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Abstract—Smartphones are getting increasingly popular and
several malwares appeared targeting these devices. General
countermeasures to smartphone malwares are currently limited
to signature-based antivirus scanners which efficiently detect
known malwares, but they have serious shortcomings with new
and unknown malwares creating a window of opportunity for
attackers. As smartphones become host for sensitive data and
applications, extended malware detection mechanisms are neces-
sary complying with the resource constraints.

The contribution of this paper is twofold. First, we perform
static analysis on the executables to extract their function calls in
Android environment using the command readelf. Function call
lists are compared with malware executables for classifying them
with PART, Prism and Nearest Neighbor Algorithms. Second, we
present a collaborative malware detection approach to extend
these results. Corresponding simulation results are presented.

I. INTRODUCTION

Malwares (e.g. virus, worms and Trojan horses) have been
threats to computer systems for many years and it was only
a question of time when the first malicious software writers
would get interested in increasingly popular mobile platforms,
such as Symbian OS. In 2004, the first articles about malware
for smartphones [1], [2] appeared saying that the next gen-
eration of targets are mobile devices. Since then, the number
of malwares increased every month, and variants for various
smartphone platforms appeared.

Commercially available countermeasures to smartphone
malware suffer from weaknesses since they mostly rely on
signatures. This approach leaves users exposed to new mal-
ware until the signature is available. Builygin [3] showed
that in worst case a MMS worm targeting random phone
book numbers can infect more than 700000 devices in about
three hours. Additionally, Oberheide er al. [4] state that the
average time required for a signature-based anti-virus engine
to become capable of detecting new threats is 48 days. These
numbers request extended security measures for smartphones
as a malware can seriously damage an infected device within
seconds. In this context, the new smartphone platform Android
gained special interest among developers. Since it set open
source, security tools can be developed even at kernel level.
This allows comprehensive security mechanism to be deployed
on Android handsets only being limited by the typical resource
constraints of mobile devices.

Due to these constraints, we focus on static and light-weight

mechanisms for detecting malware presence on Android de-
vices. Our static approach for detecting malware allows us
to use simple classifiers which are not very resource con-
suming and therefore fit very well to mobile needs. Previous
approaches, e.g. [5]-[7], mostly rely on external servers for
removing computational burden from the mobile device. In
our case, the detection can benefit from a server but does not
have to rely on it. Thus, for processing heavy-weight learning
mechanism, we will benefit from the integration of an remote
server.

In this work, we employ collaboration for security approach
to extend our Malware detection results. Therefore, a set
of entities is enabled to work on a common task without
predefined roles in a heterarchical manner. The collaborative
scheme is used to interact with other mobile devices in order
to exchange detection data and system information. It can be
considered as an operation mode whenever a mobile device is
relying on the remote server but cannot access it.

The document is structured as follows: in Section II, related
work is presented. Section III describes how the data for
our approach is collected. Section IV presents our detection
approach. Results are used for collaboration scenario in Sec-
tion V-B. In Section VI we conclude.

II. BASICS AND RELATED WORK
A. Smartphone Intrusion Detection

Several publications in the field of smartphone intrusion and
malware detection have been made in the past years where
no specific approach prevailed. Promising battery power-
based mechanisms were introduced in [8]-[11] where these
approaches depend on the quality and age of the battery.
Anomaly and behavior-based approaches were introduced in
[6], [7], [12]. These systems suffer from a high computational
burden that is moved to an external server in most cases.

Different from these publications, the use of Android allows
us to modify the system even at kernel-level. Therefore, up to
our knowledge, this is the first time that a light-weight on-
device function call analysis is investigated for smartphones.

B. Intrusion Detection by Static Signature Analysis

We present a method of static analysis of executables by
disassembly. Essential characteristics like system and library
functions are extracted and form the basis for identifying



malware. Identification is done by machine learning classifiers.
Static analysis of executables is a well explored technique.
Zhang and Reeves [13] propose a static analysis to establish
a similarity measure between two executables in order to
identify metamorphic malware. Kruegel et al. describe static
disassembly in [14]. Wang, Wu and Hsieh [15] present data
mining methods to dicriminate between benign executables
and viruses, whose dynamically linked libraries and appli-
cation programming interfaces are statically extracted. They
use support vector machines for feature extraction, training,
and classification. Eskin et al. [16] apply machine learning
methods on a data set of malicious executables.

C. Intrusion Detection in Ad-Hoc Networks

Ad-Hoc networks can be considered as the enabling tech-
nology for the realization of collaborative intrusion detection
among Android devices. In that scope, new challenges arise
from the inherent dynamic characteristics of these networks.

Zhang et al. [17] mention that intrusion detection in mobile
computing environment may benefit from distributed and
cooperative approaches. In this regard, they propose to use
anomaly detection models constructed using information avail-
able from the routing protocols. Huang et al. [18] present a
cluster-based detection approach for intrusion detection system
and showed that they could maintain the same level of de-
tection performance as an original per-node detection scheme
with less host CPU utilization. Sterne er al. [19] propose a
generalized, cooperative intrusion detection architecture with
dynamic topology and clusterheads. These cluster-heads are
determined according to valuable characteristics, e.g. distance,
bandwidth etc. and they perform special tasks like aggregation
and analysis of monitoring results. A general overview of
intrusion detection in Ad-Hoc Networks is given in [20].

All these approaches target in special security concerns
arising in Ad-Hoc networks, whereas our approach is striving
for the opportunities Ad-Hoc networks offer. In this context,
Bye et al. [21] present an overlay framework including an
algorithm to find common groups and exchange security
related data, e.g. monitoring results.

III. SYSTEM AND FUNCTION CALL ANALYSIS ON
ANDROID

The overall system realizes a client-server architecture
which can be seen on Figure 1. It basically provides three main
functionalities: On-device analysis, Collaboration, and Remote
analysis. The client gathers data for on-device, collaboration,
or remote analysis. For improving detection, data can be ex-
changed between two mobile clients in a collaborative manner.
This data can consist, e.g. of detection results or anomalous
feature vectors. Whenever on-device detection is not feasible,
the client can send data to the remote server. In turn, the server
can send detection results back to the client. Additionally, it
can send commands for reconfiguring the client.
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Fig. 1. Overall System Architecture

A. Data Extraction Architecture

The Android Java framework, as of time writing, only offers
a restricted set of Java methods in order to access the underly-
ing OS-level, e.g. it is not possible to get a list of all running
system processes. In order to extract further information, a
mediator is required that collects the desired data on OS-level
and delivers it to an upper lying software stack. Responsible
for this task is a self-written tool called Interconnect Daemon,
a Linux server daemon which consists of several modules,
e.g. system monitors. Additional module tasks are scanning
the filesystem, creating hashes from important files, or waiting
for operating system signals to indicate events.

The various modules work on top of Android’s system
binaries, mostly supported via toolbox, an all-in-one statically
compiled binary. Toolbox offers a number of standard Linux
system commands with a limited set of parameters. Additional
tools were added: busybox (http://www.busybox.net/) supports
a far greater number of Linux commands with appropriate
parameters; strace (http://sourceforge.net/projects/strace/) of-
fers debugging and system call tracing capabilities. Further
descriptions can be found in [22].

B. Creating a Training Set With Readelf

For this paper, a specific module within the Interconnect
Daemon was responsible for identifying and extracting all
Linux system executables, to be precise, all ELF (Executable
and Linking Format) object files (excluding shared libraries).
These executables (mostly in /bin) hold static information
which can be read out with the appropriate reader, in our case
readelf. The readelf command delivers detailed information
on relocation and symbol tables of each ELF object file. Most
interestingly, it outputs the static list of referenced function
calls for each system command. The following example shows
the first lines of the output of readelf running on a system
command (/bin/ls):
Symbol table ’.dynsym’ contains 104 entries:

Num: Value Size Type Bind Vis Ndx Name

0: 00000000 NOTYPE LOCAL DEFAULT UND

: 00000000 622 FUNC GLOBAL DEFAULT UND abort@GLIBC_2.0 (2)
: 00000000 29 FUNC GLOBAL DEFAULT UND __errno_location@GLIBC_2.0 (2)
: 00000000 84 FUNC GLOBAL DEFAULT UND sigemptyset@GLIBC_2.0 (2)
: 00000000 52 FUNC GLOBAL DEFAULT UND sprintf@GLIBC_2.0 (2)
: 00000000 433 FUNC GLOBAL DEFAULT UND localeconv@GLIBC_2.2 (3)
: 00000000 10 FUNC GLOBAL DEFAULT UND dirfd@GLIBC_2.0 (2)

: 00000000 87 FUNC GLOBAL DEFAULT UND __cxa_atexit@GLIBC_2.1.3 (4)
[...1
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We identified a number of Linux system commands within
Google Android (less than 100). After extracting those, in-
specting them with readelf, and extracting the lists of function



calls, this data formed our benign training set. In order to
build a set of malicious training examples, we selected approx-
imately 240 different malwares, found via Google Search, and
extracted the static lists of function calls with the same method
as described above. The malware set consisted of virus, worms,
and Trojans specifically designed for Linux (not specifically
designed for Android’s ARM-architecture). A few malwares
have been successfully compiled for ARM-architecture and
compared with its i386-counterpart. The results showed only
very minor differences leading us to the conclusion that using
this set as preliminary malicious training set was a valid
approach. The combination of both benign and malicious data
set formed our final training set which has been used for
further analysis.

IV. CLASSIFY EXECUTABLES BY STATIC ANALYSIS

The executables (ELF) can be fairly well identified as nor-
mal and malicious respectively by looking only at the names
of the functions and calls appearing at the output of readelf. In
the sequel, we will call these names simply attributes, which
are grouped in relocation and dynamic attributes due to their
appearance at the readelf output. The combined attribute sets
is a union of the relocation and dynamic attribute set. The set
of attributes is further split: an attribute is in the set of mutual
attributes if there is at least one malware ELF and at least
one normal ELF whose readelf output contains it, whereas
attribute is in the set of all attributes if it is contained in the
readelf output for at least one ELF, no matter if malicious or
normal. Eventually, six attribute classes are gained by the just
mentioned discrimination, the sizes of which are presented in
table I. An attribute class will be denoted by N. The attribute
class which is, for instance, both dynamic and mutual have
the shape X = { abort, _errno_location, sigemptyset, ... }.

TABLE I
SIZES OF THE ATTRIBUTE CLASSES

relocation | dynamic | combined
mutual attributes 174 145 189
all attributes 1662 2284 2816

The question arises whether these attribute sets have the
potential to distinguish normal from malicious executables.
By applying several state-of-the-art classifiers, it turned out
this is the case for most of them. The table below indicates
accuracy parameters, i.e. correctly classified instances rate
(CC), detection rate (DR), and false positive rate (FP), for
each attribute set and each applied classifier due to our data
set. To check the generalizing ability of the trained classifiers,
stratified ten fold cross validation is used, where each fold is
constructed randomly. The data mining package weka (http:
/Iwww.cs.waikato.ac.nz/ml/weka/) served as test environment.

Three classifiers of different kinds are applied to our data.
The classifier PART extracts decision rules from the decision
tree learner C4.5. [23]. Prism is a simple rule inducer which
covers the whole set by pure rules [24]. Both take into account
the interdependencies of attributes and are — once learned —
efficient classifiers. The computational costs of learning could
be shifted to a server, then mobile devices will be provided by

TABLE I
ACCURACY VALUES OF CLASSIFIERS ACCORDING TO ATTRIBUTE SETS

relocation [ dynamic [ combined
mutual attributes

Accur. CC DR FP CC DR FP CC DR FP
Prism 0.78 | 0.70 | 0.00 | n.V. n.vV n.Vv. 0.78 | 0.70 | 0.00
PART 094 | 099 | 0.15 | 0.97 1.00 | 0.12 | 097 1.00 | 0.12
n. Nb 092 | 098 | 0.21 090 | 092 | 0.13 | 096 | 098 | 0.11
all attributes
Prism 0.81 | 0.76 | 0.00 | 0.83 | 0.76 | 0.00 | 0.83 | 0.77 | 0.00
PART 0.95 1.00 | 0.16 | 0.97 1.00 | 0.12 | 097 1.00 | 0.12
nNb 094 | 099 | 0.12 | 096 | 099 | 0.10 | 096 | 0.99 | 0.10

rules. Prism produces in all cases we tested no false positive
whereas it performs less well in detection malware, and a
higher set of rules (from 10 to 30) are usually induced than
with PART, which is satisfied with 2 to 12 rules. Our third
classifier is the nearest Neighbor algorithm (nNb). We used the
following light-weight version of this standard classifier: Let
M., N be the sets of malicious and normal ELFs respectively,
and let X be an attribute set and p a metric on {0, 1}, An
ELF is represented by « = (z;);cx where a component x; is
equal to 1 if this ELF has attribute ¢ and equal to O if not.
Here the simple metric

p(x,y) =Yl —vil,

IS

for z,y € {0,1} M.

is applied. By d(z, K) = infpecx p(x, k) the distance of z
to a subset K C {0,1}/®l is denoted. The classifier x maps
a formated readelf output of an ELF z to the state space
{malicious, normal},

malicious,
p(x) =
normal,

if d(z,M) < d(z,N),
else.

)

The computational complexity of the detection by ¢ is of
acceptable order, namely O(|R|-(|M]|+|N|)). Nearest neighbor
detection has the advantage that no server is required for
training and that it behaved in our test stable w.r.t. thinning
of the attribute set: if the most distinctive attributes due to
our rules are omitted, the accuracy parameters of nNb do not
vary significantly. A drawback is that the attributes of each
single malicious or normal ELF has to be stored, which is
acceptable in our case but might become inconvenient with a
growing data basis.

The detection map in (1) makes binary decisions whereas it
delivers no statement on the certainty of judgment. A simple
solution is the strictly increasing function ¢ : {0,1}® —
[0, 1] which is derived from (1) by affine linear transformation,
where an output of 0 means that we definitely deal with a nor-
mal ELF and 1 that the ELF is malicious with probability one.
The values in between stand for the level of maliciousness. In

Lr(a), if r(x) € [0,1],
lz) = Ll (@) + BELAESL it r(2) € (1,00),
1, if d(x, M) = 0.

the ratio of the distance to normal set and the distance to
malware set is abbreviated by r(z) = d(z,N)/d(xz,M). If the
output of ¢ overcomes a threshold 6 € (0,1) it might be
concluded that the ELF is malicious. For the threshold of 1/2
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Fig. 2. ROC graph for nNb with varying threshold and detection function ¢

© will lead to the same decision as . If a lower false positive
rates is desired, increase threshold 8. Note that this will be
accompanied by a worse detection rate, recall the ROC graph
in Figure 2.

V. COLLABORATIVE INTRUSION DETECTION
A. Approach

The collaboration module is triggered when a specific
event takes place. Subsequently, communication is established
with neighboring nodes for the assistance. A request takes
place for support, e.g. computation or available information.
Next, responses are collected and an action is taken after
evaluating them. Figure 3 gives an illustrative example of
the collaboration scheme in the context of the Collaborative
Malware Detection scenario presented in the following.
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Fig. 3. Collaborative Malware Detection: I- An infected node tries to
install a malicious program to the target device. II- The detection status is
determined. In the case, the status is within the uncertainty interval, following
steps are triggered. III- A request is sent out to the neighboring nodes with
a feature vector containing output of static ELF analysis of the program.
1V- Each neighbor nodes determines the detection status of the application
according to its trained classifier. V- The initiating node is informed about the
results. VI- Evaluation of results; if joint status still falls in the uncertainty
interval or below, the node become infected. Otherwise, it is removed from
the set of susceptible nodes.

Based on the approach presented in Section IV, we extend

the on-device detection with a collaborative approach. We
introduce an uncertainty interval [§ — z, 6], triggering the
collaboration mechanism. Hence, the neighboring nodes are
requested to determine the detection status according to their
classifier. The initiating nodes collects the responses and builds
the arithmetic mean. If the average of the responses is still
below 6, the executable is defined as benign, otherwise as
malicious. We conducted simulations for this specific scenario.

B. Simulation

We set up a simulation environment reflecting the character-
istics of the Ad-Hoc network scenario. 100 nodes are used in
a simulated area of 1500 x 1500 units with transmission range
of 200 units. A unit is an abstract term for a distance measure,
e.g. meter. In each round, a node is able to communicate to one
or several present nodes in his neighborhood determined by
his transmission range. The conduction of the algorithm lasts
four rounds: worm tries to infect, request for collaboration,
response, evaluation. We performed 100 runs with 100 rounds
per run. Nodes are mobile and move every round according
to a random walk model with a maximum of (+/-)5 units
in each dimension. The attack vector is based on a worm
propagation, e.g. the Cabir worm (http://www.f-secure.com/
v-descs/cabir.shtml). Initially, a device is selected randomly
to be infected. Than, the worm tries to infect all devices in
transmission range. We apply the aforementioned collaborative
detection scheme. If a new device becomes infected, the worm
propagates further. If the worm is classified as malicious by
a device, this device is removed from the set of susceptible
devices.

We define the threshold for detection as 8 = 0.5. If the
return value is higher, the installed application is considered
malicious and removed from the set of susceptible nodes. If
the return value is lower, in case of non-collaborative scenario
the node becomes infected. For the simulation, we have two
varying input variables. On the one hand, the uncertainty
interval [0 — x, 0], where we use as x values from 0 to 0.5
in steps of 0.1.

The second input variable is the distribution function for
the initial detection values. These are assigned according to
normal distribution with a varying mean p and a standard
deviation o of 1. All resulting values in the interval [—2u,
241] are normalized to the interval [0, 1]. Afterwards, for each
applied distribution the mean is shifted by continuously adding
0.1. In the case, a value becomes bigger than one, it is set to
one.

C. Results and Discussion

The results of the simulation are depicted in Figure 4.
The chart shows the resulting number of infected devices
with respect to the initial detection value distribution and
varying uncertainty intervals. The first observation is that an
increasing uncertainty interval reduces the false negative rate.
In other words, if the collaborative scheme is executed more
frequently, this results into less infections. On the other hand,
it can be seen that the higher the detection value is, the



more the collaborative scheme becomes effective. In the first
distribution (¢ = 0.5), the fraction of the “Interval 0.40 -
0.5” approach to the non collaborative approach is 80 per
cent whereas with the third distribution (¢ = 0.6) this fraction
decreases to 32 percent. The most costly combination in terms
of communication is ¢ = 0.5 and the uncertainty interval
x = 0.5. Here, the averaged maximum of communication acts
took place in round 2 with 0.4 per node. Although we focused
on decreasing false negative rate, we assume false positives can
be reduced by this approach similar as it is shown by Luther
et al. in [25]. A collaborative scheme is susceptible to attacks.
An extensive use of resources, e.g. to drain the battery, can
be prevented by defining an explicit counter to serve only a
maximum number of requests per time. In addition, related
work given in Section II-C shows further mechanisms.
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Fig. 4. Simulation results of collaborative scheme

VI. CONCLUSION

Using static ELF analysis turned out to be an efficient way
to detect malware on Android using simple classifiers. These
results can be improved when applying collaborative measures
which can reduce the false-negative rate. Further investigations
are needed in order to evaluate our findings using real Android
hardware and malware, as soon as available. Real resource
consumption will be a significant indicator whether this system
can be extended to more complex tasks, e.g. adding more
semantical information to the collaborative approach or using
more complex classifiers.
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