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Abstract: Many test case prioritization (TCP) studies based on regression testing using a code-based
development approach have appeared. However, few studies on model-based mutation testing have
explored what kind of fault seeding is appropriate or how much the code-based results differ. In this
paper, as automatic seeding for the mutation generation, several mutation operators were employed
for the UML statechart. Here, we suggest mutation testing employing the model-based development
approach and a new TCP method based on an alternating variable method (AVM). We statistically
compare the average percentage of the fault detection (APFD) results of the new method to other
TCP methods such as a greedy algorithm for code coverage or fault exposure possibility. Finally,
in empirical studies, the model-based TCP results for a power window switch module, a body control
module, and a passive entry and start system are derived; these are real industrial challenges in the
automotive industry.

Keywords: mutation testing; test case prioritization (TCP); UML model; software model;
regression testing

1. Introduction

Model-based development approaches are required because software is becoming increasingly
complex. Such approaches design, implement, and verify models using formal techniques.
In model-based testing, during model development, the software is verified and validated early
using model-based simulation to minimize the effort required. Most code-based regression tests
have employed test case prioritization (TCP) employing fault injection. Few reports on TCP during
model-based development have appeared. It is essential to optimize the test suite continuously
while regenerating new test cases in the regression testing as the software model changes, as in
the code-based development approach. During model-based development, the software can be
altered to reflect customer requirements or to fix bugs, and a regression testing environment is
built in the same manner as that of traditional code-based development. The strategies used to
optimize test cases in the regression testing environment include test case minimization, selection,
and prioritization. Minimization removes unnecessary or redundant test cases from the test suite;
selection identifies a partial suite from the entire test suite with which to test a change in part of the
software. Prioritization selects cases that allow early fault detection, thus cost-effectively prioritizing
the test order. In such a regression testing environment, various objective functions can be used to
optimize test cases. Structural coverages (statement and branch coverage, and an MC/DC) afford
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code-level coverage or transitional coverage at the model level. Alternatively, test cases in a suite
can be optimized by what they reveal in terms of faults. Here, we use TCP to optimize test cases
created via fault injection testing using mutants. To do this, a mutant of the model has to be created
via hand seeding or automatic seeding using mutation operators. In a study by Ali et al. [1], hand
and automatic seeding were compared; the mutation operators generated many more mutations than
did hand seeding. Additionally, these results showed that mutation operators were more efficient to
generate test cases based on mutation testing within a given time.

Such TCP techniques have been used to compare algorithms that derive objective functions
including the average probability of fault detection (APFD), or average probability of fault detection
with cost (APFDc); these are traditional measures. However, previous studies were limited to
algorithms or objective functions based on traditional code-based development. During mutation
testing, automatic fault seeding uses mutation operators to generate mutants efficiently. By using these
mutation operators, mutants with faults can be created in existing programs and test cases can be used
to compare the original code and the mutants to reveal faults.

Test cases can be prioritized to reveal several faults at once, or to identify serious faults at an early
stage to achieve an objective function. However, the previous TCP was code-based; it is necessary
to validate that the same objective functions can be used for model-based mutation testing featuring
automatic fault seeding using mutation operators. For example, after creating a control flow graph
corresponding to the sequential execution order based on the source code, a mutation operator can
create a mutant that changes the graph or the relational operators as a coding mistake. However, unlike
the code-based development approach, a software mutant can affect the structural and behavioral
diagrams. Here, we compare a TCP method based on model-based development approaches with
traditional code-based results for mutation testing.

First, we developed our software model for the automotive electronic components based on
the model-based development approach. To obtain an optimized test suite in a regression testing,
we wished to employ the mutation testing, but most of the research focused on the code-level. What we
found from the research trend was that the model-based mutation testing is not researched well since
code-based mutation testing can be employed to the model using automatic code generation. However,
the model is one of the important test oracles, which can generate test cases for verification and
validation. As our research motivation, we researched what kind of mutation operators should be
considered and which algorithm can efficiently achieve the high APFD result for the model-based
mutation testing.

The research questions can be summarized as follows:

RQ1. What mutation operators should be used for model-based mutation testing?
RQ2. Which TCP technique is optimal for fault detection? Does this result differ from the code-based

result?
RQ3. Is the optimal search algorithm for model-based TCP the same as the code-based algorithm?

Does this work for real industrial cases?

To answer RQ1, we define mutation operators active on state diagrams (unlike the operators
employed during code-based mutation testing) and use them to create mutants. The operators used in
existing code-based or model-based studies are applied to unified modeling language (UML)-based
state diagrams. Section 3 explores whether such operators can be used for model-based mutation
testing. To answer RQ2, we evaluate whether TCP methods based on code can be used for model-based
mutation testing. Test cases are created using the mutants of Section 5, and prioritized. To answer
RQ3, test cases are prioritized with the aid of the alternating variable method (AVM) (a representative
test case generation method). Search-based software features simulated annealing, the use of genetic
algorithms, or particle swarm optimization. Again, we use the traditional AVM. Ali, Muhammad,
and Andrea [1] showed that a limited-space search may be superior to the AVM. We employ the
AVM because the interface range of any specific module is limited. With our research questions in
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mind, we generate test cases to kill mutants generated by the mutation operators and compare the
model-based and code-based results of TCP using APFD as the objective function.

Section 2, Background explores the model-based development approach, the related test case
prioritization, and mutation testing. Next, Section 3 shows that our model-based mutation testing
method is specifically described and applied to the triangle classification example in Section 4.
From Section 5, we explain the empirical results on the three automotive electronic modules. Finally,
we review the total experimental results and our contribution in Section 6.

2. Background

Our test case generator features a generational structure that combines a custom parser with
a satisfiability modulo theories (SMT) solver to generate test cases in a model-based development
environment. The test cases are based on a class diagram and a state machine [2]. First, XML
path language (XPath) is used to retrieve the information needed to generate a test case from the
model via XMI transformation [3]. XPath then parses the state diagrams and the action language
or implementation code of the functions using ANTLR, a representative custom parser generator.
The parsed text is used to generate test cases automatically based on Yices (an SMT solver [4]).

2.1. The Model-Based Development Approach

The model-based development approach is a recent technique that enables rapid software
development and validation. The greatest advantages are that the technique can detect errors in
software development early based on analysis of customer requirements and it uses simulation
techniques to merge software complexities. The model is a tool for customer specification analysis,
so it can be useful for early verification via prototyping, and serves as an oracle when generating test
cases using a formal model language or a specific tool-based model such as Simulink. The test cases are
created by analyzing the activity and state diagrams of the various models [5,6]. In the UML context,
many attempts have been made to generate test cases using state diagrams. Samuel et al. developed a
predictive AVM that afforded path-based coverage using fewer test cases than previous methods [7].
However, given the limitations of an AVM, no globally optimal solution was found and coverage
was not 100 percent. Gulia presented a path-based test case generation method; a parent solution
was used to create a path-based child solution employing a genetic algorithm [8], but the method
was not compared to other algorithms. Furthermore, these methods were not tested in real industrial
situations. As a different approach, Choi and Lim generated test suites for fault localization from UML
models [9]. Several efforts have been made to create test cases based on requirements manifested
in use-case tables or diagrams [10]; these are advanced test scenarios reflecting customer demands.
However, it is difficult to use a testing tool to create runnable test cases directly. Here, to study test
case optimization employing the model-based development approach, we use a software based on the
UML 2.1 standard. The Eclipse-based Papyrus open-source tool is a well-known UML-based tool [11].
Enterprise Architect [12] and IBM Rational Rhapsody are representative commercial UML tools. In this
paper, Rhapsody is used as a UML model-based tool. Rhapsody uses its own target simulation
framework, called the Object Execution Framework (OXF) to run code simulating the behavioral
diagrams of the developed software model. However, Rhapsody is incompatible with fUML [13]
[the executable UML standard of the Object Management Group (OMG)]. In fUML, action language is
used to implement model behavior; a behavioral diagram corresponding to a platform-independent
model is derived. The action language may be directly used for software simulation, or translated
into platform-specific languages [14]. We use Rhapsody principally to create class, object, and state
diagrams. C is employed to implement specific events, transitions, guards, and actions in state
diagrams; we do not use an action language. To generate test cases automatically, we employ a concolic
execution method in a custom parser-based simulation environment, instead of the OXF framework.
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2.2. Test Case Optimization

During software development, it is often necessary to reimplement the software for several
reasons such as changing customer requirements or to fix bugs. The three most widely used methods
for test suite optimization are test case selection, minimization, and prioritization. We use each of these
to optimize the test suite.

2.2.1. Test Case minimization

Test case minimization eliminates obsolete or redundant test cases from test suites. For example,
if one test case identifies fault F1, and another identifies fault F2, they are combined into a new test
case that identifies both faults F1 and F2. Such minimization not only reveals faults quickly but also
ensures code coverage and reduces testing time.

2.2.2. Test Case Selection

A subset of test cases can be selected from changed parts of the software. The minimal number
satisfies a specific objective function of the test suite; the suite is optimized using the selected cases.
This is unlike test minimization; existing test cases are not modified, and only the required test cases
are selected from the test suite T. The test case set becomes a new test suite T′. For example, the branch
coverage of each test case can be measured in T, and test cases selected using an objective function
to ensure 100 percent branch coverage; the minimum number of test cases in T required for this
constitutes T′.

2.2.3. Test Case Prioritization

Prioritization changes the test case execution order to maximize early fault detection and minimize
cost. When creating a new test suite T′ from cases in an existing test suite T, the objective function
described above is used to optimize the execution order of T. Unlike test case selection, the objective
is achieved by changing test case execution priority rather than finding a minimum number of test
cases. For example, if one test case finds more faults than any other case, it is run first. We use test case
prioritization for regression testing.

2.3. Mutation Testing

If an error is accidentally inserted when modifying the code because of changed customer
requirements, this can affect functionality. Mutation testing can be used to solve such problems.
A mutant (a context error) caused by a developer is detected in otherwise correct software and a
robust test case is selected to kill such mutants. High numbers of many types of mutants are required,
optimally generated by a mutant operator. Hand-seeded mutants are closer to the errors made
by real programmers, but are slow to create. Do found that automatic seeding was more efficient
than hand seeding [15]; we use automatic seeding here. Various objective functions can be used
to measure mutant killing. APFD is the most representative technique, measuring how quickly
mutants can be killed during test case execution. APFD does not consider execution time or fault
severity; APFDc does. Model-based mutation testing is an active field of research; mutants generated
automatically or manually using UML or Matlab-based software models are killed [16,17]. As no
code (rather a model) is mutated, operators appropriate for model-based development must be used.
Aichenig studied model-based mutation testing using a mutation operator of a UML-based model [5].
Automatic test case generation based on code has been more widely studied than model-based
mutation. Concolic execution-based test case generators including CREST and KLEE have been
employed [18,19]. These methods combine concrete and symbolic approaches that complement their
mutual disadvantages. However, such code-based, test case generation tools create cases only in
specific languages. Code-based TCP has also been studied. Elbaum used APFD and APFDc when
evaluating various TCP techniques in a code-based regression-testing environment [20–22]. Qi, Luo,
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and colleagues performed static and dynamic TCP using a Java-based open-source program [23].
McMinn developed an open-source AVM for test data generation. Pradhan performed test case
selection using a search-based algorithm featuring a time budget [24]. Arrieta prioritized test cases
using search-based algorithms (a greedy algorithm and an AVM [25]).

In typical model-based mutation testing, mutations for the software model or specific diagrams are
used to design robust test cases or optimize test cases. Bernhard K. Aichernig, the most active researcher
of model-based mutation testing, studied how to perform test case selection on mealy machines using
active automata learning techniques for conformance testing [26]. He also proposed a method to
generate test cases in a block-box environment based on mutation testing in the model, such as
statecharts, class diagrams, and instances diagrams [27]. Fevzi Belli et al. performed a test for fault
detection at the system level from event sequence graphs, finite-state machines, and statecharts [28].

2.4. Search Techniques

Test case minimization, selection, and prioritization use different methods to obtain optimal
solutions. The TCP that we employ improves the solution by executing the most effective test case
first. Thus, a search-based algorithm is used to determine whether the current solution is optimized
by a fitness function, and to search continuously for a solution that can be further improved; this is a
heuristic approach. For example, if the fitness function measures statement or branch code coverage,
a higher code coverage is achieved when the solution is continuously improved. We use search-based
algorithms to optimize test cases based on mutation testing; the number of mutants killed by the
optimized test suite is the fitness function. In TCP, the best solution kills many mutants early [29].
To measure this, most studies employed APFD. The ordering of test cases in a suite to optimize
the objective function is an NP-hard problem; such problems are often solved using a search-based
meta-heuristic algorithm such as a genetic algorithm, simulated annealing, and the AVM. The models
allow genetically based automatic programming, test case generation, and cost reductions. Here,
to find the best solution using an objective function, we optimized an AVM for local searching.

3. Model-Based Mutation Testing

First, test cases must be created. As described in Section 3.1, we generate test cases employing
a UML model featuring a custom parser and an SMT solver. The cases are automatically generated
from mutants by the model-based mutant operators described in Section 3.2, and the optimal test suite
selected via TCP. Section 4 discusses the addition of a fitness function to several TCP methods. Section 5
reviews model-based TCP in the automotive domain; we study a power-window switch module,
a body control module, and a passive entry and start system. Section 6 contains the conclusions.

3.1. Model-Based Test Data Generation

Unlike traditional test data generation by legacy codes, software is used for test data generation
in the model-based development approach. UML is the most widely used descriptive language for
structural and behavioral models. Currently, UML ver. 2.4 is implemented via Papyrus, Enterprise
Architect, or IBM Rational Rhapsody; we use Rhapsody, which supports XML Metadata Interchange
(XMI) (an OMG standard), and existing model information can be transferred from UML-based tools
to other tools [30]. However, when using XMI, UML model information is imported unchanged,
but other information must be re-processed. For example, structural diagrams are usually encoded in
UML and can be XMI-processed, but model behavioral diagrams containing (perhaps) actions must
be redrafted. In the 2000s, a standard action language was lacking; models were implemented using
platform-dependent codes. However, commencing in 2010, OMG provided the Foundational Subset
for UML for Executable Models (fUML) standard. It is now possible to develop a platform-independent
model via a platform-independent action language when building behavioral diagrams of software
models. Another OMG model-based testing standard, the UML testing profile (UTP), is also
available. These standards create abstract test cases from platform-independent models, and configure
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test environments that convert abstract tests to actual tests with real execution targets. However,
one problem is that an abstract test is converted to an actual test by an executor that must engage in
interpretation within a real test target environment during active run-time. This renders it difficult to
use executors that do not meet specific, real-world industrial development standards. For example,
in the automotive industry, testing software must conform to the ISO26262 safety standard for
passenger vehicles; general UML model-based testing tools are not so certified. Below, we ensure that
the automotive verification requirements are met. A custom parser generator has a role to play if the
behavioral diagram of a UML model contains unknown elements. For example, if the state chart or
activity diagram is described using an action language or C/C++, the behavioral description is parsed
using parsers specific to these languages. The parsed code is expressed in SMT-LIB format and used to
derive a solution with the aid of a general SMT solver. Yices and Z3 are the most popular SMT solvers
supporting SMT-LIB 2.0; we use Yices.

3.2. State Chart-Based Mutation Operators

RQ1 was: What mutation operator should be used for model-based mutation testing? The Krenn
model-based mutation-operator-related study is informative [5]. Structural and behavioral diagrams
of model-based development techniques require mutation operators distinct from the traditional
code-based operators. A model-based mutation operator recognizing a structural diagram (such
as a class diagram) is analogous to a class-based mutation operator employed in object-oriented
programming, and may engage in method overloading and the creation of inappropriate relationships.
State diagrams may feature incorrect transition connections, wrong event calls, and state or transition
deletions. Thus, logical, relational, statement deletion, and constant-value-change operators are the
model-based mutation operators equivalent to code-based operators [28]. However, in a general
model-based development environment, model checking is principally static; it is sought to verify
model validity. Rhapsody supports model checking, detecting basic errors. Here, of the various
mutation operators on state charts that cannot be detected by model checking, we used those listed on
the below Table 1.

Table 1. Mutation Operators for State-Chart-Based Mutation Testing.

ID Mutation Operator Mutation Method Formula

MO1 Replace call trigger
Replaces a trigger of a transition with
another trigger. δ : Si × T′(N, G, A)→ Sj

MO2 Replace guard
Replaces an operand, a logical operator, or a
relational operator on a guard. δ : Si × T(N, G′, A)→ Sj

MO3 Replace guard to false Ensures that a guard is false. δ : Si × T(N, False, A)→ Sj
MO4 Replace guard to true Ensures that a guard is true. δ : Si × T(N, True, A)→ Sj

MO5 Replace action
Replaces an action on a transition or a state
with another action. δ : Si × T(N, G, A′)→ Sj

MO6 Replace incoming
Replaces an incoming transition to another
state, excluding the default transition. δ : Sk × T(N, G, A)→ Sj

MO7 Replace outgoing
Replaces an outgoing transition to another
state, including the default transition. δ : Si × T(N, G, A)→ Sk

MO8 Remove state
Removes a state and its related transitions
on a state machine. δ = ∅, Si = ∅

MO9 Remove transition Removes a transition on a state machine. T(N, G, A) = ∅
MO10 Remove call trigger Removes a call trigger on a transition. δ : Si × T∅(N, G, A)→ Sj
MO11 Remove guard Removes a part of a guard condition. δ : Si × T(N, G′, A)→ Sj
MO12 Remove action Removes an action on a transition or a state. δ : Si × T(N, G, ∅)→ Sj
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These mutation operators are used to create new mutants repeatedly that are not combined.
To validate the mutants, the add or replace mutation operator uses the events, actions, inputs,
and outputs of the original model. The mutant set is used to generate test cases for fault detection.
Specifically, the original state chart and mutants generated by the mutation operator are employed
to generate test cases that reveal the faults created by the mutants. If a mutant is selected, a concolic,
execution-based, test case generator creates a test case that detects the fault. As validation proceeds,
the test cases are added to the test suite. The mutant-based test generation process is performed for a
predefined time or for a predefined number of times. Finally, the test cases are added to the test suite
and prioritized.

Figure 1 shows an example statechart and its mutants for simple fade-in and -out features by the
lamp on and off commands. The mutants generated by mutation operators in a UML-based state chart.
The mutant operator falsifies a guard, which thus modifies the guard of any transition to become false
in the original state chart (the first and second cases). If this can be expressed as a transition T, a 5-tuple
is created. The state transition for any transition function δ can be expressed as a 6-tuple as follows

δ : Si × T(N, G, A)→ Sj

where Si is the source state, Sj is the target state, N the name, T a trigger (that may be the null), and G
the guard of the transition. A is the combination of actions of the transition function. The mutation
operator MO3 of Figure 1b can be expressed as

δ : S0 × T(N, False, A)→ ¬ S1

S0: Root state

Thus, no transition can proceed to the next state S1. However, if a transition from the root changes,
it is impossible to enter any other state, and this scenario is discovered by the model checker. A mutant
by the operator MO3 of the Figure 1c can be expressed using very similar notation

δ : S2 × T(N, False, A)→ ¬ S3

However, this transition may not be detected by the model checker because it is a general
transition between states. The mutation operator MO7 in the Figure 1d shows a mutant, the original
state transition of which changes from S3 → S1 to S3 → S2.

δ : S3 × T(N, False, A)→ S2

This mutation also may not be detected by the model checker. It is thus useful if the fault is
detected early in iterative mutation testing.
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(a) The original state diagram for the lamp on and off control.
This diagram is used to generate the mutants (b), (c) and (d)

(b) This mutated diagram by MO3 cannot be operated from
first since the guard condition of the transition from Root to
Lamp Off was changed to false.

(c) This mutated diagram by MO3 has a false guard on a
transition from Lamp FadeIn to Lamp FadeOut.

(d) A target of the transition from Lamp FadeOut to Lamp
Off was changed to Lamp FadeIn by MO7.

Figure 1. Examples of a model-based mutation operator.
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3.3. Test Case Prioritization

Consider software S; the test suite used to test S is T. Term any source code modification in S S′,
and the test suite used to retest the changed software T′. During regression testing, the test suite T for
S must achieve certain objectives. In particular, when the software change S→ S′ occurs, T should be
used to examine whether the test cases meet the changed customer requirements. Some test cases in
T can be retained without change, but a new test case must be added to T′. However, as software
becomes more complex and test suite size increases with each regression cycle, it may not be possible
to perform all tests in T′ if resources are limited. Optimization techniques can be used to construct a
new test suite T′. Coverage is a test exit criterion and an important factor as a metric for monitoring
how much testing has been performed. Coverage includes structural coverage of a model or a source
code, and fault coverage; both are used as measures of testing. For example, if a certain software
must meet 10 requirements, all must be verified. On the other hand, to confirm efficient source code
implementation, structural coverage confirms that all necessary tests meet certain conditions or
decision-making criteria. Finally, fault coverage should reveal all faults. If the test suite meeting these
criteria is optimized early, the resources required during each regression are low. APFD is used to
measure how early the test suite reveals faults. For example, for 10 faults, suppose that the first test
case reveals both faults 1 and 2. That test case is executed first because it is efficient. The APFD is
calculated using the test case execution order for 10 faults:

APFD = 1− TF1 + TF2 + . . . + TFm

n × m
+

1
2n

(1)

TF1 : test case revealing the first fault.
TF2 : test case revealing the second fault.
· · ·
TFi : test case revealing the ith fault.
n : number of test cases
m : number of faults

However, APFD assumes that all faults are equally severe and that all tests cost the same. The test
order is not prioritized. APFDc prioritizes tests by fault severity and considers costs. To this end,
an additional term is needed to reflect the severity and weigh the costs of Equation (1), as follows [21]:

APFDc = 1−
∑m

j=1( f j × (∑n
i=1 ti − 1

2 tTFi ))

∑n
i=1 ti ×∑m

j=1 f j
(2)

ti : cost of the ith test case
f j : severity of the jth fault
TFi : test case order of test suite T revealing the ith fault

The cost shown above should reflect the time required for test case execution, but fault severities
can be difficult to measure precisely. If all fault severities are assumed to be identical, the APFDc
becomes more concise [23]:

APFDc = 1−
∑m

j=1(∑
n
i=TFi

ti − 1
2 tTFi )

∑n
i=1 ti ×m

(3)

When we simulated real-world test case execution times on a PC, they did not differ markedly.
Of course, test times in a black box and the real world may differ in terms of variables. However,
in a white box, real execution times can be reduced. Thus, the APFD serves as an objective function.
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Model-based mutation testing has attracted much attention. Usually, mutants are generated by a
software model based on UML or Matlab, as are the test cases [16,17]. Mutation operators are required
in model-based environments, but not for code mutation. Bernhard et al. studied model-based
mutation testing using mutation operators of a UML-based model [5].

3.4. The Alternating Variable Method (AVM)

The AVM is first applied to search locally for numeric test data, and then to find an optimal local
solution in the search space [31]. For example, if three input vectors a to c exist, an arbitrary vector
is first selected. Assuming that a is selected, the inputs are created by changing a with b and c held
fixed; fitness ranges from 0 to 1, where 1 indicates optimal fitness. When the fitness attains 1, fitting is
paused because local optimization has been achieved. This entire process repeats continuously [32].
However, as the AVM method is used principally for local optimization, a global search algorithm is
also required. We perform local optimization in this manner; when a fitness of 1 is not obtained in one
local optimization, another solution is sought. If a global solution is optimal, it is improved further via
local optimization.

As above Algorithm 1, sequential AVM operation is performed on the test suite; if no improvement
occurs over three attempts, the algorithm seeks a solution in another space. If a better solution is
found, AVM-based prioritization finds a local optimization within that space; this becomes the globally
optimal solution. The greatest advantage of this method is that the algorithm seeks a globally optimal
solution that prevents underconvergence and also quickly finds local optimal solutions.

Algorithm 1 The search-based test case prioritization using the alternating variable method (AVM)

1: while termination criterion is not matched do
2: SAVM=AVMSearch(S,n)
3: if S is not improved in last 3 loops then
4: S′=exploratorySearch(S)
5: end if
6: if fitness(S′) > fitness(S) then
7: S′′=AVMSearch(S′)
8: if fitness(S′′) > fitness(S′) then
9: S = S′′

10: else
11: S = S′
12: end if
13: end if
14: n = n + 1
15: end while

4. The Triangle Classification Example

Test prioritization algorithms based on traditional code have been used principally to ensure
code coverage [33] of code-based development and model coverage of model-based development.
However, the goal of mutation testing is different. During TCP that reveals faults quickly, the mutation
operator applicable during model-based development differs from that of the code-based development
environment. The mutants and faults differ, as do the TCP results. Here, we generate mutants using
the mutation operators of Table 1 and perform TCP, employing an objective function that checks
whether mutants are killed early. APFD both ensures coverage and exposes faults in a test suite.
APFD is a low-cost multi-objective function, performing prioritization with consideration of time and
resource costs. We use APFD for objective prioritization; earlier fault detection (in the absence of
severity or likelihood weighting) serves as an indicator of efficiency. APFD objectively evaluates test
suites before and after test case optimization and measures whether fault exposure improves after
prioritization. RQ2 was: Which prioritization technique allows optimal fault detection? Is this better
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than the code-based approach? We first performed TCP using APFD as a fitness function employing
the following techniques:

• Random: After generating a test suite to kill mutants generated by mutation operators, the suite
is subjected to random prioritization. If the algorithm runs only once, the differences between
this and other algorithms is large. Thus, the number of random permutations is identical to
the number of test cases. This determines whether the randomly generated tests allow fitness
evaluation. The computational complexity is O(n);

• Statement total (StTotal): Statement coverage is one of code-based coverage to confirm whether
all statements are covered or not. For model coverage, this prioritization is performed using an
objective function to cover all possible transitions of the state diagram; the coverage is 100 percent;
The computational complexity is O(n).

• Statement additional (StAddtl): This is similar to the above method but, after selecting a
reference test case, prioritization (by a greedy algorithm) selects another case that additionally
covers another transition. The complexity is O(n2);

• Fault exposure probability total (FepTotal): Test case execution is prioritized in the order of fault
detection probability. The first-selected test suite maximally increases the total probability when
the fault is exposed; the numbers of exposed faults are always maximized. The computational
complexity is O(n);

• FEP additional (FepAddtl): This is similar to the above method, but basic prioritization employs
a greedy algorithm. The fault exposure probability always increases when the next test case is
added. The computational complexity is O(n2);

• AVM: A permutation is first prioritized using a fitness function, and the prioritization method,
then locally optimized. As only local optimization is possible, an exploratory method is added to
find global solutions even when local optimization using the AVM fails after a defined number of
trials. The computational complexity is O(nlogn).

We generated 100 different mutants using a simple UML state diagram that selects triangle type
by reference to the lengths of the sides, as shown in the Figure 2. During mutation testing, only test
cases that killed mutants were included in the test suite. To prevent that number from becoming
too large, if the number of cases in the suite exceeded a certain number, only test cases that killed
more mutants were added. This prioritized test case execution. We obtained APFD data for each
prioritization method based on optimized test suites.

Statistical model: We explored whether data generated via prioritization were normally
distributed. The numbers of mutants and test cases in the test suites were determined. One hundred
mutants were generated using mutation operators, and test cases created to kill the mutants.
Those cases were prioritized 100 times. ANOVA analyses of the average between-group differences
rejected the null hypothesis (no between-group difference) at less than 0.005 in Table 2; the differences
were, in fact, significant. A total of six methods were compared including five code-based TCP methods
and our suggested AVM-based TCP method; the degree of freedom is 5 in between-groups, and the
degree of freedom of within-groups is 594, since we tested 100 times.

Table 2. One-way ANOVA results.

Category Sum of Squares df Mean Squares F p-Value

Between-groups 0.553 5 0.111 4635.015 <0.005
Within-groups 0.014 594 0.000 - -

Total 0.567 599 - - -
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Figure 2. A state diagram of triangle classification.

We used the post-hoc Scheffe method and represented the result in Table 3. In most cases,
the mean, post-test between-group difference (p) was <0.005. No clear difference was apparent
between FepAddtl and AVM.

As shown in Figure 3, the Random, StTotal, and StAddtl performed less well than FepTotal and
FepAddtl. The former methods achieved code or model coverage regardless of fault exposure, and thus
exhibited low APFDs. The StAddtl APFD was lower than the Random APFD because Random creates
as many test suites as test cases (computational complexity O(n)), associated with a higher APFD.
However, FepTotal, FepAddtl, and AVM exhibited relatively good TCP. As APFD served as the fitness
function, good prioritization reflected good performance. FepAddtl was better than FepTotal because
the test suite detected faults with ever-increasing probability, driven by a greedy algorithm. The AVM
was significantly better than FepTotal. Usually (compared to AVM), FepTotal found a good solution
in a shorter time because the computational complexity of AVM is O(nlogn), but that of FepAddtl
is O(n2). We ran the algorithms on a PC(Intel R© CoreTM i7-9750H with RAM 24GB) and the average
execution times of the algorithms for 100 times were found to be as follows: Random-413 ms, StTotal-13
ms, StAddtl-828 ms, FepTotal-3 ms, FepAddtl-5186 ms, and AVM-3834 ms. As explained in the second
paragraph of this section, the time complexities of the algorithms are as follows: Random-O(n),
StTotal-O(n), StAddtl-O(n2), FepTotal-O(n), FepAddtl-O(n2), AVM-O(nlogn). Since FepAddtl and
AVM do the calculations to select the next fault exposure test case in every loop, the more computation
power is required than in the code coverage calculation. They require more execution time than StAddtl,
but give better APFD results. Finally, AVM’s execution time is shorter than FepAddtl, and the APFD
result of AVM is the best among other TCP algorithms. However, sometimes, after AVM convergence
to a local optimization point, the results no longer improved. This occurred 6–8 times in 100 iterations;
it is essential that a solution does not converge only to a local point. Notably, our code-based TCP
did not differ from that of Elbaum et al. [20], because some algorithms are not optimized in terms of
fault exposure.
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Table 3. The outcomes of test case prioritizations.

(I) Method (J) Method Average Difference (I − J) p

Random

StTotal 0.003824646490 <0.05
StAddtl 0.004647020250 <0.05
FepTotal −0.051540050500 <0.05
FepAddtl −0.060530909030 <0.05

AVM −0.060551111040 <0.05

StTotal

Random −0.003824646490 <0.05
StAddtl 0.000822373760 ≥0.05
FepTotal −0.055364696990 <0.05
FepAddtl −0.064355555520 <0.05

AVM −0.064375757530 <0.05

StAddtl

Random −0.004647020250 <0.05
StTotal −0.000822373760 ≥0.05

FepTotal −0.056187070750 <0.05
FepAddtl −0.065177929280 <0.05

AVM −0.065198131290 <0.05

FepTotal

Random 0.051540050500 <0.05
StTotal 0.055364696990 <0.05
StAddtl 0.056187070750 <0.05

FepAddtl −0.008990858530 <0.05
AVM −0.009011060540 <0.05

FepAddtl

Random 0.060530909030 <0.05
StTotal 0.064355555520 <0.05
StAddtl 0.065177929280 <0.05
FepTotal 0.008990858530 <0.05

AVM −0.000020202010 ≥0.05

AVM

Random 0.060551111040 <0.05
StTotal 0.064375757530 <0.05
StAddtl 0.065198131290 <0.05
FepTotal 0.009011060540 <0.05
FepAddtl 0.000020202010 ≥0.05

Figure 3. A comparison of test case prioritization methods.

5. Empirical Studies: Industrial Cases

We explored whether our model-based prioritization could be applied to real industrial UML
models for the automotive industry (specifically: models of chassis parameters, body electronics,
and engine controls). Most prior empirical studies have focused on automotive electronics, many
of which are simple, with outputs determined by the combinations and the timings of input signals.
In Section 4, we showed how to generate mutations using mutation operators that seeded the state
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charts of model-based tests in a manner unlike code-based TCP. This Section seeks answers to RQ2 and
RQ3 (Which prioritization technique allows optimal fault detection? Is this better than the code-based
approach?; Is the optimal search algorithm for model-based TCP the same as the code-based algorithm?
Does this work for real industrial cases?) via empirical studies. Section 5.4 analyzes threats to the
validity of such results. We prioritized test cases for body electronic components: the power-window
switches on the driver and front passenger doors; the wiper, interior, and exterior lamps; central
door controls; seat belt controls; the burglar alarm; and the smart key (passive entry/start) system.
A mutant kill table explored whether a new test case killed mutants automatically generated by mutant
operators. Using this table, the TCP satisfying a fitness function was statistically analyzed.

5.1. Power-Window Switch Module

Test cases were generated from a UML model for the power-window switch (PWS) module;
iterative test execution was optimized via prioritization of the test suite. The module has several
submodules controlling door open/closed status, door locking/unlocking, and side mirror control
from the driver and passenger seats. The module is connected to the body controller area network
(CAN) and receives input from other modules (via the CAN interface) to operate the power-window
controls or side-mirror actuators. The module studied is UML-based and is implemented in the
Kia Sportage using Rhapsody. The model was loaded into a test case generation program via XMI
transformation, and mutants were generated in model state charts using the mutation operators of
Section 3.2. The results were compared after 100 test suite prioritizations by each algorithm in the test
suite generated to kill 100 mutants.

Table 4. Major functionalities of the power-window switch module.

Module Number of
States

Number of
Transitions

Number of
State Machines

Number of
Test Cases p-Value

Courtesy Lamp 12 26 4 1135 <0.005
OS Mirror 109 349 32 1702 <0.005

Power window 78 126 26 1780 <0.005
Puddle lamp 14 26 5 887 <0.005

Interface 26 39 13 1719 <0.005
Heater 4 6 2 1294 <0.005

IMS 27 38 4 1295 <0.005

Total 270 610 86 9812

The PWS module featured seven principal submodules in Table 4 and 86 state machines. The test
cases generated were proportional to the numbers of mutants, and test cases exhibiting various paths
were generated within the state chart even if the module size was small. Thus, similar numbers of
test cases were generated for the heater and other more complex functions; the heater submodule
is very small. APFD served to measure the fitness of TCP; the outcomes of various prioritization
methods were compared. We first confirmed that the data were normally distributed. For each TCP
method, the mutation operator created 100 mutants and test cases were then generated automatically.
The results (100 for each method) were analyzed as described in Table 5. We confirmed that the
APFD values became essentially normally distributed as the test numbers rose; we used ANOVA
to explore the statistical significances of APFD differences. We also employed the Duncan post-hoc
test; the p-value was <0.005 and was correlated among the groups. When the Scheffe test (which is
stricter than the Duncan test) was applied, the results of the Random, StTotal, StAddtl, and FepTotal
methods differed significantly. However, the StTotal and StAddtl, and FepAddtl and AVM methods
sometimes did not differ significantly (depending on the submodule). A boxplot of the average APFD
comparisons follows.

As shown in Figure 4, the TCPs of the seven submodules for the PWS module did not differ
significantly. First, test coverage prioritization focusing on statement coverage exhibited relatively low
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APFDs, as did code-based prioritization, probably reflecting the low correlation between coverage and
fault discovery. For the random method, APFD revealed an improved prioritization method based on
statement coverage given the iterative operation of O(n), but the APFD remained lower than those of
methods based on fault-exposure probability. Compared to the FepAddtl or AVM, the other methods
are not locally optimized, delivering locally convergent results. The fault-exposure probability methods
exhibited higher APFDs. Of these, FepAddtl uses a greedy algorithm, yielding better results than
FepTotal because the algorithm prioritizes the direction in which fault exposure probability maximally
improves. The AVM (our preferred choice) was not very different from FepAddtl; the significance
levels were within 0.05 percent (depending on the submodule) but AVM was faster. The AVM result
was clearly better than that of FepTotal, and equal to or better than that of FepAddtl.

Table 5. Scheffe post-hoc test results for the PWS Puddle Lamp.

(I) Method (J) Method Average difference (I − J) p-Value

Random

StTotal 0.004165355370 <0.005
StAddtl 0.003424223600 ≥0.005
FepTotal −0.069128709500 <0.005
FepAddtl −0.082282539710 <0.005

AVM −0.082333333370 <0.005

StTotal

Random −0.004165355370 <0.005
StAddtl −0.000741131770 ≥0.005
FepTotal −0.073294064870 <0.005
FepAddtl −0.086447895080 <0.005

AVM −0.086498688740 <0.005

StAddtl

Random −0.003424223600 ≥0.005
StTotal 0.000741131770 ≥0.005

FepTotal −0.072552933100 <0.005
FepAddtl −0.085706763310 <0.005

AVM −0.085757556970 <0.005

FepTotal

Random 0.069128709500 <0.05
StTotal 0.073294064870 <0.005
StAddtl 0.072552933100 <0.005

FepAddtl −0.013153830210 <0.005
AVM −0.013204623870 <0.005

FepAddtl

Random 0.082282539710 <0.05
StTotal 0.086447895080 <0.005
StAddtl 0.085706763310 <0.005
FepTotal 0.013153830210 <0.005

AVM −0.000050793660 ≥0.005

AVM

Random 0.082333333370 <0.05
StTotal 0.086498688740 <0.005
StAddtl 0.085757556970 <0.005
FepTotal 0.013204623870 <0.005
FepAddtl 0.000050793660 ≥0.005
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(a) Courtesy Lamp module
FepAddtl is better than AVM
more 0.00002.

(b) Heater: FepAddtl is better
than AVM more 0.00002.

(c) IMS: AVM is the best as
0.9842.

(d) OSMirror: AVM is the best.

(e) PowerWindow: AVM is
better than FepAddtl.

(f) PuddleLamp: AVM is the
best

(g) Interface: AVM is the best

Figure 4. Test case prioritization results of the power-window switch module.
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5.2. Body Control Module

The body control module (BCM) core module controls all vehicle electronics via CAN and LIN
communication featuring analog and digital inputs and output. The BCM model studied is that of the
Kia Ceed. The BCM controls the tailgate lamp, burglar alarm, wipers, washers, side mirrors, power
windows, seat belt reminders, central door control, remote key entry, and flasher lamp. The BCM
software features 270 states and 610 transitions (Table 6). Each submodule features up to 73 state
transitions depending on its complexity. As described in Section 5.1, the UML-based model was
limited to 100 mutants for each submodule. Mutation-based testing employed 1000 to 2000 test cases
for each submodule depending on submodule complexity and mutant type. However, the number of
test cases was limited, but adequate in terms of coverage. The test suites were prioritized using the
various methods. As Figure 5 shows, the prioritization test results of the more complex submodules
exhibited lower APFDs than the tests of simpler submodules. A low APFD indicates that it is difficult
to kill many mutants at once during test case creation. We group the methods as follows: Group
1: Random, StTotal, and StAddtl; Group 2: FepTotal, FepAddtl, and AVM. The APFD values of the
first group were 60 percent of those of the second group for complex submodules, and 90 percent for
simple submodules. This is because the prioritization methods of group 1 do not adequately expose
faults, as mentioned in Section 4. It is essential to prioritize the test suite appropriately because it
is difficult to kill multiple mutants simultaneously in more complex modules. Therefore, Random,
StTotal, and StAddtl did not yield good APFD values.

Table 6. Functionalities of the body control model (BCM).

Module Number of States Number of Transitions Number of Test Cases p-Value

Tailgate 8 16 1857 <0.005
OS Mirror 10 73 1583 <0.005
Defroster 7 7 1597 <0.005
Driving 2 3 1329 <0.005
Interface 5 11 1910 <0.005

Interior lamp 2 5 1765 <0.005
Power window 8 9 1785 <0.005

Remote key entry 1 4 1253 <0.005
Flasher 3 37 1017 <0.005

Warning 5 23 1945 <0.005
Wipers/washers 2 5 1657 <0.005

Exterior lamp 2 3 1915 <0.005
Mirror 3 7 1409 <0.005

Door locks 18 48 1528 <0.005

Total 76 251 22,550 -

5.3. Passive Entry Passive Start System

Passive entry passive start (PEPS) systems (smart keys) allow vehicle entry and starting
(by pushing a button) without a physical key. The UML-based software used was that of the Accent of
Kia Motor Corporation. As for the PWS module, data were XMI-transformed to the UML format and
test cases were generated via mutation. Prioritized test suites were created using various methods
and the results compared using the APFD. The PEPS system features diagnostic and key learning
submodules, and others (see the table below). However, the other submodules are implemented in
legacy code rather than UML, and were thus not evaluated.

As shown in Table 7, each module features several state diagrams. Overall, the state diagrams
of small units exhibit few states or transitions. However, the Start submodule features complex state
diagrams including several substates. The number of submodules is lower than those of the PWS or
BCM, but there are more state diagrams per submodule. If the number of mutants for each module is
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over 100, the time needed for mutation testing will be excessive. We limited the number of mutations to
100 and the number of test cases to 2000; the test suites were prioritized using various methods.

(a) Tailgate: AVM is
slightly better than
FepAddtl.

(b) BurglarAlarm: AVM
is the best.

(c) Defroster: AVM
is better than other
algorithms as 0.9801.

(d) Interface: AVM is the
best.

(e) InteriorLamp: AVM
is the best.

(f) RKE: AVM is better
than 0.0001 than the
result of FepAddtl.

(g) Flasher: AVM is
very slightly better than
FepAddtl.

(h) Warning: AVM is the
best.

(i) WiperAndWasher:
AVM is the best.

(j) ExteriorLamp: AVM
is the best.

(k) Mirror: AVM is little
better than FepAddtl.

(l) DoorLock: AVM is
very slightly better than
FepAddtl.

Figure 5. APFD results of the test case prioritization methods.
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Table 7. ANOVA test results of passive entry start systems (PEPS) submodules.

Module Number of State Diagrams Number of Test Cases F p-Value

Unit 81 1387 4389.207 <0.005
Access 13 1993 1631.736 <0.005
RKE 11 1799 4267.017 <0.005
Start 44 1385 3139.672 <0.005

Warning 49 1755 4833.233 <0.005

Total 198 8319 - -

First, when comparing the FepAddtl and AVM results for the Unit submodule in the upper left
panel of Figure 6, it is clear that the AVM result was best (about 0.0002). For the Access module (upper
right panel), the AVM and FepAddtl results were 0.94408 and 0.9446. The state diagram of the Start
submodule features sub-states and sub-state diagrams, and is complicated; the APFD is lower than that
for other submodules. It was difficult to create test cases that killed mutants on mutation testing. Thus,
the APFDs of the FepTotal, FepAddtl, and AVM test suites were similar. For the Warning submodule,
the average APFD differences between AVM and the other methods were less than 0.00015 and, thus,
negligible. In terms of overall prioritization, Random, StTotal, and StAddtl did not yield good results
in most cases compared to the other methods. Commonly, the APFD results of AVM were clearly
superior to those of FepTotal, and similar to those of FepAddtl. However, as for the PWS (Section 5.1),
the Scheffe post-hoc test revealed no significant difference between FepAddtl and AVM. The difference
between FepTotal, on the one hand, and FepAddtl and AVM, on the other, was significant when the
APFD test suite values exceeded 0.9.

5.4. Results

We used a total of five existing code-based TCP methods for model-based mutation testing.
The major reason is that we wanted to compare the model-based TCP results with code-based TCP
results. In the three empirical studies, Random, StTotal, and StAddtl afforded APFDs lower than those
of FepTotal and FepAddtl regardless of model complexity. In most cases, the model-based TCPs did
not differ markedly from those of general code-based methods. In terms of answering RQ2, FepAddtl
showed the best results among those five methods excluding AVM, equivalent to those of code-based
TCP. The reason that FepAddtl was the best optimal method was because it can achieve high exposure
probability for the faults in the early stage of development. However, this does not mean that all test
results will be the same; our experimental environment was limited. To answer RQ3, we used a TCP
method employing the AVM to create a search-based algorithm. All results were obtained under the
same conditions, thus, without optimization; the APFD values ranged from 0.01 to 0.25 depending
on software complexity. The APFD figures fell as software complexity increased. The answer to
RQ3 is that a search-based algorithm can be used for model-based TCP in the same manner as a
code-based technique. In the above industrial scenarios, the AVM APFD results did not differ greatly
from those of other algorithms, but the AVM was quicker. The search time, of course, depends on
local optimization and the exploration algorithm employed. Fault seeding threatens internal validity.
To minimize this, we used mutant operators of model-based state diagrams as seeds. To ensure reliable
data collection within a reasonable time, all experiments were 100-fold iterated for each algorithm,
yielding statistically robust comparisons. However, this does not mean that the APFD results of TCP
methods will always be the same. We constructed an external validity threat and explored the effect
thereof on TCP, but this did not verify all software models. To minimize the problem, three empirical
cases were considered; we evaluated the software of the PWS, SMK, and PEPS. All models were based
on UML, but only the state diagrams were used to draw behavioral diagrams. This affects test case
generation and prioritization. For example, if a test suite is generated using a behavioral diagram such
as a sequence diagram, this may affect the results even if the operation of both diagrams is identical.
In conclusion, most search-based algorithms have the same problems, but the experimental results
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differ greatly if small amounts of data are compared, not always indicating the best algorithm. To deal
with this issue, significance was analyzed via post-hoc comparisons of 100 experimental runs.

(a) Unit: AVM is the best. (b) Access: AVM is the best.

(c) RKE: AVM is higher only 0.000005
than FepAddtl.

(d) Start: The average value of AVM is
equal to FepAddtl.

(e) Warning: AVM is the best.

Figure 6. Test case prioritization for the PEPS System.
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6. Conclusions

We present TCP for mutation testing of a UML-based model; we employ a model-based
development approach. Unlike the mutation operators used for code-based mutation testing,
model-based mutation operators create mutants in the state machine, thus the behavioral diagram.
Test cases were created to kill such mutants; our new prioritization method is a search-based algorithm
employing the AVM. Code-based TCP methods were compared with our new method; we collected
the APFD values of test suites prioritized using various methods. Our AVM-based, search-based TCP
method is simpler and yields equivalent or better results than other methods. We empirically studied
representative PWS, BCM, and PEPS software of the automotive industry. Mutants were created
in UML-based models for mutation testing. Test cases were generated to kill the mutants. The test
suites were prioritized using code-based algorithms and our AVM-based search-based algorithms.
Our method was better than other methods in all scenarios tested. Our principal contribution is
that we explored whether traditional code-based mutation operators could be used for model-based
TCP, and the types of such mutation operators. We also developed a new AVM-based prioritization
method. The AVM (a local search method) must be combined with an exploratory method to ensure
nonconvergence at a local optimum. In future, we will explore whether the results of the various
TCP methods change when other fitness values (for example, APFDc) are used. Other search-based
algorithms (including a genetic algorithm) will be employed for model-based test case prioritization.
Such prioritization must be readily applicable and valuable in the real world.
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