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Abstract: Event-based system (EBS) is prevalent in various systems including mobile cyber physical
systems (MCPSs), Internet of Things (IoT) applications, mobile applications, and web applications,
because of its particular communication model that uses implicit invocation and concurrency between
components. However, an EBS’s non-determinism in event processing can introduce inherent security
vulnerabilities into the system. Multiple types of attacks can incapacitate and damage a target EBS by
exploiting this event-based communication model. To minimize the risk of security threats in EBSs,
security efforts are required by determining the types of security flaws in the system, the relationship
between the flaws, and feasible techniques for dealing with each flaw. However, existing security flaw
taxonomies do not appropriately reflect the security issues that originate from an EBS’s characteristics.
In this paper, we introduce a new taxonomy that defines and classifies the particular types of inherent
security flaws in an EBS, which can serve as a basis for resolving its specific security problems.
We also correlate our taxonomy with security attacks that can exploit each flaw and identify existing
solutions that can be applied to preventing such attacks. We demonstrate that our taxonomy handles
particular aspects of EBSs not covered by existing taxonomies.
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1. Introduction

Event-based systems (EBSs) developed by using message-oriented middleware (MOM)
platforms [1] have been widely used in mobile cyber physical systems (MCPSs) as well as a wide
range of applications including Internet of Things (IoT) [2–5], financial markets, logistics, and web
apps [6], including those that directly interfaced with users (e.g., Android apps [7]). In the case of
MCPSs, for example, since they integrate distributed entities including computational, communication,
and physical components [8], event-based architecture has been considered as an appropriate
mechanism for their implementation [8–11]. MCPSs’ inherent heterogeneity and integration of
multiple processes make event-based architecture as a relevant approach for their modeling and
application [12–15]. Specifically, EBSs are highly scalable, easily evolvable, and have a low coupling
that makes them especially suitable for highly heterogeneous distributed systems [16–21].

EBSs’ popular attributes are led by their communication model. For example, in EBSs, components
(interchangeably referred to as “event-clients” or “event-agents”) invoke each other implicitly by
publishing event messages (simply referred to as “events”) instead of directly calling other components
via explicit references. Accordingly, the components may not know the consumers of the events
they publish, and may not necessarily know the producers of the events they consume as well.
Although this communication mechanism provides several advantages, as its operation is based on
non-determinism in event processing, it exposes EBSs to security threats such as event spoofing,
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interception, and eavesdropping [22–24] (called event attacks). To minimize the risk of such threats on
EBSs, security efforts are required.

When working on software security efforts, developers or administrators are required to determine
the types of security flaws that exist in the system, the relative importance of each flaw, and the types
of techniques that can be employed to handle each flaw. A security flaw taxonomy (an ordered system
that indicates the natural relationships of security flaws [25,26]) can provide a basis for developers to
make better decisions in securing their target software system. For the past three decades, many such
lists and taxonomies of security problems have been studied [25–38]. However, despite the prevalence
of EBSs, systematic identification and classification of EBSs’ security flaws have not been extensively
studied yet. Existing security flaw taxonomies do not adequately reflect the security issues that
originate from the EBSs’ characteristics or have been found in recent types of EBSs such as Android
(Android is a mobile operating system (OS), but it also has been studied as a particular type of EBS
because it supports event-based communication model. In this research, we consider Android not
only as an OS, but also as a software system encompassing from middleware to applications. We will
discuss the details in Section 2.2). Because EBSs have particular attributes that general software systems
do not bear (e.g., implicit invocation in event communication), the existing lists or taxonomies are
not directly applicable for securing EBSs. Therefore, it is inherently necessary to first systematically
identify and classify EBSs’ fundamental security flaws to negate any vulnerabilities in the system.

In this paper, we introduce a new taxonomy that classifies the security flaws within
EBSs [22,39–47]. Built upon previously identified security flaws present in general software
systems [25], our taxonomy classifies particular types of inherent flaws in EBSs, and is distinguished
from the existing taxonomies because (1) it clarifies and classifies the inherently present security flaws
in EBSs, (2) it covers all types of security flaws in the EBSs domain that have been identified so far,
and (3) it considers different types of EBSs configurations (e.g., commercial or open-source MOM
platforms). We also correlate our taxonomy with security attacks that can exploit these flaws and
existing solutions that are applicable to preventing corresponding attacks. We evaluated our taxonomy
in terms of its coverage by comparing it with the existing security flaw taxonomies. Our taxonomy
covers all types of security flaws discovered in EBSs so far and even handles additional security flaws
not covered by existing taxonomies.

The remainder of paper is structured as follows: Section 2 illustrates the background and
definitions, Section 3 describes the methodology that we followed and the resulting taxonomy, Section 4
describes its evaluation, and Section 6 presents the conclusions.

2. Background

In this section, we clarify the underlying concepts and terminology that we will use later to
describe our taxonomy in Section 3. We first provide the definitions of key concepts that our taxonomy
uses. We then introduce the fundamental mechanism of EBSs and the different types of event attacks.

2.1. Key Concepts

In this paper, our use of the terms “flaw”, “vulnerability”, and “attack” are based on the terms
defined in the existing literature [25,26]. A flaw is a defect of a software system, which can result
in a security violation [25]. A vulnerability is caused by at least one flaw and can be exploited by
attacks. An attack refers to the techniques that an attacker uses for attempting to detect and exploit a
vulnerability. Attack or vulnerability taxonomies might be useful when developers (or administrators
or testers) need to clarify the ways their target system can be attacked and the parts of the system
that should be protected. However, considering the fact that a flaw is the root cause of security
violations and can be masked by another part of the system, its identification is more useful for making
a target system robust to security threats. Hence, in this paper, we focus on flaws, rather than attacks
or vulnerabilities.
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2.2. Event-Based Systems

The EBSs’ popular attributes (e.g., scalability, evolvability, and low coupling [16–20]) are
fundamentally enabled by their communication model. In EBSs, the components (i.e., the units
of computation and data) communicate asynchronously with each other by using messages [48].
A message typically describes one or more observed events. An event is any occurrence that can be
observed by a component (e.g., a change of the component’s state or a change in the environment of the
system) [49]. An event and its corresponding message are often conflated in literature for convenience.
In this paper, the term “event” will be used to refer to these concepts broadly. A connector is an
architectural element tasked with effecting and regulating interactions among the components [1].
Although there exist several connector types, in this paper, a connector will always refer to an
event-based distribution connector [1] that distributes events to associated components. We will
use the term “event broker” to refer to this concept broadly.

In EBSs, the components do not have explicit references to each other and are only able to invoke
an event broker directly [49]. Consequently, the addition, removal, and updating of components can be
achieved relatively easily during runtime [50]. A component can be an event producer or a consumer,
or both. Communication between the components is processed via “source” and “sink” [51]—a
source is an event interface invoked to publish events by a producer component; a sink is an event
interface that an event broker invokes to transfer an event to a consumer component. When a producer
publishes an event, the event broker routes the event to the appropriate consumers based on the system
configuration, along with the routing and filtering policies [49]. When the event broker transfers an
event to a component’s sink, the component consumes the event. Each sink declares an event type
and only allows the processing of events that match its declared type. In this paper, we will target
the following three event types commonly used in today’s EBSs [48]: (1) nominal, (2) subject-based
and (3) attribute-based. Nominal event types are explicitly declared in a system’s programming
language and subsequently enforced at compile-time. In subject-based event typing, each event type is
defined through a string value that captures an event’s name. Similar subject-based event types can
be organized into naming hierarchies (e.g., Weather/Country/City). In attribute-based event typing,
an event type is defined through a set of attributes, where each attribute is a pair of name and value.
Event types can be further defined into more specific event subtypes.

2.3. Event Attacks

Event attacks represent the security problems caused by non-determinism in an EBS’s event
processing encountered by developers and end-users. Event attacks abuse, incapacitate, and damage
the system by exploiting event-based communication. Different types of event attacks have been
identified throughout various domains, such as mobile and web apps [22,24,47,52–61]. The research
to date has identified the following types of event attacks: Spoofing (A1): A malicious component
can send an event that spoofs a target component to exploit the target’s functionality/data [22];
Interception (A2): A malicious component can intercept an event that is supposed to be sent to other
components and can send back inappropriate replies to make a target component malfunction or
to exploit the target’s functionality/data [22,24]; Eavesdropping (A3): A malicious component can
eavesdrop on an event, which contains sensitive data, and is supposed to be open only for particular
components [24,60]; Confused deputy (A4): A malicious component can indirectly access a target
component, by accessing another component that has access to the target component, to exploit the
target’s functionality/data [47]; Collusion (A5): Two or more malicious components can collude by
exchanging events to exploit the functionalities or resources of a target component [47]; Flooding (A6):
A malicious component can send an overwhelming amount of events that makes a target component
malfunction [55]; Delaying (A7): A malicious component (or event broker) can intentionally delay a
series of event interactions to make a target component malfunction [54]. We have formally defined
each type of event attack as listed in Table 1.
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Table 1. Types of Event Attacks.

No. Attack Type Definition

A1 Spoofing For V1, V2, M1 ∈ C where V1 , V2 , M1 and ∃(V1
e
−→ V2) and (V2 contains f ) and (M1

e
=⇒ V2):

M1 sent a spoofed e to V2 to exploit f in V2

A2 Interception For V1, V2, M1 ∈ C where V1 , V2 , M1 and ∃(V1
e
−→ V2) and (e contains s) and (V1

e
=⇒ M1) ∧ ¬(V1

e
=⇒ V2):

M1 intercepted e, which was supposed to be sent to V2, to obtain s

A3 Eavesdropping For V1, V2, M1 ∈ C where V1 , V2 , M1 and ∃(V1
e
−→ V2) and (e contains s) and (V1

e
=⇒ M1) ∧ (V1

e
=⇒ V2):

M1 eavesdropped on e, which was supposed to be open only to V2, to obtain s

A4
Confused

deputy
For V1, V2, M1 ∈ C where V1 , V2 , M1 and @(M1

e
−→ V1) and (V1 contains f ) and (M1

e1
=⇒ V2) ∧ (V2

e2
=⇒ V1):

M1 accessed V1 by accessing V2, which can access V1, to exploit f in V1

A5 Collusion For V1, M1, M2 ∈ C where V1 , M1 , M2 and @(M1
e
−→ V1) and (V1 contains f ) and (M1

e1
=⇒ M2) ∧ (M2

e2
=⇒ V1):

M1 colluded with M2, which can access V1, to exploit f in V1

A6 Flooding
For V1, V2, M1 ∈ C where V1 , V2 , M1 and ∃(V1

e
−→ V2) and (M1

e∗
=⇒ V2) ∧ ¬(V1

e
=⇒ V2)∧

(the number of e∗ is overwhelmingly greater than the average number of e):
M1 sent an overwhelming number of e∗ to hinder V1 from accessing V2

A7 Delaying
For V1, V2, V3, M1 ∈ C where V1 , V2 , V3 , M1 and ∃(V1

e
−→ M1

e1
−−→ V2

e2
−−→ V3) and (V1

e
=⇒ M1

e1
=⇒ V2

e2
=⇒ V3)∧

(the time interval between e and e1 is overwhelmingly larger than the time interval between e1 and e2):
M1 delayed the publication of e1 to make V2 and V3 malfunction

C: a set of components, V : a victim component, M : a malicious component, f : sensitive functionality, s: sensitive information,
e: an event, x

α
−→ y: an event communication channel for sending an event α from x to y, x

α
=⇒ y: an event α sent from x to y.

As event attacks are administered in the same manner as ordinary event exchanges and the
malicious components disguise themselves as benign, it is difficult to identify and block event
attacks. Preventing event attacks becomes more challenging especially when it is not possible to
predict which component will compromise the system (e.g., as in the case in Android and J2EE
apps). For example, in Android systems, depending on the apps installed according to different
users’ preferences, the components comprising the system would be different. In such a case, as it
is hard to guarantee that all components in the system are benign or safe from security threats,
existing techniques that require pre-defined access distribution (e.g., role-based access control [39])
cannot be used to prevent event attacks. Although the Android system was designed to enforce
permission-based access control [7], some types of event attacks can bypass the permission checks
(i.e., confused deputy and collusion [47,53,61]). Putting a strict limitation on event communication
may address some of these security threats, but it can reduce the flexibility of and hamper the benefits
of the EBSs. Although developers are required to follow security policies while building a system,
they tend to lack attention and make mistakes [62]. Practice has also shown that developers are often
completely unaware of potential threats or underestimate the framework’s capabilities, thus placing
the responsibility on the end-users to protect themselves while using the system [63].

3. Taxonomy

3.1. Literature Review Methodology

To analyze the security flaws in the EBS domain, we inspected the results of 84 literatures
published in reputable journals and conferences [22,24,39–47,52,56,60,61,64–132]. We carefully
followed the general guidelines for a systematic literature review process [133]. Specifically, we
formulated our taxonomy by performing a content analysis over a set of literatures. The literatures
were initially collected by using reliable literature search engines, such as IEEE Explore, ACM Digital
Library, Springer Link, and Google Scholar. As shown in Table 2, our search query was formed
as a conjunction of the domain keywords (i.e., “distributed event-based systems”, “event-based
systems”, “android intent”, and “android event”) and attribute keywords (i.e., “security vulnerability”,
“security attack”, “security flaw”, and “security error”). Specifically, our search query was defined
as the following formula: ∀d ∈ D ∧ ∀a ∈ A, where D is the set of domain keywords and A is the
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set of attribute keywords as specified in Table 2. Note that, to cover a larger number of literatures,
synonyms were considered for the attribute keywords during the search process. For example,
regarding “vulnerability”, we also considered similar keywords such as “flaw” and “error”. Because
the scope of search for Android keywords is too large, in order to effectively collect the Android
literature dealing with the characteristics of EBSs, we used “android event” and “android intent”
as domain keywords. The selected keywords were applied to the search for the literatures’ titles,
abstracts, and tags. To exclude outdated literatures, we limited the scope of the search to literatures
published from 2000 to 2020. Although the majority of the literatures regarding EBSs were almost a
decade old, we decided to keep them if they had appeared in top-tier conferences or journals with
significant contributions (H5-index ≥ 20 or citation counts ≥ 50). Table 2 shows the number of initially
searched literatures (IEEE Explore = 104, ACM Digital Library = 624, Springer Link = 1188, Google
Scholar = 3078, Total = 4994) processed by keyword-based search over the aforementioned databases.
After the initial searching, because the search engines in each database may have processed our queries
differently, we performed a consistent keyword validation on the searched literatures based on the
same keywords (1st filtering = 2018). After the first filtering, as not all the searched literatures fit within
the scope of this research, we performed a brief review based on the title and abstract of each literature
(2nd filtering = 780). Our review criteria included whether they handled security issues in EBSs.
After the second filtering, we performed a detailed review on the filtered literatures by inspecting if
they fit within the scope of this research. Finally, 84 literatures were selected as the base ingredient for
our taxonomy.

Table 2. Number of Collected References during Literature Review Process.

D: Domain Keyword A: Attribute Keyword IEEE ACM Springer Google Scholar

distributed event-based systems,
event-based systems,
android event,
android intent

security vulnerability,
security attack,
security flaw,
security error

104 624 1188 3078

Initially Searched 4994

After 1st Filtering 2018

After 2nd Filtering 780

After Final Filtering 84

3.2. Taxonomy Construction Methodology

Although EBSs have particular attributes that general software systems do not bear, they may still
inherit security issues from them. Hence, we decided to build a taxonomy upon existing taxonomies
that targeted general software systems.

First, we targeted the taxonomies that classify software security flaws. The advantage of this type
of taxonomy lies in the convenience of creating a common language for sharing security flaws, allowing
an efficient organization of security flaws across information sources, and ultimately identifying
strategies to remedy security problems, which is the final goal of this research. For example,
depending on the type of flaw, developers can figure out applicable solutions from among the
existing ones and also for flaws that lack appropriate solutions. According to the review of security
flaw taxonomies [37,38,134], the outdated taxonomies (i.e., before the year 2000) tend to be less
elaborate than recently published ones [26,33] or some of them have been adapted to the latest
ones [25,27,29,37,38]. Thus, among the selected taxonomies, we filtered out the taxonomies published
before the year 2000. The taxonomies that only focused on implementation-level errors were also
excluded to consider design-oriented security flaws.

Consequently, from among the remaining set of candidates, “software security flaw taxonomy”
by Weber et al. [25] was selected as the starting point to create a taxonomy, because it has been
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designed to adequately reflect the nature of security issues in an EBS. Weber’s taxonomy classifies the
flaws based on genesis (i.e., how they were introduced to the system). Specifically, this taxonomy is
distinguished from others due to its major division between “intentional” and “inadvertent” flaws,
which is pertinent to classifying security flaws in EBS. As an EBS generally provides an extensible
infrastructure, unintended external source code can be included in the system, which implies that a
developer’s intention is an important determinant for classifying an EBS’s security flaws. For example,
although the Android framework was not originally designed to contain security flaws, if an Android
app, intentionally designed as malicious, is installed on the system, the system will contain “intentional”
security flaws. We adapted Weber’s taxonomy based on 84 selected literatures on security issues
in EBSs [39–44,64–77,127] as well as on Android security issues that originated from its event-based
communication [22,24,45–47,52,56,60,61,78–126,128–132]. From those publications, we first extracted
the security flaws each approach tries to address or introduce as an example. Then we clustered the
flaws based on the similarity of ways they can be exploited. Finally, we examined if any of those flaws
is related to its counterpart in Weber’s taxonomy. The detailed process is as follows:

According to the existing research [40,45,79,87,105,118,121], an EBS may contain malicious
code that allows different types of external access, such as a piece of code directed to unsafe
URL. These types of flaws belong in the same category as “Trapdoor” in Weber’s taxonomy. Prior
research has defined and introduced a particular concurrency problem that only exists in EBSs,
referred to as event anomalies [81,127,128]. Weber’s taxonomy does define “Concurrency” flaws,
but only includes time-of-check to time-of-use (TOCTTOU) errors; therefore, we expanded the
scope of their characteristics and changed the name of the category to “Inadequate Concurrency”
to present a more precise definition. The existing approaches indicated that the components in an
EBS may communicate via covert (i.e., non-system-standard) communication channels [47,100,119].
Although some types of “Covert Channels” flaws were defined in Weber’s taxonomy, we extended
them to include newly identified covert channels such as the battery and vibrator in mobile
devices. Authentication issues were also identified in EBSs, in the form of permission grant and
authentication in a multi-domain EBS—a particular type of EBS comprising multiple event-brokers
from different domains [65,80,86,90,108,118–120,135]. We extended the “Inadequate Authentication”
category in Weber’s taxonomy to include those authentication-related flaws. From Android
apps, new types of resource leaks such as resource leaks via wifi and SQLite database were
introduced [40,45,88,104,106,114,115,126,129,132], which can be added to “Resource Leak” in
Weber’s taxonomy. We changed the name of the category “Inadequate Resource Management”
to define the scope more broadly. We also found that the flaws that existing approaches try
to resolve fall under “Logic/Time Bomb” in Weber’s taxonomy [56,103,115]. The existing EBS
research introduced the knowledge of flaws where multiple components collude to exploit the
system [45,47,61,88,100,104,106,109,117,131]. Moreover, the majority of security attacks in EBS are
basically caused by its extensible event communication channels [22,24,39–41,45,47,52,60,68,70,71,
77,94,97,99,130,135]. As Weber’s taxonomy does not include them, we extended the definitions of
“Conspirator” and “Open Event Channels,” respectively. We also added “Unsafe Events” and “Unsafe
Event Interface” for including cases where those open event channels are unintentionally introduced
to the system [22,24,39,41,68–70,75,77,79,84,85,87,95,102,110,123,130]. Note that, to guarantee the
completeness of taxonomy, all the flaws extracted from the existing publications were incorporated in
the new taxonomy. However, drawing from the flaws in the Weber’s taxonomy, we excluded those that
were not introduced in the existing literatures under review to build a taxonomy specialized for EBSs.

3.3. Taxonomy

The security flaw taxonomy for EBSs is shown in Figure 1. As an EBS is a particular type of
software system, it incorporates some flaws from general software systems. Note that the boxes
highlighted in red (F1, F4, F6, F9, F10) indicate the flaws adapted from the existing ones [25] to better
reflect the system’s event-based characteristics, and the boxes highlighted in blue (F2, F5, F7, F8) indicate
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the flaws we added because they are specifically caused by event-based communication. Finally,
the green box (F3) indicates a flaw whose definition remains unchanged from the existing one [25].
In particular, the dashed boxes (F2, F5, F6, F7, F8, F10) indicate the flaws that can be exploited by event
attacks. It is important to note that every flaw in this taxonomy was validated by existing publications
regarding the security of EBS and Android [22,24,39–47,52,56,60,61,64–132] In this taxonomy, a software
system is defined as a combined system that comprises both application-level and framework-level
elements (i.e., middleware) where an operating system is considered as a sub-component of the system.
As the taxonomy considers both the design and implementation-level flaws, we will use “developer”
as a term that represents both system designer and programmer. Moreover, a component is defined as
an architectural unit that can communicate with other components using system-defined events.

Security	Flaw	

Intentional	

Malicious	

Trapdoor	

Conspirator	

		Logic	/	Time					
Bomb	

Non-Malicious	

Covert	Channel	

Open																			
Event	Channel	

Inadvertent	

Event	
Communication	

Inadequate	
Concurrency	

Unsafe	Event	

Unsafe																
Event	Interface	

System		
Configuration	

	Inadequate	
Authentication	

		Inadequate		 
Resource	

Management	

	F1	

	F2	

	F3	

	F6	

	F7	

	F8	

	F4	

	F5	

	F9	

F10	

Figure 1. Security Flaw Taxonomy for event-based system (EBS). The Red boxes indicate the flaws
adapted from the original taxonomy. The Blue boxes indicate the newly added flaws. The Green box
indicates the flaw unchanged from the original taxonomy. The circled labels indicate the assigned
number for each flaw.

The goal of this classification is to provide a basis for determining the appropriate security
strategies to be used in a particular context. The taxonomy is first classified according to the developer’s
intention (Intentional and Inadvertent) because different security strategies can be used to reduce each
type of flaw. For example, in a target EBS, if most of the security flaws are unintentionally and
inadvertently introduced, exhaustive source code reviews and testing can be utilized to reduce the
flaws [26]. However, in case most of the security flaws are intentionally introduced to an EBS, it would
be more effective to minimize the proportion of externally-developed source code in the system by
restricting the external components access (e.g., restrictive installation of third-party apps on Android
system) or by incorporating more trustable message oriented middleware (MOM) platforms.

Intentional flaws are classified as Malicious and Non-Malicious. The Malicious flaws indicate the
flaws that were deliberately inserted. If any part of the system was incorporated from an unreliable
source, it might intentionally contain the following flaws:
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• F1. Trapdoor [40,45,47,56,72,79,86,87,89,90,92,93,103,105,109–113,115,117–122,125,126]: Due to an
EBS’s flexibility and scalability, the system may contain the source code that allows someone to
gain illicit access to the system, possibly at both the application and framework level. For example,
a user may install an Android app comprising malicious code which directs to undesirable web
site. Furthermore, an externally-developed framework for event-based communication may
contain malicious code for allowing access to the system.

• F2. Conspirator [40,43,45,47,61,88,97,100,103,104,106,107,109,117,119,123,124,131,135,136]: EBSs
may comprise components that collude by exchanging events to exploit the system functionalities
or access sensitive resources. For example, in an Android system, a component belonging to an
app that can access the Internet and a component belonging to an app that can access contact
information could collude to send out the contact information over the Internet [47]. Furthermore,
a component can help the other component indirectly access sensitive resources, such as photos,
contacts, or text messages.

Non-Malicious flaws are the side-effects of features that were deliberately added to the system.
These flaws are not recognized by developers in general, but we categorize them as intentional
because they were designed into the system by essential system requirements. For example, functional
requirements created without considering security requirements can lead to these flaws.

• F4. Covert Channel [47,100,119,123]: Two components that are not permitted to communicate
via system-standard communication channels (e.g., event-based communication) communicate
through the side-effects of the operations authorized for them. Covert channels are classified as
intentional and non-malicious because they are not due to bugs in the system’s implementation,
but due to the system’s design. Moreover, they mainly appeared in resource-sharing that are not
maliciously designed in the system. This can happen either by means of manipulating storage,
or by modulating the time which various operations take to perform. As EBSs can be deployed
in various environments, such as mobile devices, the types of covert channels are diversified.
For example, in Android systems, shared hardware resources such as audio volume, vibrator,
and battery can be used as a communication channel between malicious components [137].

• F5. Open Event Channel [22,24,39–41,45–47,52,60,65,68,70,71,75,77,78,84,85,87,94,95,97–99,104,
106,107,110,116,117,119,123,130,135,138,139]: This flaw exists when a component intentionally
exposes its event communication channel to communicate with other components. Specifically,
a component can advertise the types of event it can dispatch or open its event interfaces to
share its functionality or data with other components. Although it would make a system more
scalable and expandable, there exists a threat where malicious components can exploit the event
communication channels in undesirable ways. For example, Android components can dispatch
system-defined events to share their functionalities with others, but malicious components can
intercept those events and exploit the functionalities [22].

Inadvertent flaws indicate software bugs. Although they can be detected and removed through
testing, some flaws may remain undetected and later cause problems during the operation and
maintenance stages of the system. Inadvertent flaws are classified based on the parts where the flaws
reside. Event-Based Communication flaws represent the flaws that can be caused by the design or
implementation of a system’s event-based communication.

• F6. Inadequate Concurrency [22,81,127,128]: A particular form of concurrency flaw exists in EBSs,
called event anomalies [81]. In general, EBSs’ components randomly process the events that were
received simultaneously. Specifically, if two different components simultaneously send the events
that can access the same memory location (e.g., a variable containing state or data) of the target
component, there is no guarantee that any one of the two events will be processed prior to the
other. This flaw may allow spoofed events sent from malicious components to corrupt the victim
component’s memory location [81].
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• F7. Unsafe Event [22,24,39–41,45,46,52,60,64,68–71,75,77–79,82,85,94,95,97,98,101,102,107,110,117,
130,135,138,139]: This flaw is caused when an event containing sensitive information is
insufficiently protected. For example, if a component broadcasts an event containing sensitive
information without any particular protection (e.g., encryption), malicious components may
intercept or eavesdrop on the event and peek at the sensitive information [22].

• F8. Unsafe Event Interface [22,24,39–41,45–47,52,65,68,70,71,75,77,78,82,84,87,94,97,99,104,106,107,
110,116,117,119,123,130,135,138,139]: If an event interface of a component has inadequate for
filtering for handling received events, the component can be exposed to spoofed events. In case a
component contains sensitive functionalities that can be triggered in response to receiving events
through the unsafe interface, a malicious component can inject spoofed events to the exposed
event interface thereby causing the target component to malfunction or operate in undesirable
ways [22].

System Configuration flaws are the ones that can be caused by a system’s defective configurations
or deployments.

• F9. Inadequate Authentication [65,80,86,90,108,118–120]: Because of a low coupling between
components in EBSs, this flaw exists when a system does not completely authenticate each
component (e.g., checking if each component has sufficient permissions to send or receive events).
This may allow malicious components to exploit event interactions in the system (e.g., intercepting
or corrupting events). Moreover, in a multi-domain EBS, as the system may comprise multiple
event brokers from different domains, the identification and authentication of components
may not be uniform across the event broker networks [135], which may allow unsafe access
between components.

• F10. Inadequate Resource Management [39–41,43,45,56,64,69,72,77,88,101,103,104,106,108,114,115,
124,126,129,132,135]: To achieve scalability, EBSs can be deployed on distributed clusters of
heterogeneous nodes, which causes complex resource management. This flaw is caused when a
system allocates resources to a component and releases them in an untimely manner. For example,
if resource allocation is not appropriately designed, a malicious component can monopolize
the system resources, which can result in denial of service. Furthermore, inadequate dynamic
allocation may lead to convert channels where malicious components can communicate with each
other [140].

The remaining flaw in green box indicates a flaw inherited from Weber’s taxonomy [25]: Logic/Time
Bomb [56,103,115] flaw indicates a piece of source code designed to disrupt the system when certain
conditions are satisfied.

3.4. Relationship between Security Flaws and Event Attacks

The identified security flaws in EBSs can be exploited by different types of attacks including event
attacks. To effectively counter each type of event attack, we identified the relationship between the
flaws and the event attacks. Then we examined existing solutions that have been proposed to protect
the flaws from event attacks. In this section, we demonstrate the relationship between the flaws and
event attacks, and assess existing solutions for resolving those attacks.

As discussed in Section 2.3, event attacks represent the security problems faced by developers or
end-users due to an EBS’s non-determinism in event processing. Recall the seven types of event attacks:
Spoofing (A1), Interception (A2), Eavesdropping (A3), Confused deputy (A4), Collusion (A5), Flooding (A6),
and Delaying (A7).

Each security flaw in an EBS can be exploited by different types of event attacks as depicted
in Table 3. To protect each type of security flaw from event attacks, various solutions have been
studied across different EBS platforms (e.g., OASIS [77] and Android [141]). Table 3 also presents the
representative solutions that prevent event attacks from exploiting each type of security flaw.
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Table 3. EBS Security Flaws, Event Attacks, and Existing Solutions.

No.
Security Flaw

in EBS
Event
Attack

Existing
Solution

F1 Trapdoor - -

F2 Conspirator A5
- Detection of information leaks [46,60,142]
- Detection and control of colluding apps [47]

F3 Logic/Time Bomb - -

F4 Covert Channel - -

F5 Open Event Channel A1-7
- Encryption of events [41]
- Policy enforcement [46,47,71,143]

F6 Inadequate Concurrency A1 - Detection of event anomalies [68]

F7 Unsafe Event A2,3,7

- Role-based access control [39,135]
- Encryption of events [41]
- Detection of vulnerable components [22,45,46,142]
- Policy enforcement [46,47,71,143]

F8 Unsafe Event Interface A1,4,6
- Role-based access control [39,135]
- Detection of vulnerable components [22,45,46,142]
- Policy enforcement [46,47,71,143]

F9 Inadequate Authentication A1-7 - Security policy validation [39,144]

F10 Inadequate Resource Management A6-7 - Analysis of runtime events and resources [145,146]

As indicated in Table 3, neither security flaw F1 nor F4 are the targets of event attacks. They can be
resolved by general security solutions such as a signature-based detection [147–149] or identification
of covert channels [47]. Flaw F2 can be exploited by the attack A5, but the threat can be minimized by
detecting sensitive information flows between the components [46,60,142] or controlling unsafe event
communication between components [47,53]. Flaw F5 can be exploited by multiple types of event
attacks (A1-7). Existing research has tried to minimize the threat using encryption of events, but it
requires safe key distribution between the components and additional resources that may become a
burden for an environment with limited resources (e.g., mobile devices) [41]. While enforcement of
security policies [46,47,71,143] has also been proposed, a coarse-grained policy may fail to prevent
event attacks. For flaw F6, which is vulnerable to the attack A1, a static analysis for event anomalies
detection [81,127,128] can help developers identify and fix the flaw. Flaw F7 can be a target for the
attacks A2, A3, and A7. Although role-based access control and encryption of events [39,41,135] may
prevent the attacks, those techniques require certain assumptions about the components engaged in
event-based interactions, namely, they assume that “benign” components will be known. In other
words, these approaches cannot properly deal with event-related security threats when the types
of components are not clearly delineated and a malicious component can behave as a legitimate
component. Though existing research has focused on the detection of attacks A2 and A3 in Android
apps [22,45,46,142], they either target limited types of attacks or do not provide actual prevention
mechanisms. Flaw F8, which is vulnerable to the attacks A1, A4, and A6, can be resolved by the
same solutions that are applicable for flaw F7. Flaw F9 is exposed to all types of event attacks,
because the possibility of a malicious component’s existence in a system can be increased if the system’s
authentication mechanism is not well-defined. This threat can be minimized by validating a system’s
security policies [39,144]. Flaw F10, which is vulnerable to the attacks A6 and A7, can be resolved by
analyzing and monitoring a system’s runtime event interactions or resource usages [145,146].

Overall, existing solutions belong to prevention- or detection-type and each type has its limitations.
As the prevention-type solutions are based on the assumption that the types of components are clearly
delineated, they can be coarse-grained in case it is unclear how to pinpoint the benign components.
Although detection-type solutions provide relatively finer-grained results for identifying the flaws
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vulnerable to event attacks, they suffer from inaccuracy and scalability issues in their analysis.
To further secure EBSs, advanced approaches that combine detecting flaws and preventing attacks
are required.

4. Evaluation

To validate our taxonomy in terms of coverage, two different types of evaluation were required:
(1) completeness: if it covers all types of security flaws in EBSs; and (2) originality: if it handles
particular types of security flaws not covered by existing listings or taxonomies.

Regarding the completeness of our taxonomy, as mentioned in Section 3.2, all types of flaws
extracted from existing publications were incorporated in our taxonomy. We carefully collected 80
existing publications dealing with security issues in EBSs as well as Android security issues that
originated from its event-based communication feature. We then derived different types of security
flaws from those literature and classified them, which guarantees that our taxonomy covers all types
of security flaws identified in the EBS domain so far.

To evaluate the originality of our taxonomy, we performed an analytic comparison with existing
listings and taxonomies for security flaws. Among a number of studies for classifying security issues,
we targeted the most cited or recently published taxonomies. To the best of our knowledge, four
existing works share our taxonomy’s goal of classifying security issues—Weber’s [25], OWASP [36],
Tsipneuk’s [29], and Linares-Vásquez’s [35]. The first three taxonomies mainly target general software
systems and the last one targets the Android system. Considering the fact that Android is widely used
and is a particular type of EBS, we included Linares-Vásquez’s taxonomy in this evaluation. Although
the selected taxonomies target different types of security issues (i.e., risks, errors, and vulnerabilities),
they also serve the same purpose as our taxonomy in that they classify the cause of the security
violations. We analyzed if each type of security issue in the selected taxonomies can be mapped to
any flaw type in our taxonomy in terms of its definition. If the definitions of any two types were
identical, we classified them as “completely mapped,” and if they were partially matched in broad terms,
then as“partially mapped.” As each taxonomy has different levels in its classification, we correlated the
security issues regardless of the levels of classification.

As mentioned in Section 3.2, out of 16 flaws in Weber’s taxonomy [25], we adapted five in terms
of their definition and added four related to event-based communication. We excluded ten flaws that
mainly focused on implementation-level security issues in general software systems (e.g., aliasing and
error handling).

Compared with the Open Web Application Security Project (OWASP) Top Ten 2017 [36], which is
a list of the 10 most critical web application security risks, three risk types can be mapped to the flaws
in our taxonomy (see Table 4). Specifically, “Injection” in the OWASP list can be partially mapped to
the flaws F1 and F8 in our taxonomy. It represents an exploitation of a victim to perform unintended
behaviors, which can be implemented via flaws F1 and F8. In a broad sense, “Sensitive data exposure” in
the OWASP list can be partially mapped to the flaw F7, because an unsafe event may expose sensitive
data. To be more exact, however, the flaws F7 and F8 are more specific to event-based communication.
The remaining seven types of risks in the OWASP list such as “Cross site scripting” and “Insecure
deserialization” are more focused on the inherent characteristics of web applications.
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Table 4. Correlation with Existing Security Flaw Taxonomies.

No.
Security Flaw

in EBS
Weber’s

[25]
OWASP

[36]
Tsipenyuk’s

[29]
Linares-Vásquez’s

[35]

F1 Trap door ◦ ◦ ◦ ◦

F2 Conspirator

F3 Logic/Time Bomb •

F4 Covert Channel ◦

F5 Open Event Channel

F6 Inadequate Concurrency ◦

F7 Unsafe Event ◦ ◦

F8 Unsafe Event Interface ◦ ◦ ◦

F9 Inadequate Authentication ◦

F10 Inadequate Resource Management ◦ ◦ •

◦ : partially mapped, • : completely mapped

Tsipenyuk’s taxonomy [29] handles implementation-level errors that affect a system’s security.
It classifies seven main categories and 76 underlying errors. Among those errors, three types can be
mapped to the flaws in our taxonomy (see Table 4). Specifically, both “Command injection” and “Process
control” can be partially mapped to the flaws F1 and F8 in our taxonomy. They also represent the
exploitation of a victim to perform unintended behaviors, which can be implemented via flaws F1
and F8. “Unreleased resource” can be partially mapped to the flaw F10 in our taxonomy. It represents a
system’s failure to release system resources, which can be caused by inadequate resource allocation.
However, none of these error types consider the inherent characteristics of EBSs, such as event-based
communication. The remaining 73 types of errors in Tsipenyuk’s taxonomy do not correlate with the
flaws in our taxonomy.

Linares-Vásquez’s taxonomy [35] targets security vulnerabilities in Android, and classifies 15 main
categories with 126 underlying vulnerabilities. Similar to the aforementioned taxonomies, both “Code
injection” and “Command injection” in Linares-Vásquez’s taxonomy can be partially mapped to the
flaws F1 and F8 in our taxonomy. “Resource management errors” can be completely mapped to our
flaw F10 in terms of its definition. Although “Race condition” in Linares-Vásquez’s can be partially
mapped to flaw F6, it does not consider event anomalies [81]. “Missing encryption of sensitive data”
and “Insufficient verification of data authenticity” can be partially mapped to flaw F7 to consider an
event containing sensitive information without any particular protection. The remaining 120 types of
vulnerabilities in Linares-Vásquez’s taxonomy are more focused on Android-specific security issues.

Overall, although existing taxonomies for security issues handle some of the flaws in our
taxonomy, most of them are partially matched. Our taxonomy covers additional security flaws
related to the inherent characteristics of EBSs, which are not covered by existing listings or taxonomies.
However, it is important to note that existing taxonomies cover the flaws related to general software
systems that are not the focus on our taxonomy.

5. Discussion

In this paper, we analyzed security flaw patterns and trends in the existing literature,
and underlined challenges that will shape the focus of future research. Our taxonomy can help
engineers assessing security problems in EBSs they built. A finer-grained classification of the most
common flaws or attacks is useful because system administrators need to anticipate what they will
experience in their system. It also provides a baseline for collecting and organizing security-related
data, and consequently the information can help engineers strengthen their EBSs. Furthermore,
our taxonomy will be useful for security practitioners to organize the problem space. Security problems
are caused by an unexpected combination of flaws in general. In these cases, finer-grained distinctions
between security flaws can help define a specific problem space. Our taxonomy will be useful for
researchers to develop and evaluate potential research directions. Despite significant research efforts
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to mitigate the security threats in EBSs, solutions targeting these types of systems still lack. We believe
that the results of our review (see Section 3.4) will help initiate the required research in this area.

In this research, we carefully followed the general guidelines for a systematic literature review
(SLR) process in order to minimize the threats to validity. Nevertheless, there exist inherent threats
that require further discussion. Our SLR process includes the utilization of search engine and keyword
construction. To maximize the completeness of our taxonomy—whether all of the appropriate literature
was included—, we adopted multiple search engines and employed an iterative approach for keyword
construction. Furthermore, our SLR process inevitably relies on the interpretation of individual
reviewers. To address any resulting bias, we additionally conducted the crosschecking of the literatures,
such that no paper reviewed by a single reviewer. Although new variations of security flaws in EBSs can
be encountered, to mitigate this threat, our taxonomy has adapted existing classification method which
has proven to be rich enough to adequately classify the characteristics of security flaws. This implies
that our taxonomy can be adapted to counter new types of security flaws in EBSs.

6. Conclusions

Event-based systems (EBSs) have become popular in mobile cyber physical systems, IoT
applications, mobile applications, and web applications because of their inherent advantages. However,
their reliance on non-determinism in event processing can be exploited by different types of attacks
(e.g., event attacks). In the light of current interest in the security threats within EBSs, we developed a
novel security flaw taxonomy for EBS. Each flaw is categorized based on the common factors present
among flaws, enabling a systematic approach to resolving the security problems in an EBS. We showed
the correlations between each flaw and different types of attacks as well as between each flaw and
the applicable existing solutions for preventing the corresponding attacks. We also demonstrated that
our taxonomy covers all types of security flaws identified in EBSs so far and even handles additional
security flaws not covered by existing taxonomies.

Our taxonomy will help developers determine the types of security flaws existing in their target
system and decide the appropriate techniques suitable to resolve each one. In addition, our taxonomy
will shed light on potential research directions for securing EBSs.

Author Contributions: Y.K.L. was the main researcher who initiated and organized research reported in the
paper, and all authors including Y.K.L. and D.K. were responsible for analyzing the literatures and writing the
paper. D.K. performed detailed writing-review and validation. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the National Research Foundation of Korea(NRF) grant funded by
the Korea government(MSIT) (No. 2020R1F1A1068774) and a research grant from Seoul Women’s University
(2020-0451).

Acknowledgments: Dohoon Kim is the corresponding author of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Taylor, R.; Medvidovic, N.; Dashofy, E. Software Architecture: Foundations, Theory, and Practice; John Wiley &
Sons: Hoboken, NJ, USA, 2009.

2. Bonte, P.; Ongenae, F.; De Turck, F. Subset Reasoning for Event-Based Systems. IEEE Access 2019,
7, 107533–107549. [CrossRef]
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