. In the set of 90 problems, the numberof stones ranges from 6 to 34. With 34 stones, the max-imum branching factor is 136, although undoubtedly inmost positions the e�ective branching factor would besomewhat less than that. Nevertheless, the large branch-ing factor severely limits the search depth that can bereached.The large branching factor gives rise to a surprisingresult. Consider problem 51 (Figure 3). Our programcomputes the lower bound as 118 moves. Since humanplayers have solved it in 118 moves, we can concludethat the optimal solution requires exactly 118 moves.Knowing the solution length is only part of the answer{ one has to �nd the sequence of moves to solve theproblem. In fact, problem 51 is very di�cult to solvebecause of the large branching factor. Although IDA*will never make a non-optimal move, it has no idea whatorder to consider the moves in. An incorrect sequence ofmoves can lead eventually to deadlock. For this problem,to IDA* one optimal move is as good as another. Theprogram builds a huge tree, trying all the optimal movesin all possible orders. Hence, even though we have theright lower bound, the program builds an exponentiallylarge tree. Our program currently cannot solve problem51.3 Towards Solving SokobanAlthough we believe that standard search algorithms,such as IDA*, will be inadequate to solving all 90Sokoban problems, as a �rst step we decided to invest oure�orts in pushing the IDA* technology as far as possible.Our goal is to eventually demonstrate the inadequacy ofsingle-agent search techniques for this puzzle. This sec-tion discusses our work with IDA* and the problems weare encountering.3.1 Lower BoundA naive but computationally inexpensive lower boundis the sum over the distances of all the stones to theirrespective closest goal. It is clear however that only onestone can go to any one goal in any solution. Since thereare as many stones as there are goals and every stone hasto be assigned to a goal, we are trying to �nd a minimumcost (distance) perfect matching on a complete bipartite
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l Figure 3: Sokoban problem 51graph. Edges between stones and goals are weighted bythe distance between them, in�nity if the stone cannotreach a goal.Essentially the problem can be summarized as follows.There are n stones and n goals. For each stone, there is aminimumnumber of moves that is required to maneuverthat stone to each goal. For each stone and for each goal,then, there is a distance (cost) of achieving that goal.The problem then is to �nd the assignment of goals tostones that minimizes the sum of the costs.Minimum cost perfect matching for a bipartite graphcan be solved using minimum cost augmentation [Kuhn,1955]. Given n nodes in a graph and m edges, then thecost of computing the minimal cost matching is O(n�m�log(2+m=n)n). Since we have a complete bipartite graph,m = n2=4 and the complexity is O(n3 � log(2+n=4)n).Clearly this is an expensive computation, especially if ithas to be computed for every node in the search. How-ever, there are several optimizations that can reduce theoverall cost. First, during the search we only need toupdate the matching, since only one stone has changedits weight to the goals. This requires �nding a negativecost cycle [Klein, 1967] involving the stone moved. Sec-ond, we are looking for a perfect matching, which con-siderably reduces the number of possible cycles to check.Even with these optimizations, the cost of maintainingthe lower bound dominates the execution time of ourprogram. Most of the lower bounds used in single-agentsearch in the literature, such as the Manhattan distanceused for sliding tile puzzles, are trivial in comparison.One advantage of the minimummatching lower boundis that it correctly returns the parity of the solution
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l

m Figure 4: Sokoban problem 80length (Manhattan distance in sliding tile puzzles alsohas this property). Thus, if the lower bound is an oddnumber, the solution length must also be odd. UsingIDA*, this property allows us to iterate by two at a time.There are a number of ways to improve the minimummatching lower bound. Here we introduce two usefulenhancements. First, if two adjacent stones are in eachother's way towards reaching their goal, then we canpenalize this position by increasing the lower bound ap-propriately. We call this enhancement linear con
ictsbecause of its similarity to the linear con
icts enhance-ment in sliding-tile puzzles [Hansson et al., 1992]. Prob-lem 80 (Figure 4) shows an obvious example. The fourstones on If, Ig, Ih and Ii are obstructing each others'optimal path to the goals2. We have to move two stoneso� their optimal paths to be able to solve this problem(for example, Ig-Hg to allow the man to push If, and Ii-Hi to move the stone on Ih). In each case, an additionaltwo moves are required. In addition, the stones on Cdand Ce have a linear con
ict. Hence, in this example,the lower bound will be increased by six.The second enhancement notes that sometimes stoneson walls have to be backed out of a room, and thenpushed back in just to re-orient the position of the man.This is illustrated by problem 4 in Figure 5. The stoneson Ge, Gg, Dh and El have a backout con
ict. Considerthe stone on Gg, while pretending there are no otherstones on the board. The man must move the stone to aroom entrance (Gg-Gf), push it out of the room (Gf-Ff-Ef-Df), and then push it back into the room it came from(Df-Ef-Gf-Hf). This elaborate maneuver is required be-cause the man has to be on the left side of the stone tobe able to push it o� the wall. In this problem, there is2The optimal path is de�ned as the route a stone wouldwould take if no other stone were in the maze obstructing itsmovements.
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l
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n Figure 5: Sokoban problem 4only one way to get to the left of the stone { by backingit out and then back into the room.Table 1 shows the e�ectiveness of our lower boundestimate. The table shows the lower bound achievedby minimum matching, inclusion of the linear con
ictsenhancement, inclusion of the backout enhancement, andthe combination of all three features. The upper boundis obtained from the global Sokoban score �le. Since this�le represents the best that human players have beenable to achieve, it is an upper bound on the solution.The table is sorted according to the last column, whichshows the di�erence between the lower and upper bound.Clearly for some problems (notably problem 50) there isa huge gap. Note that the real gap might be smaller,as it is likely that some of the hard problems have beennon-optimally solved by the human players.3.2 Transposition TableThe search tree is really a graph. Two di�erent sequencesof moves can reach the same position. The search e�ortcan be considerably reduced by eliminating duplicatenodes from the search. A common technique is to use alarge hash table, called the transposition table, to main-tain a history of nodes visited [Slate and Atkin, 1977].Each entry in the table includes a position and informa-tion on the parameters that the position was searchedwith. Transposition tables have been used for a varietyof single-agent search problems [Reinefeld and Marsland,1994].One subtlety of Sokoban is that saving exact positionsin the transposition misses many transpositions. Whilethe exact positions of the stones is critical, the exactposition of the man is not. Two positions, A and B,are identical if both positions have stones on the samesquares and if the man in A can move to the location



# MM +LC +BO ALL UB Di�51 118 118 118 118 118 055 118 118 120 120 120 078 134 134 136 136 136 053 186 186 186 186 186 083 190 194 190 194 194 048 200 200 200 200 200 080 219 225 225 231 231 04 331 331 355 355 355 01 95 95 95 95 97 22 119 119 129 129 131 23 128 132 128 132 134 258 189 189 197 197 199 26 104 106 104 106 110 45 135 137 137 139 143 460 148 148 148 148 152 470 329 329 329 329 333 463 425 427 425 427 431 473 433 433 437 437 441 484 147 147 149 149 155 681 167 167 167 167 173 638 73 73 73 73 81 87 80 80 80 80 88 882 131 135 131 135 143 879 164 166 164 166 174 865 181 185 199 203 211 812 206 206 206 206 214 857 215 217 215 217 225 89 215 217 227 229 237 814 231 231 231 231 239 862 235 235 237 237 245 872 284 288 284 288 296 854 177 177 177 177 187 1056 191 191 193 193 203 1047 197 199 197 199 209 108 220 220 220 220 230 1027 351 353 351 353 363 1086 122 122 122 122 134 1244 167 167 167 167 179 1276 192 194 192 194 206 1217 121 121 201 201 213 1259 218 218 218 218 230 1243 132 132 132 132 146 1487 221 221 221 221 235 1471 290 294 290 294 308 1440 310 310 310 310 324 14

# MM +LC +BO ALL UB Di�77 360 360 360 360 374 1435 362 364 362 364 378 1436 501 507 501 507 521 1434 152 154 152 154 170 1641 201 203 219 221 237 1645 274 276 282 284 300 1619 278 280 282 286 302 1622 306 308 306 308 324 1620 302 304 444 446 462 1618 90 90 106 106 124 1821 123 127 127 131 149 1813 220 220 220 220 238 1831 228 232 228 232 250 1864 331 331 367 367 385 1825 326 330 364 368 386 1890 436 436 442 442 460 1810 494 496 494 494 512 1849 96 96 104 104 124 2042 208 208 208 208 228 2061 241 243 241 243 263 2028 284 286 284 286 308 2268 317 319 319 321 343 2239 650 652 650 652 674 2246 219 219 223 223 247 2467 367 369 375 377 401 2423 286 286 424 424 448 2432 111 113 111 113 139 2616 160 162 160 162 188 2685 303 303 303 303 329 2624 442 442 516 518 544 2615 94 96 94 96 124 2833 140 140 150 150 180 3089 345 349 349 353 383 3011 197 201 201 207 241 3475 261 263 261 263 297 3426 149 149 157 157 195 3829 124 124 122 122 166 4474 158 160 168 170 214 4437 220 220 242 242 294 5252 365 367 365 367 429 6288 306 308 314 316 390 7430 357 359 357 359 465 10666 185 187 185 187 341 15469 207 209 211 213 443 23050 96 96 96 96 374 278Table 1: Lower boundsof the man in B. Thus, when �nding a match in thetransposition table, a computation must be performedto determine the reachability of the man. In this way,the table can be made more useful, by allowing a tableentry to match a class of positions.3.3 Deadlock TablesOur initial attempt at avoiding deadlock was to handcode into Rolling Stone a set of tests for simple deadlockpatterns. This quickly proved to be of limited value,since it missed many frequently occurring patterns, andthe cost of computing the deadlock test grew as each testwas added. Instead, we opted for a more \brute-force"approach.Rolling Stone includes what we call deadlock tables.An o�-line search is used to enumerate all possible com-binations of walls, stones and empty squares for a �xed-size region. For each combination of squares and squarecontents, a small search is performed to determine ifdeadlock is present or not. This information is stored
in a tree data structure. There are many optimizationsthat make the computation of the tree very e�cient. Forour experiments, we built a deadlock table for a regionof 5x4 squares (4.6 megabytes in size).When a move Xx-Yy is made, the destination squareYY is used as a base square in the deadlock table and thedirection of the stone move is used to rotate the region,such that it is oriented correctly. Figure 6 shows howthe 5x4 deadlock table is mapped on to square Fg, withthe stone being pushed in from Fh. Note that the tablecan be used to cover other regions as well3. To maximizethe usage of the table, re
ections along the direction thestone was moved in are considered.Although a 5x4 region may sound like a signi�cantportion of the 20x20 playing area, in fact many deadlocksencountered in the test suite extend well beyond the areacovered by our deadlock tables. Unfortunately, it is not3We are currently using a second, smaller table, coveringa slightly di�erent region.
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Figure 6: Placement of the 5x4 deadlock table after moveFh-Fg in problem 1practical to build larger tables.Note that if a deadlock table pattern covers a por-tion of the board containing a goal node, most of thee�ectiveness of the deadlock table is lost. Once a stoneis on a goal square, it need never move again. Hence,the normal conditions for deadlock do not apply. Usu-ally moving a stone into a corner is a mistake, but ifthe square is a goal node, then the deadlock created isirrelevant.3.4 Move OrderingWe have experimented with ordering the moves at inte-rior nodes of the search. For IDA*, move ordering makesno di�erence to the search, except for the last iteration.Since the last iteration is aborted once the solution isfound, it can make a big di�erence in performance if thesolution is found earlier rather than later ([Reinefeld andMarsland, 1994] comment on the e�ectiveness of moveordering in single-agent search). One could argue thatour inability to solve problem 51 (Figure 3) is solely aproblem of move ordering. For this problem, we havethe correct lower bound { it is just a matter of �ndingthe right sequence of moves.We are currently using a move ordering schema thatwe call inertia. Looking at the solution for problem 1(Figure 1), one observes that there are long runs wherethe same stone is repeatedly pushed. Hence, moves areordered to preserve the inertia of the previous move {move the same man in the same direction if possible.3.5 Macro MovesMacro moves have been described in the literature [Korf,1985b]. Although they are typically associated with non-optimal problem solving, we have chosen to investigatea series of macro moves that preserve solution optimal-ity. We implemented the following two macros in RollingStone.

Tunnel Macros: In Figure 1, consider the conse-quences of the man pushing a stone from Jh to Kh. Theman can never get to the other side of the stone, mean-ing the stone can only be pushed to the right. Eventu-ally, the stone on Kh must be moved further: Jh-Kh-Lh-Mh-Nh-Oh-Ph. Once the commitment is made (Jh-Kh),there is no point in delaying a sequence of moves thatmust eventually be made. Hence, we generate a macromove that moves the stone from Jh to Ph in a singlemove.The above example is an instance of our tunnel macro.If a stone is pushed into a one-way tunnel (a tunnel con-sisting of articulation points4 of the underlying graphof the maze), then the man has to push it all the waythrough to the other end. Hence this sequence of movesis collapsed into a single macro move. Note that thisimplies that macro moves have a non-unitary impact onthe lower bound estimate.Goal Macros: As soon as a stone is pushed into aroom that contains all the goals (extended as far back asthe entrance to the room is one square wide), then thesingle-square move is substituted with a macro move tomove the stone directly to a goal node. Unlike with thetunnel macro, if a goal macro is present, it is the onlymove generated. This is illustrated using Figure 1. If astone is pushed onto Mh from the left, then this move issubstituted with the goal macro move. This pushes thestone all the way to the next highest priority empty goalsquare. The goals are prioritized in a pre-search phase.This is necessary to guarantee that stones are moved togoals in an order that precludes deadlock.In Figure 1 a special case can be observed: the end ofthe tunnel macro overlaps with the beginning of the goalmacro. The macro substitution routine will discover theoverlap and chain both macros together. The e�ect isthat one longer macro move is executed. In the solutiongiven in Figure 1, the macro moves are underlined (anunderlined move should be treated as a single move).Figure 7 shows the dramatic impact this has on thesearch. At each node in the �gure, the individual movesof the stone are considered. There are two stones thatcan each make 3 moves, a, b, c for the �rst stone, andd, e, f for the second stone. The top tree in Figure 7shows the search tree with no macro moves; essentiallyall moves are tried, whenever possible, in all possiblevariations. The left lower tree shows the search tree, ifa-b-c is a tunnel macro and the lower right tree if a-b-cis goal macro.3.6 Goal OrderingSince our deadlock tables exclude goal squares, specialcare has to be taken to avoid deadlocks in goal areas.4Squares that divide the graph into two disjoint pieces.
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Tunnel Macro Goal MacroFigure 7: The impact of macro movesCurrently, we implemented a goal prioritization that en-sures that the goal macros are moving the stones to theright goal squares at the right moment. We do not havea general implementation yet and can only handle thespecial case where all the goals are in one room with asingle entrance. A generalization of this is discussed inSection 5.4 Experimental ResultsTable 2 shows the results of running Rolling Stone onthe 90-position test suite. The table shows the minimummatching lower bound with all enhancements (Best LB),the last iteration of IDA* when the search was stopped(Final Iter.), the upper bound of the solution length asgiven by humans (Upper Bound), and the di�erence be-tween �nal iteration and upper bound (Di�erence) as arough indicator of how close we are to solving each prob-lem. All problems were searched for up to 10,000,000nodes.The last column (Result) gives the results of thesearch. A search is either open (the default), the searchhas narrowed the range of possible solution values, lengthsolved (shown by an asterisk), the optimal solutionlength has been found, or solved, where the solutionlength and solution moves have been found (the size ofthe search tree is given). Of the 90 problems, 12 havebeen solved and 17 have their optimal solution lengthcomputed.These results illustrate just how di�cult Sokoban re-

ally is. Even with a good lower bound heuristic andmany enhancements to dramatically reduce the searchcost, most problems are still too di�cult to solve. Look-ing at the results, one can see that some problems (suchas problem 50) aren't going to be solved by our currentimplementation.Table 3 attempts to quantify the bene�ts of the variousenhancements made to IDA*. The table shows the re-sults for IDA* using minimummatching enhanced with:a transposition table (128k entries { TT), deadlock table(5x4 region { DT), macro moves (goal and tunnel macros{ MM), linear con
icts and backout enhancements (CB),and inertia move ordering (IN). The ALL column is thenumber of nodes searched by Rolling Stone with all theabove features enabled. The columns thereafter showthe tree size when one of these features is disabled. Thesearch was stopped if it reached 20 million nodes with-out �nding a solution. Only the 12 problems that RollingStone can solve are included.These experiments highlight several interesting points:1. Because of macro moves, the size of the search treefor problem 1 is smaller than the solution pathlength!2. The program can �nd very deep solutions with nom-inal depth. For example, the solution to problem 4is 355 moves, and yet it is found by building a treethat is only 185 moves deep!3. Transpositions tables are much more e�ective thanseen in other single-agent and two-player games. Forexample, removing transposition tables for problem6 increases the search by at least a factor of 5,650!Each of our enhancements has a dramatic impact on thesearch tree size (depending on the problem).Rolling Stone spends 90% of its execution time updat-ing the lower bound. Clearly this is an area requiringfurther attention.5 Enhancing the Current ProgramOur program is still in its infancy and our list of thingsto experiment with is long. The following details someof the ways we intend to extend our implementation.� While the deadlock tables have been bene�cial toRolling Stone's performance, the 5x4 area is insuf-�cient to detect many frequently occurring dead-locks. Although it is possible to build a 5X5 table(given su�cient computing resources), it is unrea-sonable to expect a larger table. The current tablecontains all possible combinations of stones, wallsand empty squares. However, the Sokoban prob-lems are not randomly created { the positions havestructure. To help detect larger deadlocks, we pro-pose having a deadlock table of rooms. The table



# Best LB FinalIter. UpperBound Di�er-ence Result1 95 97 97 0 732 129 131 131 0 1,6463 132 134 134 0 8774 355 355 355 0 230,7475 139 141 143 26 106 110 110 0 35417 80 88 88 0 4,635,4798 220 224 230 69 229 235 237 210 494 494 512 1811 207 221 241 2012 206 210 214 413 220 220 238 1814 231 233 239 615 96 102 124 2216 162 168 188 2017 201 213 213 0 6,052,05618 106 112 124 1219 286 290 302 1220 446 450 462 1221 131 143 149 622 308 310 324 1423 424 424 448 2424 518 520 544 2425 368 370 386 1626 157 171 195 2427 353 357 363 628 286 290 308 1829 122 130 166 3630 359 381 465 8431 232 236 250 1432 113 129 139 1033 150 156 180 2434 154 162 170 835 364 368 378 1036 507 507 521 1437 242 244 294 5038 73 81 81 0 102,66739 652 660 674 1440 310 312 324 1241 221 223 237 1442 208 208 228 2043 132 138 146 844 167 169 179 1045 284 284 300 16

# Best LB FinalIter. UpperBound Di�er-ence Result46 223 233 247 1447 199 203 209 648 200 200 200 0 *49 104 122 124 250 96 98 374 27651 118 118 118 0 *52 367 385 429 4453 186 186 186 0 *54 177 177 187 1055 120 120 120 0 *56 193 193 203 1057 217 223 225 258 197 197 199 259 218 220 230 1060 148 148 152 461 243 247 263 1662 237 239 245 663 427 427 431 464 367 373 385 1265 203 209 211 266 187 189 341 15267 377 387 401 1468 321 325 343 1869 213 213 443 23070 329 329 333 471 294 294 308 1472 288 290 296 673 437 439 441 274 170 182 214 3275 263 277 297 2076 194 196 206 1077 360 362 374 1278 136 136 136 0 15479 166 172 174 280 231 231 231 0 47681 167 173 173 0 *82 135 143 143 0 3,690,68783 194 194 194 0 38884 149 151 155 485 303 305 329 2486 122 128 134 687 221 225 235 1088 316 318 390 7289 353 355 383 2890 442 450 460 10Table 2: Experimental ResultsProblem ALL ALL-TT ALL-DT ALL-MM ALL-CB ALL-IN1 73 73 82 116 73 3122 1,646 1,036,503 6,868 14,247,731 >20,000,000 1,7983 877 42,885 15,297 16,319 27,243 1,4714 230,747 >20,000,000 >20,000,000 >20,000,000 >20,000,000 891,1806 3,541 >20,000,000 4,520 >20,000,000 4,558 3,5737 4,635,479 >20,000,000 >20,000,000 4,635,479 >20,000,000 5,274,78817 6,052,056 >20,000,000 13,827,703 >20,000,000 >20,000,000 14,935,98038 102,667 >20,000,000 8,784,788 102,667 734,592 >20,000,00078 154 154 154 154 1,397 67,72980 476 476 476 677 >20,000,000 67,80882 3,690,687 >20,000,000 8,902,706 >20,000,000 14,002,015 3,681,31383 388 1,727 412 764 23,117 696Table 3: Experimental Data



would support a collection of commonly occurringroom topologies and for each room type (includingits shape, enclosed obstacles, number of room en-trances, and the entrance positions) enumerate allpossible deadlock scenarios. Although this does notsolve the deadlock problem in general, it will allowus to �nd some deadlocks that we currently cannot.� The goal macro is currently restricted to having allthe goals in a single room. Most problems have goalnodes scattered throughout the puzzle or goal ar-eas have several entrances, meaning the goal macroscannot be used. We have designed a new algorithmthat allows us to handle all goal nodes, regardlessof the location. It involves two pre-search computa-tions. First, each collection of goal nodes must havea perimeter de�ned around them. When a stonemoves to that perimeter, then the goal macro is in-voked. The trick is to extend the perimeter back asfar from the goals as possible. Second, many smallsearches are needed to identify any constraints onthe ordering in which stones can be placed onto goalnodes. We believe that successfully implementingthis algorithm will more than double the number ofproblems we can solve.One should also note, however, that although goalmacros are a powerful tool that can be used to solvemost of the Sokoban problems, there are some in-sidious problems (such as problem 50) where goalmacros will e�ectively exclude the solution from thesearch. Clearly, more work needs to be done to iden-tify the conditions under which goal macros do notapply.� Our version of IDA* considers all legal moves ina position (modulo goal macros). For many prob-lems, local regional searches make more sense. Typ-ically, a man rearranges some stones in a region.Once done, then it moves on to another region. Itmakes sense to do local searches rather than globalsearches. A challenge here will be to preserve theoptimality of solutions.� The idea of partition search may be useful forSokoban [Ginsberg, 1996]. For example, partitionsearch could be used to discover previously seendeadlock states, where irrelevant stones are in dif-ferent positions.� A pre-search analysis of a problem can reveal con-straints that can be used throughout the search. Forexample, in Figure 3 the stone on Kh cannot moveto a goal until the stones on Ei and Ii are out ofthe way. Knowing that this is a pre-requisite for Khto move, there is no point in even considering legalmoves for that stone until the right opportunity.

� The preceding, of course, suggests that planning willbe an essential component in any program that cansuccessfully solve all 90 problems. Currently, we be-lieve brute-force search is incapable of solving prob-lem 50. A goal-driven search based on a plan ismandatory.� So far, we have constrained our work by requiring anoptimal solution. Introducing non-optimality allowsus to be more aggressive in the types of macros wemight use and in estimating lower bounds.� Looking at the solution for Figure 1, one quicklydiscovers that having placed one stone into a goal,other stones follow similar paths. This is a recurringtheme in many of the test problems. One thing weare investigating is dynamically learning repeatedsequences of moves and modifying the search totreat them as macros.� Sokoban can also be solved using a backward search.The search can start with all the stones on goalnodes. Now the man pulls stones instead of pushingthem. The backward search may be useful for dis-covering some properties of the correct order thanstones must be placed in the goal area(s) (the in-verse of how a backward search can pull them out).This is an interesting approach that needs furtherconsideration.6 Other Sokoban ProgramsWe know of several attempts to build a program to solveSokoban problems, however Andrew Myers' program isthe only one that appears to be successful (it has solvednine problems).Myers writes [Myers, 1997] that his: \. . . program usesa breadth-�rst A* search, with a simpler heuristic to se-lect the next state to examine. A compact transpositiontable stores the states. When the solver runs out of mem-ory, it discards some states below the 10th percentile inmoves made. This feature allows the program to handlelevels like level 51. The solver tries to minimize bothmoves and pushes. It does not support macro moves.\The heuristic estimates both the number of stonepushes and the number of man movements needed tocomplete the puzzle. The number of pushes is estimatedmore quickly but less accurately, taking advantage ofthe usual clustering of the goal spaces in one area ofthe board. The estimate has two parts: the number ofmoves and pushes needed to push a ball to the near-est goal square, and the number of pushes needed topush a ball to each goal square from the nearest non-goal square. In addition, the estimator compensates forthe ball that is optimal for the man to push next. Theestimate is summed quickly, using approximately 700Kof pre-computed tables. The estimate does not consider



linear con
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