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INTERNATIONAL COLLOQUIUM ON ALGEBRAIC
GEOMETRY

Bombay, 16-23 January 1968

REPORT

An International Colloquium on Algebraic Geometry was held at
the Tata Institute of Fundamental Research, Bombay on 16-23 January,
1968. The Colloquium was a closed meeting of experts and others seri-
ously interested in Algebraic Geometry. It was attended by twenty-six
members and thirty-two other participants, from France, West Germany,
India, Japan, the Netherlands, the Soviet Union, the United Kingdom
and the United States.

The Colloquium was jointly sponsored, and financially supported,
by the International Mathematical Union, the Sir Dorabji Tata Trust and
the Tata Institute of Fundamental Research. An Organizing Committee
consisting of Professor K. G. Ramanathan (Chairman), Professor M. S.
Narasimhan, Professor C. S. Seshadri, Professor C. P. Ramanujam, Pro-
fessor M. F. Atiyah and Professor A. Grothendieck was in charge of the
scientific programme. Professors Atiyah and Grothendieck represented
the International Mathematical Union on the Organizing Committee.
The purpose of the Colloquium was to discuss recent developments in
Algebraic Geometry.

The following twenty mathematicians accepted invitations to ad-
dress the Colloquium: S. S. Abhyankar, M. Artin, B. J. Birch, A. Borel,
J. W. S. Cassels, B. M. Dwork, P. A. Griffiths, A Grothendieck, F. Hirze-
bruch, J.-I. Igusa, Yu. I. Manin, T. Matsusaka, D. Mumford, M. Nagata,
M. S. Narasimhan, S. Ramanan, C. S. Seshadri, T. A. Springer, J. L.
Verdier and A. Weil. Professor H. Hironaka, who was unable to attend
the Colloquium, sent in a paper.
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Report v

The Colloquium met in closed sessions. There were nineteen lec-
tures in all, each lasting fifty minutes, followed by discussions. Informal
lectures and discussions continued during the week, outside the official
programme.

The social programme included a tea on 15 January, a dinner on
16 January, a programme of classical Indian dances on 17 January, a
dinner at the Juhu Hotel on 20 January, an excursion to Elephanta on
the morning of 22 January and a farewell dinner the same evening.
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RESOLUTION OF SINGULARITIES OF
ALGEBRAIC SURFACES

By Shreeram Shankar Abhyankar

1 Introduction. The theorem of resolution of singularities of alge-
braic surfaces asserts the following :

Surrace REsoLuTION. Given a projective algebraic irreducible sur-
face Y over a field k, there exists a projective algebraic irreducible non-
singular surface Y' over k together with a birational map of Y' onto Y
(without fundamental points on Y').

For the case when £ is the field of complex numbers, after several
geometric proofs by the Italians (see Chapter I of [[13]), the first rig-
orous proof of Surface Resolution was given by Walker [14]. For the
case when k is a field of zero characteristic, Surface Resolution was
proved by Zariski ([16],[17]]); and for the case when & is a perfect field
of nonzero characteristic, it was proved by Abhyankar ([2]],[3]],[4]]).

A stronger version of Surface Resolution is the following :

EMBEDDED SURFACE RESOLUTION. Let X be a projective algebraic ir-
reducible nonsingular three-dimensional variety over a field k, and let
Y be an algebraic surface embedded in X. Then there exists a finite se-
quence X — X — Xo — ... — X; — X' of monoidal transformations,
with irreducible nonsingular centers, such that the total transform of Y
in X' has only normal crossings and the proper transform of Y in X' is
nonsingular.

For the case when & is of zero characteristic and Y is irreducible, the
part of Embedded Surfaces Resolution concerning the proper transform
of Y was proposed by Levi [13] and proved by Zariski [18]]. Again for
the case when k is of zero characteristic, Hironaka proved Embed-
ded Resolution for algebraic varieties of any dimension. For the case
when k is a perfect field of nonzero characteristic, Embedded Surface
Resolution was proved by Abhyankar ([[7]],[9],[101,[T1]]).
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2 S. S. Abhyankar

Then in January 1967, in a seminar at Purdue University, I gave
a proof of Embedded Surface Resolution (and hence a fortiori also of
Surface Resolution) for an arbitrary field &, i.e. without assuming k to
the perfect. The details of this proof will be published elsewhere in
due course of time. This new proof is actually only a modification of
my older proofs cited above. One difference between them is this. In
the older proofs I passed to the albegraic closure of k, did resolution
there, and then pulled it down to the level of k. In case k is imperfect,
the pulling down causes difficulties. In the new modified proof I work
directly over k. In this connection, a certain lemma about polynomials
in one indeterminate (with coefficients in some field) plays a significant
role.

In order that my lecture should not get reduced to talking only in
terms of generalities, I would like to show you, concretely, the proof of
something. The said lemma being quite simple, I shall now state and
prove it.

2 The lemma. Let &’ be a field and let ¢ be a positive integer. As-
sume that ¢ is a power of the characteristic exponent of k’; recall that,
by definition : (the characteristic exponent of k) = (the characteristic of
k) if k" is of nonzero characteristic, and (the characteristic exponent of
k') = 1if k' is of zero characteristic. Let A be the ring of all polynomials
in an indeterminate T with coefficients in k’. As usual, by A? we denote
the set {h? : h € A}. Note that then A? is a subring of A; this is the only
property of ¢ which we are going to use. For any h € A, by degh we
shall denote the degree of / in T'; we take deg0) = —oo. Let f € A and
let d = deg f. Assume that f ¢ k,ie. d > 0. Letr: A — A/(fA) be
the canonical epimorphism. For any nonnegative integer e let

W(g.d,e) = [e/(dq)]q + [max{g — (q/d), (e/d) — [e/(dq)]q}]

where the square brackets denote the integral part, i.e. for any real num-
ber a, by [a] we denote the greatest integer which is < a.

THE LEMMA. Given any g € A with g ¢ A9, let e = degg. Then we
can express g in the form
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g=¢g +g"f
where g’ € A4, g* € A with g* ¢ fA, and u is a nonnegative integer 3
such that
u<W(g,d,e)
and: either u # 0(q) or r(g*) ¢ (r(A))4.
Before proving the lemma we shall make some preliminary remarks.

Remark 1. The assumption that g € A and g ¢ A7 is never satisfied
if ¢ = 1. Thus the lemma has significance only when &’ is of nonzero
characteristic and ¢ is a positive power of the characteristic of k’. The
lemma could conceivably be generalized by replacing A7 by some other
subset of A.

Remark 2. For any integers ¢, d, e withg > 0,d > 0, e > 0, we clearly
have W(q,d,e) = 0.

Remark 3. The bound W (g, d, e) for u can be expressed in various other
forms. Namely, we claim that for any integers q, d, e with g > 0, d > 0,
e >0, we have

W(g.d,e) = Wi(q.d,e) = Wa(q,d,e) = W3(q.d, e)

where

Wi(g.d,e) = [[e/d]/qlq + [max{q — (q/d),[e/d] — [[e/d]/q]q}],
Wa(q.d, e) = [[e/d]/qlq + max{[q — (q/d)], [e/d] — [[e/d]/qlq},
W3(q,d, e) = max{[e/d], [[e/d]/qlq + [q — (q/d)]}.

To see this, first note that by the division algorithm we have
e=le/d]ld+j with 0<j<d-—1

and
le/d] = [[e/d]/qlq + ] with 0<] <q—1;

upon substituting the second equation in the first equation we get

e =[le/d]/qldg + (dj +j) and 0<dj+j<dg-—1

3



4 S. S. Abhyankar

and hence
lle/d]/q] = [e/(dq)].

For any two real numbers a and b we clearly have

[max{a, b}] = max{[al], [b]},
and hence in view of the last displayed equation we see that

W(q,d,e) = Wa(q,d,e) = Wi(q,d,e).
For any real numbers a, b, ¢ we clearly have
a + max{b,c} = max{a + b,a + c},
and hence we see that
Wa(q,d,e) = W3(q,d, e).

Thus our claim is proved. Clearly [e/d] < W3(q,d, e); since W(q,d, e) =
Ws(q,d, e), we thus get the following
Remark 4. For any integers ¢, d, e with ¢ > 0, d > 0, e = 0, we have
le/d] < W(q.d,e).
Remark 5. Again let ¢, d, e be any integers with g > 0,d > 0, ¢ = 0.
Concerning W(q, d, e) we note the following.

If d = 1 then clearly W(q,d,e) = e.

Ifd > lande < gthen: [e/(dg)] = 0 and max{qg—(q/d),e/d} < q,
and hence W(g,d,e) < g — 1.

Ifd > 1ande > gthen:

[le/d/qla + [q — (¢/d)] < (e/d) + q — (q/d)

and hence
lle/d]/alg + g — (g/d)] < e—1;

4



Resolution of Singularities of Algebraic Surfaces 5

also [e/d] < e — 1, and hence Wi(gq,d,e) < e — 1 where W3 is as
in Remark 3 since W(q,d,e) = W3(g,d, e¢) by Remark 3] we get that
W(g,d,e) <e—1.

Thus : if d = 1 then W(q,d,e) = e; ifd > 1 and e < q then
W(g,d,e) < q—1;ifd > 1and e > g then W(q,d,e) < e — 1.

In particular : either W(q,d,e)/q < e/q or W(q.,d,e)/q < 1; if
d > 1 then either W(q,d,e)/q < e/q or W(q,d,e)/q < 1.

Thus the lemma has the following

Corollary. The same statement as that of the lemma, except that we
replace the inequality u < W(q,d, e) by the following weaker estimates:
eitheru/q < e/qoru/q < 1; ifd > 1 then either u/q < e/qoru/q < 1.

For applications, this corollary is rather significant.

Remark 6. For a moment suppose that 7(g) € (r(A))4. Then r(g) = h'
for some /' € r(A). Now there exists a unique 7* € A such that deg h* <
d—1land r(h*) = W. Leth = h*1. Then h € A7, degh < dq — g, and
g—he fA. Since g ¢ A? and h € A4, we must have g — h ¢ A?; hence
in particular g — h # 0. Since 0 # g — h € fA, there exists g; € A
and a positive integer v such that g; ¢ fAand g — h = g;f”. Since
g1f’ = g— h ¢ A7 we get that: either v # 0(q) or g ¢ AY. Now
g1f' =g—h,degf =d,degg = e, and deg h < dq — g; therefore upon
letting e; = deg g1 we have

=e if e>dg—gq

dv+el:deg(glfv):deg(g_h){ <dq—q 1fe<dq—q

Thus we have proved the following
Remark 7. If r(g) € (r(A))9theng = h + g1 f" where h € A9, g; € A
with g1 ¢ fA, vis a positive integer, and letting ¢; = deg g; we have

=e if e>dg—q

dv+el{ <dg—q if e<dgq—q

and: either v # 0(q) or g| ¢ A“.

Proor or THE LEMMa. We shall make induction on [e/(dg)]. First con-
sider the case when [e/(dg)] = 0. If r(g) ¢ (r(A))? then, in view of

5



6 S. S. Abhyankar

Remark 2] it suffices to take ¢’ = 0, g* = g, u = 0. If r(g) € (r(A))?
then let the notation be as in Remark [7} since [e/(dg)] = 0 and by Re-
mark [7l we have dv < max{dg — g, e}, we see that v < W(q,d,e) and
v < g; since 0 < v < g, we see that v # 0(q); therefore it suffices to
take ¢’ = h, g* = g, u = v.

Now let [¢/(dg)] > 0 and assume that the assertion is true for all
values of [e/(dg)] smaller than the given one. If r(g) ¢ (r(A))? then,
in view of Remark 2] it suffices to take ¢’ = 0, g* = g, u = 0. So
now suppose that r(g) € (r(A))? and let the notation be as in Remark [7]
Since [e/(dq)] > 0, by Remark [7] we have

dv+e =e. (*)

Therefore v < [e/d] and hence if v # 0(q) then, in view of Remark ] it
suffices to take g’ = h, g* = g1, u = v. So now also suppose that

v=0(q). ()

Then by Remark [7] we must have g; ¢ A?; since v > 0, by (*) and (**)
we see that [e1/(dq)] < [e/(dq)]; therefore by the induction hypothesis
we can express g in the form

g1 =g +gf
where g} € A9, ¢* € A with g* ¢ fA, and u; is a nonnegative integer
such that u; < W(q,d,e;) and either u; £ 0(q) or r(g*) ¢ (r(A))?. Let
u = u; + v. Then u is a nonnegative integer, and in view of (**) we see
that u = 0(g) if and only if u; = 0(q); consequently: either u # 0(g) or
r(g*) ¢ (r(A))?. Let g’ = h+ g/ f*; since h and g} are in A7, by (**) we
get that g’ € A9. Clearly

g=g +g"f"
By (¥) and (**) we get that

e=emoddg and (e—e1)/(dg) =v/q,

6



Resolution of Singularities of Algebraic Surfaces 7

and hence
le/(dg)] = [e1/(dq)] + (v/q)
and
(e/(dq)) — [e/(dq)] = (e1/(dq)) — [e1/(dq)];
therefore

W(g,d,e) = W(q.d,e1) + v;

since u = u; +vand u; < W(q,d, e;), we conclude that u < W(q,d, e).

3 Use of the lemma. To give a slight indication of how the lemma
is used, let R and R* be two-dimensional regular local rings such that R*
is a quadratic transform of R. Let M and M™ be the maximal ideals in R
and R* respectively. Let ¥ = R/M and let J be a coeflicient set of R, i.e.
J is a subset of R which gets mapped one-to-one onto k’ by the canonical
epimorphism R — R/M. We can take a basis (x,y) of M such that
MR* = xR*. Then y/x € R*. Let s : R[y/x] — R[y/x]/(xR[y/x]) be
the canonical epimorphism and let 7 = s(y/x). Then s(R) is naturally
isomorphic to k' and, upon identifying s(R) with k¥’ and letting A =
K'[T], we have that T is transcendental over k', s(R[y/x]) = A, and
there exists a unique nonconstant monic irreducible polynomial

f=T"+ AT 4+ fy with fiek
such that s(R[y/x] n M*) = fA. Take f! € J with s(f]) = f;, and let

Y = /) /T S

Now R* is the quotient ring of R[y/x] with respect to the maximal ideal
R[y/x] » M* in R[y/x]; consequently (x, y*) is a basis of M*, and, upon
letting s* : R* — R*/M™* be the canonical epimorphism and identifying
s*(R) with &, we have that R*/M* = k'(s*(y/x)), s*(y/x) is algebraic
over K/, and f is the minimal monic polynomial of s*(y/x) over k’.
Given any element G in R we can expand G as a formal power se-
ries H(x,y) in (x,y) with coefficients in J; since G € R*, we can also
expand G as a formal power series H*(x, y*) in (x, y*) with coefficients

7



8 S. S. Abhyankar

in a suitable coefficient set J* of R*. In our older proofs we needed to
show that if H satisfies certain structural conditions then H* satisfies
certain other structural conditions (for instance see (2.5) of [4]], (1.5) of
(5], and §7 of [11]]); there we were dealing with the case when R/M is
algebraically closed (and hence with the case when d = 1, the equation
y* = (y/x) + f] expressing the quadratic transformation is linear in y/x,
R*/M* = R/M, and one may take J* = J). The lemma enables us
to do the same sort of thing in the general case, i.e. when R/M is not
necessarily algebraically closed and we may have d > 1.

In passing, it may be remarked that if R is of nonzero characteristic
and R/M is imperfect then, in general, it is not possible to extend a coef-
ficient field of the completion of R to a coefficient field of the completion
of R*.

4 Another aspect of the new pl'OOf. Another difference be-
tween the new modified proof and the older proofs is that the new mod-
ified proof gives a unified treatment for zero characteristic and nonzero
characteristic; this is done by letting the characteristic exponent play
the role previously played by the characteristic. To illustrate this very
briefly, consider a hypersurface given by F(Z) = 0 where F(Z) is a
nonconstant monic polynomial in an indeterminate Z with coefficients
in a regular local ring R, i.e.

m
F(Z)=2"+).FZ"" with F;eR.
i=1

Let M be the maximal ideal in R and suppose that F; € M’ for all i.
Now the hypersurface given by F(Z) = 0 has a point of multiplicity m
at the “origin”, and one wants to show that, by a suitable sequence of
monoidal transformations, the multiplicity can be decreased.

In the previous proofs of this, dealing with zero characteristic (for
instance see [[16]], [18], [12], and (5.5) to (5.8) of [1Q]), F played a
dominant role. In our older proofs, dealing with nonzero characteristic
(for instance see [9] and [[11]]), the procedure was to reduce the problem

8



Resolution of Singularities of Algebraic Surfaces 9

to the case when m is a power of the characteristic and then to do that
case by letting F,, play the dominant role.

In the new modified proof we directly do the general case by letting
F, play the dominant role where ¢ is the greatest positive integer such
that ¢ is a power of the characteristic exponent of R/M and ¢ divides
m. Note that on the one hand, if R/M is of zero characteristic (or, more
generally, if m is not divisible by the characteristic of R/M) then ¢ = 1;
and on the other hand, if R/M is of nonzero characteristic and m is a
power of the characteristic of R/M then g = m.

S More general surfaces. Previously, in ([TI], [3], [6], [7], [S]),
I had proved Surface Resolution also in the arithmetical case, i.e. for
“surfaces” defined over the ring of integers; in fact what I had proved
there was slightly more general, namely, Surface Resolution for “sur-
faces” defined over any pseudogeometric Dedekind domain k satisfying
the condition that k/P is perfect for every maximal ideal P in k. In view
of the new modified proof spoken of in §1, this last condition can now
be dropped. The final result which we end up with can be stated us-
ing the language of models (alternatively, one could use the language of
schemes), and is thus:

SurracE REsoLuTION OVER EXCELLENT RINGS. Let k be an excellent
(in the sense of Grothendieck, see (1.2) of [I0]) noetherian integral do-
main. Let K be a function field over k such that dimy K = 2; (by defini-
tion, dimy K = the Krull dimension of k + the transcendence degree of
K over k). Let Y be any projective model of K over k. Then there exists
a projective nonsingular model Y' of K over k such that Y' dominates Y.

In (7], [9], [10], [L1]]) I had proved Embedded Surface Resolution
for models over any excellent noetherian integral domain & such that for
every maximal ideal P in k we have that k/P has the same characteristic
as k, and k/P is perfect. In view of the new modified proof spoken of in
§1 the condition that k/P be perfect can now be dropped. What we end
up with can be stated thus:

EMBEDDED SURFACE RESOLUTION OVER EQUICHARACTERISTIC EXCELLENT
RiNGs. Let k be an excellent noetherian integral domain such that for

9
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every maximal ideal P in k we have that k/P has the same characteristic
as k. Let K be a function field over k such that dim; K = 3. Let X be a
projective nonsingular model of K over k, and let Y be a surface in X.
Then there exists a finite sequence X — X| — X, — ... > X, —» X' of
monoidal transformations, with irreducible nonsingular centers, such
that the total transform of Y in X' has only normal crossings and the
proper transform of Y in X' is nonsingular.
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THE IMPLICIT FUNCTION THEOREM IN
ALGEBRAIC GEOMETRY

By M. Artin]

Several years ago, Matsusaka introduced the concept of Q-variety in
order to study equivalence relations on algebraic varieties. Q-varieties
are essentially quotients of algebraic varieties by algebraic equivalence
relations. The theory of these structures is developed in Matsusaka [24].
In this paper, we discuss a special case of Matsusaka’s notion in the
context of arbitrary schemes. We call the structure scheme for the etale
topology, or algebraic space. One obtains an algebraic space from affine
schemes via gluing by etale algebraic functions, i.e. via an etale equiv-
alence relation. Thus the concept is similar in spirit to that of Nash
manifold [29], [3]. It is close to the classical concept of variety, and
gives a naturally geometric object. In particular, an algebraic space over
the field of complex numbers has an underlying analytic structure (L.6).

We have tried to choose the notion most nearly like that of scheme
with which one can work freely without projectivity assumptions. The
assertion that a given object is an algebraic space will thus contain a lot
of information. Consequently, the definition given is rather restrictive,
and interesting structures such as Mumford’s moduli topology have
been excluded (for the moment, let us say), as being not scheme-like
enough.

Our point of view is that a construction problem should be solved
first in the context of algebraic spaces. In the best cases, one can deduce
a posteriori that the solution is actually a scheme. We give some crite-
ria for this in Section [3] but the question of whether a given algebraic
space is a scheme may sometimes be very delicate. Thus a construc-
tion as algebraic space simply ignores a difficult and interesting side of
the problem. On the other hand, it cannot be said that a construction as
scheme solves such a problem completely either. For one wants to prove

*Sloan foundation fellow.
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that the result is projective, say, and where possible to give a description
via explicit equations; and projectivity can presumably be shown as eas-
ily for an algebraic space as for a scheme (cf. (3.4) in this connection).
The question of what constitutes a solution is thus largely a matter of
fashion.

We give here an outline of a theory of algebraic spaces, of which
details will be published elsewhere. The foundations of this theory, very
briefly indicated in Sections [Il Bl are being developed jointly with D.
Knutsonﬁ Section @ contains a fundamental result on approximation of
formal sections locally for the etale topology, with some applications.
In Section 3] we give the basic existence theorem (5.2) for algebraic
spaces. This theorem allows one to apply deformation theory methods
directly to global modular problems, in the context of algebraic spaces.
Various applications are given in Section [6l

In Sections @HAL we assume that the schemes considered are locally
of finite type over a field. The techniques are actually available to treat
the case of schemes of finite type over an excellent discrete valuation
ring, so that the case that the base is Spec Z should be included. How-
ever, all details have not been written out in that case.

1 Schemes for the etale topology. We assume throughout
that the base scheme S is noetherian.
Let
F : (S-schemes)? — (Sets) (1.1)

be a (contravariant) functor. When X = Spec A is an affine §-scheme,
we will often write F(A) for F(X). Recall that F is said to be a sheaf
for the etale topology if the following condition holds:

1.2 Let U; — V(i € I) be etale maps of S -schemes such that the union
of their images in V. Then the canonical sequence of maps

F(V) — HF(Ui) =3 HF(U@;UJ)

is exact.

fCf. D. Knutson: Algebraic spaces, Thesis, M.L.T. 1968 (to appear).
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We assume the reader familiar with the basic properties of this no-
tion (cf. [6] L, 11, [[7] IV).

A morphism f : U — F (i.e. an element f € F(U)) of an S -scheme
to a functor F (1)) is said to be representable by etale surjective maps if
for every map V — F, where V is an S -scheme, the fibred product U ? 14

(considered as a contravariant functor) is representable by a scheme, and
if the projection map U xV — V is an etale surjective map.
F

Definition 1.3. An S-scheme for the etale topology, or an algebraic
space over S, locally of finite type, if a functor

X : (S-schemes)” — (Sets)
satisfying the following conditions :
(1) X is a sheaf for the etale topology on (S -schemes).
(2) X is locally representable : There exists an S-scheme U locally

of finite type, and a map U — X which is representable by etale
surjective maps.

It is important not to confuse this notion of algebraic space S with
that of scheme over S whose structure map to S is etale. There is
scarcely any connection between the two. Thus any ordinary S -scheme
locally of finite type is an algebraic space over S.

We will consider only algebraic spaces which are locally of finite
type over a base, and so we drop that last phrase.

Most algebraic spaces X we consider will satisfy in addition some
separation condition :

Separation Conditions 1.4. With the notation of (I.3), consider the
functor U x U. This functor is representable, by (1.3) [2]. The algebraic
X

space X is said to be

(1) separated if UxU is represented by a closed subscheme of U x U;;
X S

(i1) locally separated, if Ux U is represented by a locally closed sub- 16
X

scheme of Ux U
N
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(i) locally quasi-separated, if the map UxU — UxU is of finite
X s
type.

It has of course to be shown that these notions are independent of U.
Although the general case, and the case that (iii) holds, are of consid-
erable interest, we will be concerned here primarily with cases (i) and
(i1).

Note that U ; U = R is the graph of an etale equivalence relation
on U (meaning that the projection maps are etale). It follows from gen-
eral sheaf-theoretic considerations [6, I1.4.3] that in fact X is the quo-
tient U/R as sheaf for the etale topology on the category (S -schemes).
Conversely, any etale equivalence relation defines an algebraic space
X = U/R. Thus we may view an algebraic space as given by an ar-
las consisting of its chart U (which may be taken to be a sum of affine
schemes) and its gluing data R = U, an etale equivalence relation. The
necessary verifications for this are contained in the following theorem,
which is proved by means of Grothendieck’s descent theory [14] VIII].

Theorem 1.5. Let U be an S -scheme locally of finite type and let R = U
be an etale equivalence relation. Let X = U /R be the quotient as sheaf
for the etale topology. Then the map U — X is represented by etale
surjective maps. Moreover, for any maps V.— X, W — X, where V, W
are schemes, the fibred product V; W is representable.

One can of course re-define other types of structure, such as that
of analytic space by introducing atlases involving etale equivalence re-
lations R =3 U. However, it is a simple exercise to check that in the
separated and locally separated cases, i.e. those in which R is immersed
in U x U, this notion of analytic space is not more general than the usual
one, so that every separated analytic etale space is an ordinary analytic
space. Thus we obtain the following observation, which is important for
an intuitive grasp of the notion of algebraic space.

Corollary 1.6. Suppose S = Spec C, where C is the field of complex
numbers. Then every (locally) separated algebraic space X over S has
an underlying structure of analytic space.

16
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Examples 1.7. (i) If G is a finite group operating freely on an S -scheme
U locally of finite type, then the resulting equivalence relation
R = G x U 33 U is obviously etale, hence U/R has the structure
of an algebraic space. Thus one can take for instance the example
of Hironaka [16] of a nonsingular 3-dimensional variety with a
free operation of Z/2 whose quotient is not a variety.

(ii) Let S = SpecR[x], U = Spec C[x]. Then UxU ~ U 1 U, where
S

say the first U is the diagonal. Now put V = Spec C[x, x~!]. Then
R=U L1V — U LU is an etale equivalence relation on U. The
quotient X is locally separated. It is isomorphic to S outside the
origin x = 0. Above the origin, X has two geometric points which
are conjugate over R. Here R and C denote the fields of real and
complex numbers respectively.

(iii) Let S = Speck, where k is a field of characteristic not 2, U =
Speck[x],andletR = A L T — U x U, where A is the diagonal,
and where I is the complement of the origin in the anti-diagonal

[ = {(x,—x)|x # 0}.

Then X = U/R is locally quasi-separated, but not locally sepa-
rated.

Proposition 1.8. Let
X z

NS

Y
be a diagram of algebraic spaces over S. Then the fibred product X xZ
Y

is again an algebraic space.

2 Elementary notions. Definition 2.1. A property P of schemes
is said to be local for the etale topology if

(1) U" — U an etale map and U € P, implies U’ € P;

17
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(i) U’' — U etale and surjective and U’ € P, implies U € P.

A property P of morphisms f : U — V of schemes is said to be local for
the etale topology if

(1) V' — Vetale and f € P, implies f xV' € P;
14

(ii) let ¢ : U' — U be etale and surjective. Then f € P if and only if
fo e P.

Clearly, any property of S -schemes which is local for the etale topol-
ogy, carries over to the context of algebraic spaces. One just requires
that the property considered hold for the scheme U of (L3)). Examples
of this are reduced, geometrically unibranch, normal, nonsingular, etc...

Similarly, any property of morphisms of schemes which is local for
the etale topology carries over to the case of algebraic spaces. Thus the
notions of locally quasi-finite, unramified, flat, etale, surjective, etc...
are defined. In particular, an algebraic space X comes with a natural
etale topology [1l], whose objects are etale maps X’ — X with X’ an
algebraic space, and whose covering families are surjective families. In
this language, the map U — X of (I3) is an etale covering of X by a
scheme.

We extend the notion of structure sheaf Ox to algebraic spaces with
the above topology, in the obvious way. For an etale morphism U — X
where U is a scheme, we put

I'(U,0x) =T(U,0v)

where the term on the right hand side is understood to have its usual
meaning. Then this definition is extended to all etale maps X’ — X so
as to give a sheaf for the etale topology (applying ([6] VIL.2.c)).

Definition 2.2. A morphism [ : Y — X of algebraic spaces over S is

called an immersion (resp. open immersion, resp. closed immersion) if

for any map U — X where U is a scheme, the product fxU : YxU —
X X

U is an immersion (resp......).

18
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Using descent theory ([I4]] VIII), one shows that it is enough to
check this for a single etale covering U — X of X by a scheme. The
notions of open and of closed subspaces of X are defined in the obvious
way, as equivalence classes of immersions. Thus X has, in addition to
its etale topology above, also a Zariski topology whose objects are the
open subspaces.

Definition 2.3. A point x of an algebraic space X is an isomorphism
class of S -monomorphisms ¢ : Spec K — X, where K is a field.

The map ¢ is said to be isomorphic to ¢’ : Spec K’ — X if there
is amap € : Spec K’ — Spec K such that ¢’ = ¢e. The map € is then
necessarily a uniquely determined isomorphism. We refer to the field
K, unique up to unique isomorphism, as the residue field of x, denoted
as usual by k(x). It is easily seen that this definition is equivalent to the
usual one when X is an ordinary scheme.

Theorem 2.4. Let x € X be a point. There is an etale map X' — X
with X' a scheme, and a point X' € X' mapping to x € X, such that the
induced map on the residue fields k(x) — k(x) is an isomorphism.

Thus every x € X admits an etale neighborhood (X', x’) (without
residue field extension !) which is a scheme. The category of all such
etale neighborhoods is easily seen to the filtering.

Definition 2.5. The local ring of X at a point x (for the etale topology)
is defined to be

Ox.x = lim I'(X’,O0x)
(X".x")

where (X', X') runs over the category of etale neighborhoods of x.

This ring is henselian ([8]] IV4.18). If X is a scheme, it is the henseli-
zation of the local ring of X at x for the Zariski topology. However, if
we define a local ring for the Zariski topology of an algebraic space in
the obvious way, the ring Ox , will not in general be its henselizaton.

19
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A quasi-coherent sheaf F on X is a sheaf of Ox-modules on the
etale topology of X which induces a quasi-coherent sheaf in the usual
sense on each scheme X’ etale over X. The notion of proper map of al-
gebraic spaces is defined exactly as with ordinary schemes. One has
to develop the cohomology theory of quasi-coherent sheaves and to
prove the analogues in this context of Serre’s finiteness theorems and of
Grothendieck’s existence theorem for proper maps ([8]] 1I1;.3.2.1, 4.1.5,
5.1.4). However, the details of this theory are still in the process of being
worked out, and so we will not go into them heref.

3 Some cases in which an algebraic space is a scheme.
The question of whether or not a given algebraic space X over S is a
scheme is often very delicate. In this section we list a few basic cases
in which the answer is affirmative, but we want to emphasize that these
cases are all more or less elementary, and that we have not tried to make
the list complete. Some very delicate cases have been treated (cf. [23]],
[30]), and a lot remains to be done.
One has in complete generality the following.

Theorem 3.1. Let X be a locally quasi-separated algebraic space over
S. Then there is a dense Zariski-open subset X' < X which is a scheme.

Theorem 3.2. Let Xo < X be a closed subspace defined by a nilpotent
ideal in Ox. Then Xy a scheme implies that X is one. In particular, X is
a scheme if Xyeq i one.

Using descent theory ([14] VIII), one proves

Theorem 3.3. Let f : X — Y be a morphism of algebraic spaces. If f
is separated and locally quasi-finite, and if Y is a scheme, then X is a
scheme.

Corollary 3.4. An algebraic space X which is quasi-projective (resp.
quasi-affine) over a scheme Y is a scheme.

Via (3J), (3.2), and Weil’s method [34] of construction of a group
from birational data, we have

£Cf. Knutson, op. cit.
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Theorem 3.5. Let S = Spec A, where A is an artin ring, and let X be a
group scheme over S for the etale topology. Then X is a scheme.

4 Approximation of formal sections. n this section we as-
sume that the base scheme S is of finite type over a filed k. We con-
sider primarily some questions which are local for the etale topology,
for which there is no difference between schemes and algebraic spaces.

Let X be an algebraic space or a scheme locally of finite type, and
let s € S be a point. By formal section f of X /S at s we mean an
S -morphism

? S > X

where § = Spec (35, s- By local section (for the etale topology) of X/S
at s we mean a triple

(8.5 )
where (S, s") is an etale neighborhood of s in S and where

f:8-X

is an S -morphism. A local section induces a formal section since Os  ~
Oy ¢. Finally, we introduce the schemes

S, = Spec Os,s/m”H, m = max(Os.s).

They map to S. We will say that two (local or formal) sections are
congruent modulo m" ! if the composed maps

Sp—X

are equal.
The basic result is the following. It answers in a special case the
question raised in [3]].

Theorem 4.1. With the above notation, let f be a formal section of X /S
at s. Then there exists a local section f (for the etale topology) such that

f= ?(mod m"Jrl).

21
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It can be sharpened as follows.

Theorem 4.2. Suppose X/S of finite type. Let n be an integer. There
exists an integer N = n such that for every S -morphism

f/ : SN —- X
there is a local section f such that
f = f'(mod m"*1).

We remark that (Z.2) has been previously proved by Greenberg [[10]
and Raynaud in the case that S is the spectrum of an arbitrary excel-
lent discrete valuation ring, and we conjecture that in fact the following
holds.

Conjecture 4.3. Theorems 1), (#.2) can be extended to the case of an
arbitrary excellent scheme S .

TheoremM.Tlallows one to approximate any algebraic structure given
over § by a structure over S locally for the etale topology, provided
the algebraic structure can be described by solutions of finitely many
equations. This condition is usually conveniently expressed in terms
of a functor locally of finite presentation. We recall that (following
Grothendieck) a functor F (L) is said to be locally of finite presenta-
tion if for every filtering inverse system of affine S-schemes {Spec B;},
we have

F(lim B;) = lim F(B;). (4.4)

—

From @) follows

Theorem 4.5. Suppose that the functor F (1) is locally of finite pre-
sentation. Let n be an integer. Then for every 7 € F(S'), there exists
an etale neighborhood (S',s") of s in S and an element 7' € F(S") such

that

/ n+1)

z=7 (modm

i.e. such that the elements of F(S ) induced by z, 7' are equal.

22
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There are many applications of the above results, of which we will
list a few here, without attempting to give the assertions in their greatest
generality. For a more complete discussion, see [4]].

Theorem 4.6. Let X|, X, be schemes of finite type over k, and let
x; € X; be closed points. Suppose X1, X, are k-isomorphic, where
)A(,- = Spec 6Xi»xi' Then Xy, X, are locally isomorphic for the etale
topology, i.e. there are etale neighborhoods (X, x!) of x; in X; which
are isomorphic.

One obtains the following result, a conjecture of Grauert which was

previously proved in various special cases ([31]], [17], [2]]), by applying
results of Hironaka and Rossi [[18]], [15]].

Theorem 4.7. Let A be a complete noetherian local k-algebra with
residue field k whose spectrum is formally smooth except at the closed
point. Then A is algebraic, i.e. is the completion of a local ring of an
algebraic scheme over k.

A simple proof of the base change theorem for 7y ([6] XII) results
from (.3) and Grothendieck’s theory of specialization of the fundamen-
tal group.

Theorem 4.8. Let f : X — Y be a proper morphism of finite presenta-
tion, where Y is the spectrum of an equicharacteristic hensel ring. Let
Xo be the closed fibre of X/Y. Then

71'1(X()) %ﬂ](X).

5 Algebrization of formal moduli. Let S = Speck, where
k is a field, and let F (1)) be a functor. Let

20 € F(k/)

be an element, where k' is a finite field extension of k. An infinitesimal
deformation of zg is a pair (A, z) with z € F(A), where

23
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5.1
(i) A is a finite local k-algebra with residue field k';
(1) the element z induces zy by functorality.

We say that F is pro-representable at z if the functor F,, assigning
to each algebra A (5.I))(i) the set of infinitesimal deformations (A4, z) is
pro-representable [L1]], and we will consider only the case that F is pro-
represented by a noetherian complete local k-algebra A, (with residue
field k). If in addition there is an element 7 € F,,(A) which is universal
with respect to infinitesimal deformations, then we say that F' is effec-
tively pro-representable at zg. We recall that this is an extra condition;
the pro-representability involves only a compatible system of elements
7, € F(A/m"*1). However, one can often apply Grothendieck’s ex-
istence theorem ([8]] I1I;.5.1.4) to deduce effective pro-representability
from pro-representability. We will say that F is effectively pro-represen-
table if F is pro-representable on the category of finite k-algebras, and if
each local component A (cf. [T1]]) admits a universal element 7 € F (Z)

The following is the main result of the section. It allows one to con-
struct local modular varieties in certain cases, which reminds one of the
theorem of Kuranishi [20] for analytic varieties. (However, Kuranishi’s
theorem is non-algebraic in an essential way.)

Theorem 5.2. (Algebrization of formal moduli) With the above nota-
tion, suppose that F is locally of finite presentation and that F is ef-
fectively pro-representable at zo € F(K'), by a pair (A,7) where A is
a complete noetherian local ring. Then there is an S -scheme X of fi-
nite type, a closed point x € X, a k-isomorphism k(x) ~ k', and an
element 7 € F(X) inducing zo € F(k'), such that the triple (X, x,z)
pro-represents F at 7.

One obtains from (5.2) in particular a canonical isomorphism

A~r OX,x-

In practice, it usually happens that the element Z € F(A) induced from
z via this isomorphism is z, but a slight extra condition is needed to
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guarantee this. For, the universal element 7 € F(A) may not be uniquely
determined. An example is furnished by two lines with an “infinite order
contact”.

Example 5.3.

By this we mean the ind-object X obtained as the limit
X=X —> ... X, — ...
where X, is the locus in the plane of
yy—x") =0
and the map X,, — X, sends

(x,3) = (x, xy).

We take X as ind-object on the category of affine S-schemes. Thus by
definition
Hom(Z, X) = lim Hom(Z, X;) (5.4)
1

for any affine S -scheme Z. For arbitrary Z, a map Z — X is given by a
compatible set of maps on an affine open covering.

However, if such examples are avoided, then (X, x, z) is essentially
unique.

Theorem 5.5. (Uniqueness). With the notation of (3.2), suppose that in
addition the universal element 7 € F(A) is uniquely determined. Then
the triple (X, x, z) is unique up to unique local isomorphism, for the etale

topology, at x.
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Suppose for the moment that the functor F considered in (3.2)) is rep-
resented by an algebraic space over S, and that the map z : Speck’ — F
is a monomorphism, so that zy represents a point, (denote it also by zg)
of F 2.3). Then it is easily seen that the map

7z: X—>F

of (3.2)) is etale (Section[2)) at the point x € X. Thus if we replace X by
a suitable Zariski open neighborhood of x, we obtain an etale neighbor-
hood of zp in F.

Now, taking into account the definition (L3)), the representability of
F by an algebraic space will follow from the existence of a covering by
etale neighborhoods. Thus it is intuitively clear that one will be able
to derive criteria of representability in the category of algebraic spaces
from (3.2)), with effective pro-representability as a starting point. The
following is such a criterion. It is proved in a rather formal way from

G.2).

Theorem 5.6. Let F be a functor (1), with S = Speck. Then F is
represented by a separated (respectively locally separated) algebraic
space if and only if the following conditions hold.

[0] F is a sheaf for the etale topology.
[1] F is locally of finite presentation.

[2] F is effectively pro-representable by complete noetherian local
rings.

[3] Let X be an S -scheme of finite type, and z1, zp € F(X). Then the
kernel of the pair of maps

Zi- X—->F
is represented by a closed subscheme (resp. a subscheme) of X.

[4] Let R be a k-geometric discrete valuation ring with field of frac-
tions K, and let A be a finite local K-algebra with residue field
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K. Suppose given elements z; € F(R), 2o € F(Ak) which induce
the same element of F(K). Then there is a finite R-algebra A, an
augmentation A — R, an isomorphism Ax ~ K ®g A, and an
element z € F(A) which induces z1, 2.

[5] Let X be a scheme of finite type over k and let z € F(X). The
condition that the map z : X — F be etale is an open condition
on X.

Here a map X — F is called etale at x € X if for every map ¥ — F
there is an open neighborhood U of x in X such that the product U xY
F

is represented by a scheme etale over Y.

Except for [4]], the conditions are modifications of familiar ones used
in previous results of Murre [27] and Grothendieck [28]. Note that con-
dition [0] is just the natural one which assures that F extend to a functor
on the category of etale schemes.

The result should be taken primarily as a guide, which can be mod-
ified in many ways. This is especially true of conditions [2]]-[5]]. They
can be rewritten in terms of standard deformation theory. Thus for in-
stance condition [2] can be revised by writing out the conditions of pro-
representability of Schlessinger [32] and Levelt [21]], and condition [3]
can be rewritten by applying conditions [0]-[5] to the kernel functor in
question. Condition [4] is usually quite easy to verify by deformation
theory. The condition which is most difficult to verify as it stands is
conditions [5], but this too can be interpreted by infinitesimal methods.
In fact, condition [5] can sometimes be dispensed with completely. One
has

Theorem 5.7. Let F be a functor on S-schemes satisfying [0]-[4] of
2). Suppose that the complete local-rings A of condition [2] are all
geometrically unibranch and free of embedded components (e.g. nor-
mal). Then [5] holds as well, i.e. F is representable by an algebraic
space.

Here are some examples which illustrate the various conditions of
(5.9) and the relations between them. To begin with, all conditions but
[3] hold in example (3.3).

27
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Example 5.8. The ind-object X (cf. (5.4)) obtained by introducing more
and more double points into a line:

Neither condition [3] nor [5] hold.

Example 5.9. The ind-object X (cf. (5.4)) obtained as union

28 of more and more lines through the origin in the plane.

All conditions hold except that in condition [2] the functor is not
effectively pro-representable at the origin. Its formal moduli there exist
however; they are those of the plane.

Example 5.10. The ind-object X (cf. (3.4) obtained by adding more
and more lines crossing a given line at distinct points.
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All conditions but [5] hold.

Example 5.11. The object X is the union of the two schemes X; =
Spec k[x,y][1/x] and X, = Speck[x,y]/(y) (the x-axis) in the (x,y)-
plane.

X5

Xl X1

It is viewed as the following sub-object of the (x, y)-plane : A map
f + Z — Speck|[x,y] represents a map to X if there is an open covering
Z = Z; v Z, of Z such that the restriction of f to Z; factors through X;.
In this example, all conditions but [4] hold.

6 Applications. Our first application is to Hilbert schemes. We
refer to for the definitions and elementary properties. Recall that
Grothendieck [12] has proved the existence and (quasi)-projectivity of
Hilbert schemes Hilb X /S, Quot F/X/S, etc..., when X is (quasi)-pro-
jective over S. Moreover, Douady [9] showed their existence as analytic
spaces when X — S is a morphism of analytic spaces. Now if X is not
projective over S, one can not expect Hilb X/S to be a scheme, in gen-
eral. For, consider the example of Hironaka of a nonsingular variety
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X over a field and admitting a fixed point free action of Z/2 whose quo-
tient Y is not a scheme (though it has a structure of algebraic space).
Clearly Y is the sub-object of Hilb X/S which parametrizes the pairs of
points identified by the action, whence Hilb X/S is not a scheme, by
(B4). Thus it is natural to consider the problem in the context of etale
algebraic spaces.

Theorem 6.1. Let f : X — S be a morphism locally of finite type of
noetherian schemes over a field k. Let F be a coherent sheaf on X. Then
Quot F/X/S is represented by a locally separated algebraic space over
S. It is separated if f is. In particular, Hilb X/S is represented by such
an algebraic space.

Assuming that the cohomology theory for algebraic spaces goes through
as predicted, one will be able to replace f above by a morphism of
algebraic spaces over S, and will thus obtain an assertion purely in that
categoryl.

Next, we consider the case of relative Picard schemes (cf. for
definitions) for proper maps f : X — S. An example of Mumford ([13]]
VI) shows that Pic X/S is in general not a scheme if the geometric fibres
of f are reducible. The following result is proved from (3.6) using the
general techniques of [13]]. The fact that condition [3] of (3.6) holds for
Pic X/S had been proved previously by Raynaud [30].

Theorem 6.2. Let f : X — S be a proper map of noetherian schemes
over a field k. Suppose f cohomologically flat in dimension zero, i.e.
that f,Ox commutes with base change. Then Pic X/S is represented by
a locally separated algebraic space over S.

Again, f can conjecturally be replaced by a morphism of algebraic
spaces. When S = Speck, we obtain from (3.3) the following theo-
rem of Murre and Grothendieck [27].

Theorem 6.3. Let f : X — S be a proper map of schemes, where
S = Speck. Then Pic X/S is represented by a scheme.

This proof is completely abstract, and is strikingly simple even in
the case that X is projective, when one can give a “classical” proof using

$These results are now available, cf. Knutson, op. cit.
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Hilbert schemes. The verification can be reduced to a minimum using
the following result. It is the theorem of Murre ([27], cf. also [23]).
However, in Murre’s formulation there is a condition of existence of a
“module” for a map of a curve to the group, which is difficult to verify.
Here we can just drop that condition completely, and we can remove the
hypothesis that the groups be abelian.

Theorem 6.4. Let F be a contravariant functor from (S -schemes) to
(groups), where S = Spec k. Then F is represented by a scheme locally
of finite type over k if and only if

[0] F is a sheaf for the etale topology.
[1] F is locally of finite presentation.

[2] F is effectively pro-representable by a sum of complete noetherian
local rings.

[3] Let X be an S -scheme of finite type, and zj, 72 € F(X).
Then the kernel of the pair of maps
Zi- X—->F

is represented by a subscheme of X.

As a final application, one obtains the criterion of representability of
unramified functors of Grothendieck [28] in the case that the base S is
of finite type over a field. Here again, one can conclude a posteriori that
the algebraic space is actually a scheme, by (3.3). Since the statement
is rather technical, we will not repeat it here.

7 Passage to quotient. The following result shows that the defi-
nition of algebraic space could not be generalized in an essential way by
allowing flat equivalence relations. The theorem was proved indepen-
dently by Raynaud and me. It shows the strong similarity between
algebraic spaces and Q-varieties [24]. However Mumford has pointed
out to us that there is a beautiful example due to Holmann ([19]] p.342)
of a Q-variety which admits no underlying analytic structure.
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Theorem 7.1. Let U be an S -scheme of finite type and leti : R — U xU
s

be a flat equivalence relation. (By this we mean that i is a monomor-
phism, R is a categorical equivalence relation, and the projection maps
R 33 U are flat.) Let X be the quotient U /R as sheaf for the fppf topol-
ogy (cf. [[Z] IV). Then X is represented by an algebraic space over S.
It is separated (resp. locally separated) if i : R — U ? U is a closed

immersion (resp. an immersion). Moreover, X is a universal geometric
quotient (cf. [25]]).

One wants of course to have more general results on quotients by
pre-equivalence relations and by actions of algebraic groups. In the an-
alytic case, there questions have been treated in detail by Holmann [[19]
and it seems likely that many of his results have algebraic analogues.
Some algebraic results have already been obtained by Seshadri [33]].

The following is an immediate corollary of (Z.I)).

Corollary 7.2. Let f : Y' — Y be a faithfully flat morphism of algebraic
spaces over S. Then any descent data for an algebraic space X' over Y’
with respect to f is effective.

Note that because of our definitions, the map f is locally of finite type.
We have not proved the result for flat extensions of the base S’ — §
which are not of finite type, although in the case that S is of finite type
over a field, a proof might be based on (5.6).

Another application is to groups in the category of algebraic spaces.

Corollary 7.3. (i) Let H — G be a morphism of algebraic spaces of
groups over S, which is a monomorphism. Assume H flat over S.
Then the cokernel G/H as fppf-sheaf is represented by an alge-
braic space.

(i) Let A, B be algebraic spaces of abelian groups flat over S, and let E
be an extension of B by A, as fppf-sheaves. Then E is represented
by an algebraic space.

It follows for instance from (i) that one can define groups Ext? on
the category of algebraic spaces of abelian groups flat over S, via the
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definition given in MacLane ([22]] p. 367), taking as distinguished exact
sequences the sequences

0—>AL>E—>B—>0

which are exact as fppf-sheaves, i.e. such that i is a monomorphism
and B = E/A. When the base S is not a field, very little is known about
these Extq.
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DIOPHANTINE ANALYSIS AND MODULAR
FUNCTIONS

By B.J. Birch

1. In 1952, Heegner published a paper [5]] in which he discussed certain
curves parametrised by modular functions. By evaluating the modular
functions at certain points, he showed that these curves had points whose
coordinates were integers of certain class-fields. Unfortunately, the style
of his proofs was unconvincing, so his paper has been discounted; none
the less, his main assertions appear correct and interesting.

In particular, if E is an elliptic curve over the rationals Q, para-
metrised by modular functions, there are well-known conjectures (see
Appendix) about the group Eq of rational points of E. At the expense
of being rather special, we can be very explicit; take E in Weierstrass
form

E: y2 =X +Ax + B, A, B integers;

and write Ex for the group of points of £ with coordinates in a field
K. If K is a number field, Ex is finitely generated; write g(Ex) for
the number of independent generators of infinite order. Let D be an
integer, and E(—?) the curve — Dy> = x> + Ax + B; then g(Eq(y-p)) =

g(Eq) + g(EgD)). The conjectures assert that, for fixed A, B, the parity

of g(Eq(y—p)) and so of g(E((;D))

depend on the sign of D and the
congruence class of D modulo a power of 6(4A% + 27B%). Heegner’s
paper seems at present the only hope of approaching such conjectures -
at any rate, it provides infinitely many cases for which they are true.

I will give two illustrations of Heegner’s argument. The best known
assertion in his paper is the enumeration of the complex quadratic fields
of class number 1: the complex quadratic field of discriminant D has
class number 1 if and only if D = 3,4,7,8,11,19,43,67,163. Subse-
quently, the first accepted proof of this has been given by Stark [7], and
Baker [1]] has given another approach. I will give a proof, essentially
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the same as Heegner’s; on the way, I will re-prove and extend classi-
cal results of Weber [9] on ‘class invariants’. Afterwards, I will exhibit
a family of curves related to H/T'o(17), each of which have infinitely
many rational points.

The theory of complex multiplication can of course be built up al-
gebraically [3]. Though I will be using function theory, because it is
traditional and probably easier, all the constructions are basically alge-
braic; in particular, we have an algebraic solution of the class number 1
problem.

2. From now on, p will always be a prime p = 3(4), p > 3. j(z) is the
modular function, defined for z in the open upper half plane H, invariant
by the modular group I'(1), and mapping i, p, ico to 1728, 0, c0; note that
j(3 + it) is real and negative for real # > /3/2. T(N) is the subgroup

b
of I'(1) consisting of maps z — % with (¢2) = (19) (N).

If w is quadratic over Q, then Aw?* + Bw + C = 0, with A, B, C
integers without common factor; define D(w) = |B*> — 4AC|. Call D
a field discriminant if D is the absolute value of the discriminant of a
complex quadratic field; so either D = 3(4) and D is square free, or
1D =1,2(4) and 1D is square free.

I quote the standard theorems about the value of a modular function
f(w) at a complex quadratic value w. For proofs of Theorems 1 and 2,

see [3].

Theorem 1. If D(w) is a filed discriminant, then j(w) is an algebraic
integer and generates the class field K, of Q(w) over Q(w).

Theorem 2. If D(w) = M*D; with M integral and D a field discrim-
inant, then j(w) generates the ring class field Ky modulo M of Q(w)
over Q(w).

Theorem 3 (Séhngen [6]]). Suppose that f(z) is invariant by T'(N), and
the Fourier expansions of f at every cusp of H/T'(N) have coefficients
in Q(Ny/1). If D(w) = M*D; as above, then f(w) € K}, the ray class
field modulo MN of Q(w).
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Corollary. Q(w, f(w)) is an abelian extension of Q(w).

Now we set w = 1(1 + +/ — p), where p is still a prime = 3(4), so
D(w) = p. Then K| = Q(w, j(w)) is the class filed of Q(w), and j(w)
is a negative real algebraic integer.

We know that [K; : Q(w)] is odd. The Kj;/Q(w) norms of integral
ideals of Kj, prime to M are precisely the principal ideals (a) where @
is an integer of Q(w) congruent modulo M to a rational integer prime to
M. Accordingly, we see easily that

1 for p=7(8)
[K2 . Kl] =
3 for p=3(8),
2 for p=2(3
and [K3 : Kl] = ( )
4 for p=1(3).

Further, K} = K and K} = Kj.
All this is very classical, see [9], [6] or [3]].

3. Now let us look at some particular functions.

Example 1 (Wiber [9] §125). There is a function y(z) invariant by I'(3)
with y*(z) = ji(z) and y(z) real for Re(z) = 1. By Theorem[3 y(w) €
K3; but [K3 : K] is a power of 2, and obviously [K;(y(w)) : K] is odd;
SO

v(w) € K;. (D

Example 2. There is a function o (z) invariant by I'(48) related to j(z)
by
(0% (2) = 16)* = 0*(2) j(2)- ()

If j is real and negative, (U — 16)* = U j has a unique real root which is
positive; if z = % +it with 7 > %\/3 then o (z) is the unique positive real
root of @). 0%*(z) is invariant by I'(2), and in fact o>*(w) generates K,
over K;. So far, all is well known and in [9], though the normalisation
is different.
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Now we restrict p = 3(8), so that [K> : K] = 3, 0**(w) is cu-
bic over K;. By Theorem [l o(w) is abelian over Kj, and by (@) and
Theorem[I} o-(w) is an algebraic integer.

I assert that

o'?(w) € K,. 3)

For o2 is quadratic over K;, and abelian of degree 6 over K, so
o'? € K»(a) with a®> € K;. Suppose o> ¢ K,. Then o** € K», so
o'? = ab with b € K. So 0 = a?b*. So 2'2 = Ng, g, (0*) =
(NKZ/Klb)2a6; soa = +2%(a>Nb)~! € K;. So o'? € K, as required.
Also, NKZ/KI (0'12) > 0, so ]\7[(2/[(1 (0'12) = 26,

Repeat the argument :

0'6(0)) € K>. 4)

Repeat it again : /20 (w) € K.

This is an old conjecture of Weber (see [9]] §127); however, for our
applications we will use no more than @), which was already proved by
Weber.

Using our first example, we have 0 (w) = (02*(w) — 16)/y(w) €
K>, so by @)

o*(w) e Ky for p=3(8). (5)

Example 3 ([9] §134). There is a function g(z) invariant by I'(2) with
g>=j—1728; g(% + it) must be pure imaginary when ¢ is real, we may
take it to have positive imaginary part.

g(w) € K, but K; is an odd extension of K, so g(w) € K| and

V(=p)g(w) e K1 nR. (6)

4. Heegner applies these examples to enumerate the complex quadratic
fields with class number 1, and to exhibit infinite families of elliptic
curves with non-trivial rational points. In this paragraph, we will restrict
p = 3(8); this is enough for the class number 1 problem, as the other
cases are easy.
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For the moment, suppose Q(»/ — p) has class number 1, so

Ky =Q(v —p). (7)
Write V = 0?(w). Then V satisfies a cubic equation over K1, say 39
Vi—aV?+BV —-2=0; (8)

since V is a real algebraic integer, a, § are real algebraic integers in K7 ;
SO a, 8 are rational integers.

Since the roots of (8] are three of the roots of V2 —yV* — 16 = 0,
the left hand side of [®) divides (V'? — yV* — 16), so there must be a
relation between « and §; it turns out to be

B* — 4Ba* + 2a* — 2a = 0.
So we have reduced (7)) to the problem of solving the Diophantine equa-

tion (8 — 2a°)> = 2a(1 + @?) in integers. This is easy, see [5]; the
complete solution is

a = 0 1 1 -1 2 2
B = 0 0 4 2 2 14
correspondingto p = 3 11 67 19 43 163.

This is a complete enumeration of complex quadratic fields Q(+/ — p)
with class number 1 and p = 3(8).
Now we exhibit some curves with points. By (@),

j—1728 = (0 — 64) (0 + 8)%0 4,

24 0'128 ?
—6d=— .
7 <0'24+8>

By @) and (@), we deduce that

SO

— pu® =V — 64 ©)
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is soluble in K» N R. But [K> n R : Q] is odd; so the curve () has an
odd divisor defined over Q : it clearly has a divisor of order 2; so [@) is
soluble in Q. But (@) is a non-trivial 2-covering of the elliptic curve

Y2 = X(X* + p?) (10)

which accordingly has infinitely many rational points. (These points
have rather large coordinates - indeed, they account for several gaps in
the tables of [2])).

A similar argument works, with appropriate modifications, when
p = 7(8); see [5]. We have thus confirmed the main conjecture of
[2]], for the particular curves (IQ) with p a prime congruent to 3 modulo
4; for that conjecture predicts that the group of rational points of (IQ)
should have structure Z, x Z.

5. Finally we give another example, using a different method. We con-

b
sider the subgroup I'y(17) of I'(1) consisting of maps z — % with
cz

ad — bc = 1, ¢ = 0(17); w7 is the map z — TR and Iy is the
Z

group generated by I'o(17) and wy7. Then H/T'¢(17) has genus 1, with
function field generated over Q by j(w), j(17w); wi7 is an involution
on H/To(17), and H/T; has genus zero. Suppose H/Tj is uniformised
by 7(z). Then 7(z) € Q(j(z)-j(172), j(z) + j(17z)), and if we specialise
7 — w, 7(w) € Q(j(w), j(17w)). [A priori, there may be finitely many
exceptions, corresponding to specialisations which make both the nu-
merator and the denominator vanish.] Now write k(z) = j(z) — j(17z2),
then k is invariant by I’y but not I'},, k* is invariant by I}, and H/T'o(17)
has equation k> = G(r), with G(X) € Q(X). By a suitable bira-
tional transformation (making a bilinear transformation on 7, and re-
placing k by o f(7) with f(X) € Q(X)) we may obtain Fricke’s equation
0% = 1% — 613 — 2772 — 287 — 16; see [4].

As usual, write Eq(,/—p) for the group of points of the elliptic curve
E : Y? = G(X) which have coordinates in Q(y/ — D); the conjectures
predict that Eq(,/p) should have an odd number of generators of infi-
nite order, and so be infinite, if D is a positive integer congruent to 3
modulo 4 which is a quadratic residue modulo 17.
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P
17
find w with A(w) = p, 17w = 1/w; for, take w as a root of 17Aw? +
Bw + A = 0 where B> — 6842 = —p. But now j(17w) = j(1/@) =
j(—®@) = j(w), and j(w) € K| the class field of Q(y/— p). Hence j(w)-
J(17w), j(w)+ j(17w) and so 7(w) are real, and k(w) = j(w) — j(17w)
is pure imaginary. We deduce that

Suppose then that p is prime, p = 3(4), ( ) = +1. Then we can

V(=p)k(w),7(w) € K1 N R,

an extension of Q of odd degree. As in the previous paragraph, —pY? =
G(X) has a point in K; n R and so in Q, and this implies that Eq,/— )
is infinite (except possibly in finitely many cases).

Appendix. The so-called Birch-Swinnerton-Dyer conjectures were offi-
cially stated in [2]]; since then, they have been extended and generalised
in various ways, and nowadays the standard account is [8]. However,
the particular case we are quoting is not made quite explicit; though it
was remarked by Shimura some years ago.

We suppose that E : y> = x> + Ax+ Bis a ‘good’ elliptic curve with
conductor N. This means (for motivation, see Weil [[10]]), inter alia, that
E is parametrised by functions on H/T'o(N), and corresponds to a differ-
ential f(z)dz = Za,e*™™dz on H/To(N); the essential part of the zeta
function of E is Lg(s) = Za,n—* = (27)*(T(s)) 1§ f(iz)z*'dz; and
E has a good reduction modulo p precisely when p does not divide N, so
N divides a power of 6(4A3+27B?). The involution wy : 7z — —1/Nzof
H/T'o(N) will take f(z)dz to +f(z)dz; so Lg(s) has a functional equa-
tion Ag(s) = eN'"SAg(2 — s), where Ag(s) = I'(s)(27) ~SLg(s) and
€? = 1. Let x(n) be a real character with conductor M, with (M, N) =
1, and Lg(s,x) = Zayx(n)n~*; then Lg(s, ) has functional equation
Te(s,x) = ex(=N)N'"SAg(2 — s, x), where Ag(s,x) = (M/2r)*T(s).
Ag(2 — s5,x). So Lg(s,x) has a zero at s = 1 of odd or even order
according to the sign of y(—N).

Say D > 0, D = 3(4), x(n) = (%), then Lg(s, x) is the essen-

tial part of the zeta function of ECP) : —Dy? = 3 + Ax + B. The
main conjecture of [2] asserts that Lg(s, y) should have a zero of order
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E(_D)

g( Q ) at s = 1; so the parity of g(E(_D)

Q ) should be determined by

—N
the Legendre symbol <F)

Finally, we remark that if 2l is a point of Eq(,/—p) and W its conju-
gate over Q, then 2 + i € Eg and U — 1 is a point of Eq(,/-p) with

x real and y pure imaginary, so 2l — U gives a point of ESD
g(Eq(y-p)) = 8(Eq) + g(E((;D)), and so forth.

Added in proof. Since this talk was given, I have heard that Deuring, and
Stark, too, have independently decided that Heegner was right after all.
Deuring’s paper was published in Inventiones Mathematicae 5 (1968);
Stark’s has yet to appear.

). Hence
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ON THE AUTOMORPHISMS OF CERTAIN
SUBGROUPS OF SEMI-SIMPLE LIE GROUPS

By Armand Borel

Let L be a group. We denote by E (L) the quotient group Aut L/ Int L
of the group Aut L of automorphisms of L by the group Int L of inner au-
tomorphisms Inta : x — a.x.a”'(a, x € L) of L. Our first aim is to show
that E(L) is finite if L is arithmetic, S -arithmetic (see[3.2)) or uniform in
a semi-simple Lie group (with some exceptions, see Theorem[L.3] Theo-
rem 3.6l and Theorem [3.2] for the precise statements). A slight variant of
the proof also shows that in these cases L is not isomorphic to a proper
subgroup of finite index. As a consequence, a Riemannian symmet-
ric space with negative curvature, and no flat component, has infinitely
many non-homeomorphic compact Clifford-Klein forms, Theorem [6.2]

Further information on E(L) is obtained when L is an S -arithmetic
group of a semi-simple k-group G (with some conditions on G and ).
If L contains the center of G, and G is simply connected, then E(L)
is essentially generated by four kinds of automorphisms: exterior auto-
morphisms of G, automorphisms deduced from certain automorphisms
of k, automorphisms of the form x — f(x) - x where f is a suitable
homomorphism of L into the center of Gy, and automorphisms induced
by the normalizer N(L) of L in G (see Lemma Remark in[T.9). In
the case where G is split and L is the group of o(S )-points of G for its
canonical integral structure, there results are made more precise (Theo-
rem[2.2] Theoremd.3)), and N(L)/L is put into relation with the S -ideal
class group of k and S -units (see Lemma[2.3] Lemma[d.3} these results
overlap with those of Allan [}, [2]]). As an illustration, we discuss Aut L
for some classical groups (Examples 2.6l 4.6). The results are related to
those of O’Meara if G = SL,,, and of Hua-Reiner [12], and
Reiner [27] if G = SL,, Sp,,,, and k = Q, Q(i).
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The finiteness of E(L) follows here rather directly from rigidity the-
orems [23]], [26]], [32], [33]]. The connection between the two is estab-
lished by Lemma [L.]]

Notation. In this paper, all algebraic groups are linear, and we follow
in general the notations and conventions of [9]. In particular, we make
no notational distinction between an algebraic group G over a field k&
and its set of points in an algebraic closure k of the field of definition
(usually C here). The Lie algebra of a real Lie group or of an algebraic
group is denoted by the corresponding German letter.

If Lis a group and V a L-module, then H' (L, V) is the 1st cohomol-
ogy group of L with coefficients in V. In particular, if L is a subgroup of
the Lie group G, then H'(L, g) is the 1st cohomology group of L with
coeflicients in the Lie algebra g of G, on which L operates by the adjoint
representation.

A closed subgroup L of a topological group G is uniform if G/L is
compact.

1 Uniform or arithmetic subgroups. Lemma 1.1. Let G
be an algebraic group over R, L a finitely generated subgroup of Gr
and N the normalizer of L in Gr. Assume that H' (L, ) = 0. Then the
group of automorphisms of L induced by elements of N has finite index
in Aut L.

Let Ly be a group isomorphic to L and ¢ an isomorphism of Ly onto
L. For M = GRr, G, let R(Ly, M) be the set of homomorphisms of Lg
into M. Let (x;)(1 < i < gq) be a generating set of elements of L. Then
R(Lo, M) may be identified with a subset of M?, namely, the set of m-
uples (y;) which satisfy a set of defining relations for Ly in the x;, xl.’l.
In particular R(Lo, G) is an affine algebraic set over R, whose set of real
points is R(Ly, Gr). The group M operates on R(L¢, M), by composition
with inner automorphisms, and G is an algebraic transformation group
of R(Ly, G), with action defined over R.

To @ € Aut L, let us associate the element j() = @ ot of R(Ly, G).
The map j is then a bijection of Aut L onto the set I(Ly, L) = R(Lo, GRr)
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of isomorphisms of Ly onto L. If a, b € I(Ly, L), then b € Ggr(a) if and
only if there exists n € N such that b = (Intn) o a. Our assertion is
therefore equivalent to: “I(Ly, L) is contained in finitely many orbits of
GR,” which we now prove.

Letb € I(Lo, L). Since

H'(b(L").6) = H'(L.a) = H'(L.or) ® C,

we also have H'(b(L),s) = 0. By the lemma of [33], it follows that
the orbit G(b) contains a Zariski-open subset of R(Ly,G). Since the
latter is the union of finitely many irreducible components, this shows
that 1(Lo, L) is contained in finitely many orbits of G. But an orbit of G
containing a real point can be identified to a homogeneous space G/H
where H is an algebraic subgroup of G, defined over R. Therefore its
set of real points is the union of finitely many orbits of Ggr([8]], §6.4),
whence our contention.

Remark 1.2. (i) The lemma and its proof remain valid if R and C are
replaced by a locally compact field of characteristic zero K and
an algebraically closed extension of K.

(ii) The group SL(2,Z) has a subgroup of finite index L isomorphic
to the free group on m generators, where m > 2 (and in fact
may be taken arbitrarily large). The group E(L) has the group
GL(m,Z) = Aut(L/(L,L)) as a quotient, hence is infinite. On
the other hand, L has finite index in its normalizer in SL(2, C),
as is easily checked (and follows from Proposition 3.3[d)). Thus,
[L1l implies that H 1 (L,g) # 0, as is well known. Similarly, tak-
ing (i) into account, we see that the free uniform subgroups of
PSL(2,Q,) constructed by IThara have non-zero first coho-
mology group with coefficients in g.

Lemma 1.3. Let G be an algebraic group over R, L a finitely generated
discrete subgroup of Gr such that Gr/L has finite invariant measure.
Assume that H' (L', g) = 0 for all subgroups of finite index L' of L. Then
L is not isomorphic to a proper subgroup of finite index.
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Define Ly, M, t, R(Ly, M) and the action of M on R(Ly, M) as in the
proof of Lemma [Tl Let C be the set of monomorphisms of Ly onto
subgroups of finite index of L. Then, j : @ — a o is a bijection of
C onto a subset J of R(Lo, Gr), and the argument of Lemma [[.T] shows
that J is contained in the union of finitely many orbits of Gr. Fix a Haar
measure on GR, and hence on all quotients of Ggr by discrete subgroups.
The total measure m(Gg/L’) is finite for every subgroup of finite index
of L, since m(Gr/L) is finite. If b, c € C, and b = Intg o ¢, (g € Gr),
then m(Gr/b(L)) = m(Gr/c(L)). Consequently, m(Ggr/L’) takes only
finitely many values, as L’ runs through the subgroups of finite index of
L, isomorphic to L. But, if there is one such group L' # L, then there is
one of arbitrary high index in L, a contradiction.

Lemma 1.4. Let L be a finitely generated group, M a normal subgroup
of finite index, whose center is finitely generated, N a characteristic
finite subgroup of L.

(a) If E(M) is finite, then E(L) is finite.
(b) If E(L/N) is finite, then E(L) is finite.

(a) It is well known and elementary that a finitely generated group
contains only finitely many subgroups of a given finite index (see
e.g. [11]). Therefore, the group Aut(L, M) of automorphisms of
L leaving M stable has finite index in Aut(L). Since L/M is finite,
the subgroup Q of elements of Aut(L, M) inducing the identity on
L/M has also finite index. Let r : Q — Aut M be the restriction
map. Our assumption implies that ! (Int M) has finite index in
0, hence that Int L. ker r is a subgroup of finite index of Q. Int L.
It suffices therefore to show that ker r n Int L has finite index in
kerr. Let b € ker r. Write

b(x) = uy-x(xeL).

Then u, € M and routine checking shows: the map u : x — u, is
a l-cocycle on L, with coefficients in the center C of M, which is
constant on the cosets mod M, and may consequently be viewed
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as a l-cocycle of L/M with coefficients in C; furthermore, two
cocycles thus associated to elements b, ¢ € Q are cohomologous
if and only if there exists n € C such that b = Intn o ¢, and any
such cocycle is associated to an automorphism. Therefore

kerr/Int; C =~ H'(L/M,C).

By assumption, L/M is finite, and C is finitely generated. Hence
the right hand side is finite, which implies our assertion.

The group N being characteristic, we have a natural homomor-
phism 7 : AutL — AutL/N. The finiteness of E(L/N) implies
that Int L. ker 7 has finite index in Aut L. Moreover ker 7 consists
of automorphisms of the form x — x - v, (x € L,v, € N), and is
finite, since N is finite and L is finitely generated.

Theorem 1.5. Let G be a semi-simple Lie group, with finitely many
connected components, whose identity component G° has a finite center,
and L a discrete subgroup of G. Then E(L) is finite if one of the two
following conditions is fulfilled:

(a)

(b)

(a)

G/L is compact, G° has no non-compact three-dimensional fac-
tor;

Aut(g ® C) may be identified with an algebraic group G’ over Q,
such that the image L' of L n G in G’ by the natural projection
is an arithmetic subgroup of G', and Gi{ has no factor locally
isomorphic to SL(2,R) on which the projection of L' is discrete.

Let A be the greatest compact normal subgroup of G° and 7 :
G° — G"/A the canonical projection. Since the center of G is
finite, it is contained in A, and G° /A is the direct product of non-
compact simple groups with center reduced to {e}. The group
n(L n GY) is discrete and uniform in G°/A. By density [4], its
center is contained in the center of G° /A, hence is reduced to {e}.
Consequently, the center of L n G is contained in A N L, hence
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(b)

is finite. We may then apply Lemma [[.4(a), which reduces us to
the case where G is connected. Moreover, by [4]], any finite nor-
mal subgroup of 7(L) is central in G/A, hence reduced to {e}.
Therefore A N L is the greatest finite normal subgroup of L, and is
characteristic. By Lemma[L4(b), it suffices to show that E(r(L))
is finite. We are thus reduced to the case where G has no center,
and is a direct product of non-compact simple groups of dimen-
sion > 3. In particular, G is of finite index in the group of real
points of an algebraic group defined over R, namely Aut(g ® C).
By a theorem of Weil [33], H'(L, g) = 0, hence by Lemmal[L] it
is enough to show that L has finite index in its normalizer N(L).
By [4], N(L) is discrete. Since G/L is fibered by N(L)/L, and is
compact, N(L)/L is finite.

Let A be the greatest normal Q-subgroup of G’ % whose group of
real points is compact, and let 7 be the composition of the natural
homomorphisms

G° - Adg — (G°)r/Ar.

G'/A is a Q-group without center, which is a product of Q-simple
groups, each of which has dimension > 3 and a non-compact
group of real points. 7(L) is arithmetic in G’/A([6], Theorem 6)
and L n kerr is finite. By Zariski-density ([[6]], Theorem 1), any
finite normal subgroup of (L) is central in G’/A, hence reduced
to {e}. Thus L n kerr is the greatest finite normal subgroup of
L, and is characteristic. Also the center of 7(L n G°) is central in
AdG’, hence reduced to {e}, and the center of L n G° is compact,
and therefore finite. By Lemma [[L4] we are thus reduced to the
case where G, G’ are connected, A = {e}, and L is arithmetic in
G'. Let Gy, ..., G, be the simple Q-factors of G’. The group L is
commensurable with the product of the intersections L; = L N G;,
which are arithmetic ([[7]], 6.3). If G; N L is uniform in G;g, then
H'(L;,gr) = 0 by [33]. If not, then rkoG; > 1, and H'(L;,g) =
0 by theorems of Raghunathan [25]], [26]. Consequently, H'(L
G',gg) = 0. Moreover, L n G’ is of finite index in its normalizer
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N. In fact, N is closed, belongs to G’Q ([6]], Theorem 2), hence
to G, and N/(L n G') is compact since G /(L n G') has finite
invariant measure [7]]. The conclusion now follows from Lemma

[ Tland Lemmal[T.4]

Lemma 1.6. Let L be a finitely generated group, N a normal subgroup
of finite index. Assume L is isomorphic to a proper subgroup of finite
index. Then N has a subgroup of finite index which is isomorphic to a
proper subgroup of finite index.

The assumption implies the existence of a strictly decreasing se-
quence (L;)(i = 1,2,...) of subgroups of finite index of L and of iso-
morphisms f; : L — L;(i = 1,2,...). Let a be the index of N in L.
Then L; n N has index < a in L;, hence M; = fl._l(L,- N N) has index
< a. Passing to a subsequence if necessary, we may assume that M; is
independent of i. Then, L; n N is isomorphic to a proper subgroup of
finite index.

Proposition 1.7. Let G and L be as in Theorem Assume one of
the conditions (a), (b) of Theorem to be fulfilled. Then L is not
isomorphic to a proper subgroup of finite index.

By use of Lemmal[I.6] the proof is first reduced to the case where G
is connected. Let 7 be as in the proof of (a) or (b) in Theorem[L.3l Then
L ~ker r is the greatest finite normal subgroup of L. Similarly L' nker n
is the greatest finite normal subgroup of L', if L’ has finite index in L.
Therefore, if L' is isomorphic to L, the groups kerm n L and kerw n L
are equal, and are mapped onto each other by any isomorphism of L
onto L'; hence n(L) =~ n(L'), and n(L) # n(L') if L # L'. We are
thus reduced to the case where the group A of (a) or (b) in Lemma [[4]
is = {e}. Moreover, in case (b), it suffices to consider L n G’ in view
of Lemma[I.6 Our assertion then follows from the rigidity theorems of
Weil and Raghunathan and from Lemma [[.3]

We shall need the following consequence of a theorem of Raghu-
nathan:

Lemma 1.8. Let G, G’ be connected semi-simple Q-groups, which are
almost simple over Q. Let L be a subgroup of Gq containing an arith-
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metic subgroup Ly of G, and s an isomorphism of L onto a subgroup of
Gb which maps Ly onto a Zariski-dense subgroup of G'. Assume that

rkqo(G) = 2.

(i) G and G’ are isogeneous over Q.

(ii) If G is simply connected, or G' is centerless, there exists a Q-
isogeny s of G onto G', and a homomorphism g of L into the
center of G, such that s(x) = s'(x) - g(x)(x € L).

Let G be the universal covering group of G, 7 : G — G the canonical
projection and L = 7~ (L) n Gq. The group Ly = 7~ (LO) A Lis
arithmetic, as follows e.g. from ([[7], §6.11); in particular, n(Lo) has
finite index in Lo, and L) = s o n(Lp) is Zariski-dense in G'.

We identify G’ with a Q-subgroup of GL(n, C), for some n. The
map »r = s o 1 may be viewed as a linear representation of L into
GL( ,Q). By Theorem 1 of [23]], there exists a normal subgroup N of
Lo, Zariski- dense in G, and a morphism 7 : G — GL(n, C) which coin-
cides with ron N. Let C be the Zariski-closure of t(N ) Itis an algebraic
subgroup contained in #(G) n G’. Since #(N) is normal in L;, and L, is
Zariski-dense, the group C is normal in G’. However, ([9]], §6.21(ii)), the
group G’ is isogeneous to a group Ry /QH, where k is a number field, H
an absolutely simple k-group, and Ry denotes restriction of the scalars
([31]], Chap. I). Consequently, an infinite subgroup of G’ is not con-

tained in a proper direct factor of G’, whence C = G’ = t( ) If fisa
regular function defined over Q on G, then f ot is a regular function on
G, which takes rational values on the dense set N. It follows immedi-
ately that f ot is defined over Q, hence ¢ is defined over Q. Its kernel is
a proper normal Q-subgroup of G’, hence is finite, and 7 is a Q-isogeny.
This implies (i).

If G’ is centerless, then Z(G) belongs to the kernel of ¢. Thus, if G
is simply connected, or G’ centerless, 7 defines a Q-isogeny s” of G onto
G’, which coincides with s on the Zariski-dense subgroup N = ﬂ(ﬁ ).
The group s(N) is then Zariski-dense in G’. Let x € L, y € N. Then
x-y-x~' e N, hence s(x) - s'(x) ! centralizes s(N), and therefore also
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G'. Consequently, s(x) - S’(x)~! belongs to G’Q NZ(G),and f : x —
s(x) - s'(x)~!, and s’ fulfil our conditions.

Theorem 1.9. Let G and L be as in Lemma Assume G to be cen-
terless and L to be equal to its normalizer in Gg. Then E(L) may be
identified with a subgroup of (AutG)q/(Int G)q.

If G is centerless, and M is a Zariski-dense subgroup of G, then the
normalizer of M in G belongs to Gq. This follows from Theorem 2 in
[6] if M is arithmetic, but the proof yields this more general statement,
as well as Proposition 3.3(b) below. In view of this, Theorem isa
consequence of Lemma[[.8]

Remark. It is no great loss in generality to assume that L contains the
center of G, and this assumption will in fact be fulfilled in the cases to
be considered below. In this case, Aut L is generated by three kinds of
automorphisms: (a) exterior automorphisms of G leaving L stable, (b)
automorphisms x — f(x) - x, where f is a homomorphism of L into its
center, (c) automorphisms of the form x ~— y - x - y~!, where y belongs
to the normalizer of L in G.

Using some information on these three items, we shall in the fol-
lowing paragraph give a more precise description of Aut L, when G is a
split group.

2 Arithmetic subgroups of split groups over Q. 7n rhis
paragraph G is a connected semi-simple and almost simple Q-group,
which is split, of Q-rank = 2; L is the group of integral points of G for
the canonical Z-structure associated to a splitting of G[10], [18], and
N(L) the normalizer of L in Gc.

2.1 The group L is equal to its normalizer in G, and also to its nor-
malizer in G if G has no center. To see this, we first notice that L has
finite index in its normalizer in G. In fact, since the image of L in IntG
is arithmetic ([[7], §6.11), it suffices to show that if G is centerless, any
arithmetic subgroup of G is of finite index in its normalizer, which fol-
lows from the end argument of Theorem [L.3[b). Our assertion is then
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a consequence of ([6]], Theorem 7). Another proof will be given below

(Theorem [4.3)).

Theorem 2.2. If G is centerless, then AutL is a split extension of
E(G) = AutG/IntG by L. If G is simply connected, then AutL is a
split extension of E(G) by the subgroup A of automorphisms of the form
x — f(x)-y-x-y ! wherey € N(L) and f is a homomorphism of L
into its center.

If G is centerless or simply connected, the standard construction
of automorphisms of G leaving stable the splitting of G yields a sub-
group E’(G) of (AutG)q, isomorphic to E(G) under the canonical pro-
jection, and leaving the Z-structure of G invariant. Thus E(G) may
be identified with a subgroup of Aut L. If G is centerless, the theorem
follows then from Theorem and 2ZJ1 Let now G be simple con-
nected. Let s € AutL. By Lemma[L8 we can find s’ € (AutG)q
and f € Hom(L,Z(G)q) such that s(x) = f(x) - s'(x)(x € L). How-
ever, L contains Z(G)q by 2l Therefore, f maps L into Z(G) n L.
But Z(G) n L is equal to the center of L, since L is Zariski-dense in G,
whence our assertion.

If G has a non-trivial center the image of N(L) in AutL is in gen-
eral different from Int L. The quotient N(L)/L has been studied in var-
ious cases, including those of Examples 2.6( 1), (2), notably by Maass,
Ramanathan, Allan (see [[1]], where references to earlier work are also
given). We shall discuss it here and in §4 from a somewhat different
point of view. In the following statement, the group G’ = IntG is en-
dowed with the Z-structure associated to the splitting defined by the
given splitting of G.

Lemma 2.3. Let 7 : G — G’ = Int G be the canonical projection, T the
maximal torus given by the splitting of G, and T' = n(T). Then

n(N(L)) = Gy, (1

n(N(L))/IntL = T, /n(Tz) = Z(L). (2)
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The group L is the normalizer in Gq of a Chevalley lattice gz in g
as follows from 2.17 in [16]. Moreover, a Chevalley lattice is spanned
by the logarithms of the unipotent elements in L. Consequently N(L) is
the normalizer in G of gz. From this (1)) follows.

Let B be the maximal solvable subgroup of G corresponding to the
positive roots in the given splitting of G and U its unipotent radical.
Then B = T - U (semi-direct). Let x € N(L). Since Int x preserves the
Q-structure of G, the group x - B - x~! is a maximal connected solvable
subgroup defined over Q, hence ([9]], §4.13) there exists z € Gq such
thatz- B-z~! = x- B- x~'. But we have Gq = L - Bo([6l]l, Lemma 1).
Since B is equal to its normalizer, it follows that N(L) = L- (N(L) n B).
Letnow x € N(L) n B. Writex = t-v(t € T,v € U). We have n(x) € L
(see 2.I). But, with respect to a suitable basis of a Chevalley lattice in
Q. () is diagonal, and 7(u) upper triangular, unipotent, therefore r(z),
n(u) € L. However [10], 7 defines a Z-isomorphism of U onto n(U),
hence u € L, which shows that

N(L) = L-(N(L) nT). 3)

The kernel of r is contained in T, therefore (1)) implies that N(L) n T
is the full inverse image of T}, which yields the first equality of @)).
The groups Tz and 77, consist of the elements of order 2 of T and T’
respectively and are both isomorphic to (Z/2Z), where [ is the rank of
G. Consequently T, /n(Tz) is isomorphic to the kernel of 7 : Tz — T,
i.e. to Z(L), which ends the proof of (2).

The determination of Aut L/ Int L is thus to a large extent reduced to
that of the center Z(L) of L, and of the quotient of L by its commutator
subgroup (L, L). We now make some remarks on these two groups.

2.4 The center Z(L) of L is of order two if G is simply connected of
type A, (n odd), B,, C,(n = 1), D,(n > 3,n 0dd), E7, of type @2.2) if
G = Spin 4m (m positive integer), of order one in the other cases.

In fact the Z-structure on G may be defined by means of an admissi-
ble lattice in the representation space of a faithful representation defined
over Q. If we assume G < GL(n, C) and Z" to be an admissible lat-
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tice, then Z(L) is represented by diagonal matrices with integral coeffi-
cients, which shows first that Z(L) is an elementary abelian 2-group. All
almost simple simply connected groups have faithful irreducible repre-
sentations, except for the type Dy,,. Thus, except in that case, Z(L) is
of order 2 (resp. 1) if Z(G) has even (resp. odd) order, whence our con-
tention. The case of Dy, is settled by considering the sum of the two
half-spinor representations.

2.5 Ttis well known that SL(n, Z) is equal to its commutator subgroup
if n > 3 (see [3]] e.g.). Also the commutator subgroup of Sp(2n,Z) is
equal to Sp(2n,Z) if n > 3, has index two if n = 2 [3]], [28]. More
generally, if the congruence subgroup theorem holds, which is the case
if kG > 2 and G is simply connected, according to [22], then L/(L, L)
is the product of the corresponding local groups Go,/(Go,,Go,). Serre
has pointed out to me that, using this, one can show that L = (L, L) if
G has rank > 3, and is simply connected. Another more direct proof
was mentioned to me by R. Steinberg, who also showed that L/(L, L)
is of order two if G = G,. He uses known commutation rules among
unipotent elements of L, and the fact that they generate L.

Examples 2.6. (1) G = SL(n,C), L = SL(n,Z), (n > 3). In this
case, E(G) is of order two, generated by the automorphism o :
x — 'x7!. By Lemma and 24 Int L has index one (resp.
two) in the image of N(L) if n is odd (resp. even). Furthermore,
it is easily seen, and will follow from Lemma that, in the
even dimensional case, the non-interior automorphisms defined
by N(L) are of the form x +— y-x-y~!(y € GL(n, Z),dety = —1).
Thus, taking into account, we see that Aut L is generated by
IntL, o, and, for n even, by one further automorphism induced
by an element of GL(n,Z) of determinant — 1. This is closely
related to results of Hua-Reiner [[12], [13]].

(2) G = Sp(2n,C), L = Sp(2n,Z), (n = 2). Here, E(G) is reduced
to the identity. Thus, by the above, Int L has index two in Aut L
if n > 3, index four if n = 2. The non-trivial element of N(L)/L
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is represented by an automorphism of the form x — y - x - y~!
where y is an element of GL(2n, Z) which transforms the bilinear
form underlying the definition of Sp(2n, C) into its opposite (see
Examples 4.6). For n = 2, one has to add the automorphism
x — x(x) - x, where y is the non-trivial character of L. This result
is due to Reiner [27].

(3) G is simply connected, of type Dy,,. Then we have a composition
series
AutL DA D IntL,

where Aut L/A is of order two, and A/ Int L has order two if m is
odd, is of type (2.2)) if m is even. This follows from (2.2)), 2.3),
@24), @.3). The other simple groups of rank > 3 are discussed
similarly.

3 S -arithmetic groups over number fields.

3.1 Throughout the rest of this paper, k is an algebraic number field
of finite degree over Q, o its ring of integers, V the set of primes of
k, V4 the set of infinite primes of k, S a finite subset of V containing
Vs, and o(S) the subring of x € k which are integral outside S. We let
I(k,S) be the S-ideal class group of k, i.e. the quotient of the group of
fractional o(S )-ideals by the group of principal o(S )-ideals. We follow
the notation of [3]. In particular k, is the completion of k at v € §,
o, the ring of integers of k,. If G is a k-group, then G is its identity
component, and

Gy =G, (veS).Gs = [ [Gv.Goo = | ] G0

ves vEV

Moreover G' = Ry /oG is the group obtained from G by restriction of
the groundfiled from k to Q([31l], Chap. I), and we let u denote the
canonical isomorphism of G onto Gb.

If A is an abelian group, and ¢ a positive integer, we let ;A and Ald)
denote the kernel and the image of the homomorphism x — x9.
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3.2 Let G be a k-group. A subgroup L of Gy is §-arithmetic if there is
a faithful k-morphism r : G — GL, such that r(L) is commensurable
with F(G)D(S).

If S’ is a finite set of primes of Q, including oo, and S is the set of
primes dividing some element of S/, then v : G — Gy, induces a bijec-
tion between S -arithmetic subgroups of G and S’-arithmetic subgroups
of G’. This follows directly from the remarks made in ([3]], §1).

In the following proposition, we collect some obvious generaliza-
tions of known facts.

Proposition 3.3. Let G be a semi-simple k-group, L a S -arithmetic
subgroup of G, N the greatest normal k-subgroup of G° such that N, is
compact, and t : G — G/N the natural projection.

(a) If N is finite and G is connected, L is Zariski-dense in G.

(b) If G is connected, the commensurability group C(L) of L in G is
equal to 7~ ((G/N)y).

(¢c) If o : G — H is a surjective k-morphism, o(L) is S -arithmetic in
H.

(d) If N is finite, L has finite index in its normalizer in G.

(a) follows from ([6], Theorem 3), and from the fact that L contains
an arithmetic subgroup of G.

(b) We recall that C(L) is the group of elements x € G such that
x-L-x~!is commensurable with L. The proof of (b) is the same
as that the Theorem 2 in [6]. In fact, this argument shows that if
G is centerless, then C(M) < Gy whenever M is a subgroup of
Gy Zariski-dense in G.

(c) If o is an isomorphism, the argument is the same as that of ([[7],
§6.3). If o is an isogeny, this has been proved in ([5]], §8.12).
From there, the extension to the general case proceeds exactly in
the same way as in the case S = Vo ([6], Theorem 6).
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(d) We may assume G to be connected and N = {e}. Then by (c),
N(L) © Gi. We view Gy and L as diagonally embedded in Gg.
Then L is discrete in Gg.

This group L has a finite system of generators [17], say (x;)i<i<g-
Since L is discrete, there exists a neighbourhood U of e in G such that
if x € N(L) n U, then x centralizes the x;’s, hence L. The latter being
Zariski-dense in G, this implies that the component x, of xin G, (v € §)
is central in G,, whence x, = e, which shows that N(L) is discrete in
Gs. But Gg/L has finite invariant volume ([5]], §5.6) and is fibered by
N(L)/L, hence N(L)/L is finite.

Proposition 3.4. Let G be a semi-simple k-group, L a subgroup of Gy,
which is Zariski-dense, and is equal to its normalizer in Gy, and N(L)
the normalizer of L in G. Then N(L)/L is a commutative group whose
exponent divides the order m of the center Z(G) of G.

We show first that if x € N(L), then x" € L. In view of the as-
sumption, it suffices to prove that x” € G. Letn : G — G/Z(G) be
the canonical projection. The fiber F, = n~!(n(x)) of x consists of the
elements x - z;(1 < i < m), where z; runs through Z(G), and belongs to
N(L). By the remark made in Proposition 3.3[b), 7(x) is rational over
k, hence F, is defined over k, and its points are permuted by the Galois
group of k over k. Since the z;’s are central, the product of the xz; is
equal to x™ - zj ...z, and is rational over k. Similarly the product of the
z;’s 1s rational over k, whence our assertion.

It is possible to embed Z(G) as a k-subgroup in a k-torus 7’ whose
first Galois cohomology group is zero (see Ono, Annals of Math. (2),
82 (1965), p. 96). Let H = (G x T")/Z(G) where Z(G) is embedded
diagonally in G x T’. Then G/Z(G) may be identified with H/T’. Let
x € N(L). We have already seen that 7(x) is rational over k. But, since
T’ has trivial first Galois-cohomology group, the map Hy — (H/T')x
is surjective. There exists therefore d € T’ such that d - x € Hy. Thus,
if x, y € N(L), we can find two elements x’, y/ € Hy, which normalize
L, whose commutator (x’,y’) is equal to (x,y). But, obviously, G =
(H, H), therefore (x,y) € N(L); hence (x,y) € L, and (N(L),N(L)) <
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L. This argument also proves that
N(L) =G n (Ny(L), - T'), (1)

where Ny (L) is the normalizer of L in H, and Ny (L)x = Ny (L) n Hy.
For the sake of reference, we state as a lemma a remark made by
Thara in ([14]], p. 269).

Lemma 3.5. Let A be a group, B a subgroup, and V a A-module. As-
sume that for any a € A, there is no non-zero element of 'V fixed under
a-B-a~' n B. Then the restriction map r - H'(A,V) — H'(B,V) is
injective.

It suffices to show that if z is a 1-cocycle of A which is zero on B,
then z is zero. Leta € A, b € Bbe such thata-b-a~! = b’ € B. We
have then

2(a-b) = z(a) = z(b" - a) = b’ - 2(a),

which shows that z() is fixed under a - B- a~! n B, hence is zero.

Theorem 3.6. Let G be a semi-simple k-group and L a S -arithmetic
subgroup. Then E(L) is finite if one of the following conditions is ful-
filled :

(a) G has no normal k-subgroup N such that Ny, has a non-compact
factor of type SL(2,R), or also of type SL(2,C) if Gs/L is not

compact;
(b) G is of type SL;y over k, and S has at least two elements.

By Lemma[L.4(b), we may assume G to be connected. Let N be the
greatest normal k-subgroup of G such that Ny, is compactand 7 : G —
G/N the natural projection.

(a) Arguing as in Lemma [[L4 we see that it suffices to show that
E(n(L)) is finite, which reduces us to the case where G is a direct
product of simple k-groups G;. The group L; = G; n L is S-
arithmetic in G; and the product of the L; is normal of finite index
in L. By Lemmal[lL4] we may therefore assume L to be the product
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of its intersection with the G;’s. The group L has finite index in
its normalizer (Proposition 3.3)) and is finitely generated [[17], so
that, in order to deduce our assertion from Lemma [[L1] applied
to L and G, it suffices to show that H'(L,g,,) = 0. Since this
group is isomorphic to the product of the groups H' (L;, gix), we
may assume G to be simple over k. Let Lo = L n G,.

The group Lo is arithmetic, and therefore so is x - Ly - x~' N

Ly = Lo(x € L). Consequently, Ly is Zariski-dense in G ([6]],
Theorem 1), and has no non-zero fixed vector in g,,. By Lemma
the restriction map : H'(L,9,) — H'(Lo, 8) is injective.
But H'(Ly,845) = 0: if rky G > 1, this follows from [23]], [26]].
Let now rk;y G = 0. Then G /Ly is compact ([4], §11.6). In view
of we may further assume G to be almost absolutely simple
over k. Let J be the set of v € V, such that G, is not compact
and H the subgroup of G generated by the G,’s (v € J). Then, by

Weil’s theorem ([32]], [33]]),
H'([y,h) = 0. (1

But we have
H'(To,8,) = H'(To, "8) ®yy kv (V€ Vo) 2)

"(To,0) = [ H'(To,00), 3)

veVy

H'(To,b) = [ [H'(To,91), 4)

veJ

whence H' (T, a,0) = 0.

is finite, and therefore, L has finite index in its normalizer
(Proposition[3.3). Again, there remains to show that H' (L, g,,) =
0. Let SL, — G be the covering map, and L’ the inverse image of
L in SL(2,k). The homomorphism H'(L,g4,) — H'(L',85) is
injective, hence we may assume G = SL,. But then the vanishing
of H' follows from [29].
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Remark. It is also true that in both cases of Theorem 3.6 the group L
is not isomorphic to a proper subgroup of finite index. This is seen by
modifying the proof of Theorem[3.6 in the same way as Proposition[L.7]
was obtained from Theorem .3

If G is almost simple over k, of k-rank > 2, then we may apply The-
orem[L.9to G’. Thus, in that case, we see that, if L contains Z(G)y, the
determination of Aut L is essentially reduced to that of the normalizer
of L in G, of the homomorphisms of L into its center, and of the exterior
automorphisms of G’ leaving stable. We shall use this in §4 to get more
explicit information when G is a split group. Here, we mention another
consequence of Theorem [[.9

Proposition 3.7. Let G be an almost absolutely simple k-group, of k-
rank > 2, k' a number field, and G' an almost absolutely simple k'-
group. Let L be an arithmetic subgroup of Gy, and s an isomorphism
of L onto an arithmetic subgroup of G'. Then there is an isomorphism
¢ of k' onto k and the k-group *G' obtained from G' by change of the
groundfield ¢ is k-isogeneous to G.

Let H = Ry /G, H = Rk//QG/, and M, M’ the images of L and
L’ = s(L) under the canonical isomorphisms Gy — Hq and G}, — Hy,.

Then s may be viewed as an isomorphism of M onto M’. The group
M’ is infinite, hence Hy is not compact, and M’ is Zariski-dense in H’
([6], Theorem 1). By Lemma[I.8] H and H’ are Q-isogeneous. There
exists therefore an isomorphism « of hg onto b’Q. But the commuting
algebra of ad b (resp. ad bb) in the ring of linear transformations of
bq (resp. bb) into itself is isomorphic to k (resp. k). Hence « induces
an isomorphism ¢ : K — k. Let gf = %gp be the Lie algebra over k
obtained from g’ by the change of ground-field ¢. Then, it is clear from
the definition of ¢ that @ = Ry, where j is a k-isomorphism of g
onto ¢”. This isomorphism is then the differential of a k-isogeny of the
universal covering of G onto the k-group ¢G’.

3.8 We need some relations between (Aut G ), and (Aut G’)q. For sim-
plicity, we establish them in the context of Lie algebras, and assume G
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to be almost simple over k. The Lie algebra g’Q is just g, viewed as a
Lie algebra over Q. Since gy is absolutely simple, the commuting alge-
bra of ad gb in gI(gb) may be identified to k. Let a € Aut gé). Then a
defines an automorphism of gI(gb) leaving ad gb stable, and therefore
an automorphism B(a) of k. If B is the identity, this means that a is a
k-linear map of 96, hence comes from an automorphism of g;. We have
therefore an exact sequence

1 — Autg, — Autgg — Autk. (1)

Let ko be the fixed field of Autk in k. Assume that g = g9 ®x, k,
where gg is a Lie algebra over kg. Then, for s € Autk, ‘gr = o,
and s, acting by conjugation with respect to gg, defines a s-linear au-
tomorphism of gy, and therefore an automorphism a of Aut gq such that
B(a) = s. Thus, in this case, the sequence

1—>Autgk—>Autg'Q—>Autk—>l (2)
is exact and split. Translated into group terms, this yields the following
lemma:

Lemma 3.9. Let G be absolutely almost simple over k. Then we have
an exact sequence

1 - (AutG); — (AutG')g — Autk. (1)

Let ko be the fixed field of Autk and assume that G is obtained by exten-
sion of the field of definition from a ko-group Go. Then the sequence

1 - (AutG) — (AutG')g — Autk — 1 2)

is exact and split. On Gy, identified with Goy, the group Autk acts by
conjugation.

Strictly speaking, the sequences (3.8)) (1), (2) give Lemma [3.9] (1),
(2) if G is centerless or simply connected (the only cases of interest be-
low). But in the general case, we may argue in the same way as above,
replacing Aut g; and Aut gb by the images of (AutG); and (AutG’)q
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in those groups. The proof can also be carried out directly in G and G,
using the structure of Ry, /QG, and is then valid of Q, k and Aut k are re-
placed by a field K, a finite separable extension K’ of K, and Aut(K’/K).

Remark. The above lemma was obtained with the help of Serre, who
has also given examples where G has no ko-form and (@) is not exact.

4 Split groups over number fields. In this paragraph, G is
a connected almost simple k-split group. G is viewed as obtained by
extension of the groundfield from a Q-split group Gy, endowed with the
Z-structure associated to a splitting over Q. G is then endowed with
an o-structure associated to its given splitting, and Gp is well defined
for any o-algebra B. We shall be interested mainly in the canonical S -
arithmetic subgroup G s).

Lemma 4.1. Let G be split over k, almost simple over k, and L = G(s).

(i) L is equal to its normalizer in Gy. The image in G/Z(G) of the
normalizer N(L) of Lin G is equal to (G/Z(G))y(s). In particular,
L = N(L) if G is centerless.

(ii) The group N(L)/L is a finite commutative group whose exponent
divides the order m of Z(G).

(i) Let T be a Chevalley lattice in go,g. Then ([16], 2.17) shows that
Gy(s) is the stabilizer of o(S). T in Gy, operating on g by the
adjoint representation. The lattice I" is spanned by the logarithms
of the unipotent elements in Goz, hence o(S). T is spanned by
the logarithms of unipotent elements in Gyg). It is then clear
that if x € G normalizes G ,(s), then Adx normalizes o(S) - T. If
moreover x € Gy, then x € G,(s), which proves the first assertion.
Together with Proposition[3.3] this proves (i).

(ii) The group N(L)/L is finite by Proposition 3.3l The other asser-
tions of (ii) follow from (i) and Proposition 3.4]
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Lemma 4.2. Let G = SL,, PSL, and L a S -arithmetic subgroup of
G. Assume that S has at least two elements. Let s be an automorphism
of L. There exists an automorphism s' of G', defined over Q, and a
homomorphism f of L into Z(G")q such that s(x) = f(x)-s'(x)(x € L).

Let G = SL,, 7 : G — G the natural homomorphism and L =
7 Y(L) n Gy. Then L is S-arithmetic in G. The map s o rr defines a
homomorphism of L into Gé. It follows from [29] that there exists a

Q-morphism ¢ : Rk/Qﬁ — G’, which coincides with s o 7 on a normal

subgroup of finite index of L. The end of the argument is then the same
as in Lemmal[L.8]

Theorem 4.3. Ler Aut(k, S ) be the subgroup of Autk leaving S stable.
Assume either 1ky G = 2 or 1k G = 1 and Card S = 2. Let L = G s).

(i) IfG is centerless, Aut L is generated by E(G), the group Aut(k, S)
acting by conjugation, and Int L.

(ii) If G is simply connected, Aut L is generated by E(G), Aut(k, S ),
and automorphisms of the form x — f(x)-y-x-y~! where f is a
homomorphism of L into its center, and y belongs to the normal-
izer of Lin G.

By Lemma ] L contains Z(G)i. Let s € AutL. By Lemma [[.§
and Lemma we may write s(x) = f(x) - s'(x) where 5" is a Q-
automorphism of G’ and f a homomorphism of L into Z(G’)q = Z(G)y,
hence of L into its center.

The group G comes by extension of the groundfield from a split Q-
group Gy. Therefore Lemma [3.9 obtains. After having modified s by
a field automorphism J, we may consequently assume s’ to belong to
(AutG)g. In both cases (i), (ii) (AutG)y is a split extension of E(G)
by (IntG);; moreover, the representative E'(G) of E(G) alluded to in
Theorem leaves L stable. Thus, after having multiplied s’ by an
element of E(G), we may assume s’ € (IntG)y, hence s = Inty, (y €
N(L)).
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4.4 Let G have a non-trivial center. We assume that the underlying
Q-split group Gp may be (and is) identified with a Q-subgroup of GL,,
by means of an irreducible representation all of whose weights are ex-
tremal, i.e. form one orbit under the Weyl group, in such a way that Z"
is an admissible lattice, in the sence of [[10]. (This assumption is ful-
filled in all cases, except for the one of the spinor group in a number of
variables multiple of four.)
Let D be the group of scalar multiples of the identity in GL,,, and
H = D - G. The group H is the identity component of the normalizer of
G in GL,,. The group D is a one-dimensional split torus. In particular,
its first Galois cohomology group is zero. We have G n D = Z(G), and
G < SL,, therefore the order m of Z(G) divides n, and Proposition [3.4]
(1) yeilds
N(L) = G n Nyg(L)i - D. (1)

Lemma 4.5. We keep the assumptions of Let m be the order of
Z(G). Let A and B be the images of N(L) and H,s) in Aut L.

(i) The enveloping algebra M of L over o(S) is M(n, 0(S)).
(ii) A/B is isomorphic to a subgroup of
wl(k,S) and B to o(S)*/o(S)*™.

(1) In view of the definition of admissible lattices [10], the maxi-
mal k-split torus 7 of the given splitting G may be assumed to
be diagonal and the o(S )-lattice 'y = o(S)”" is the direct sum
of its intersections with the eigenspaces of 7. Out assumption
on the weights implies further that these eigenspaces are one-
dimensional, permuted transitively by the normalizer N(T') of T

Given a prime ideal v € V = V,, we denote by F, the residue
field o/v and by F, an algebraic closure of F,. By [10], reduc-
tion mod v of G, (endowed with its canonical o-structure), yields
a F\,-subgroup G, of GL(n, F,) which is connected, almost sim-
ple, has the same Dynkin diagram as G, and is simply connected
if G is. The reduction mod v also defines an isomorphism of the 64
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character group X*(T') of T onto the character group X*(7,))
of the reduction mod v of T, which induces a bijection of the
weights of the identity representation of G onto those of the iden-
tity representation of G,). Thus the eigenspaces of 7',y are one-
dimensional, and permuted transitively by the normalizer of 7).
Consequently, the identity representation of G, is irreducible.

The given splitting of G defines one of the universal covering G
of G, hence an o-structure on G. The reduction mod vé(v) of
G is the universal covering group of G(,) and the identity repre-
sentation may be viewed as a irreducible representation of é(v),
say f(,). But f(,) has only extremal weights, therefore is a fun-
damental representation. It follows then from results of Stein-
berg ([30]; 1.3, 7.4) that the representation f{,) of the finite group
é(v),pv is absolutely irreducible. Now, since reduction mod v is
good, é( ),F, 1s the reduction of GN Moreover, G being split and
simply connected, strong approx1mat10n is valid in G, hence G,
is dense in Gnv, which implies that reduction mod v maps G, onto
5( ).F,- But the canonical projection of G onto G maps G, into G,.
Consequently, the image of G, in G(,) by reduction is a subgroup
which contains f(,) ((N?(V),FV), hence is irreducible. Therefore

M®F, =M(n,F,),(veV—S).

This shows that the index of M in M(n, 0(S)) is prime to all ele-
ments in V — §, whence (i).

By .41 (1), the image of N(L) in Aut L is the same as that of N =
Ny(L)g. Let x € N and ' = x- T be the transform under x of the
standard lattice I'y = o(S)". This is a (S )-lattice stable under L
hence, by (i), also stable under GL(n,0(S)). Forve V — S, the
local lattice o, -I"in k]! is then stable under GL(n, 0,). There exists
therefore a power v¥(") (a(v) € Z) of v such that o, - T' = v*(*) . o,
We have then also o, - (detx) = v**®). In view of the relation
between a lattice and its localizations, we have then I' = a - I
with a = ITv?"), and moreover a” - 0(S) = o(S) - (detx). By
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assigning to x the image of a- o(S) in I(k, S ), we define therefore
amap a of N’ into ,1(k, S ), which is obviously a homomorphism.
If d € D, then a(d - x) = a(x), whence a homomorphism of A
into ,I(k,S), to be denoted also by a. Clearly, Hys) < kera.
Conversely, assume that x € ker@. Then x - Iy is homothetic to
I'p, and there exists d € k* such that d - x leaves I'y stable. But
then d - x € H,s), so that the image of x in AutL belongs to B.
Thus, A/B is isomorphic to a subgroup of ,/(k, S ). But N(L)/L s
of exponent m by Lemma .1l and m divides n, therefore & maps
A/B into a subgroup of ,,/(k,S).

Let o : H — H/G be the canonical projection. Its restriction to
D is the projection D — D/Z(G), and H/G = D/Z(G). If an element
X € Hy(g) defines an inner automorphism of L, then x € Dy - L, and
o (x) € o(Dy(s)). Since elements of D, s define trivial automorphisms
of L, we see that

B/IntL%O'(HD(S))/O'(DD(S)). (D)

Identify D/Z(G) to GL;. Then o(H,s)) is an S -arithmetic subgroup
of GL; hence a subgroup of finite index of o(S)*. The group Z(G) is
cyclic of order m, therefore the projection D = GLl — D' is either
x = x"or x — x ", hence o(Dys)) = of )*(") o that B/Int L
may be identified to a subgroup of D( )*/0(S)*0™ . Thus (@) yields
an injective homomorphism 7 : B/IntL — o(S*)/o(S)*™). There
remains to show that 7 is surjective.

Letn: H— H/D = G/Z(G) = IntG be the canonical projection,
T the maximal torus given by the splitting of G and 7/ = 7(T'). We have
already remarked that x € H,(s) defines an inner automorphism of L if
and only if x € Dy(s) - L, so B/IntL = n(Hy(s))/n(L). By Lemmad.1]
n(N(L)) = (G/Z(G))y(s)- On the other hand since TD is split, D is a
direct factor over k; this implies 1mmedlately that 7w : (TD)ys) — T o(S)

is surjective, hence 7(H,(s)) N T" = We have n1(Dy(5)-L) = n(L),

(S )’
and consequently, since kert "G < T,

m(Dysy - L) N T'=n(LnT)x= (Tus)):
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hence B/ Int L contains a subgroup isomorphic to 7" (s) /7(Tys)). How-

ever, the kernel of 7 : T — T’ is a cyclic group of order m. It is then
elementary that we can write T = T x T», over k, with 7| containing
Z(G) of dimension one. This implies

this shows that the order of B/IntL exceeds that of o(S)*/o(§)*".
Therefore T is surjective.

Examples 4.6. (1) G = SL, - H = GL,, (n > 3). The group L =
SL(n,0(S)) is equal to its derived group [3]], Corollary 4.3. By
Lemmal.T]Aut L is generated by Aut(k, S ), acting by conjugation
on the coefficients, by the automorphism x — ‘x~!, and by the
image A in Aut L of N(L).

If a is an o(S )-ideal, then a - Ty is isomorphic to a” @ o(S)"~!
by standard facts on lattices. Therefore, if a” is principal, then
a - T'g is isomorphic to I'y and there exists g € GL(n, k) such that
g - Tp = a-T. But the stabilizer of [y in G is the same as that
of a - Ty, hence g € Ny(L)k, which shows that, in this case, the
monomorphism A/B — ,I(k,S) is an isomorphism. We have
therefore a composition series

AutL>A' 5 A>B>Intl,

whose successive quotients are isomorphic to Aut(k,S), Z/2Z,
oI (k,S) and o(S)*/o(S)*().

This result is contained in [24]], where Aut SL(n, Q) is determined
for any commutative integral domain Q, except for the fact that
the structure of the subgroup corresponding to A/ Int L is not dis-
cussed there. For o(S) = o, it is related to those of if k has
class number one, and of [20] if kK = Q(i).

(2) G = SLy, cardS > 2. The above discussion of A/IntL is still
valid, (without restriction on S, in fact). Furthermore, the contra-
gredient mapping x — ‘x~! is an inner automorphism for n = 2.
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However, in general, L is not equal to its commutator subgroup,
and L/(L,L) has a non-trivial 2-primary component. Therefore
there may be non-trivial automorphisms of the form x — f(x) - x
where f is a character of order two of L. Clearly, such a homo-
morphism of L into itself is bijective if and only if y(—1) = 1.
It follows from Lemma that Aut L is generated by automor-
phisms of the previous type, field automorphisms, and elements
of A.

We note that this conclusion does not hold true without some re-
striction on k, S. For instance, there is one further automorphism
if k = Q(i), o(S) = Z(i), (see [20]], and also [21]] for a further
discussion of the case n = 2).

(3) G = Spy,, L = Sp(2n,0(S)). The commutator subgroup of L is
equal to L if n > 3, and has index a power of two if n = 2
([3]l, Remark to 12.5). The group G has no outer automorphisms,
therefore, if n > 3, Theorem [£3] and Lemma show that we
have a composition series

AutL D A>B>IntL,
with
AutL/A ~ Aut(k,S), B/IntL = o(S)*/o(S)*?,

and A/B isomorphic to a subgroup of »/(k,S ). We claim that in
fact
A/B = 2](](,5).

We write the elements of GL,, as 2 x 2 matrices whose entries
are n x n matrices. Sp,,, is the group of elements in GL;,, leaving
J = ( _01 (1)) invariant, and its normalizer H in GLy, is the group
of similitudes of J. Let a be an o(S )-ideal such that a is principal.
As remarked above, there exists x € GL(2, k) such that x-0(S)? =
a-0(S)2. Let y be the element of GL(2n, k) which acts via x on
the space spanned by the i-th and (n+1i)-th canonical basis vectors
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(i=1,...,n). Theny e Hy,and y - o(S)?" = a- o(S)?". Thus,
y is an element of Ny (L); which is mapped onto the image of a
in »/(k,S) by the homomorphism @ : A/B — ,I(k,S) of Lemma
Hence, «a is also surjective.

If n = 2, Aut L is obtained by combining automorphisms of the
above types with those of the form x — f(x) - x, where f is a
homomorphism of L into =1 whose kernel contains —1.

Remark 4.7. It was noticed in Lemma F.] that L is equal to its nor-
malizer in Gy. Since L has finite index in its normalizer in G, (Propo-
sition (d)), this means that L is not a proper normal subgroup of an
arithmetic subgroup of G. More generally, we claim that L is maximal
among arithmetic subgroups, i.e. that no subgroup M of Gy contains L
as a proper subgroup of finite index. This was proved by Matsumoto
[23] when S = V,, and his proof extends immediately to the present
case. In fact, the argument in the proof of Theorem 1 of [23]] shows that
if L has finite index in M < Gy, then the closure of M inG,(ve V,v ¢ S)
is contained in G, , whence M < L.

5 Uniform subgroups in GS. In §1, we proved the finiteness
of E(L) for subgroups which are either uniform or arithmetic. In §3
the arithmetic case was extended to §-arithmetic groups. Now a -
arithmetic group may be viewed as a discrete subgroup of Gg, which
is irreducible in the sense that its intersection with any proper partial
product of the G,’s (v € §) reduces to the identity. We wish to point out
here that there is also a generalization to Gg of the uniform subgroup
case. We assume that S # V. Such groups have been considered by
Thara [14] for G = SL,, and Lemma[5.1lis an easy extension of results
of his.

Lemma 5.1. Let G be a connected semi-simple, almost simple k-group,
L a uniform irreducible subgroup of Gs, and L' its projection on G .

(1) L is finitely generated.

(i1) Ifrank G = 2 and G, has no compact or three-dimensional factor
ork=Q,G = SLy, then H' (L', 9,) = 0.
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®

(ii)

LetS' =8 — Vi, Ggr = [ [,e5, Gvo and K = G x [ [,.cg/ Gow-
The latter is an open subgroup of Gg. The orbits of K in Gg/L
are open, hence closed, hence compact. Therefore Ly = L n K is
uniform in K. Since K is the product of G, by a compact group,
the projection L6 of Ly in G is a discrete uniform subgroup of
Go. But Gy is areal Lie group with a finite number of connected
components. Therefore the standard topological argument shows
that L is finitely generated. Let L” be the projection of L on Gyg.
Since L is uniform in Gy, there exists a compact subset C of Gy
such that Gg = L” - C. On the other hand, it follows from ([9],
13.4) that Gg- has a compact set of generators, say D. Then the
standard Schreier-Reidemeister procedure to find generators for a
subgroup shows that L is generated by LN (G, x D-C-D~") and
consequently by Ly and finitely many elements. (This argument
is quite similar to the one used by Kneser to prove the finite
generation of Gy .)

We first notice that the restriction map
riHY (L, 90) — H' (L), 950)

is injective. The argument is the same as one of Thara’s ([14]],
p-269) in the case G = SL, : if x € Gg, then x - K - x s
commensurable with K, hence, if x € L, the group Lo, = x- Ly -
x~ 1A Lo has finite index in Lo. In particular, L()’x is uniform in G,
hence, by density [4]], has no fixed vector # 0 in g.,. This implies
by LemmaB.3]that ker r = 0. If tk(G) > 2, then H'(L{, a,c) = 0
by [32]] and [33]], whence our assertion in this case. If G = SL;,
k = Q, the vanishing of H'(L',g,) has been proved by Ihara,
loc. cit. (it is stated there only in the case where S consists of o0
and one prime, but the proof is a fortiori valid in the more general
case).

Theorem 5.2. Let G and L be as in Lemma[3.1)(ii). Then E(L) is finite,
and L is not isomorphic to a proper subgroup of finite index.
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Identify L to its projection L' in Go. Then the theorem follows from
Lemma[[.Tland Lemma[I3]in the same way as in the case S = V.

APPENDIX

6 On compact Clifford-Klein forms of symmetric
spaces with negative curvature.

6.1 Let M be a simply connected and connected Riemannian symmet-
ric space of negative curvature, without flat component. A Clifford-
Klein form of M is the quotient M/L of M by a properly discontinuous
group of isometries acting freely, endowed with the metric induced from
the given metric on M. In an earlier paper (Topology 2 (1963), 111-122),
it was proved that M always has at least one compact Clifford-Klein
form. In answer to a question of H. Hopf, we point out here that M
always has infinitely many different compact forms. More precisely:

Theorem 6.2. Let M be as inl6.1l Then M has infinitely many compact
Clifford-Klein forms with non-isomorphic fundamental groups.

M is the direct product of irreducible symmetric spaces. We may
therefore assume M to be irreducible. Then M = G/K, where G is a
connected simple non-compact Lie group, with center reduced to {e},
and K is a maximal compact subgroup of G. Moreover, G is the iden-
tity component of the group of isometries of M. Let L be a discrete
uniform subgroup of G, without elements of finite order # e. Then L
operates freely, in a properly discontinuous manner, on M, and M/L is
compact. Moreover, by a known result of Selberg (see e.g. loc. cit.,
Theorem B), L has subgroups of arbitrary high finite index. Since M is
homeomorphic to euclidean space, L is isomorphic to the fundamental
group of M/L; it suffices therefore to show that L is not isomorphic to
any proper subgroup L’ of finite index. If dimG = 3, then M is the
upper half-plane, and this is well known. It follows for instance from
the relations

x(M/L') = [L: L'] - x(M/L) # 0, (1)
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where [L : L'] is the index of L’ in L, and x(X) denotes the Euler-
Poincaré-characteristic of the space X. If dimG > 3, our assertion is
a consequence of Proposition[[7} If y(M/L) # 0, which is the case if
and only if G and K have the same rank, one can of course also use ().

References

[1]

[10]

N. ArraN : The problem of maximality of arithmetic groups,
Proc. Symp. pur. math. 9, Algebraic groups and discontinuous sub-
groups, A. M. S., Providence, R. I., (1966), 104-1009.

N. ArrLan : Maximality of some arithmetic groups, Annals of the
Brazilian Acad. of Sci., (to appear).

H. Bass, J. MiLNor and J.-P. SErRRE : Solution of the congruence
subgroup problem for SL,,(n > 3) and Sp,, (n = 2), Publ. Math.
LH.E.S. (to appear).

A. BoreL : Density properties for certain subgroups of semi-simple
groups without compact factors, Annals of Math. 72 (1960), 179-
188.

A. BoreL : Some finiteness properties of adele groups over number
fields, Publ. Math. . H.E.S. 16 (1963), 5-30.

A. BoreL : Density and maximality of arithmetic groups, J. f. reine
u. ang. Mathematik 224 (1966), 78-89.

A. BoreL and HarisH-CHANDRA, Arithmetic subgroups of algebraic
groups, Annals of Math. (2) 75 (1962), 485-535.

A. BoreL and J-P. Serre : Théorémes de finitude en cohomologie
galoisienne, Comm. Math. Helv. 39 (1964), 111-164.

A. BoreL and J. Tirs : Groupes réductifs, Publ. Math. . H.E.S. 27
(1965), 55-150.

C. CuEvALLEY : Certains schémas de groupes semi-simples, Sém.
Bourbaki (1961), Exp. 219.

75

71



72

76

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

(20]

[21]

A. Borel

M. Harr : A topology for free groups and related groups, Annals
of Math. (2) 52 (1950), 127-139.

L. K. Hua and I. RENER : Automorphisms of the unimodular
group, Trans. A. M. S. 71 (1955), 331-348.

L. K. Hua and I. REINER : Automorphisms of the projective uni-
modular group, Trans. A. M. S. 72 (1952), 467-473.

Y. IHarA : Algebraic curves mod p and arithmetic groups, Proc.
Symp. pure math. 9, Algebraic groups and discontinuous sub-
groups, A.M.S., Providence, R.1. (1966), 265-271.

Y. Inara : On discrete subgroups of the two by two projective
linear group over p-adic fields, Jour. Math. Soc. Japan 18 (1966),
219-235.

N. Iwanort and H. Marsumorto : On some Bruhat decompositions
and the structure of the Hecke rings of p-adic Chevalley groups,
Publ. Math. 1. H.E.S. 25 (1965), 5-48.

M. KnEeser : Erzeugende und Relationen verallemeinerter Ein-
heitsgruppen, Jour. f. reine u. ang. Mat. 214-15 (1964), 345-349.

B. Kostant : Groups over Z, Proc. Symp. pure mat. 9, Algebraic
groups and discontinuous subgroups, A. M. S., Providence, R.1I,
1966, 90-98.

J. Lanoiv and 1. REINER : Automorphisms of the general linear
group over a principal ideal domain, Annals of Math. (2) 65 (1957),
519-526.

J. LanpiN and I. REINER : Automorphisms of the Gaussian modular
group, Trans. A. M. S. 87 (1958), 76-89.

J. LanpIN and I. REINER : Automorphisms of the two-dimensional
general linear group over a Euclidean ring, Proc. A.M.S. 9 (1958),
209-216.

76



On the Automorphisms of Certain Subgroups... 77

[22] H. Marsumoto : Subgroups of finite index in certain arithmetic
groups, Proc. Symp. pure math. 9, Algebraic groups and discon-
tinuous subgroups, A.M.S., Providence, R.1. (1966), 99-103.

[23] H. Marsumoro : Sur les groupes semi-simples déployés sur un an-
neau principal, C. R. Acad. Sci. Paris 262 (1966), 1040-1042.

[24] O.T. O’MEarA : The automorphisms of the linear groups over any
integral domain, Jour: f. reine u. ang. Mat. 223 (1966), 56-100.

[25] M. S. RacHuNaTHAN : Cohomology of arithmetic subgroups of al-
gebraic groups 1, Annals of Math. (2) 86 (1967), 409-424.

[26] M. S. RagHuNaTHAN : Cohomology of arithmetic subgroups of al-
gebraic groups 11, (ibid).

[27] 1. RENER : Automorphisms of the symplectic modular group,
Trans. A.M.S. 80 (1955), 35-50.

[28] I. REmER : Real linear characters of the symplectic unimodular
group, Proc. A. M. S. 6 (1955), 987-990.

[29] J. P. SErRE : Le probléeme des groupes de congruence pour S Lo,
(to appear).

[30] R. STEINBERG : Representations of algebraic groups, Nagoya M.J.
22 (1963), 33-56.

[31] A. WELL : Adeles and algebraic groups, Notes, The Institute for
Advanced Study, Princeton, N. J. 1961.

[32] A. WEL : On discrete subgroups of Lie groups 11, Annals of Math.
(2) 75 (1962), 578-602.

[33] A. WEL : Remarks on the cohomology of groups, (ibid), (2) 80
(1964), 149-177.

The Institute for Advanced Study,
Princeton, N.J.

77

73



75

ON “ABSTRACT” HOMOMORPHISMS OF SIMPLE
ALGEBRAIC GROUPS

By A.Borel and J. Tits

THis Note describes some results pertaining chiefly to homomor-
phisms of groups of rational points of semi-simple algebraic groups,
and gives an application to a conjecture of Steinberg’s [9]] on irreducible
projective representations. Some proofs are sketched. Full details will
be given elsewhere.

Notation. The notation and conventions of [1]] are used. In particular,
all algebraic groups are affine, k is a commutative field, k an algebraic
closure of k, p its characteristic, and G is a k-group. In this Note, G is
moreover assumed to be connected. k' also denotes a commutative field.

Let ¢ : k — k' be a (non-zero) homomorphism. We let G be the
k'-groups G®K’ obtained from G by the change of basis ¢, and ¢ be the
k

canonical homomorphism G, — Gy associated to ¢. _
If p # 0, then Fr' denotes the p'-th power homomorphism A — A7
of a field of characteristic p(i = 0, 1,2,...). If p = 0, Fr' is the identity.
A connected semi-simple k-group H is adjoint if it is isomorphic to
its image under the adjoint representation, almost simple (resp. simple)
over k if it has no proper normal k-subgroup of strictly positive dimen-
sion (resp. # {e}).

1 Homomorphisms.

1.1 Let G be semi-simple. G* will denote the subgroup of Gy gener-
ated by the groups Uy, where U runs through the unipotent radicals of
the parabolic k-subgroups of G. The group G* is normal in Gy; it is
# {e} if and only if rki(G) > 0. If, moreover, G is almost simple over
k, then G is Zariski-dense in G, and the quotient of G™ by its center is
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simple except in finitely many cases where k has two or thee elements
[TO]. If f : G — H is a central k-isogeny, then f(G") = H™. The
group G+ is equal to Gy if k = k, or if G is k-split and simple con-
nected; it is conjectured to be equal to Gy if G is simply connected and
k. (G) > O[I0]. It is always equal to its commutator subgroup.

Theorem 1.2. Assume k to be infinite, and G to be almost absolutely
simple, of strictly positive k-rank. Let H be a subgroup of Gy containing
G*. Let k' be a commutative field, G' a connected almost absolutely
simple k'-group, and a : H — G;{, a homomorphism whose kernel does
not contain Gt, and whose image contains G'*. Assume finally that
either G is simply connected or G' is adjoint. Then there exists an iso-
morphism ¢ : k — k', ak’-isogeny B : G — G', and a homomorphism
v of H into the center of G, such that a(x) = B(¢o(x)) - y(x)(x € H).
Moreover, B is central, except possibly in the cases : p = 3, G, G’ split
of type Ga; p = 2, G, G' split of type F4; p = 2, G, G’ split of type B,
C,,, where B may be special.

(The special isogenies are those discussed in [3} Exp. 21-24].) In
the following corollary, G and G’ need not satisfy the last assumption of
the theorem.

Corollary 1.3. Assume Gy, is isomorphic to Gl’c,. Then k is isomorphic
to k', and G, G’ are of the same isogeny class.

LetG and G be the adjoint groups of G and G’. The assumption im-
plies the existence of an isomorphism « : EANNYeN By the theorem
there is an isomorphism ¢ of k onto k” and an isogeny u of ?G onto G,
whence our assertion.

Remarks 1.4. (i) It may be that the homomorphism y in (L2) is al-
ways trivial. It is obviously so if G’ is adjoint, or if H is equal
to its commutator subgroup. Since G is equal to its commuta-
tor group, this condition will be fulfilled if G is simply connected
and the conjecture Gy, = G of [10] is true, thus in particular if G
splits over k. Moreover, in that case the assumption G* < kera
would be superfluous.

79

76



77

80 A. Borel and J. Tits

(i) The theorem has been known in many special cases, starting with
the determination of the automorphism group of the projective
linear group [7]. We refer to Dieudonné’s survey [4]] for the auto-
morphisms of the classical groups. For split groups over infinite
fields, see also [6].

(iii) Assume k = k’, G = G’, G adjoint, and k not to have any automor-
phism # id. Theorem [[.Z] implies then that every automorphism
of Gy is the restriction of an automorphism of G, which is then
necessarily defined over k. In particular, if k is the field of real
numbers R, every automorphism of Gy is continuous in the ordi-
nary topology, as was proved first by Freudenthal [3]].

(iv) The assumption rk;y G > 0 is essential for our proof, but it seems
rather likely that similar results are valid for anisotropic groups.
This is the case for many classical groups [4]. Also, Freuden-
thal’s proof is valid for compact groups. In fact, the continuity of
any abstract-group automorphism of a compact semi-simple Lie
group had been proved earlier, independently, by E. Cartan [2]]
and van der Waerden [[11]]. We note also that van der Waerden’s
proof remains valid in the p-adic case.

(v) The group Aut Gy has also been studied when £ is finite. See [4]] for
the classical groups, and [8] for the general case.

Theorem 1.5. Assume k to be infinite, and G to be almost simple, split
over k. Let G' be a semi-simple split k'-group, G'(1 < i < s) the
almost simple normal subgroups of G, and a : G, — G;{, a homomor-
phism whose image is Zariski-dense. If Gy = G, then G' is connected.
Assume G’ to be connected and either G simply connected or G' ad-
joint. Then there exist homomorphisms ¢; : k — k' and k'-isogenies
Bi: G — Gi(1 < i < s), which are either central or special, such that

a(x) = H(ﬂi o dio)(x), (xeGy).
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Moreover, Fr* o ¢; # Frboqu ifp=0andi # j, orifp # 0 and
(a,i) # (b, j)(1 <i,j< s;a,b=0,1,2,...).

The proof of Theorem [L.3] goes more or less along the same lines as
that of Theorem In fact, it seems not unlikely that Theorem [I.3] can
be generalized so as to contain Theorem[[.2l We hope to come back to
this question on another occasion.

Example 1.6. The following example, which admits obvious general-
izations, shows that the assumption of semi-simplicity made on G’ in
Theorem [[.3] cannot be dropped.

Let G = SL,, and N be the additive group of 2 x 2 matrices over
%, of trace zero. Let d be a non-trivial derivation of k. Extend it to
a derivation of Ny by letting it operate on the coefficients, and define
h: Gy — Nibyh(g) = g~ ! -dg. Let G' = G - N be the semi-direct
product of G and N, where G acts on N by the adjoint representation.
Then g — (g, h(g)) is easily checked to be a homomorphism of Gy into
G;C with dense image; clearly, it defines an “abstract™ Levi section of G;C.

2 Projective representations.

2.1 Assume p # 0. For G semi-simple, let % or Z(G) be the set
of p!(I = rank G) irreducible projective representations whose highest
weight is a linear combination of the fundamental highest weights with
coefficients between 0 and p — 1. The following theorem, in a slightly
different formulation, was conjectured by R. Steinberg [9], for k = k.
We show below how it follows from Theorem and [9], (Theorem
1.1).

Theorem 2.2. Assume k to be infinite, p # 0, and G k-split, simple,
adjoint. Let 1 : Gt — PGL(n, k) be an irreducible (not necessarily
rational) projective representation of G*. Then there exist distinct ho-
momorphisms ¢ : k — k, and elements n; € Z(%G)(1 < j < t), such
that - Hﬂj o ¢jo-

J
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Proof. Let G’ be the Zariski-closure of 7(Gy) in PGL,,. It is also an ir-
reducible projective linear group, hence its center and also its centralizer
in PGL,, or in the Lie algebra of PGL,, are reduced to {e}. Thus G’ is
semi-simple, and its identity component is adjoint. Moreover, by The-
orem[L.3l G’ is connected. By Theorem 1.1 of [9], there exist elements
ng € Z(G'), (1 < a < g) such that the identity representation of G’ is
equal to [ [, o (Fr*). Let G}(1 < i < s) be the simple factors of G’

a
The tensor product defines a bijection of Z(G}) x - - - x Z(G’) onto
Z#(G’). We may therefore write

= H Tais  (mai € Z(Gl);1 < a < q).

I<i<s

Let now ¢; : k — kand B; : G — G; be as in Theorem [L3] (with
= k’). We have then

= H?Ta,i o (Fr*)g oo ¢ip. (D)

But (Fr%)g o Bi = Bai o (Fr*)o, where B,; is the transform of 3; under
Fr. Let ¢,; = Fr?o¢;. Since G, G; are adjoint, the morphisms S, ; are
either isomorphisms or special isogenies. Therefore, taking ([9], §11)
into account, we see that

ﬂ;’i = 74 0PBuai € Z(%i(G)), (1<i<s;1<a<gyq),
and () yields
= Hﬂal (da.i)o (2)

which proves the theorem, in view of the fact that the ¢, ; are distinct by
Theorem O

3 Sketch of the proof of Theorem [1.2L In this paragraph,
k is infinite and G is semi-simple, of strictly positive k-rank.

The two following propositions are the starting point of the proofs
of Theorem[I.2] and Theorem [L.3]
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Proposition 3.1. Let G’ be a k'-group, and a : G* — G|, a non-trivial
homomorphism. Let P be a minimal parabolic k-subgroup of G and U
its unipotent radical. Then a(Uy) is a unipotent subgroup contained in
the identity component of G' and a(G™) < G’ O The field k' is also of
characteristic p.

Let S be a maximal k-split torus of P. It is easily seen that ST =
S N GT is dense in S. It follows then from §11.1] that any sub-
group of finite index of ST - Uy contains elements s € S such that
(s,Ur) = Uy. From this we deduce first that Uy is contained in any
normal subgroup of finite index of S - Uy, and then, that it is also con-
tained in the commutator subgroup of any such subgroup. It follows that
a(Uy) is contained in the derived group of the identity component of the
Zariski closure of /(S ™ - Uy). The latter being solvable, this implies that
«(Uy) is unipotent.

Let p’ = char. kK. If p # 0, then Uy is a p-group. Its image is a
p-group and is # {e} since « is non-trivial, and G* is generated by the
conjugates of Uy; hence p = p’. If p = O and p’ # 0, then ker an Uy has
finite index in U, whence easily a contradiction with the main theorem

of [10].

Proposition 3.2. Let G’ be a connected semi-simple k'-group. Let P, S,
U be as above, P~ the parabolic k-subgroup opposed to P and contain-
ing Z(S), and U~ = R,(P™). Let H be a subgroup of Gy, containing
Gtanda : H— G;{, be a homomorphism with dense image. Then the
Zariski-closures Q, Q~ of a(P n H) and a(P~ n H) are two opposed
parabolic k'-subgroups, and Q ~ Q~, R,(Q), R,(Q™) are the Zariski-
closures of «(Z(S ) n H),a(Uy) and a(U,") respectively.

Let M, V, V™ be the Zariski-closures of a(2(S) n H), a(Uy) and
a(U, ) respectively. The groups V, V™ are unipotent, by Proposition
Bl The group G is the union of finitely many left translates of U~ - P.
Since a(H) is dense, this implies that V— - M - V contains a non-empty
open subset of G’. Let T be a maximal torus of M and Y, Y~ be two
maximal unipotent subgroups of M normalized by T such that Y~ -T-Y
is open in MO (see [T, §2.3, Remarque). Then V™ - Y~ and Y - V are
unipotent subgroups of G’ normalized by T and V— - Y~ - T -Y -V
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contains a non-empty open set of G’. Consequently ([1]], §2.3), T is
a maximal torus of G’, and V~ - Y, Y - V are two opposed maximal
unipotent subgroups. This shows that Q, O~ are parabolic subgroups,
M is reductive, connected, and V = R, (Q), (resp. V~ = R,(Q7)). The
groups Q, QO are obviously k’-closed. Arguing as in Proposition 3.1
we may find s € S n H such that (s,Uy) = Uy, (s,U, ) = U, . It
follows then from ([T], §11.1) that 2 (a(s))? = M. Hence M is defined
over k'([T]], §10.3). By Grothendieck’s theorem ([1]], §2.14), it contains
a maximal torus defined over k’. Hence ([1]], §3.13), Q, Q~, V, V™ are

defined over k’.

3.3 We now sketch the proof of Theorem assuming for simplic-
ity that G, G’ are adjoint and H = Gy. Then « is injective. Propo-
sition applied to & and @~!, shows that Q, O~ are two opposed
minimal parabolic k’-subgroups of G’. Consequently, « induces an iso-
morphism of A(S)/Z(S) onto A (M)/M, i.e. of ;W(G) = ;W onto
wW' = vW(G'). For a € @(G), let U, = U,)/Uq), where we put
Upay = {e} if 2a ¢ (@. It may be shown that U, is the center of

a
tersections U N w(P())(w € W) not reduced to {e}. It then follows that
« induces a bijection @y : ;®(G) — @ (G’) preserving the angles, and
isomorphisms U, — Vas(a) i~ The group U, (resp. Vi (,)) may be
endowed canonically with a vector space structure such that S (resp. a
maximal k’-split torus S’ of M) acts on it by dilatations. The next step
is to show that @ : U, — Vs (a) i Induces a bijection ¢, between the
algebras of dilatations. Let L, be the subgroup of G generated by U,
and U(_,). The assumption that G is almost absolutely simple is equiv-
alent to the existence of one element a € ;® such that the intersection
X, of L, with the center C of Z(S) is one-dimensional, hence such that
XY = S. This is the main tool used in showing that a(S;) = S 4> hence
that & maps dilatations by elements of (k*)? into dilatations. If p # 2,
this suffices to yield the existence of ¢, : k — k’. In characteristic two,
some further argument, based on properties of groups of rank one, is
needed. It is clear that ¢, = ¢, if b € (W (a). Using further some facts

U(s)- The groups U | may be characterized as minimal among the in-
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about commutators, it is then easily proved that ¢, = ¢p(a,b € @) if
a, preserves the lengths. If not, we show that we are in one of the ex-
ceptional cases listed in the theorem, and we reduce it to the preceding
one by use of a special isogeny. Write then ¢ instead of ¢,. Replac-
ing G by ?G, we may assume k = K/, ¢ = id. It is then shown that
a : Uy — Vj is the restriction of a k-isomorphism of varieties. On
the other hand, since G’ is adjoint, 2°(S’) is isomorphic to its image in
GL(b) under the adjoint representation, where b is the sum of Lie alge-
bras of the Vs (a' € 1 ®(G")). This implies readily that the restriction of
@ to U, - Py is the restriction of a k-isomorphism of varieties of U™ - P
onto V™~ - Q. The conclusion then follows readily from the fact that G is
a finite union of translates x - U~ - P(x € Gy).
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RATIONAL POINTS ON CURVES OF HIGHER
GENUS

By J. W.S. Cassels

The old conjecture of Mordell [3] that a curve of genus greater than
1 defined over the rationals has at most one rational point still defies
attack. Recently Dem’janenko has given a quite general theorem
which enables one to prove the existence of only finitely many rational
points in a wide variety of cases. In this lecture I show how his theorem
is an immediate consequence of the basic properties of heights of points
on curves. The details will be published in the Mordell issue of the
Journal of the London Mathematical Society [1]].
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A DEFORMATION THEORY FOR SINGULAR
HYPERSURFACES

By B.Dwork

IN previous articles [1I], [2]] we have given a theory for the zeta func-
tion of non-singular hypersurfaces defined over a finite field. Here we
shall discuss the zeta function of the complement, V/, in projective n-
space of the algebraic set

X1 Xs... Xup1f(X) =0

defined over GF[q], where f is homogeneous of degree d. Let f be
a lifting of . We shall make no hypothesis that f be non-singular in
general position and shall study the variation of the zeta function of V
as f varies. This involves a generalization of the non-singular case and
we will review the situation for that case.

1 Notation. In the following the field of coefficients will be a suit-
ably chosen field of characteristic zero. The precise choice of field will
usually be clear from the context.

L* = all infinite sums of the form Zg,o—y, 4. 4w, AwX ", w; = 0,
Vi,

L = all finite sums of the form XA, X", the range of w being as
above;

K={¢el*Di¢* =0,i=1,2,....,n+ 1};

Df =vy_ o (E;+ zXoEif), Di = E; + :XoEif;

0
Ei=Xi—;
i laXi
- —p;
X" ifeachw; <0,
y-X" = .
0 otherwise;
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A Deformation Theory for Singular Hyper-surfaces 89

OXY = X9,

o* =y o exp{mXof(X) = XLf(X)} 0 g 86
K* = {¢ e L*|D"¢* = 0, Vi, Vv large enough};

L; = elements of L* with suitable growth conditions;
K = elements of K™ with suitable growth conditions;
(suitable growth simply means that @ operates.)

R = resultant of (f, E1f,...,E.f);

K = algebraic number field;

Ok = ring of integers of K;

feO0k[Xy,. ... Xns1];

b(A) is a suitably chosen element of Oy[1].

For each prime p we assume an extension of p to K has been chosen
and that g is the cardinality of the residue class field.

2 Non-singular case. In this paragraph we suppose that f de-
fines a non-singular hypersurface in general position (hence R # 0). In
this case dimK = 4" and if f is non-singular and in general position
(i.e. R # 0) then all elements of K satisfy growth conditions

ordA,, = —0(logwy). (D

The zeta function of V/ is given by the characteristic polynomial of
a*|K. The Koszul complex of D, D3,..., DZ+1 acting on L* and L;f is
acyclic.

If fi € Of[A,X] where A = (/1(1), ... ,/l(“)) is a set of independent
parameters and if R(A) is not identically zero then as above we may
define K as a K(4) space and any basis has the form

& =756 (DX (AR i = 1.2, d" (@)

with Gg) € Ogld],i=1,...,d" and deg Gg) < kwy for suitable con-
stant k. For A p-adically close to 1p we have the map of K,, onto &
(with suitable extension of field of coefficients) T

Ty = v- cexpaXo(fa, — f1)

&9



87

90 B. Dwork

and we have the commutative diagram

T q
q
/l()’/l

Ky
A

K4
*
Ao

Ko Thga Ka
where «} is defined by modifying the formula for o*, replacing f(X)
by f1(X) and f(X9) by fie(X?). The matrix C, of Ty, (relative to
the bases ([@)) is the solution matrix of a system of linear differential
equations (with coefficients in K(1))

0
_ (1) 4 _
6/1(0)_(_XB Jt=1,2,...,41, 3)

which is independent of p and Ag. The matrix of a} relative to our basis
is holomorphic (as function of 1) in a region

W={(R)|>1-¢|1 <1+¢€} “4)

for some € > 0. It follows from Krasner that for 1 € W,

Al = 1, the
zeta function of ‘_/:l is determined by (3) and the matrix of afjo for one
specialization of Ay in W. This has seemed remarkable and it is this
situation which we wish to extend to the singular case.

3 Explanation of equation (3) (Katz [5]). K is dual to
L/ED;L. Again let w be in Z"*2 such that dwg = wy + - -+ + wy4 1. Let

ZO be the span of all X" such that wy > 0 (but wy,...,w,+; may be
negative). It is shown by Katz that
X" s (wo — 1) d(X1/Xn41) . d(Xu/Xnv1) XV

(=m0t (X1/Xp42) (Xn/Xnt1) (Xof)"”

modulo exact n — 1 forms gives an isomorphism
~0 ~
'yl DL~ H'(V')
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A Deformation Theory for Singular Hyper-surfaces 91

J ofa
a0 50
on the left is transformed into differentaition of the n" de-Rham space
on the right with respect to /l(’)(t = 1,2,...,u). This is valid without
restriction on f but if f is non-singular in general position then by com-
parison of dimensions, he showed that L'/ED;L is identified with the
factor space of H"(V’) modulo an n+ 1 dimensional subspace consisting
of invariant classes. (L' is the set of all elements of L with zero constant
term.) This identifies Equation (@) with the “dual” of the Fuchs-Picard
equation of H"(V’) if we use the fact that (3)) is equivalent to the fact
that o, o T, 2 annihilates K e

and if f is replaced by f; then the endomorphisms o; =

4 Singular case IBI]. Here we know finiteness of the Koszul com-
plex for L* and for K™ but not in general for Ly or for K;°. However
K* = K;O for almost all primes p and in this way the theory has been
developed only for a generic prime.

We mention that this restriction could be removed if we could show:

Conjecture. A linear differential operator in one variable with polyno-
mial coefficients operating on functions holomorphic in an “open” disk
has finite cokernel. (This is known in the complex case. In the p-adic
case it is known only for disks which are either small enough or large
enough. It is true without restriction if the coefficients are constants.
The conjecture is false for “closed” disks.)

In any case the zeta function of Vs given by the action of a* on
the factor spaces of the Koszul complex of K;O. The first term, i.e. the
characteristic polynomial of o*|K . dominates the zeta function in that
up to a factor of power of ¢, the zeros and poles of the zeta function
occur in this factor. In the following we consider the variation of K (and
of the corresponding factor of the zeta function) as f varies.

If we again consider f) € K[4, X], (but now R(1) may be identically
zero) then we may again construct K ; its dimension N over K () is not
less than N, = dimg ,) K, for each specialization, Ao, of A.
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92 B. Dwork
Theorem. Each basis {¢}}Y | of K is of the form

&, = b)) EMY ()X (7G(2))"0 )

where G(dg) = 0 if and only if Ny, < N. If Ny, = N then the basis

may be chosen such that b(dy) # 0. For each pair (i,w), Mv(vi) is a
polynomial whose degree is bounded by a constant multiple of wy.

For almost all p
ord, (MY /(xG)") = 0(log wo) (6)

where the left side refers to the p-adic ordinal extended to K(4) in a
formal way (generic value on circumference of unit poly disk). We again
have the mapping 7,1 of K, into K, for A close enough to Ay and if
N,, = N then the matrix of this mapping is again a solution matrix of
Equation (). Also the matrix of & is holomorphic in a region of the
same type as before,

IG(A)] >1—¢€]1 <1+,

for some € > 0 (this region may be empty for a finite set of p) and the
theory of Krasner may again be applied. This completes our statement
of results.

We now discuss equation (3)). If f; is generically singular, choose a
new family, f)r, which is generically non-singular and which coincides
with fj when I' = 0. We have the mapping T of K, into K, - given
by y_ oexp(nXo(fy — fur)) and for &* in K, we may write

TWDgs = ;X &% (7)

where {5;“ M}?": | is a basis of K . given by @). The left side of (€)
lies in K()[[T, X '], X, lies in K (4)[[T]] and £* may be recovered by
setting I' = 0 (i.e. by determining the coefficient of I'’ on the right side).

Our only information about the vector X = (...,X,,...) is that it
satisfies a differential equation

= XB ®)

3
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when B is rational in A, I'. If this equation has (for generic A) a regular

singular point at I' = O (which is not clear since the theorem of Griffiths

need not apply to Ver, even though f, - is generically non-singular) and

if further I'B = By(A) + I'B(A) + - - - then each formal power series
o0

solution )] A,I"* must have the form (for some & € K[A], v e Z})
s=0

As = polynomial / {h(/l)s Hdet(ll - BO)} )
t=v

Since By is a function of A this leads to the possibility that the singular
locus (in A) of the formal solution is an infinite union of varieties,

{det(t] — Bo) = 0},

and this would leave the same possibility for the singular locus of the
coefficients of £&*. We indicate two methods by which this difficulty
may be overcome.

Method 1. In the above analysis, the hypothesis of regularity of singu-
larity of (8) at I' = 0 was not essential but now we use this hypothesis
to conclude (with the aid of §3) that for fixed A, the zeros of the poly-
nomial det(¢] — By) (i.e. the roots of the indicial polynomial of (7)) are
related to the eigenvalues of the monodromy matrix for H”(V/’Lr) for a
circuit about I' = 0. Since this matrix can be represented by a matrix
with integral coefficients which is continuous as function of A for A near
a generic point, the conclusion is that the polynomial det(z/ — By) is
independent of A. With this conclusion the method of the previous para-
graph easily leads to equation (3). However as noted a (probably not
serious) gap remains in this treatment since the question of regularity of
singularity of () is not settled.

Method 2. By means of Equations (6)) and (7)) together with crude esti-
mates for growth conditions of formal power series solutions of ordinary
differential equations we show for each prime p, a constant ¢, and an
element ag of K[A] such that each £A,, X" in K 2, satisfies growth con-
ditions

ordA,, = —c,wo + 0(1) )
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provided
(1) Ao lies in a certain Zariski open set defined over K,
(i) |0 <1,
(iii) ap(Ap) is a unit,
(iv) p is not one of a certain finite set of primes.

Now let Ay be algebraic over K, in the Zariski open set of (i) and
such that ag(dp) # 0. We may choose p such that conditions (ii), (iii),
(iv) are satisfied and then for A; close enough to Ay the conditions (i)-
(iv) remain satisfied. We may put upon A; the further conditions that
ord(d; — Ag) > ¢, and that A; be of maximal transcendence degree over
K. We conclude that the dimension of K, (over K(4;)) is N, that the
elements of K, satisfy @) and hence that Ty, ,, is defined. We conclude
(since Ty, is injective) that the dimension of K, is N. From this we
conclude that

Ny, =N

for all Ay in a Zariski open set. This is the central point (which one
might expect to follow from general principles); from this and equations
(6) and (@) the remainder of the results may be deduced. The details are
explained in [4].
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SOME RESULTS ON ALGEBRAIC CYCLES ON
ALGEBRAIC MANIFOLDS

By Phillip A. Griffiths

0 Introduction. The basic problem we have in mind is the classi-
fication of the algebraic cycles on an algebraic manifold V. The first
invariant is the homology class [Z] of a cycle Z on V; if Z has codimen-
sion g, then [Z] € Hy,—24(V,Z)(n = dim V). By analogy with divisors
(c.f. [18]), and following Weil [22], if [Z] = 0, then we want to asso-
ciate to Z a point ¢4(Z) in a complex torus T, (V) naturally associated
with V. The classification question then becomes two problems :

(a) Find the image of ¢, (inversion theorem);
(b) Find the equivalence relation given by ¢, (Abel’s theorem).

We are unable to make substantial progress on either of these. On
the positive side, our results do cover the foundational aspects of the
problem and give some new methods for studying subvarieties of gen-
eral codimension. In particular, the issue is hopefully clarified to the
extent that we can make a guess as to what the answers to (a) and (b)
should be. This supposed solution is a consequence of the (rational)
Hodge conjecture; conversely, if we know (a) and (b) in suitable form,
then we can construct algebraic cycles.

We now give an outline of our results and methods.

For the study of g-codimensional cycles on V, Weil introduced cer-
tain complex tori J,(V); as a real torus,

Jo(V) = H*=!(V.R)/H*7(V, Z).

These tori are abelian varieties. We use the same real torus, but with
a different complex structure (c.f. §§II2); these tori 7,(V) vary holo-
morphically with V (the J,(V) don’t) and have the necessary functorial
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Some Results on Algebraic Cycles on Algebraic Manifolds 97

properties. In general, they are not abelian varieties, but have an r-
convex polarization [9]. However, the polarizing line bundle is positive
on the “essential part” of T,,(V). Also, T (V) = Ji(V) (= Picard variety
of V)and T,,(V) = J,(V) (= Albanese variety of V).

Let X, be the cycles of codimension g algebraically equivalent to
zero on V. There is defined a homomorphism ¢, : £, — T,(V) by

¢q(Z) = [ﬁ‘;ﬂ ]/(periods), where I' is a 2n — 2¢g + 1 chain with I’ = Z

and w',...,w" € H?"~24+1(V,C) are a basis for the holomorphic one-
forms on T,(V). Using the torus T,(V), this mapping is holomorhic
and depends only on the complex structure of V (c.f. §3); this latter
result follows from a somewhat interesting theorem on the cohomology
of Kéhler manifolds given in the Appendix following §10l In §3] we also
give the infinitesimal calculation of ¢; the transposed differential ¢* is
essetially the Poincaré residue operator (c.f. (3.8)). For hypersurfaces
(g = 1), the Poincaré residue and geometric residue operators coincide,
and the (well-known) solutions to (a) and (b) follow easily.

In §4 we relate the functorial properties of the tori T,(V) to geo-
metric operations on cycles. The expected theorems turn up, but the
proofs require some effort. We use the calculus of differential forms
with singularities. In particular, the notion of a residue operator as-
sociated to an irreducible subvariety Z — V appears. Such a residue
operator is given by a C* form ¢ on V — Z such that: (1) ¢ is of type
(2g—1,0)+ -+ (g,g—1); (2) &y = 0 and Oy is a C* (g, q) form on
V which gives the Poincaré dual Z[Z] € H*4(V) of [Z]; and (3) forT" a
2n — k chain on V meeting Z transversely and n a smooth 2g — k form
on V, we have the residue formula: lim  § ¢ An = § 5, where T,

=031, rz

is the e-neighborhood of Z in V. The construction of residue operators
is done using Hermitian differential geometry; the techniques involved
give a different method of approaching the theorem of Bott-Chern [4].
One use of the residue operators is the explicit construction, on the form
level, of the Gysin homomorphism i, : H*(Z) — H?4*k(V) where we
can keep close track of the complex structure (c.f. the Appendix to §4l
section (e)). This is useful in proving the functorial properties.
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In §8l we give one of our basic constructions. If [Z] = 0 in Hy, o4
(V,Z), and if ¢ is a residue operator for Z, we may assume that dyy = 0.
Then ¢ is the general codimensional analogue of a logarithmic integral
of the third kind ([17]). The trouble is that ¢ has degree 2¢g — 1 and so
cannot directly be integrated on V to give a function. However, ¢ can be
integrated on the set of algebraic cycles of dimension ¢ — 1 on V. We
show then that Z defines a divisor D(Z) on a suitable Chow variety asso-
ciated to V, and that s induces an integral of the third kind on this Chow
variety. The generalization of Abel’s theorem we give is then : D(Z) is
linearly equivalent to zero if ¢,(Z) = 0in T,(V). As in the classical
case, the proof involves a bilinear relation between ¢ and the holomor-
phic differentials on 7,(V). Also, as mentioned above, the “only if”
part of this statement (which is trivial when ¢ = 1) depends upon the
Hodge problem. Our conclusion from this, as regards problem (b) is:
The equivalence relation defined by ¢ should be linear equivalence on a
suitable Chow variety. In particular, we don’t see that this equivalence
should necessarily be rational equivalence on V.

In §6l we give our main result trying to determine the image of ¢. To
explain this formula (given by (6.8) in §6) we let {E,} be a holomorphic
family of holomorphic vector bundles over V. We denote by Z,(E;) the
g™ Chern class in the rational equivalence ring, so that {Z,(E,)} gives
a family of codimension g cycles on V. Our formula gives a method for
calculating the infinitesimal variation of Z,(E,) in T,(V); it involves
the curvature matrix @ in E, and the Kodaira-Spencer class giving the
variation of E,.

The crux of this formula is that it relates the Poincaré and geometric
residues in higher codimension. The proof involves a somewhat delicate
computation using forms with singularities and the curvature in E;. In
§8 we give the argument for the highest Chern class of an ample bun-
dle. In §7]it is shown that we need only check the theorem for ample
bundles; however, in general the Chern classes, given by Schubert cy-
cles, will be singular, except of course for the highest one. So, to prove
our formula in general we give in §0 an argument, which is basically
differential-geometric, but which requires that we examine the singular-
ities of Z,(E,).
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The reason for proving such a formula is that the Chern classes
Z,(E,) generate the rational equivalence ring on V. So, if we could
effectively use the main result, we could settle problem (a). For exam-
ple, for line bundles (¢ = 1), the mapping in question is the identity;
this gives once more the structure theorems of the Picard variety. How-
ever, we are unable to make effective use of the formula, except in rather
trivial cases, so that our result has more of an intrinsic interest and illu-
minating proof than the applications we would like.

In the last part of §9 we give an integral-geometric argument, using
the transformation properties of the tori 7,(V) and the relation of these
properties to cycles, of the main formula (6.8)).

Finally, in §10 we attempt to put the problem in perspective. We
formulate possible answers to (a) and (b) and show how these would
follow if we knew the Hodge problem. The construction of algebraic
cycles, assuming the answer to (a) and (b), is based on a generalization
of the Poincaré normal functions (c.f. [19]) and will be given later.

To close this introduction, I would like to call attention to the paper
of David Lieberman [20] on the same subject and which contains several
of the results given below. Lieberman uses the Weil Jacobians [22]] to
study intermediate cycles; however, his results are equally valid for the
complex tori we consider. His methods are somewhat different from
the ones used below; many of our arguments are computational whereas
Lieberman uses functorial properties of the Weil mapping and his proofs
have an algebro-geometric flavor.

More specifically, Lieberman proves the functorial properties of the
Weil mapping in somewhat more precise form than given below. Thus
his results include the functorial properties (£.2)) (the hard one arising
from the Gysin map) and @.I4) (the easy one using restriction of co-
homology), as well as (£12) which we only state conjecturally. From
the functorial properties and the fact that the Weil mapping is holomor-
phic for codimension one, Lieberman concludes the analyticity of this
mapping (given by @.2)) in general. (It is interesting to contrast his
conceptual argument with the computational one given in [9].) In sum-
mary, Lieberman’s results include the important general properties of
the intermediate Jacobians given in §IH below. Also, the conjectured
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Abelian variety for which the inversion theorem ((a) above) holds was
found by Lieberman using his Poincaré divisor, and the proof of (10.4)
is due to Lieberman.

The reason for this overlap is because this manuscript was done in
Berkeley, independently but at a later time than Lieberman (most of his
results are in his M. 1. T. thesis). By the time we talked in Princeton, this
paper was more or less in the present form and, because of the deadline
for these proceedings, could not be rewritten so as to avoid duplication.

Table of Contents

[@  Introduction.

=]

Complex Tori associated to Algbraic Manifolds.

Rl Special Complex Tori.
(In these two sections, we give the basic properties of the
tori 7,(V).)

Bl  Algebraic Cycles and Complex Tori.
(We give the mapping ¢, : X, — T,(V), show that it is
holomorphic, compute its differential, and examine some
special cases.)

Hd  Some Functorial Properties.
(The transformation properties of the tori T, (V) are related
to geometric operations on cycles. The residue operators
are used here, and they are constructed in the Appendix to

)

Bl Generalizations of the Theorems of Abel and Lefschetz.
(Here we show how the equivalence relation given by ¢,
relates to linear equivalence on Chow varieties attached to
V. The generalized bilinear relations are given also.)

6l  Chern Classes and Complex Tori.
(We define the periods of a holomorphic vector bundle and
give the basic formula (6.8) for computing the infinitesimal
variation of these periods.)
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i}

Appendix: [ Theorem on the Cohomology of Algebraic Manifolds.

Properties of the Mapping { in (6.8).

(Here we discuss the formula (6.8) and prove it for ¢ =
1. It is also shown that it suffices to verify it for ample
bundles.)

Proof of 6.4) for the Highest Chern Class.

(This is the basic integral-differential-geometric argument
relating the Poincaré and geometric residues via the Chern
forms.)

Proof of (6.8) for the General Chern Classes.

(Here we discuss the singularities of the Chern classes and
show how to extend Poincaré residues and the argument of
$Blto the general case.)

Concluding Remarks.

(We formulate what we feel are reasonable solutions to
problems (a) and (b) above, and discuss what is needed
to prove these.)
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1 Complex Tori associated to Algebraic Manifolds.
Let V be an n-dimensional algebraic manifold and L. — V the positive
line bundle giving the polarization on V. The characteristic class w €

H"“'(V) n H?(V,Z) may be locally written as w = %{Zgaﬁdz" A d2}

where Z g deadzﬂ gives a Kdhler metric on V.

Accordmg to Hodge, the cohomology group H*(V, C) decomposes

as a sum:

where HP1(V) are the cohomology classes represented by differential

forms of type (p, g). Under complex conjugation, H?4(V) = H?P(V).

Z HP(V)

ptq=s
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Consider now the cohomology group

2n—2g+1
H2n—2q+l(V’ C) — Z HZn—Qq-H—r,r(V) (11)
r=0

and choose a complex subspace S < H>"~2¢71(V, C) such that

SAS=0 and S +8 =H"2"(y,C); (1.2)
2n—2g+1
S= ) SAHT(Y) (1.3)
r=0

(i.e. S is compatible with the Hodge decomposition (IL1);
Htn=a(y)y < 5. (1.4)

Under these conditions we shall define a complex torus 7, (S ) such that
the space of holomorphic 1-forms on 7,(S) is just S. There are three
equivalent definitions of T, (S ).

Definition 1. Choose a basis w',...,w™ for S and define the lattice
[(S) < C™ of all column vectors

where ¥ € Hom—24+1(V,Z). To see that I'(S) is in fact a lattice, we
observe tht rank (H2,—24+1(V,Z)) = 2m and so we must show :

Ify1,....vk € Hy—24+1(V, Z) are linearly independent over R, then
Ty, .., Ty, are also linearly independent over R. But if

k
Zozjfa)" = f w’ =0
Jj=1 .
Yj k
2@y
j=1
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then also

=0, since a;=a;.

—
&

This says that Y. ay; is orthogonal to § +§ = H*'~24+1(V,C) and so
J=1

k
Z] ajjy; = 0.
=
If then Ty (S) = C"/T'(S ), then T;(S ) is a complex torus associated
toS < H?24+1(V,C).
Definition 2. Let Hy,_24+1(V, C) = H*"~2*1(V, C)* be the dual space
of H?'=24+1(V,C) so that 0 — § — H>'~24*1(V, C) dualizes to

0 §* « Haygs1 (V. C). (1.5)

Then Hyy—244+1(V,Z) < Hay—24+1(V, C) projects onto a lattice I'(S) <
S* and T,(S) = S*/I'(S). (Proof that Definition [[l = Definition

choosing a basis w',...,w™ for § makes S* =~ C™ by l(w®) = I,
I

where = | : |. Then 7, (w®) = [0 = (W) so that [(S) is the
I Y
same lattice in both cases.)

Definition 3. Let 7 : Hy,_2411(V,C) — H*~1(V,C) be the Poincaré
duality isomorphism and 0 < S* « H*~!(V,C) the sequence corre-
sponding to (L3), T'(S) < S* the lattice corresponding to I'(S). Then
Ty(S) =S*/T(S).

Observe that if H>*(V) < §, then H"""~%(V) < S* and vice-
versa. In particular, S is the dual space of S* by:

<w,¢>=fwA¢ (wesS, ¢peS¥). (1.6)
v

Thus S =~ H'9(T,(S)), the space of holomorphic 1-forms on T,(S ).
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2 Special Complex Torl. The choice of S = H>'~21+1(V,C)
depends on the properties we want 7,(S ) to have; the results on alge-
braic cycles will be essentially independent of S because of condition

@.
n—q

Example 1. We let S = >, H" 910477 and set T,(S) = T,4(V).
r=0
These tori have been studied in [9]], where it is proved that T, (V) varies

holomorphically with V.

The trouble with T, (V) is that it is not polarized in the usual sense;

however, for our purposes we can do almost as well as follows. Recall

[23] that there is defined on H*¢~!(V,C) a quadratic form Q with the
following properties:

(a) Q is skew-symmetric and integral on

H*~Y(V,Z) < H*~'(V,C);
(b) QH™(V),H"(V))=0if r#r,s#s; | 2.1

(c) Q(H"*(V),H"$(V)) is nonsingular; and
(d) iQ(HI=M(V), HI=14(V)) > 0.

It follows that Q(S*,S*) = 0 and that, choosing a basis w', ..., w" for
S, there is a complex line bundle L — T,(S ) whose characteristic class
w(L) € HX(T,(S),Z) n H"(T,(S)) is given by

(L) = é{ 3 haﬁwmzﬁ},
af=1

where the matrix H = (h,5) = {iQ(eq.ep)} ' and §w* A g = o5
4

Diagonalizing H, we may write

w(L) = %r {Z € A Ea}, (2.2)
a=1

where €, = +1 and ¢, = +1 if w* € H"~9+t1"=4(V). Thus we may say
that :

There is a natural r-convex polarization [10] L — T,(V)  (2.3)
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(r = number of « such that ¢, = —1) and the characteristic class of L
is positive on the translates of H9~14(V).

Example 2. We let S = >} H" 92 T1n=0=2r and set J,(V) = T,(S).
This torus is Weil’s intermediate Jacobian [22]] and from (2.1)) we find :

There is a natural O-convex polarization (= positive line bundle)
K — J, (V). 2.4)

Referring to 2.2), we let ¢* = w® if g, = +1, ¢* = 0" if g, = —1.
Then the ¢ give a basis for H'(J,(V)) and

w(K) = 2’—77 {2 ¢ A 5“} . 2.5)
a=1

We recall [23] that H*(J,(V), O(K*)) = 0 for u > 0, s > 0 and
that H°(J,(V), 0(K*)) has a basis 6y, ...,y given by theta functions
of weight p.

Comparison of T, (V) and J,(V). In [9] it is proved that there is a real
linear isomorphism & : Ty (V) — J,4(V) such that

(i) €*¢" = w" if 6 = +1 and &¢* =" if & = —1;
(i) ¢*(K) =L; and

v~

(iii) if Q, =&%(0,)4 [] w” . thenthe Q, give a basis of

€=—1
H'(T,(V),0(1})), and H*(T,(V),0(L*)) =0 for
u>0,s #r.

(2.6)
Some Special Cases. Forg = 1, T{(V) = J;(V) = H*(V)/H"(V,Z)
is the Picard variety of V [22]]. For ¢ = n, T,,(V) = J,(V) = H* (V)
JH?"~1(V,Z) is the Albanese variety [3] of V. For ¢ = 2, To(V) =
H"“2(V)+H3(V)/H}(V,Z) and J,(V) = H">(V)+ H*(V)/H?(V, Z);
this is the simplest case where 7,,(V) # J,(V).
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Some Isogeny Properties. We let S, = H>"~241(V,C) be the sub-
space corresponding to either 7, (V) or J,(V) constructed above, and we
let S < H*~!(V,C) be the dual space. Then we have

H*71(V,C) —= S —=0

|

HZq—l (V, Z)

and T,4(V) or J,(V) is given as S7/I'; where Iy is the projection of
H*~Y(V,Z) on .
Suppose now that ¢ € H?P(V) n H*?(V,Z). Then, by cup-product,
we have induced :

1 Q2.7)

which gives ¢ : Ty(V) — Tpiq(V) or ¢ @ Jy(V) — Jppg(V). We
want to give this mapping in terms of the coordinates given in the first
definition of paragraph 1.

Let w!,...,w™ = {w"} be a basis for S, < H*"~2*1(V,C) and
¢l,....¢" = {¢°} be a basis for S, = H*2P=2071(V,C). Then
YA = mpw® and

(07

fwwp: f ¢, (2.8)
Y Y- 2(¥)

where Z(¢) € Hop—2,(V,Z) andy € Hyp_244+1(V,Z). Now M = (m,q)
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is a k x m matrix giving ¢ : C" — Ck by ¢ (/l“) = < il mpafl”> and

;y(s;a): Zmpc;gw" = §§”;\¢p - S.W

y ¥ 2(W) ’

so that y(T'y) < I',1,. It follows that, in terms of the coordinates in
Definition [T} ¢ is given by the matrix M.

Now suppose that ¢ : H*4~!(V,C) — H?*’*24=1(V,C) is an isomor- 104
phism. Theny : §7 = §7, and y(I'7) is of finite index in T; . Thus
W Ty(V) — Tpig(V) is an isogeny, as is also y : J,(V) — J,14(V).
Taking ¢y = " 24*!, where w is the polarizing class, and using [23],
page 75, we have :

n=2q+1 .7 (V) > Tp_piq(V), and
w q( ) q+1( ), an } (2.9)

W2 Ty (V) > Tagin (V)

1
are both isogenies for g < [% .

Finally, using [23]], Chapter IV, we have :
For p < n —2g + 1, the mappings

w? 1 Ty(V) = Tpig(V), and }

(2.10)
WP Jg(V) = Tpig(V)

make 7,(V) isogenous to a sub-torus of 7)4,(V), and similarly for
Jy(V) and J,14(V).
Some Functionality Properties. Given a holomorphic mapping f :
V' — V, there is induced a cohomology mapping f* : H*¢~'(V,C) —
HY~Y(V/,C) with f*(S¥(V)) < S¥(V), f*(Tk(V)) < Ti(V') (using
the obvious notation).

This gives

fET (V) — T, (V'), and} o1

F5 2 0y (V) = T (V).
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On the other hand, if dimV = n and dimV’ = #»/, we set k =
n—n"and from fi : Hyw —2441(V', C) — Hoy_p(iqq)+1 (V. C) we find a
mapping

(2.12)
Fu i Jg(V) = Jgri(V).

Suppose now that f : V' — V is an embedding so that V’ is an
algebraic submanifold of V. Then V' defines a class [V'] € Hpy—ox(V, Z)
and 2[V'] = ¥ € H*(V,Z) n H**(V). We assert that :

In 2.11) and 2.12), the composite mapping

fof™ 1 Tg(V) = Tyqx(V) isjust ¥ : T,(V) —

fe : Ty(V') = Tgi(V), and }

Ty+1(V) as given by 2.7) (and similarly for J,(V)) 213
Proof. We have to show that the composite
- 1(v,c) L prat(vr c) L a1y ) 2.14)
is cup product with V. In homology 2.14) dualizes to
Hy,—1(V,C) %L Hy,—1(V',C) il Hygi0r—1(V,C) (2.15)
where f* is defined by
"
Hygi1-1(V,C) Hyy—1(V',C)
2 g1 (2.16)

H2-2a-2+1(y, C) " pn-2k-2q+1 (V',C)

If we can show that fi f*(y) = [V'] -y for y € Hyg421—1(V, C), then
§rffo= (| o= [ ¢=0¥n¢(¢eH*(V.C)) and we are
Y faf*y [V/]y Y
done. So we must show that, in (Z.13), f* is intersection with V’, and
this a standard result on the Gysin homomorphism @.18) (c.f. (4.11) and
the accompanying Remark). |

108



Some Results on Algebraic Cycles on Algebraic Manifolds 109

3 Algebraic Cycles and Complex Tori. Let V = V, be
an algebraic manifold, S = H?>"~24+1(V, C) a subspace satisfying (L.2)-
(L4), and T,(S) the resulting complex torus. We choose a suitable basis
W', .. 0" for S = H'(T,(S)) and let £, = {set of algebraic cycles
Z < V which are of codimension ¢ in V and are homologous to zero}.
Following Weil [22]], we define

¢q 1 Zq = Ty(S) (3.1)

as follows: if Z € X, then Z = 0Cy,_2441 for some 2n — 2q + 1 chain
C, and we set

$q(2) = g‘”a - (3.2)

Since C is determined up to cycles, Z) 1s determined up to vectors
ptocy bq P
§“’" (¥ € Hu—2g+1(V,Z)), and so ¢y is defined and depends on the

subspace of the closed C*® forms spanned by w', . . ., w™; this restriction
will be removed in the Appendix to §31

Now, while it should be the case that ¢, is holomorphic, we shall
be content with recalling from [9]] a special result along these lines.
Consider on V an analytic family {Z;},ea(A = disc in A-plane) of g-
codimensional algebraic subvarieties Z; < V. Locally on V, {Z;}ea is
given by the vanishing of analytic functions

filzh A, filE ).
We define ¢ : A — T,(S) by ¢(1) = ¢4(Z1 — Zy). Using (L.4), we have
proved in [9] that

(3.3)

¢:A—T,(S) isholomorphic and
¢«{Ta(A)} = HIZMI(V).
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We may rephrase (3.3) by saying that ¢* : S, — Ta(A)* is deter-
mined by ¢*|H"~4T1=4(V) (c.f. (L))

Continuous Systems and The Infinitesimal Calculation of ¢,. Sup-
pose that the Z; < V are all nonsingular and Z = Z,. We let N — Z be
the normal bundle of Z < V, so that we have the exact sheaf sequence

0 — 0z(N*) - Q!

vz = Q= 0. (3.4)

Since dimZ = n — g, from (3.4) we have induced the Poincaré residue
operator

Q"’/‘_Z‘”] - QN*) -0 (3.5)
as follows : Let ¢ € Q"’/TZ‘IH; T1,...,Typ—q be tangent vectors to Z; i a
normal vector to Z. Lift n to a tangent vector 77 on V along Z. Then

(DTIA AT g @) =P, TI A oo ATg A T)), Where¢€Q}:/|_2q+1

—g+1 —g+1
From (3.3) and Q, h Q';'Z'H , we have

H(V, Q) S ez, 007 (N, (3.6

On the other hand, in Kodaira has defined the infinitesimal dis-
placement mapping

p:To(A) — H(Z, O4(N)). 3.7)

To calculate ¢*, we have shown in [9] that the following diagram com-
mutes:

Hn—q+1,n—q(v) _ Hn_q(‘/, Q"’l/—q+1)

To(A)* é* (3.8)

H'9(Z,Q5 (N*)) = H%(Z, 07(N))*.

In other words, infinitesimally ¢ is eseentially given by by &* in (3.6).
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Some Special Cases.

(1) In case ¢ = n, Z is a finite set of points zy,...,z (Z is a zero-
cycle) and (3.6) becomes:
” r
HYO(V) 5 T, (v) (3.9)

J=1

,

where &*(w) = Y w(z;), w € H9(V) being a holomorphic 1-
j=1

form on V. In particular, ¢* is onto if &* is injective.

(i) In case ¢ = 1, Z < V is a nonsingular hypersurface. Then
there is a holomorphic line bundle E — V and a section o €
H°(V,0y(E)) such that Z = {z € V : o(z) = 0}. From the exact
sheaf sequence 0 — Oy = Oy(E) — 0z(N) — 0, we find

H(Z,67(N)) & H'(V. 6y), (3.10)

where we claim that £ in (3.10Q) is (up to a constant) the dual of &*
in (3.6) (using H*' (V) = H»"~1(V)*).

Proof. We may choose a covering {U,} of V by polycylinders such
that Z n U, is given by o, = 0 where o, is a coordinate function if
UsnZ#* Jando, = 1if Uy nZ = . Then 0,/0p = fop Where
{fap} € H'(V, 03) and gives the transition functions of E — V. Let
0 = {0,} € H'(Z, 0z(N)) and w € H™"~'(V). We want to show that,
for a suitable constant ¢, we have

fg(e) N — cf<9,§*w>. G.11)
v Z

IfZn U, # &, we may write w = w, A do, where w, is a C*(n —
1,n — 1) form in U, such that w,|Z n U, is well-defined. In U, n Ug,
W= Wy Adog = Wo A d(fopop) = We0p A dfep + fopwae A dog
so that we|Z N Uy, N Up = fa_ﬁlwﬁ|Z N U, n Upg. This means that
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{we|Z N U,} gives an (n — 1,n — 1) form on Z with values in N*, and
$0 {Oawa|Z N U,} gives a global C*(n — 1,n — 1) form on Z (since

o = faplp on Z N Uy N Up). It is clear that (6, &*w)|Z = {O,w,} so
that the right hand side of (3.11)) is

f {Batwal. (3.12)
zZ

On the other hand, choose a C* section ® = {@,} of E — V with
B®|Z = 6. Then 00 = o&(0) where £(0) is a C*(0,1) form giving
a Dolbeault representative of £(0) € H'(V,0y) in (310). Let T, be

®
an e-tube aroung Z and ¢ = —. Then the left hand side of (3.I1) is
o

§£(0) Aw—hm § 0 Ahw=—1im § ¢y A w(sinced(y r w) =
v VT, 0o,

O(f Aw) = €(0) Aw). Locally A w = Opwy A —= so that hm § una

Oa 0o7,
do,
hm S {® 2ﬂl§{®awa\Z N Uy} = 2mS{60wa}
Wthh by ), proves (]E:I]) O

Appendix to §3: Some Remarks on the Definition of ¢,. At the
beginning of Paragraph 3 where ¢, : X, — T,(S) was defined, it was
stated that ¢, depended on the vector space spanned by w',..., 0" and
not just on S. This is because, if we replace w® by w® + dn®, then
§  w+dn* = {w*+ {n” (Stokes’ Theorem).
Con—2g+1 c Zz
One way around this is to use the Kéhler metric on V and choose
w',...,w™" to be harmonic. This has the disadvantage that harmonic
forms are not generally preserved under holomorphic mappings. How-

ever, if we agree to use the torus T,(V)(S = Y H"~¢t1Hrn=a=r(y))

constructed in Example [Tl of §21 it is possible to given ¢, : X, — T,(V)
purely in terms of cohomology, and so remove this problem in defining
b

To do this, we shall use a theorem on the cohomology of algebraic
manifolds which is given in the Appendix below. Let then Q7 be the
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sheaf of holomorphic g-forms on V and Qf — Q9 the subsheaf of closed
forms. There is an exact sequence:

00! 50r 4 oit! Lo (A3.1)
(Poincaré lemma), which gives in cohomology (c.f. (A.7)):
0~ H~'(V,QI™) & HP(V,.Qf) —» HP(V,Q1) 0. (A3.2)

From (A3.2)), we see that there is a diagram (c.f.(A.16) in the Ap-
pendix):
H"(V,C) = H"(V,C)

0

H-\(V.Ql) © H(V.C)

H~4(V,Ql) < H'(V,C) (A3.3)

H(V,Q1) = H'(V,C)

0

Thus {H"~9(V,Q{)} gives a filtration {F}(V)} of H"(V,C); and
F;(V)/F;Jrl (V) = H™9(V,Q7). Itis also true that (V') depends holo-
morphically on V [9].

To calculate F} (V) using differential forms, we let A*"~* be the C~

forms of type (s,7 — s) on V, B* = > AS"=5 and B;? the d-closed

s=q
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forms in B"9. Then dB™ < B, ", and it is shown in the Appendix (c.f.
(A.18)) that
F/(V) = B}/dB"™" < H'(V,C). (A3.4)

We conclude then from (A3.4) that:

Aclass ¢ € Fj(V) < H"(V,C) is represented by a closed C*
form ¢ = > ¢, (ds,—s € A", defined up to forms

s2q

dn = Z dnsr—1—s.

s=q
(A3.5)
In particular, look at

2n—2q+1 — —g—
an,quql (V) ~ 2 gt 1+rn—q r(V)
r=0

Ag € B 2144 g defined up to

Z d’]n—q+ 1+s,n—g—1—s

s=0

and
fnn—q+l+s,n—q—l—s =0
V4

for an algebraic cycle Z of codimension ¢ (Z is of type (n — g,n — q)).
Thus {  ¢(0C = Z) depends only on the class of

Con—2g+1

o FIT W) € B (0,

This proves that:

For the torus 7,(V) constructed in §3| the mapping

¢q 1 24y — T4(V) depends only on the complex structure of V.
(A3.6)
For the general tori 7,(S ) we may prove the analogue of (A3.6) as
follows. First, we may make the forms W W subject to dw® = 0,
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O0w® = 0,because S = YIS n H*'~24+1=77(V) and so w® = (w®) +
r
d&” (A = harmonic part of w®) and 7 (w?) = Z%ﬂ( g g )

with 07 (W) g ) = = 0 (W n—qt =g .-

may choose a basis w', ..., w™ for § with dw® = 0 = .

Second, let n be a C* form on V with ddnp = 0 = 5d77. We claim 111
that dnp = 00¢ for some &. Since dn = on + on, it will suffice to do
this for on. Now write n = 750 + 00*Gaon + 0% 0Gsn, where 77 is the
harmonic projector for [Jy = 00* 4+ 0*0 and Gy is the corresponding
Green’s operator. Then 0, = 00*0Gsn. On the other hand, since 00 =
0, on = () + 00*Gaon. But 5 = A3 and Gy = Gy so that
on = 85(5*G(m) as desired.

Finally, let w € § satisfy dw = 0 = 0w and change w to w + dn
with d(w + dn) = 0 = d(w + dn). Then w +dn = w + 00¢ for some
& We claim that { w = § w + 00&, where C is a 2n — 2¢ + 1 chain with

C C
0C =Z. 1t & =Y éngirn—g—1—r then
r

fagg: fd(gf) = J agn qn—q = f En— gn—q—1 =0
C C

z

Thus we

since Z < V is a complex submanifold. This proves that:

If, in the definition of ¢, : %, — T,(V) in (&I, we make
the w” subject to dw* = 0 = dw?, then ¢, is well-defined (A3.7)
and depends only on the complex structure of V.

This is the procedure followed by Weil [22].

Remark. A(3.8). Let D = 0; then D : AP? — AP and D* = 0.
If H},(V) are the cohomology groups constructed from D = 00 and
H',(V) the deRham groups, there is a natural mapping:

H (V) & HE(V). (A3.9)
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4 Some Functorial Properties. (a) Let W, ; = V, be an
algebraic submanifold of codimension k. We shall assume for the mo-
ment that there is a holomorphic vector bundle E — V, with fibre C*,
and holomorphic sections oy, ...,0_¢+1 of E such that W is given by
01 A ... AN Os—gt+1 = 0. Thus, the homology class carried by W is
the k-th Chern class of E — V (c.f. [3]). Following @.I1)) there is a
mapping

T,(V) 5 T,(W) (.0
induced from H?/~!(V,C) — H*~!(W,C). We want to interpret this
mapping geometrically.

For this, let {Z,} ca be a continuous system as in paragraph 3. As-
sume that each intersection Y, = Z, - W is transverse so that {¥,}ecp
gives a continuous system of W. Letting ¢,(V)(1) = ¢4(Z1 — Zo) €
T,(V) and ¢,(W)(2) = ¢,(Ya — Yo) € T,(W), we would like to show
that the following diagram commutes:

Ty(V)

s

A i* 4.2)

This would interpret {.I))geometrically as “intersection with W”.

Proof. Let Sy = Y Hr—atltrn—a-r(y) < H?'=24+1(y,C) be the
r=0

space of holomorphic 1-forms on T,(V) and w!,...,w" a basis for
Sy. If Cyis a2n — 2q + 1 chain on V with dCy = Z; — Z; then

dq(V)(A) = [C%wa]. Similarly, let Sy < H?'~2472+1(W,C) be the
holomorphic 1-forms on T,(W) and ¢',...,¢" a basis for Sy. Letting
Dy =Cy-W,0D, =Yy — Y and ¢,(W)(2) = [DSA‘?’"].
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Actually, in line with the Appendix to §3] we should use the isomor-
. 2n—2g+1 2n—2k—2q+1
phisms Fn'iqfr (V) = Sy, Fn'ik_ﬁl‘” (W) =~ Sy (c.f. (A33)), and
choose w!,...,w™ and @', ..., ¢" as bases of

2n—2g+1 2n—2k—2g+1
Fn—q+1 (V) and Fﬂ*k*qul (W)

respectively. We assume this is done.

We now need to give i* : C" — C’ explicitly using the above
bases. Letey,...,e, € S§ < H*1(V,C) be dual to ', ..., ™ and
fiooo fresSy, H?*~Y(W,C) dualto ¢',...,¢". Then { w* neg = 6;;,

14

-
A fr = 8. Now i*(ey) = Y myqof, for some r x m matrix M, and

X 0 Mol

W p:

i*:Ty(V) — Ty(W)is givenby M : C" — C” (c.f. just below @.7)).

To calculate M [§‘*‘n ] , we let

i* . HZn—Zk—Zq-i-] (W C) N H2n—2q+l (‘/, C)

be the Gysin homomorphism defined by:

H2n—2%=24+1 (W, C) I H>=2+1(y,C)
T.@W T.@v “3)

I

Hy,—1(W,C) Hyy—1(V,C).

Then, i, (¢P) = i mpew®, and M D‘;’a] = [% mpaSaﬂ] -
: a=1 b%

a=1

P"*'(‘f’p)} = [WSV‘V] (c.f. @.16)) where y € Hay—2441(V,Z) is a cycle

on V. This gives the equation
m S| — (St | | T 07 (4.4)
Y Y W-y
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for y € Hyy—2441(V,Z). To prove @.2), we must prove [@.4) for the
chain C; with ¢C, = Z; — Zy; this is because, in ({.2)),

o, V)0 =M | 3| ana gm0 = | S &

Thus, to prove the formula @.2)), we must show :
The Gysin homomorphism

iy :H2n72k72q+1(‘/v’ C) N H2n72q+l(v’ C) (4.5)
(given in (£3)) has the properties :
: 2n—2q—2k+1 2n—2g+1
it P q_‘ka* (W) - F," RU4E (4.6)

and
fi*fb = f b, 4.7)
C w-C

where C is a 2n — 2¢g + 1 chain on V with 0C = Z, Z being an algebraic
cycle on V meeting W transversely.

This is where we use the bundle E — V. Namely, it will be proved
in the Appendix to §4]below that there is a C* (k,k — 1) form ¢ defined
on V — W having the properties :

oy = 0 and éw = Wis a C* form on V which represents the

Poincaré dual 2(W) e H**(V,C) n H*(V,Z); (4.8)
to give i, in (6], we let ¢ € Bgn_Zk_qu’"_k_qH(W) represent a

L n—2k—2q+]1 ~ iy i .
class in F" 971 (W) and choose ¢ € B¥~2k—2a+1n—k=q+1(y) with
n—k—gq+1

®|W = ¢. Then d(y A @) is a current on V and
ix(¢) = d(¥ A §); and (4.9)

lim | yan= f m, (4.10)
€E—>
c- 0T, c-w

where T is the e-tube around W and n € B?'—2k=2a+ln—k=a+1(y) g
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Remark. The composite

2n—2k—2q+1 i* 2n—2k—2g+1 I 2n—2q+1
Fn—k—q+1 (V) - Fn—k—q+1 (W) - Fn—q+1 (V) (411)

is given by ii*n = d(y An) =¥ An(n e Bgn_Zk_qu’"_k_qH(V))

this should be compared with (2.16)) above.

Proof of (4.6) and (@.7) from {8)-@.I0). Sincei.(p) = d(¥ A @) and
WA G e B2n—atl i (g) e BP9 (YY) which proves (@0)
(c.f. (e) in the Appendix to Paragraph 4).

To prove @.7), we will have

e—0
c C—C-T. a(C—C-Te)

Ji*qﬁ = lim J i+(¢) = (by Stokes’ theorem) J v AP

Butd(C—C-T,) = (Z—Z-TE)—C-aTEandSOSi*¢=—lin(l) { wng 115
c

7Y cor.
(since UAp=0)= § ¢ by EI0).
Z—7-T, cw

Remark 4.12. Actually (4.2) will hold in the following generality. Let
V, V’ be algebraic manifolds and f : V' — V a holomorphic mapping.
Let £, (V) be the algebraic cycles Z < V of codimension g which are ho-
mologous to zero and similarly for X,(V’). Then there is a commutative
diagram :

=,(V)/S.ER. W T,(V)

V")

%,(V")/SER. i T,(V')

where S.E.R. = suitable equivalence relation (including rational equiva-
lence), and where f*(Z) = f~1(Z) = { € V' : f(z) € V} in case Z is
transverse to f (V).

(b) Keeping the notation and assumptions of (4a) above, following

[2.12)) we have:
i : Tg(W) — Ty (V), (4.13)
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and we want also these maps geometrically. For this, let {¥;}ea be
a continuous system of subvarieties ¥; < W of codimension g. Then
Y, < V has codimension k + ¢ and so we may set

Pk (V)(A) = ¢q(Ya=Y0) € Tgra(V), 84(W)(2) = ¢4(Ya—=Yo) € Ty(W).

We assert that the following diagram commutes:

Tq(W)
$q(W)
A i 4.14)
bg+1(V)
Tq+k(V)

This interprets i, in @.I3) as “inclusion of cycles lying on W into V.

Proof. As in the proof of @.2]), we choose bases W', ..., w"for Sy
H?=2k=24+1(y C) and ¢',...,¢" for Sy = H**~2k=24+1(W,C). Then

s, M) = | S| and g,u(V)(1) = CSA“’Q

Cy

where 0C, = Y, — Y.

We now need i, explicitly. Let eq,...,e, be a dual basis in § ; c
H>* 2=y C)tow!,..., 0" and fi,..., f,in St H?*~1(W,C) bea
dual basisto @', ..., ¢". Then i, in @I4) is induced by the Gysin homo-
morphism @8) i, : H*~'(W,C) — H?4*2=1(V,C). Write i (f,) =

D) Mapeq so that M = (mg,) is an m x r matrix M : C" — C™ which

a=1

gives ixTy(W) — Tyii(V).

Now M, (W)(2) = pZ;Jl map § ] so that, to prove @.I4), we

jw“ = mapfdf (4.15)
Y p=l Y
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for y a suitable 2n — 2k — 2¢ + 1 chain on W. Since

l-* . H2n—2k—2q+1 (V C) N H2n—2k—2q+1(W C)

.
satisfies {i*(w) A ¢ = [w A ixp, we have i*w® = Y mg,¢” in
w Vv p=1
H?'—2k=24+1(W, C). On the other hand, since i* satisfies "{Fy(V)}

F(W), we have, as forms

’
ot = Z map¢p + d’u(x('ua c BZn—Zk—2q+l,n—k—q+l(W))
p=1

.
so that S w? = ;

My, § ¢ as needed. O
Ca p=1 Ca

Remark. To prove @.14) for J,(W) and J,«(V), we use that i*0 = 0i*
— — r —
and i*0 = Ji* on the form level, so that i*w® = ] mg,¢” + 00£* and
p=1

Jwa = Z My jq’)p
Cy p=l ¢

(c) We now combine (a) and (b) above. Thus let W < V be a
submanifold of codimension k and {Z,},c be a continuous system of
codimension g on V such that Z, - W = Y, is a proper intersection.
Then {Z,} 1ea defines ¢y : A — Ty (V) and {Y,}ien defines ¢gip 1 A —
Ty+1(V). Combining @.2) and @.14), we find that the following is a
commutative diagram:

then, as before,

T, (W) (4.16)
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Combining 2.13) with (.16), we have the following commutative dia-
gram:

Ty(V)

e

A ¥ 4.17)

Tq+k(v>

where ¥ € H*(V)nH?(V, Z) is the Poincaré dual of W € Ha, 5 (V,Z)
(c.f. @7D).

Remark. Actually, we see that @.I7) holds for all algebraic cycles
Wu—r < V,, provided we assume a foundational point concerning the
suitable equivalence relation (= S.ER.) in Remark E.12] Let X (V) be
the algebraic cycles of codimension ¢ which are homologous to zero,
and assume that S.E.R. has the property that, for any W,_; < V,, the
mapping %,(V)/S.E.R. *, Z,+k(V)/S.ER. is defined and W(Z) = W -
Z if the intersection is proper (Z € X,(V)). Then we have that: The
following diagram commutes:

Pq

2,(V)/SER. T,(V)

¢q+k

St (V)/SER 25 T (V)

Proof. The proof of @.I7) will show that (£.18)) commutes when W is
a Chern class of an ample bundle [11]]. However, by [12] the Chern
classes of ample bundles generate the rational equivalence ring on V,
so that (@.I8)) holds in general. |
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Appendix to Paragraph[dl Let E — V be a holomorphic vector bundle
with fibre C¥, and oy, . . ., Ok—g+1 holomorphic cross-sections of E — V
such that the subvariety W = {oj A ... A 0k—g41 = 0} is a generally
singular subvariety W,,_, < V), of codimension g. (Note the shift in
indices from §d) Then the homology class W € Hy, 2 (V,Z) is the
Poincaré dual of the g™ Chern class cq € H?(V,Z) (c.f. [T1]]). We shall
prove: There exists a differential form ¢ on V such that

Y isoftype (g,g—1), is C* in V—W, and oy =0; (A4.1)
oy = dy is COO on V and represents ¢, (via deRham); (A4.2)
¥ has a pole of order 2¢g — 1 along W and, if w is any closed

2n — 2q form on Kfcasz lim | ¥ A w where T, C V is

e—0

\%4 0T,
the e-tubular neighbourhood around W. (A4.3)

Proof. Forak x k matrix A, define P,(A) by:

det( A+tl> ZP (Ad.4)

Let Pq(Al, ... ,Aq) be the invariant, symmetric multilinear form ob-
tained by polarizing P,(A) (for example,

Pe(Ar.... A = 1/k! ] det(A).....AL)

Ly T

where A;ﬁa is the @™ column of Ay, ; cf. (6.5) below). Choose an Hermi-
tian metric in E — V and let ® € A"!(V,Hom(E, E)) be the curvature
of the metric connection. Then (c.f. [L1]]):

cq € H*(V,C) is represented by the differential form

P,(©) = P,(0,....0). (A4.5)
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What we want to do is to construct i, depending on oy, ..., 0k —g+1
and the metric, such that (AZ.I)-(A4.3) are satisfied. The proof pro-
ceeds in four steps.

(a) SomE FormULAE IN LocaL HERMITIAN GEOMETRY. Suppose that Y
is a complex manifold (¥ will be V — W in applications) and that E — Y
is a holomorphic vector bundle such that we have an exact sequence :

0>S—>E—Q=0 (A4.6)

(in applications, S will be the trivial sub-bundle generated by oy, ...,

Ok—g+1). We assume that there is an Hermitian metric in E and let

D be the metric connection [11l]. Let ey, ..., e, be a unitary frame for
k

E such that ey, ..., e is a frame for S. Then De, = > Qﬁeg where
o=1

— N
oy + g = 0. By the formula Dge, = BZI ngﬁ(a =1,...,s), there is

defined a connection Dg in S, and we claim that Dg is the connection
for the induced metric in S (c.f. [11]], §1.d).

Proof. Choose a holomorphic section e(z) of S such that ¢(0) = e,(0)
(this is over a small coordinate neighborhood on Y). Then D'e =0

since D" = 0. Thus, writing e(z) = Z %4, 0 = D'"e = Z 0%, +

a=1

Z §"Qgeﬁ+ Z Zf"&"eﬂ At z = 0, this gives Z( B(0) +

ap= p=s+1a=1
Hgﬂ)eﬁ + Z ey, = 0. Thus 6’5 = 0 and, since (D" — Dg)e,
2 Qlclr”ew Dg = 0. By uniqueness, Ds is the connection of the in-

duced metric in S. m|

Remark. (A4.7) Suppose that S has a global holomorphic frame
S

— s _
Oly...,05 Write oy = > .fgeﬁ. From 0 = 0oy = Doy = Y, (0&, +
p=1 =1
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S /! —_— f—
>, 5395 Jeg, we get 0 + 6¢¢ = 0 or 65 = —0&¢™". This gives
y=1

0s = 'E 0 — ot (A4.8)

I pl

Now write 6 = (Z; Z§> where 6] = (65 02 = (6,), etc. Then
172

0 -6

” ro. —1 1 ~
6 =0 = 0} (since 62+ %, = 0). Letg = (5, ) and @ = 0+ =
1

1 ~ ~
(% ;). Then 6 and 6 give connections D and D in E with curvatures
2
® and O. Setting 6, = 6 + t¢, we have a homotopy from 6 to 8 with
. . 00,
0r=0¢ 6 =— ).
(=9 ( T >
Now let P(A) be an invariant polynomial of degree ¢ (c.f. §6lbelow)

and P(Aj,... ,Aq) the corresponding invariant, symmetric, multilinear
from (c.f. (6.5) for an example). Thus P(A) = P(A,...,A). Set
—

q

q
Qr=2> P(br,....¢,.....0)), (A4.9)
J=1
and define ¥, by:
1
¥, — f 0,dt. (A4.10)
0
What we want to prove is (c.f. [I1]], §4):
¥, isa C* formof type (¢,¢ — 1) on Y satisfying
_ ( ~ ) (A4.11)
0¥, =0, 0¥, = P(®) — P(0).
Proof. Tt will suffice to show that
00, =0, and (A4.12)
P(®,) = 30, (A4.13)
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By the Cartan structure equation, ®; = d6, + 6, A 0, = d(0 + 1¢) + 121
O+ tp) A (O+1td) =d0+0NO+t(dp+dAO+OANP)+1PPAP=
O + tD¢ + 1>¢ A . Now

g2 0 0 -0! —-0l¢> 0
N A — 2 271
pne <o e%e;) and D¢ (—@% oz>”< 0 9%9;)-

This gives

0 —-0! 0l6? 0
= 2 2 271 .
O, =0+1¢ < ®% 0 ) + (t 2t) < 0 0%9; 5 (A4.14)

D'¢ =0; and (A4.15)

vy (0 0 -0l 0
D"y = (—@f o) o' _ea (A4.16)
It follows that @, is of type (1, 1) and so Q; is of type (¢,q — 1), as is

Y.
By symmetry, to prove (A4.12) it will suffice to have

5P(@)t, e ,®t,¢/) - O

Let D; = D+ D/ be the connection corresponding to 6,. Then D;®, = 0
(Bianchi identity) and OP(@y, ...,0,,¢') = ZP(0O,,...,D\0,,...,0.¢)
+P(0,,...,0,D\¢') = P(O,,...,0,D\¢'). But Di¢ = D'¢/+1[¢,¢']
=0+ 7[¢', ¢'] = 0 by (ALI3). This proves (AZLI2).

We now calculate

ap(@)t,...,gb,,...,@,) :ZP(.,D;,G)Z,...,¢,,...,®1)+
+P(®,....D'¢,....0,) +2P(O,....4,....D'O,))
— P(Or,....D'¢,....0,)

(since D/®7 = 0 by Bianchi). Then we have D/¢' = D"¢' +1[¢, ¢']” =

oy @1®) (% O ve-n(%F ). Buby G
-07 0 0 616) " ’
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: 0 -0l 6l 0
- 2 _ 2Y1
6= (e o) 200 ().

oy —op=( 0, ©) _[ro (A4.17)
t T — _®% 0 = |7T, ) .

so that

where 7 = (}9). Using (A&417), 0Q; — 15(6,) = X{2P(0©,...,D/¢/,
...,@[)_P(®[,...,®[,...,®[)} - ZP(@[,...,[”,@[],...,@[) :0
This proves (A4.13) and completes the proof of (AZ.IT). O

Return now to the form Q, defined by (A4.9). Since O7 = O +
tDp + 1>¢ A ¢, we see that Q; is a polynomial in the differential forms
®ﬁ,9f’l,03(1 <p,o<kl<a<s;s+1<u<k). Write O, = 0()
to symbolize that each term in Q, contains no more than [ — t terms
involving the ¢, and 6. We claim that

0,=0(2q — 1). (A4.18)

Proof. The term of highest order (i.e. containing the most 6, and g;) in
Q,is (£2/2)17'2P([¢, 8], ..., ¢4, ... [¢,¢]). Now, by invariance,

P([¢.¢).....¢"....[¢.0]) = —P(8,[¢.¢].....[0.0'].....[0.¢])

1

—5P@.[.0].....[6.6])

since [¢, [¢,¢]] = 0 and [¢,¢'] = 3[¢,4]. But, by invariance again,
P(¢,[¢,0],...,[#,¢]) = 0. Since all other terms in Q, are of order
2q — 2 or less, we obtain (AZ.IS).

It follows from that

¥, =029 —1). (A4.19)

(b) SOME FURTHER FORMULAE IN HERMITIAN GEOMETRY. Retaining the
situation (A4.6), we have from (A4.11) and (A4.19) that:

P(®) — P(®) = 0¥, where 0¥, = 0,%; =0(2g—1). (A4.20)
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Now suppose that S has fibre dimension kK — ¢ + 1 and that:
S has a global holomorphic frame o,...,0%—g+1- (A4.21)

Let L; < S be line bundle generated by o; and S = S/L;. Then
0 gives a non-vanishing section of S; and so generates a line bundle
L, = S;. Continuing, we get a diagram:

00— L — S — S —0
0— Lo — 5 — S —0

(A4.22)

0—Liy —Sig1— Syq—0
0— Liygt1 —Sk—g —0

All the bundles in (A4.22)) have metrics induced from S; as a C*™ bundle,
S=L; @ ®Lg_y44 (this is actually true as holomorphic bundles,
but the splitting will not be this orthonormal one).

Now suppose that we use unitary frames (e1, ..., ex_q+1) for S where
€. 1s a unit vector in L. If g = (Hg) is the metric connection in S, then
02 gives the connection of the induced metric in L, (c.f. (a) above).
This in turn gives a connection

! 0 -
s = (¥4 = 65) with curvature
0 k—q+1
L k—q+1
1 -
I 0
I's = -
k—qg+1
_0 I}fq+l_
in S. Now the connection § = 65 ® ¢ in E has curvature 0= [%S @OQ ]

We let I' = [FOS @00] be the curvature of the connection [765 9%] in E.

Then the same argument as used in (a) to prove (A4.20), when iterated,
gives

~

P(©) — P(T) = 0¥, where 0%, =0 and ¥, = 0(2g). (A4.23)
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The congruence W, = 0(2q) is trivial in this case since deg¥, =
2q — 1. Adding (A4.20Q) and (A4.23) gives:
P(®) — P(I') = 0(¥; + ¥>). (A4.24)

The polynomial P(A) is of degree ¢, and we assume now that:

P(A)=0if A= (8 X,) where A" isa (g —1) x (g — 1) matrix.
(A4.25)
]

We claim then that
P() = 3¥5 where 0¥5 =0 and W5 = 0(2q). (A4.26)
Proof. Eac_h line llundle L, has a holomorphic section Oq = oo eq-
From 0 = 00 = 0|0y|eq + |7a|60% €q, we find 62" = —0log |o| and
62 = (0 — 0)log|oy|, and (A4.27)
I = 2001og o). (A4.28)

Now

PI)=P(Ts +0q,....I's +0q) = Z <q)p( Is : Oq )
) ; g r+s;q r ~——
r>

(since P(Qq,...,0q) = 0 by (A4.23)). Let
—_——

1
01

M
I
[\e)

_q+]/
0 01]:7(]“1’1
0
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Then D¢ = 0 where v is the connection

1
o

0
k—q+1
gk—q-‘rl
0 o,

inL; @ ®Li_g110Q. Also D¢ = ('80). Set

q
=) ()P(f, Is ;: Og ). (A4.29)
rJrSEC] r —1 s
r> b

Then 0¥z = 0 since D’yf =0= D;I“s = D;@Q, and

By = Y @p( I's : ® )= P()

r+s=q

’
r>0 s

since Dy¢ = T, D;’l“s = 0 = D}©q. This shows that 3 defined by
(AZ.29) satisfies (A4.26).

Combining (A4.24)) and (A4.26)) gives:
P(©) = 0¥ where ¥ = ¥, + ¥, + ¥3,0% = 0,¥ = 0(2g). (A4.30)

Let ¥ be given as just above by (A4.30); ¥ is a form of type (¢,g—1)
on Y. Suppose we refine the congruence symbol = so that n = 0(/)

means that n7 contains at most / = 1 terms involving oY, 9]1(_2+q, s 6”1‘ ,
6’,1(%] e 9]1(. Then, for some constant c,
W =00, ee_ . 002 1). (A4.31)

We want to calculate ¢ when P(A) = P,(A) corresponds to the g™ Chern
class (c.f. (A4d.4)). By (A4.19), ¥, = 0(2¢ — 1) and an inspection of
(A4.9) shows that ¥, = 0(2g — 1). Thus ¥ = ¥3(2g — 1).
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k k
To calculate I's, we have 'y = d6y = d65 + 3 65 A 6, — 2] 65 A
p=1

k
6 =02 — 216’;)’/\9@. Thus I'? = 0(0) for @ > 1 and
p:
k
Tl=- Z 9:1/\9‘1'(0)
u=k—q+2

It follows that Py(¢é, Ts ©Oq )=0(2¢—1)ifr—1>0,andso 125
S~ ——

r—1 s
V3 =Py(é, Oq )(2g—1).
—

g—1
Now, by the definition of

Py(&. ©q ) = (i/270)1(1/q)6} det(®q).
q—1

k—q+1
But (@q)y = @+ >, 68, sothat (Bq), = ¢ A6,(0). Combining
a=1

these relations gives W3 = (i/27r)‘1(1/q)9}/ det(#,6})(2g — 1) or

1\? / k 2
;= (%> (1) e 0k, 0020 — 1),
(A4.32)
Combining and gives
P,(©®) =¥ where 0y =0 (A4.33)
and
_ v ol 1
¥ = -T(q)0) 6\ .6k} g2 0L 2q—1) (Ad3
(F(q) = (1/2m)( 1)4ta- 1)/2)-

O
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(¢) REDUCTION TO A LOCAL PROBLEM. Return now to the notation and
assumptions at the beginning of the Appendix to §4l Taking into account
(AZ6), (A4.21), (A4.30), and letting Y = V — W, we have constructed
a (g,q — 1) form y on V — W such that dy = 0, oy = P4(®) = ¢4, and
such that ¢ = 0(2g). This proves (A4.1)), (A4.2)), and, in the following
section, we will interpret ¢ = 0(2¢) to mean that ¢ has a pole of order
2g — 1 along W.

Let w be a closed 2n — 2 form on V and T, the e-tube around W.

Thengcq/\w—hm § corw=1lim— § ¢y Awsinced(y A w) =
e—0y, T, e—0 oT.

Pq(®) A w. This proves (A4.3).
For the purposes of the proof of (.2), we need a stronger version of
(AZ.3); namely, we need that

lim — f WA= J n (A4.35)

C-0T. Cc-w

where n € B¥'~2%k=2a+ln=k=a+1(y) and C is the 2n — 2¢g + 1 chain
on V used in the proof of (.2). In other words, we need to show that
integration with respect to \ is a residue operator along W. Because
both sides of (A4.33) are linear in i, we may assume that 77 has support
in a coordinate neighborhood. Also, because ¢ will have a pole only
of order 2¢ — 1 along W, it will be seen that both sides of will
remain unchanged if we take out of W, _, an algebraic hypersurface
H,_,—1 which is in general position with respect to C. Thus, to prove

(A4.33), we may assume that:

n has support in a coordinate neighborhood on V (A436)
where 03 A ... A Ok_gy2 # 0, o1 # 0. )

This is a local question which will be resolved in the next section.

We note in passing that @.9) follows from @.I0) when C is a cycle
on V, so that (.2)) will be completely proved when is proved in
the local form (A4.33)) above.
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(d) CompLETION OF THE PROOF. Over C" consider the trivial bundle

Zl
E = C" x CFin which we have a Hermitian metric (h,,(z)) (z = [ : ]

n

are coordinates in C"; 1 < p, ¢ < k). We suppose that there are
holomorphic sections 0, ...,0% 441 generating the sub-bundle S =
C" x {07 x Ck=4} of E, and let o1 be a holomorphic section of the
1
Z
q

form o (z) = o |- Then the locus o1 A ... A Op—gy1 = 0 is

N

6
given by z! = ... = z¢7 = 0, so that we have the local situation
of (A4.6) (S is generated by S’ and oy on C" — C"9), (]m]]) and

(A4.36). We consider unitary frames ey, ..., e¢; for E where e; = ——

and ey, ...,ex_411 1s a frame for S’. Thus ey, ..., ek—q+1 18 a frame for
S|C" — C" 4.
k
Write De; = Y #e, (] is of type (1,0) for p > 1) and set Q =
p=1
—TI'(q )61 gt 0"0; g2 8,1. If n is a compactly supported 2n —
2g form on C", we want to show:
J n=— lirr(l) f QA n, (A4.37)
E—>
Cr—a 0T,

where T is an e-ball around C"~7 < C". Having done this, we will, by
almost exactly the same argument, prove (A4.35)).

Using the metric connection, we write De, = ] 67 es. Then the
o=

1-forms €, are smooth on C" for p # 1, o # 1. If we can show that the
«9‘1’ have a first order pole along C"~9 < C", then it will follow that Q
has a pole of order 2¢g — 1 along C"~ 7 and that our congruence symbol
“="(c.f. just above (A4.31)) refers to the order of pole along C"~9. We
eh(2) p p
consider each vectore, = | : | asavector field f, = X eg(z)a—cr
(0) o
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) 0
on C" and, letting f, = ﬁ(a =k+1,...,n), we have a tangent vector

frame fi,..., f,on C" such that f5,..., fi—g+1, fis1,- .., fn are tangent

to C""1 < C" along C"79. Let w', ..., w" be the co-frame of (1,0)
no 0 n ) k—q+2
forms; thenifz = ) z/—,dz= )] fiw/.Butz =01+ > Aseq+
i—1 0z1 i—=1 =2
J J a
n k—q+2 n
> Zfssothatdz = D'oy Y. (0dgeq + AD'ey) + Y, fuw
a=k+1 a=2 a=k+1
This gives:
w' =2|o]6Y; )
k—g+1
=0+ X by (w=k—qg+2,....k);
=2
k—q-(f-l , >
W =0, + gty (@=2,....k—qg+1); and
B=2
w* = dz* (a=k+1,....n).
(A4.38)

It follows that 9} , 9‘1' have a first order pole along C"~¢ and that

i\ 4
Qz<1> (—yalaD2 L lar2 | fgheat? | gt (ag-1).

2 |0-1 |2q—1
(A4.39)
The situation is now this: On C", let fi,..., f, be a tangent frame
such that f,11,..., f is a frame for {Q? x C"~1} < C”" (thus fi,... S
is a normal frame for C"~7 < C"). Let w', ..., w" be the dual co-frame
and n be a compactly supported 2n — 2¢g form. Then we need

— lirr(l) nAN= f n (A4.40)
E—>
oTe Cr—4

. q 1
where A = (=) (—1)9a=1/2 W' ... wIB' .. @Y, T, is the
2 ’0-‘251—1
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Z]

: o
e-tube around C"¢ < C"*, and o = Zg , i = —.

o]

If now the metric in the tangent fra(;ne is the flat Euclidean one and
T the normal neighborhood of radius €, then A is minus the volume
element on the normal sphere of radius e. Writing n = (n(0,z) +
AW A A" AT A LA T + 17 where

n = O(wl,...,wq,al,...,a”),

it follows that

- hm nAN= f n(0,2)w!*! . W B = J 1.
6T Ccra Cn—a

On the other hand, if 7. is another e-tube aroung C"~9, by Stokes’ the-

orem
|anA—fmA\<r f d(n A A,
oT, af

Tfuf

Since 77 is smooth and dA has a pole of order < 2¢ — 1 along C"™ 7 (in
fact, we may assume dA = 0), hIr(1)| § d(nAA)| = 0. Thus, the limit
A TgufE
on the left hand side of (A4.40) is independent of the T, (as should be

the case).

q m
Now = Z /l(yf(t(z) + Z /lyfu(z)’ and we set Z77 - Z /lwf(“
a=1 H=q+1

then the left hand side of (A4.40) is — lim n A A. Butz, = |z,7| 11,

e—0|z,|=€
and by iterating the integral, we have

—hm UAA—J — lim f nAN} =

e—0
"7 ca Jzg]=e
Z—2y= constant
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fn((),z) ~ lim f At ot a = Jn,

Cr—a |2y | =€ Cr—a
z—2z,= constant

To prove (A4.33), we refer to the proof of @.2) (c.f. the proof of
(B.3) in [9]) and see that we may assume that C is a (real) manifold with
boundary 0C = Z. In this case the argument is substantially the same as
that just given.

(e) CoNcLubpING REMARKS ON RESIDUES, CURRENTS, AND THE GYSIN
Homomorprism. Let V be an algebraic manifold and W < V an irre-
ducible subvariety which is the ¢ Chern class of an ample bundle E —
V. Given an Hermitian metric in E, the differential form P,(®) (® =
curvature form in E) represents the Poincaré dual (W) € H**~24(V,Z)
of W € Hy,—2,4(V,Z). The differential form ¢ (having properties [.8)-
@I0) which we constructed is a residue operator for W; that is to say:

Y isa C*(q,q—1) formon V- W (A441)
which has a pole of order 2g — 1 along W; '

Oy =0 and dy = Oy = P,(®) is the Poincaré dual of W; (A4.42)

and for any 2n — k chain I' meeting W transversely and any smooth
2n — 2q — k form n,

lim — f YAn= J n  (Residue formula). (A4.43)

e—0

I'-0T, r-w

This formalism is perhaps best understood in the language of cur-
rents [[14]]. Let then C™ (V) be the currents of degree m on V; by defini-
tion, § € C™(V) is a linear form on A?"~"(V) (the C* forms of degree
2n—m) which is continuous in the distribution topology (c.f. Serre [21]]).
The derivative df € C"*!(V) is defined by

{d, 1) = (6,dA) forall 1e A" "Y(V). (A4.44)
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Of course we may define 06, 26, and speak of currents of type (r,s), etc.
If Z"(V) < C™(V) are the closed currents (d6 = 0), then we may set
H™(V) = Z™(V)/dC"1 (V) (cohomology computed from currents),
and it is known that (c.f. [14]])

H"(V) = A™(V). (A4.45)
Now P,(®) gives a current in C%9(V) by (P4(©), 1) = { P,(®) A
v

A(A e A™=24(V)). By Stokes’ theorem, dP,(®) in the sense of currents
is the same as the usual exterior derivative. Thus dP,(®) = 0 and
P,(©®) € H*(V).
Also, W gives a current in C%4(V) by (W, 1) = { A(1 € A2724(V)).
W

By Stokes’ theorem again, dW = 0O (if W were a manifold with bound-
ary, then dW would be just OW).
Now ¢ gives a current in C49~1(V) by (¢, ) = (¢ A A (this is
W

because ¢ has a pole of order 2¢ — 1). To compute dyy € C%4(V), we
have, for any 1 € A2"=24(V),

Jw/\d/l:ling)flp/\d/lzlin(l) f—d(lﬂAﬂ)+dlﬁ/\ﬂ

|74 V—-T, V—-Te
=lirr(1) f d(w/\/l)—i-lin(l) f Pq(®)/\/l=—f/l+qu(®) A A,
E—> E—>
VT, VT, W v

which says that, in the sense of currents,
dy = Py(®) — W. (A4.45)

Thus, among other things, the residue operator ¢ expresses the fact
that, in the cohomology group J#%4(V), P,(®) = W (which proves
also that P,(®) = Z(W)). The point in the above calculation is that
dyr in the sense of currents is not just the exterior derivative of ¢; the
singularities force us to be careful in Stokes’ theorem, so that we get

(A4.45).
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Suppose that W is non-singular and consider the Gysin homomor-
phism H*(W) — H**24(V). Given a smooth form ¢ € AK(W) which is
closed, we choose ¢ € A¥(V) with ¢|W = ¢. Then the differential form
ix(@) = dy A @) = Pq(©) A & — W A de will have only a pole of order
2g—?2 along W (since d¢| W = 0, the term of hlghest order in i involves
only normal differentials along W, as does d¢), and so i, (¢) is a current
in C**24(V). We claim that, in the sense of currents, dis(¢) = 0.

Proof. Sd»,b/\(/’))/\d/l—hm S dw/\¢>)/\d/1——lmg)Sd
Yo

(Z)/\/thm § oA dpa
E"OaTE

(since dy A ¢ = Py(0®) A ¢ is smooth). But ¢ A d has a pole of
order 2g — 2 along W so that ling) S wAdpnd=D0).
€V or.

Thus i, (@) is a closed current and so defines a class in J#*+24(V) =~
H*24(V); because of the residue formula (AZ.43)), i.(¢) is the Gysin
homomorphism on ¢ € H¥(V).

Of course, if we are interested only in the de Rham groups H*(W),
we may choose @ so that d$ = 0 in T, for small € (since W is a C®
retraction of T¢). Then d(y A (}) is smooth and currents are unnecessary.
However, if we want to keep track of the complex structure, we must
use currents because W is generally not a holomorphic retraction of Tk.
Thus, if ¢ € Ff(W) (so that ¢ = ¢ + - -+ + ¢rx—1), we may choose
be F;‘(V) with ¢|W = ¢, but we cannot assume that d¢ = 0 in Te. The

point then is that, if we let .#f(W) and .7, k+2q( V) be the cohomology
groups computed from the Hodge filtration using currents, then we have

FEV) = F2W); (A4.46)

and the Gysin homomorphism i, : H*(W) — H**24(V) satisfies i, :

F f‘ (W) — Fquzq(V) and is given, as explained above, by

iw(9) = d(y A ¢) € F,12(V). (A4.47)
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In other words, by using residues and currents, we have proved that
the Gysin homomorphism is compatible with the complex structure and
can be computed using the residue form. |

5 Generalizations of the Theorems of Abel and Lef-

schetz. Let V = V, be an algebraic manifold and Z = Z,_, an ef-
l
fective algebraic cycle of codimension g; thus Z = Y n,Z, where Z,
a=1

is irreducible and n, > 0. We denote by ® = ®(Z) an irreducible
component containing Z of the Chow variety of effective cycles Z
on V which are algebraically equivalent to Z. If Z € @, then Z — Z is
homologous to zero and so, as in §3] we may define ¢, : ® — T,(V).
Letting Alb(®) be the Albanese variety of @, we in fact have a diagram
of mappings :

Alb(®)

%

(0] ao 6.1

.

q

T, (D, V).

Here T,(®, V) is the torus generated by ¢,(®) and ¢ is the usual map-
ping of an irreducible variety to its Albanese. Thus, if ', ..., ¢" are

a basis for the holomorphic 1-forms on @, then §¢(Z) = S?df ,

where S§¢p means that we take a path on ® from Z to Z and inte-
grate . We may assume that /! = 5 (wh),...,.yk = ¢, (w*) where

w', ..., " give a basis for the holomorphic 1-forms on T, (®, V) (w® €
fzv' 7o'

H"—4t17=4(v)), and then apde(Z) = ag : = - |, where
A% ;o

Sé w® means (. w® if 'is a 2n — 2¢g + 1 chain on V with oI’ = Z — Z.
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Let now W = W,_ be a sufficiently general irreducible subvariety
of dimension ¢ — 1 (codimension n — g + 1) and £ = X(W) an irre-
ducible component of the Chow variety of W. Each Z € © defines a
divisor D(Z) on X by letting D(Z) = {all W € X such that W meets Z}.

! l

Thus, if Z = )] noZy, D(Z) = >, noD(Z,). Letting “=" denote lin-
a=1 a=1
ear equivalence of divisors, we will prove as a generalization of Abel’s

theorem that:
D(Z) is algebraically equivalent to D(Z),

52
even if we only assume that Z is homologous to Z; (5:2)

and
D(Z)=D(Z) if ¢4(Z) =0 in T, (D, V). (5.3)

Example 1. Suppose that Z is a divisor on V; then @ is a projective fibre
space over (part of) Pic(V) (= Picard variety of V) and the fibre through
Z € O is the complete linear system |Z|. Now W is a point on V and
Y =V, and D(Z) = Z as divisor on X. In this case, (3.3) is just the
classical Abel’s theorem for divisors [17]; (3.2) is the statement (well
known, of course) that homology implies algebraic equivalence. The
converse to (3.3)), which reads :

¢4(Z) =0 if D(Z) = D(Z), (5.4)
is the trivial part of Abel’s theorem in this case.
Remark. We may give (3.3)) as a functorial statement as follows. The
mapping ® — Div(X) (given by Z — D(Z)) induces ® — Pic(X).
From this we get Alb(®) — Alb(Pic(X)) = Pic(X), which combines
with (5.1) to give
Alb(®) — = Pic(x)
la@ - (5.5)
7 o
T,(D,V)

Then (3.3) is equivalent to saying that &g factors in (3.3)).
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Proof. For zp € Alb(®), there exists a zero-cycle Z; + -+ + Zy on
® such that zo = 6p(Z; + -+ + Zy). Let Z = Z; + --- + Zy be
the corresponding subvariety of V. Then a¢(Z) = ¢,(Z — NZ) and,
assuming (3.3), if ¢,(Z — NZ) = 0, then £¢(Z) = 0 in Pic(2). Thus, if
(G3) holds, ker agp D ker &g and so &g factors in (B.3). O

Example 2. Let Z = point on V so that ® = V, Alb(IT) = Alb(V).
Choose W to be a very ample divisor on V; then X is a projective fibre
bundle over Pic(V) with |W| as fibre through W (c.f. [18]). Now D(Z)
consists of all divisors W € X which pass through Z. In this case, (3.3)
reads:

Albanese equivalence of points on V implies linear (5.6)
equivalence of divisors on X. ’
Remark. There is a reciprocity between @ and X; each W € X defines

a divisor D(W) on @ so that we have Alb(X) =, Pic(®). Then (3.3)
dualizes to give :

Alb(E) — == Pic(®)
i% e (5.7)
P

Ty g1 (EV)

For example, suppose thatdimV = 2m + 1 and ¢ = m + 1. We may
take W = Z, T = @, and then (3.3) and (3.7) coincide to give :

Alb(®) — = Pic(®)
iaq, 7 (5.8)
7 e
Ty(®,V)
Given Z, ® as above, there is a mapping

H.(D,Z) 5 Hyy241,(V.Z) (5.9)
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as follows. Given an r-cycle I on @, 7(I') is the cycle traced out by the
varieties Z, for y € I'. Suppose that @ is nonsingular. Then the adjoint
% . H20+7(V) — H'(®) is given as follows. On ® x V, there is a

cycle T with pry, T - {Z x V} = Z(Z € ®). We then have T Oy
|»
()

and :

™ = % H"29H7 (V) — H' (D) (5.10)

(here 7, is integration over the fibre). Since @ is nonsingular D(W)
(= divisor on ®) gives a class in H'!(®). In fact, we will show, as a
generalization of the Lefschetz theorem [19], that

* :Hn—q+s,n—q+t(V) N HS”((I)); (5.11)

and, if w € H"~ 41—t (V) ig the dual of W € H,—14,—1(V) N Hay
(V,Z), then :

The dual of D(W) is t*w e H"! (D). (5.12)

In other words, an integral cohomology class w of type (n — q +
I,n — g+ 1) on V defines a divisor on ®.

Remark. In (3.11), we have
o g a(Y) — HY(0); (5.13)

this 7% is just ¢ : H'Y(T,(V)) — H'(Alb(d)) where ¢, is given by
ED.

Remark 5.14. The gist of (3.2)), (3.3) and (3.11)), (3.12) may be summa-
rized by saying: The cohomology of type (p, p) gives algebraic cycles,
and the equivalence relation defined by the tori 7,(V) implies rational
equivalence, both on suitable Chow varieties attached to the original al-
gebraic manifold V.

The problem of dropping back down to V still remains of course.
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(a) A GENERALIZATION OF INTERALS OF THE 3RD KIND TO HIGHER CODI-
MENsION. We want to prove (3.2)) and (3.3) above. Since changing Z or Z
by rational equivalence will change D(Z) or D(Z) by linear equivalence

and will not alter ¢,(Z), and since we may add to Z and Z a common
l k
cycle, we will assume that Z = Y} noZg, Z = Y, m,Z, where the Z,,
a=1 p=1
Z,, are Chern classes of ample bundles (c.f. §above) and that all inter-
sections are transversal. To simplify notation then, we write Y = Z — Z

and Y = ) n;Y; where the ¥; are nonsingular Chern classes which
j=1

meet transversely. We also set |Y| = U Y, V-Y=V-JY|

A residue operator for Y (c.f. Appendlx to §4 section (e) above) is
given by a C* differential form ¢ on V — Y such that :

(i) yisof degree 2g — 1 and ¢ = Yog—10 + -+ + ¥gq—1 (s, is the
part of ¥ of type (s,1));

(ii) Oy = 0 and Ay = ® where @ is a C* (g, ¢) form on V giving the
Poincaré dual of Y € Hy,—24(V, Z);

(iii) ¥ — Yy q—1 18 C* on V and ¢ has a pole of order 2¢g — 1 along Y;
and

(iv) for any k + 2¢q chain I' on V which meets Y transversely and
smooth k-form w on V

f w = —lim J ¥ A w(Residue formula) (5.15)

e—0
ry T,

where T is an e-tube around Y.

From (AZ4.1)-(A4.3) and (A4.33), we see that a residue operator i

!
for each Y; exists. Then ¢ = } njy; is a residue operator for Y (the
j=1
formula (5.13)) has to be interpreted suitably).

If Y = 0in Hy,—24(V,Z), then we may assume that oy =0. (5.16)
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Proof. ¢ = ® is a C* form and ® = 0 in Hg’q(\/). Then ® = Jn

where . = 5*G5<D and 0n = O since o0 = —30, Gz = G70,
0® = 0. Since 7 is of type (¢,q — 1), we may take ¢ — n as our residue
operator. m|

Remark 5.17. If Y is a divisor which is zero in Hp,—(V,Z), then ¢ is
a holomorphic differential on V — Y having Y as its logarithmic residue

locus (c.f. [18]).

Remark 5.18. Let Y be homologous to zero and i be a residue operator

for Y with dy = 0 (c.f. (516)). Then y gives a class in H*~'(V —Y),

and y is determined up to H?9~10(V) + ... + H49~1(V). We claim that
H*~1(V —Y) is generated by H?¢~!(V) and the ¥ .

Proof. Let ¢ be a normal sphere to Y; at some simple point not on any
of the other Y;’s. We map Z\) = Z®---@®Z into Hy,_(V —Y) b
k p D---DL1 2g-1( ) by
!

!
(@1,...,;) — > @;6;. Since Sa-%’ = +1, we must show that the
j=1 !

sequence
ZU - Hyy (V—=Y) 5 Hyy (V) -0 (5.19)

is exact. By dimension, Hp,—(V — Y) maps onto Hy,— (V). If o €

Hy,—1(V —Y) is an integral cycle which bounds in V, then o0 = &y

for some 2g-chain y where y meets Y transversely in nonsingular points

pp € Y. If p, € Y, then clearly o ~ > 6(,) so that Z(") generates the
P

kernel of iy in (3.19).

Consider now our subvariety W = W,_ with Chow variety . We
may assume that W lies in V — Y and, for W € X, W lyingin V — Y,
we may write W — W = oI where I is a 2¢g — 1 chain not meeting Y.
Clearly I' is determined up to Ha,—1(V — Y). We will show :

There exists an integral of the 3™ kind 6 on X whose logarithmic

residue locus is D(Y'), provided that Y = 0 in Hy,—24(V,Z).
(5.20)
m]
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Proof. Let ¢ be a residue operator for ¥ with dyy = 0. Define a 1-form
fonX — D(Y)by:

w
0=d fl,// —d sz . (5.21)
w r

This makes sense since diy = 0. We claim that
6 is holomorphic on ¥ — D(Y).
O

Proof. LetX* = X — D(Y) and T* < X* x V the graph of the corre-
spondence (W,z)(z € W) (i.e. W € £* is a subvariety of V and z € V
lies on W). Then we have

Now w* : A™(V) — A(T*)(A(x) = C* forms of type (r,s)
on*); since @ is holomorphic, @*0 = d@*. On the other hand, the
integration over the fibre m, : A4 1(T*) 5 APS(T¥) is defined
and is determined by the equation :

de’ AT = J ¢ AT, (5.22)
D T
where 7 is a compactly supported form on T*. Since § Omep A1 =
s
(—1)*s S panon=§ 0p nn*n=§ n.(0¢) Anforally, on, =
T T* T

0. Let 7% : A7t~ 1sta=1(V) — A™S(Z*) be the composite 7,.&*.
Then dt* = 7*0 (this proves (3.11)).
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Now let s € A%4~1(V — Y) be a residue operator for Y. Then by the
definition (5.21), 6 = %y € A'0(Z*) and d = t*dy = 0. This proves
that 6 is holomorphic on X*.

Now Y = }} n;Y; where the Y; are subvarieties of codimension ¢

j=1
!
on V. We have that D(Y) = > n;D(Y;) and ¢ = > njy;. We will
Jj=1 j=1
prove that ¢ has a pole of order one on Y; with logarithmic residue n;
there. O

Proof. We give the argument when Y is irreducible and ¢ = n. From
this it will be clear how the general case goes.

Let A be the unit disc in the complex z-plane and {W,;},a a holo-

morphic curve on ¥ meeting D(Y) simply at the point 7 = 0. Then
Wy meets Y simply at a point zp € V. We may choose local coor-

dinates z',...,7" on V such that zp = Y is the origin. Now Y o=
1
iz |2n ] {Z Wod?' ... d2"dZ" .. A }where z|> = Z |z%|* and
a=1

Yo is smooth. We may assume that W, is given by z' = ¢, and, to prove
that 6 has a pole of order one at t+ = 0, it will suffice to show that
{0160 A di| is finite. It is clear, however, that ({6 A di| will be finite if
A A

{ |w A dzZ'|is finite. But

lz¢|<1

dz'...d"d7" ... dZ"
W A dZ| <c{ < |Z|2 Zl < } (¢ = constant),
z|7

sothat | |y A dZ'] is finite.
|z7]<1
We now want to show that { 6 = +1 (i.e. @ has logarithmic
[t|=1
residue +1 on D(Y)). Lets = (J W,. Then § 0 = (y. If T, =
|7[=1 |t]=1 5
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{z : |z] < €}, then setting ' = { U Wt} — T, 0T = 6 + 0T¢. Thus

lf|<1

Sy =— { ¢ = +1 asrequired. o
5 T,

Remark. Let Y < V be as above but without assuming that ¥ = 0
in Hy,—24(V,Z). Let ¢ be a residue operator for Y and 6 = 7*(y) =
w4y, The above argument generalizes to prove :

0 = t*(¢) is a residue operator for D(Y). (5.23)

We have now proved (5.20), and with it have proved (5.2), since
D(Y) will be algebraically equivalent to zero on X because of the exis-
tence of an integral of the 3™ kind associated to D(Y).

Proof of (312). Let Y < V be as above and interchange the roles
of Y and W in the statement of (3.12). Let w € H%%(V) be the dual
of Y € Hy,_»4(V,Z) and let y be a residue operator for Y. Then (c.f.
(E23) above) T*y = 6 is a residue operator for D(Y) < X, and so (c.f.
Appendix to §4 section (e)) 6 is the dual of D(Y) € Hay_»(Z,Z)(N =
dimX). But 06 = %0y = t*w, and so (3.12) is proved. o

(b) RecrrrociTy RELATIONS IN HIGHER CODIMENSION. Let Y = Z — Z
be as in beginning of §3] section (a) above. We assume that ¥ = 0 in
Hy,—24(V,Z) so that D(Y) is algebraically equivalent to zero on X =
Z(W). Let ¢ be a residue operator for ¥ and 6 = 7*y be defined by
(BZI). Then (c.f. (320)) @ is an integral of the 3™ kind on £ whose
logarithmic residue locus in D(Y).

Now ¢ is determined up to § = H*’~1O(V) 4 ... 4+ HPP~I(V),
Since ¥ (HPP=1=7(V)) = 0 for r > 0, 6 is determined up to 7*(S)
where only 7 (HPP~1(V)) < H'(X) (c.f. (5II)) counts. Let us prove
now :

D(Y) = 0 on X if, and only, if, there exists w € H'(Z)

such that 559 + w = O(I)for all § € Hl (Z _ D(Y), Z) (524)
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Proof. 1f w exists satisfying {;0+w = 0(1) forall 6 € H{(£—D(Y), Z),
then we may set :

w

f(W) =exp fﬁ +w]|, (expé= ). (5.25)
\L

This f(W) is a single-valued meromorphic function and, by (.20),

(f) = D(Y).
1 df

Conversely, assume that D(Y) = (f). Then 6 — e —w
i
will be a holomorphic 1-form in H'*(X), and for § € H,(X — D(Y),Z),
1 .d 1
SG+ Lgdf — {dlog f = 0(1). This proves (5.24).

"o miy f 27i
Suppose we can prove :

There exists € S such that Sy + n = 0(1) for all
I'e Hyy1(V—=Y,Z) ifand only if, ¢4(Y) = 0in Ty(®, V) < T,(V).

(5.26)
O

Then we can prove the Abel’s theorem (5.3) as follows.
Proof. If ¢,(Y) = 0in T,(®, V), then by (5.26) we may findn € S such
that §-y+n = 0(1) for allF € ng 1(V=Y,Z). Setw = t*ne H(X).

Then, for 6 € H{(2—D(Y),Z), §;0+w = {;7*(W+n) = {5 v +n=
0(1), where 7 is given by (]ﬂ). Using (3.24)), we have proved (3.2). O

Remark 5.27. The converse to Abel’s theorem (5.2), which reads :
¢q(Y) =0 in T,(Y) if D(Y) =0 in X, (5.28)
will be true, up to isogeny, if we have :
The mapping © : HM~ (V) — H'"Y(Z) is into. (5.29)
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Proof. Referring to (3.3), we see that 7 is
(fo)s : To(Ty(D,V)) — To(Pic(X)),

so that {o is an isogeny of 7,,(®, V) onto an abelian subvariety of Pic(X).
i

Proof of (3.26). LetI7,...,I'2, be a set of free generators of Hp,_i
(V,Z) (mod torsion). We may assume that I', lies in Hy,—1(V — Y, Z),
since S5 Y = 0(1) for all § in Ha,—1(V — Y, Z) which are zero in Hy,

(V,Z) (c.f. (519)). Choose abasis ', ..., 7" for S and set r, : r& "

Then 7, € C?" and we let S be the subspace generated by 7, .. T
kl
The lattice generated by integral vectors { :

k2m

} projects onto a lattice

in C2"/S, and the resulting torus is T, (V).
Proof. We may identify C*" with H>4~!(V,C) = Hy—1(V,C)*; S is

the subspace H>1~10(V) + ...+ H%9~1(V), and the integral vectors are
just H24=1(V, Z). Thus the torus above is H9~14(V)+- ..+ H*?4=1(V)/

H1(V.2). Leta() = 4 4¥ 5 w(y) projects onto a point (y) €

T,(V), and we see that:

The congruence {4 +n = 0(1) (I' € Hyg—1(V — Y, Z)) can

. . . (5.30)
be solved for some 7 € S if, and only if, () = 0in Ty (V).

Thus, to prove (3.26), we need to prove the following reciprocity
relation:

n(Y) = ¢g(Y) in Ty(V). (5.31)
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Lete, € H?'—24+1(V, Z) be the harmonic form dual to Iy € Hyy i
(V,Z). We claim that, if we can find n € S such that we have

ft//—fepz(Fp,C)+Jn(p=1,...,2m), (5.32)
r

P c FP
then (3.31)) holds. O

Proof. By normalizing , we may assume that = 0 in (3.32). Let

ey € H?4~1(V) be the harmonic form defined by § Vo el = 8. Choose

a harmonic basis w',...,w™ for H**~2+10 4 ... 4 gr—atln—q 354

let ¢!,...,¢" be a dual basis for H9~ 1 4 ... 4 H%2~1 Then w® =
m

m

2 —_—
Zl Hpa€p and e; = Zl (Hpa®® +ﬁpa¢a). It follows that 7(y) is given by
pP= a=

2m : 2m
the column vector 21 Hpa FS ¢ +. From (332), we have Y wp0 § ¢ —
pP= P p=1 Fp

2m 2m
§ > tpaep = X ppa(T, - C), which says that
Cp=1 p=1

2m . :a 2m Hp!
gl S0]” ]
p= P p=1 /,[pm

which lies in the lattice defining 7,,(V). Thus n(¢) = ¢,(Y) in T,(V).
Q.E.D. O

Thus we must prove (3.32)), which is a generalization of the bilinear
relations involving integrals of the third kind on a curve (c.f. [24]]). We
observe that, because of the term involving n, (5.32)) is independent of
which residue operator we choose. We shall use the method of Kodaira
to find one such ; in this, we follow the notations of [17].
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Let then y>"~24(z,£) on V x V be the double Green’s form associated
to the 2n —2g forms on V and the Kihler metric. This is the unique form
satisfying

[
(a) Ay (2, &) = 3 0/(2) A 0/(8),

j=1
where the 6/ are a basis for the harmonic 2n — 2¢ forms;

(b) y*1724(z,£) is smooth for z # & and has on the diagonal z = £ the
singularity of a fundamental solution of the Laplace equation;

(c) y*"~24(z,&) = y*"~%4(£,7) and is orthogonal to all harmonic 2n —
2q forms (ie. §, 7" 29(z,€) Ay 0/(¢) = Oforall zand j =
1,....0D;

(d) 6:7*"2(2,€) = dey™ 2771 (2,6),
and x; x ¥ (2, €) = y¥(2,€).

Define now a 2n — 2¢ form ¢ by the formula :
$(z) = f Y (2, £)dé. (5.33)
ey

Then ¢ is smooth in V — Y and, by (b) above, can be shown to have a
pole or order 2¢ — 2 along Y. We let

v = % do. (5.34)

Then ¢ is a real 2¢ — 1 form. Since Y is an algebraic cycle, ¢ will have
type (n — g, n — q) and so ¢ = ¢/’ + " where /' has type (¢,q — 1) and
Y= J,. We will show that 2y is a residue operator for Y and satisfies

(G.32).
We recall from [[I7]], the formula :

J‘ﬁ - Je,, = ([, - 0), (5.35)

I, c
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which clearly will be used to give (3.32).

First, ¢ has singularities onlyon Y and dyy = d * d¢p = —+6d¢p = 0
(c.f. Theorem 4 in [17]), and 6 = 6 * d¢ = + % d*>¢ = 0, so that
is harmonic in V — Y. Thus ¢/ and ¢ are harmonic in V — Y.

Let J be the operator on forms induced by the complex structure.
Then J* = «J and J¢ = ¢ (since JT¢(Y) = Tg(Y)). Thus ¢ = xdJ¢p =
«JJ'dJp = J % (L5 — 6L)p = —J~! + L¢ since 6¢ = 0. This gives
that Jys = —d * L¢, so that, using Jy = i(y/ — '), we find :

2 = — Jy = +d(* Lo). (5.36)

Now 2y is a form of type (g,q — 1) satisfying &' = 0 = 0y’ and
combining (3.33) and (3.36)),

fzw’ - Jep — (T, -C). (5.37)

I, c

Finally, the same argument as used in [[17], pp. 121-123, shows that
2y/ has a pole of order 2¢ — 1 along Y and gives a residue operator for
Y. This completes the proof of (5.32) and hence of (3.3).

6 Chern Classes and Complex Tori. Let V be an algebraic
manifold and E,, — V a C® vector bundle with fibre CK. We let X(E,)
be the set of complex structures on E,, — V (i.e. the set of holomorphic
bundles E — V with E C’::C E.,). For such a holomorphic bundle E —
V(E € 2(Ey)), the Chern cycles Z,(E)(q = 1,...,k) (c.f. [, [12],
[13]) are virtual subvarieties of codimension ¢, defined up to retional
equivalence. Fixing Eg € 2(Ey), Z,(E) — Z,(Ey) € X, and we define

¢q : Z(Ex) — T4(S), (6.1)

by ¢,(E) = ¢,(Z,(E) — Z,(Ep))(E € 2(E)). We may think of ¢,(E)
as giving the periods of the holomorphic bundle E. In addition to asking
for the image ¢,(X(Ex)) < T,(S), we may also ask to what extent do
the periods of {E} € Z(Ey) give the moduli of E ? By putting things
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into the context of deformation theory, we shall infinitesimalize these
questions.

Let then {E,}ca be a family of holomorphic bundles over V (A =
disc in A-plane). Relative to a suitable covering {U,} of V, we may give
this family by holomorphic transition functions gu(1) : Uy N Ug —
GL(k) which satisfy the cocycle rule :

gaﬁ</l)gﬁ7(/l) = gay(/l) in Uy, n Uﬁ N Uy- (6.2)

We recall that Kodaira and Spencer [15] have defined the infinitesimal
deformation mapping :

§: Ty(A) — H'(V,0(Hom(E, Ey))). (6.3)

0 ~ .
Explicitly, & (a) is given by the Cech cocycle &5 = gaﬁ(/l)gaﬁ(/l)*l

((g;aﬁ = 0gqp/01); the cocycle rule here follows by differentiating (6.2)).

Now define ¢, : A — T4(S) by ¢p4(1) = ¢4(Ea) (Eg being the base
point). Recall (c.f. B3)) that (¢,)« : (To(A)) = HI~14(V), so that we
have a diagram (¢, = (¢g)«) :

H!'(V,0(Hom(E,E)))

¢ (6.4)

What we want is £ : H'(V,O(Hom(E,E))) — H4(V,Q4~") which will
always complete (6.4) to a commutative diagram.

We have a formula for ¢ (c.f. (6.8)) which we shall give after some
preliminary explanation.

First we consider symmetric, multilinear, invariant forms

P(A1.....A,)
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where the A, are k x k matrices. Invariance means that

P(gAig",....gA,87") = P(Al,...,A,)(g € GL(k)).

Such a symmetric, invariant form gives an invariant polynomial P(A) =
P(A,...,A). Conversely, an invariant polynomial gives, by polariza-
tion, a symmetric invariant form. For example, if P(A) = det(A), then

1
P(Ar,....A) =— > det(4; .. A%), (6.5)

where 7 = (71, ..., ) is a permutation of (1,...,k) and AZ is the o™
column of A,

The invariant polynomials form a graded ring I,, = )] I,, which is
q=0
discussed in [11]], §4(b). In particular, I, is generated by Py, Py, ..., Py
where P, € 1, is defined by

det <— + /U) 2 P (A1, (6.6)

146 Let now P € [, be an invariant polynomial. If
A, € AP42(V, Hom(E,E))

(= space of C*, Hom(E, E)-valued, (pg,q,) forms on V), then

P(Ay,...,A;) € APA(V (p—Epa,q—Z )

is a global form and OP(Ay,...,A,) = Z +P(...,0A,,...). We con-

clude that P gives a mapping on cohomology

P: HY(V,Q (Hom(E,E))) ® - - - ® H" (V, " (Hom(E, E)))
— HU(V,QP). 6.7)
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Secondly, E — V defines a cohomology class
0 e H'(V,Q'(Hom(E, E)))(® is the curvature in E; c.f. [1])),

which is constructed as follows: Let 6 = {6,} be a connection of type
(1,0) for E — V Thus 6, is a k x k-matrix-valued (1,0) form in U,
with 6, — gop088,5 = 8,53d8ap In Uy N Up. Letting ©, = 06, @y =
gaﬁ®ﬂg;ﬂl in U, N Ug and so defines ® € H'(V, Q! (Hom(E,E))) (® is
the (1, 1) component of the curvature of 6).
Our formula is that, if we set
1
{(n) = qPy(®,....0,n) (ne H (V,O(Hom(E,E)))),  (6.8)
q—1

then (@.4) will be commutative. Note that, according to (@.7), () €
H4(V,Q41), so that the formula makes sense.

We shall give two proofs of the fact that ¢ defined by (6.8) gives
the infinitesimal variation in the periods of E. The first will be by ex-
plicit computation relating the Chern polynomials P,(©, .. .l,®,17) to

g—
the Poincaré residue operator alogn Z,(E); both the Chern polynomials
and Poincaré residues will be related to geometric residues in a manner
somewhat similar to §4 (especially the Appendix there). After prelimi-
naries in §7 this first proof (which we give completely only for the top
Chern class) will be carried out in §8 The general argument is compli-
cated by the singularities of the Chern classes.

The second proof is based on the transformation formulae developed
in §4¢ it uses an integral-geometric argument and requires that the family
of bundles be globally parametrized.

Some Examples. Let E — V be a holomorphic vector bundle and
6 € H°(V,®) a holomorphic vector field. Then # exponentiates to a one-
parameter group f (1) : V. — V of holomorphic automorphisms, and we
may set E; = f(1)*E (i.e., (Ea); = Ef1).). Letw = Py(O,...,0)
be a (g, q) form representing the ¢ Chern class; we claim that the in-
finitesimal variation in the periods of E is given by

(8, w) € HH (V). (6.9)
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Proof. Since (0, w) = (0, P4(0,...,0))

—3P,(0,....(0,0),...,0) = qP,(0,...,0:(0,0)),
g—1

using (6.8)) it will suffice to show that (4, ®) € H'(V,Hom(E, E)) is the
infinitesimal deformation class for the family {E,} = {f(1)*E}.

Let P — V be the principal bundle of E — V and 0 — Hom(E, E)
— T(P)/G — T(V) — 0 the Atiyah sequence [1l]. The cohomology
sequence goes H'(V,O(T(P)/G)) — H°(V,®) % H (V,Hom(E,E)),
and in [8]] it is proved that §(9) = (0,®) and is the Kodaira-Spencer
class for the family {E,}. (This is easy to see directly;

® € H' (V,Hom(T(V), Hom(E, E)))

is the obstruction to splitting the Atiyah sequence holomorphically, and
the coboundary ¢ is contraction with ®. But §(6) is the obstruction to
lifting 6 to a bundle automorphism of E, and so gives the infinitesimal
variation of f(1)*E). |

Remark. The formula (6.9) is easy to use on abelian varieties (w and
6 have constant coefficients) but, in the absence of knowledge about the
algebraic cycles on V, fails to yield much new.

Example 2. Suppose that {E} e is a family of flat bundles (i.e. having
constant transition funcitons). Then, by (6.8)), we see that:

The periods ¢,(E,) are constant for g > 1. (6.10)

Remark. This should be the case because E, is given by a repersenta-
tion p, : m (V) — GL(k). If we choose a general curve C — V, then
71(C) maps onto m1(V), and so {E,} is given by p, : 711(C) — GL(k).
Thus E, is determined by E,|C, and here the period ¢; (E,) is only one
which is non-zero (recall that we have 0 — T (V) — T(C)).

Example 3. From (&.8)), it might seem possible that the periods of E,
are constant if all of the Chern classes of T, are topologically zero and
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detE, = L is constant. This is not the case. Let C be an elliptic curve
and V = P; x C. Take the bundle H — P; degree 1 and let J; — C
be a family of bundles of degree zero parametrized by C. Set E; =
H®J)® H®J)* Then detEy = 1, c»(Ey) = —ci(H)?> = 0. If
6 € H%!(C) is the tangent to {J,;} — C, then the tangent 1 to {E,} is

(g _09>, and, if ® is the curvature in H, then the curvature in E, is

Of = (g _0®>. Then P(®g;n) = —(©6) # 0in H'2(V).
Example 4. Perhaps the easiest construction of Pic(V) (c.f. [18])) is by
using a very positive line bundle L. — V, and so we may wonder what
the effect of making vector bundles very positive is. For this, we let
Ag(V) = ¢g(Z4(V)) < T4(V) (A4(V) is the part cut out by algebraic cy-
cles algebraically equivalent to zero); A,(V) is an abelian subvariety of
T,(V) which is the range of the Weil mapping. Let ®” be the algebraic
cycles, modulo rational equivalence, of codimension p. Then we have

(c.f. §)

O’ @AL(V) > Apig(V) 6.11)

(obtained by intersection of cycles). We set I,(V) = > O’ ®A,(V)
ptq=r
p>0

(this is the stuff of codimension r obtained by intersection with cycles
of higher dimension) and let

Nr(v) :Ar(v)/lr(v) (6.12)

(here N, (V) stands for the new cycles not coming by operations in lower
codimension). Then (c.f. 7 below):
Let {E,} be a family of bundles and L. — V any line bundle. Then

¢-(E)) = ¢, (E;®L) in N.(V). (6.13)

In other words, as expected, the essential part of the problem is n’t
changed by making the E, very positive.

Example 5. Here is a point we don’t quite understand. Let {E,} be a
family of bundles on V = V,,(n > 4) and let S < V be a very positive
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two-dimension subvariety. Then E; — V is uniquely determined by
E, — S (c.f. [8]). From this it might be expected that, if the periods
#1(E,) and ¢»(E,) are constant, then all of the periods ¢,(E;) are con-
stant. However, let A be an abelian variety and {J} ;e (a,0) @ family of
topologically trivial line bundles parametrized by A € H' (A, O). We let
L, L,, L3 be fixed line bundles with characteristic classes wi, ws, w3
and set

E; = (J,L1)® (Jy,L2) ® (Ja,Ls).

400
Then the tangent 7 to the family {E,} is n = { 81 b ,? ] and the cur-
3
w; 0 0
vature ® = { 8 @ 0 ] Then Pi(®;7n) = Trace n = A; + A + A3.
w3
Setting 13 = —A; — A, we have P1(@®;n) = 0. Now P,(®;n) =

AN+ w1+ w3+ B30+ w3+ 3wy = A (w3 —w) )+ (W3 —w)),
and P3(®;77) = lijwmws + Lwiws + Azwiwr = /11602(0)3 — wl) +
Awi (w3 —wy). Clearly we can have P,(0;n) = 0, P3(0;7) = A; (w3 —
wi1)(wy — wy) # 0.

Example 6. Examples such as Example [3] above show that the periods
fail quite badly in determining the bundle. In fact, it is clear that, if
K(V) is the Grothendieck ring constructed from locally free sheaves
([120)), the best we can hope for is that the periods determine the image
of the bundle in K(V).

Let us prove this for curves:

If V is an algebraic curve and E — V a holomorphic vector bundle,
then the image of E in K(V) is determined by the periods of E.
(6.14)

Proof. Let I; be the trivial bundle of rank k; we have to show that E =
detE ® I in K(V) (where £ is the fibre dimension of E). The assertion
is trivially true for k = 1; we assume it for k — 1. Since the structure
group of E may be reduced to the triangular group [2]], in K(V) we see
that E = L ® --- @ L, where the L, are line bundles. We choose
a very positive line bundle H and sections ¢, € H°(V,O(H ® L}))
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which have no common zeroes (since k > 1). Then the mapping f —
(fO1,..., fO)(f € O) gives an exact bundle sequence 0 - H — L; @
- @ Ly - Q — 0 where Q has rank k — 1 and detQ = H* detE. By
induction, Q = H* det EQI;_; in K(V), and so E = det EQI; in K(V)
as required. |

7 Properties of the Mapping ¢ in (6.8)). (a) Beuavior ux-
DER DIRECT sums. Let {E;}, {F,} be families of holomorphic bundles
over V. What we claim is:

If (6.4) holds for each of the families

{E.} and {F},then it holds for {E, @ F,}. .1

Proof. By linearity, we may suppose that the {F} is a constant family;
thus all F, = F. Letting E = E, the Kodaira-Spencer class §(0/01)
for {E, @ F} lies then in H'(V,0(Hom(E,E))) c H'(V,O(Hom(E ®
F.E®F))). If g is a (1,0) connection in E and 6 a (1,0) connection

in F, then Oggr = O @ O (: <0(;3 ;;)) is a (1,0) connection in

E &) F and G)E(-BF = ®F &) ®F- From

i i i
— 1) = — I — 1
det<2ﬂ®E@F+/l) det(2ﬂ®E+ﬁ>det<2ﬂ®F+ﬂ),
we get that
P,(Oggr) = E P.(Og)Py(OF). (7.2)

r+s=q

Now (Z2) is the duality theorem; in the rational equivalence ring, we
have

ZE®F) = > Z(E)-Z,(F). (7.3)

r+s=q
Then

¢q<E/l G')F) = ¢q<Zq(E/l ®F) - Zq(E@F>)

= ¢q ( Z {Zr(E/l) : ZS(F) - Zr(E) : Z?(F)}>

r+s=q
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¢q ( Z [Zr(E/l) - Zr(E)] : ZS(F)>

r+s=q

= Z ¢q([Zr(E/1) - Zr(E)] : ZS(F))

r+s=q

(by EIR) > W Z,(E,) - Z,(E))

r+s=q

where W (F) = Py(Op) € H*(V) n H*(V,Z) is the Poincaré dual to
Zs(F) and W(F) : T,(V) — T,4+4(V) is the mapping given by @7). It
folows that:

{pg(Ba@F)}, = > Py(OF) {¢,(Ea)}, - (7.4)

s+r=q

Assuming (6.4) for the family {E,}, the right hand side of (Z4) is

>, rP1( O ;n)Py(OF). Since we want this to equal

r+s=g—1
’

P, (O ® Op;n®0),
g—1

to prove (Z.I)) we must prove the algebraic identity:

qP(ADB;E®0) = +Zq errH( A E)Py(B), (1.5)
g—1 r+s=q— r

where A, B, & are matrices.
Expanding P,(A @ B; £ @ 0) gives

_ e (a-1 . .
qPq(A@lB,feaO) = Zq( . >Pq(A(—BO,§(—BO, 0®B)
q— r K

(s = q—r—1). Thus, to prove [Z.3), we need to show:

~—

r

—1
rP1(_A ;§)PS(B)=q<qr )Pq(AQr)O;f@O;O@B). (7.6)
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Clearly the only question is the numerical factors; for these may take

A, B, £ to be diag?nal. Now in general if Ay, ..., A; are diagonal matri-
ces, say A, = [A(v' 0 ] then P,(Ay,...,A;) = _ZAM .AT" where
k

the summation isoovgfy all subsets 7 = (my,...,m;) of (1,...,k). Thus
g(TP(ADO;6®0; 08 B)

r S

S (q - 1) N AT AT B B
(—DI\ r )4 '

_ < ZAm AT 7Tr+l> (%ZBTI ...BTS>

This proves (Z.6). m]

(b) BEHAVIOR UNDER TENSOR PRODUCTS. With the notations and as-
sumptions of [7(a) above, we want to prove :

If ©4) holds for each of the families {E,} and {F,},
then (6.4) holds for E; ®F,,.

Proof. As in the proof of (1), we assume that all F, = F, Eq = E, and
then (%) = n®1in H'(V,0(Hom(E, E))) ® H(V,0(Hom(F, F))) c
H'(V,O(Hom(E ® F,E ® F))) where n € H'(V,0O(Hom(E,E))) is

(7.7)

0
1) (ﬁ) for the family {E,}. Also, to simplify the algebra, we assume

that F is a line bundle and set w = 2L®F(= c1(F)).
n

Now bpgr = 0g ® 1 + 1 ® O is a (1,0) connection in E ® F with
curvature Opgr = Or ® 1 + 1 ® Op. We claim that

Py(Opgr) = Y. <k_r>a)sPS(®E). (1.8)

r+s=q §
O
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Proof. P,(A®1+1®B) = DP(A®1,1®B
roof. Py(AR1+1®B) = 3 ()P(AB1L18

r )
Aisak x kmatrix and B = (b)is 1 x 1, we have Pj(A® 1,1 ® B) =
Xcg, Pr(A)b*(s = g — r) and we need to determine the ¢,,. Letting

). Assuming that

Al 0
1
A = [ : ],Pq(A®1,1®B) = —‘ZA”I...A”rb”f“...b”q =
q-n

0 At
1
(sH= () DA™ .. A", so that PA® 1 +1®B) = 3
q: n r+s=q

s

(q) (C[ - r)! (kfr)Am AT pS = Z (kfr)P (A)bs This proves (Z.8))
- q! s NN —»r+s:q s r . p :

In the rational equivalence ring, we have

Z,(E,®F) = Z (k ; r) Z,(F)°Z,(Ea). (7.9)

r+s=q

As in proof of (Z.4) from ([Z.3), we have

{tg(Ba@F)} = (k;r>w‘“{¢r(Eﬂ>}*- (7.10)

r+s=q

Using that (6.4) holds for {E,}, the right hand side of (ZI0) becomes

k—r—1
>, ( g )a)srPr+1( O :7); to prove (Z.7) we must prove the

r+s=q—1
r

algebraic identity :

k—r—1\ )
qPq(A®1+1®B,n®1)—r+§_l< i >b rPr(C A sm).

r

(7.11)

q—1

Proof of (Z11). gP,(A®1+1®B;n®1) =

_ q—1 . . _
= ) q( . )Pr(A®1,n®1,1®B)—

r+s=q—1
b
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- Y 1<q_I)A’”...A”rn”r+lb”r+2...b"q:

r+s:q—1q! r
n
1 qg—1 k—r—1
- T e
r+s=qg—1
n

BAT .. AT =

_ Z k—r—1 . lAm Aﬂrnﬂ'r+1b3 —
s rl

r+s=qg—1
n
k—r—1\
= Z < p )b rPr+1( A ,7])
r+s=q—1 r

(c) AwmpLe BunpLes. If E — V is a holomorphic bundle, we let I'(E)
be the trivial bundle V x H°(V,O(E)). Then we say that E is generated
by its sections if we have :

0—->F—TI(E)—E-—-DO0. (7.12)

Now o € F; is a section o of E with o7(z) = 0; sending o0 — do(z) €
E. ® T#(V) gives

FLEQTH(V). (7.13)

In [11]], E was said to be ample if (Z12)) holds and if d is onto in (Z.13).
In this case, to describe the Chern cycles Z,(E), we choose k general
sections o, ...,0¢ of E — V. Then Z,(E)  Visgivenby oy A ... A
0k—g+1 = 0. (Note that Z; (E) is given by oy A ... A 0 = 0 and Z(E)
by o1 = 0.) The cycles Z,(E) are irreducible subvarieties defined up to
rational equivalence.

If now E — V is a general holomorphic bundle, we can choose an
ample line bundle L. — V such that E ® L is ample ([11]]). Suppose we
know (6.4) for ample bundles. Then (6.4) holds for EQ L and L. On the
other hand, if (6.4)) is true for a bundle, then it is also true for the dual
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bundle. Since E = (E ® L) ® L*, using (Z.6) we conclude:

If (6.4)) if true for ample bundles, then it is

true for all holomorphic vector bundles. (7.14)

Let then {E,} be a family of ample holomorphic vector bundles and
Zy = Z4(E,). We may form a continuous system (c.f. §3); we let Z = Z
and N — Z be the normal bundle and ¢ : A — T,(V) the mapping (3.1)
on Z, — Zy. Then, combining (6.4) with the dual diagram to (3.8)), we
have :

To(A) H'(V,0(Hom(E,E)))
p o ; (7.15)
HY(Z,O(N)) ——— Ho~19(v)

Actually this diagram is not quite accurate; E, determines Z,(E,) only
up to rational equivalence, and we shall see below that there is a sub-
space L,(E) = H°(Z,O(N)) such that we have :

To(A) 9

H'(V,0(Hom(E,E)))
) p (7.16)
HO(Z, O(N))/Lq(E) 4§> H‘I*L‘I(V)

Now in §0] below, we shall, under the assumption H'(V,O(E)) = 0,
construct

6: H'(V,0(Hom(E,E))) — H°(Z,O(N))/L,(E) (7.17)

such that

'(V,O(Hom(E,E)))

\/

H°(Z,0O(N
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commutes. Putting this in (Z16), we have :

In order to prove (6.4), it will suffice to
assume that E — V is ample, H'(V,O(E)) = 0,

and then prove that the following diagram commutes.

H'(V,0(Hom(E,E)))

H°(Z,O(N))/Ly(E)
where £ is given by (3.6), £ by (6.8) and 6 by the §0]below.

165

(7.18)

(7.19)

Remark. Incase g = k = fibre dimension of E, Z < V is the zero locus
of o € H(V,O(E)). Then L;(E) = rH°(V,O(E)), where r : Oy(E) —
Oz(N) is the restriction mapping, and 6 in (Z.I7) is constructed as fol-
lows. Let n € H'(V,0(Hom(E,E))). Thenn -0 € H'(V,O(E)) = 0
and so 7 - o = 0t for some 7 € T (V,E) (= C® sections of E — V).
We set 6(57) = 7|Z. If also 7 - o = 07, then d(r — T) = 0 so that 6(n) is

determined up to rH°(V,O(E)).

(d) Benavior IN exact SseQUENCEs. Let {E;}, {Sa}, {Q.} be families

of holomorphic vector bundles over V such that we have
0—-S,—-E,—-Q;—0.
We shall prove:

If (6.4) holds for each of the
families {S,}, {Q.}, then it is true for {E,}.

Proof. The exact sequences ([Z.20) are classified by classes

e € H'(V,0(Hom(Q,,S,))),

165

(7.20)

(7.21)
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with e giving the same class as ¢’ if, and only if, e = A¢/(1 # 0). If
we show that the periods of E, are independent of this extension class
e, then we will have ¢,(E;) = ¢,(S, @ Q.) and so we can use ().
But ¢, (e) (extension class e) = ¢,(te) for all  # 0, and since ¢,(te) is
continuous at t = 0, ¢,(E;) = ¢4(S: @ Q). Thus, in order to prove
(Z.Z1)), we must show :

Suppose the {E,} is a family with0 — S — E; — Q — 0 for all A.
Then {(n) = 0 in (6.8) where

n=20o (%) e H'(V,0(HomE,E)). (7.22)

m|
Proof of (Z22). Assuming that E = E( with
0-S—E5SQ—0, (7.23)

we clearly have n € H'(V,0(Hom Q,S)) = H'(V,0(Hom(E,E))). Let
nbe a C*(0,1) form with values in Hom(Q, S), and let e}, ..., e; be a

local holomorphic frame for E such that ey, .. ., ¢; is a frame for S. Then
€rs1, . .-, e projects to a frame for Q, and locally 7 = (711 12). Since
NS = 0and n(E) = S, 711 = na1 =2 = 0and = ("2 ).

Suppose now that we can find a (1,0) connection in E whose local

connection matrix (using the above frame) has the form 6 = <0(‘)1 glz )
22

Then the curvature 06 = @E = (6(;1 812 ), and it follows that
22

Py( Op ;1) =0.
g—1

Then let 6 be an arbitrary (1,0) connection in E. Locally § =
(g; z; ), and we check easily that 6,; is a global (1, 0) form with values
in Hom(S, Q); let ¢ = ((,,(2)1 0) € A9(V,Hom(S,Q)) and let ¢ : Q — E
be a C® splitting of (Z23). Then ¢ = I — ¢n : E — S and satisfies

Y(v) =vforveS. Welet
0=0— ¢cy (7.24)
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be the (1,0) connection for E. Then 78|S = 0 and so 6 = (5(1)' g‘z) as

required. "

(e) Proor oF (6.4) For LINE BUNDLES. Let E — V be a line bundle;
we want to prove (6.4) for any family {E,},ca with Eg = E. By (Z14),
we may assume that E — V is ample and Z < V is the zero locus of a
holomorphic section o € H(V,O(E)). Using (ZI8), to prove (@.4) we

need to show that the following diagram commutes:

H'(V.0)

\
6 HOL (V) (7.25)
o

H°(Z.O(N))/H°(V.O(E))

where £ is now 2L (identity). Let w € H™ (V) and n € H'(V,0) =
n
H%!(V). To prove the commutativity of (Z23), we must show:
i

5 | 1he= J@(n) A Ew. (7.26)

Vv z

The argument is now similar to the proof (3.10). Letting T, be an e-

tubular neighborhood of Zin V, {n A w = lin’(l) § 1A w. On the other
4 EYVV-T,

hand, no- = ot for some 7 € T, (V,E), and 6(y)) = 7|Z € H(Z,O(E)).
OnV—Te,r]szno-Ag
o

5(—/\w =d(1/\w>,andso

o o
TWw n

lim § nAw= hm — § — = = {7&*w by the same argument as

E—)OV T —0 aT a l 7

used to prove m

Corollary 7.27. (€.4) holds whenever E — V is restricted to have the
triangular group of matrices as structure groups.

Proof. Use (Z.2I)) and what we have just proved about line bundles. O
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8 Proof of (6.4) for the Highest Chern Class. LetE —
V be an ample holomorphic vector bundle (c.f. (ZI4)) with fibre C*
and such that H'(V,O(E)) = 0. The diagram (Z.I9) then becomes, for
q =k,

H!'(V,0(Hom(E,E)))

0 HFk (), 8.1

H®(Z,O(N))/rH°(V.O(E))

Let 7 € H'(V,O(Hom(E, E))) be given by a global Hom(E, E)-valued
(0, 1) form 5 and suppose o~ € H°(V,O(E)) is such that Z = {0 = 0}
andn-o = 0in H'(V,O(E)). Then 5 - o = ot where 7 is a C* section
of E — V,and 7|Z = 6(n). If w € H***1"=%(V) and @ is a curvature
in E, then we need to show that

Jf*w-rszPk( 0 1) Aw, (8.2)
z

\% k—1

where &*w € H"*(Z,Q"~*(N*)) is the Poincaré residue operator (3.9).
What we will do is write,on V —Z, kPy(_ ©® ;1) = Oy where Yy
k—1
isaC*(k—1,k—1) form. Then, if T is the tubular e-neighborhood of Z
inV, ‘S/kPk( O nrw= lliI(l)VjT dyx rw) = — lim a; Ui Aw. We
k—1 € Ole
will then show, by a residue argument, that — lin}) S viknw={w
€7V or. z
Suppose now that we have an Hermitian metric in E — V. This

metric determines a (1,0) connection 6 in E with curvature ® = 06. Let
o* on V—Z be the C* section of E*|V —Z which is dual to o (using the
metric). Setting 1 = T ® o*, j = n — 4 is C*(0, 1) form with values
in Hom(E,E)|V —Zandfj-0 = -0 — 0(r®0c*-0) = -0 — ot = 0.

On the other hand, we will find a C*(1,0) form y on V — Z, which
has values in Hom(E, E), and is such that Do = y - o. Then § = 6 — y
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gives a C® connection in E[ V —Z whose curvature 0=0- 6)/ satisfies
©-0=0.Since kPy( ® :7) =0 (because ® - =0=7-0),itis

k—1
clear that, on V — Z,

T

kPk( ® ;n = kPk(@ + ’)’;ﬁ-i—g/l) 25170
k—1 k—1

and this will be our desired form . Having found v, explicitly, we will
carry out the integrations necessary to prove (8.2)).

(a) AN INTEGRAL FORMULA IN UNITARY GEOMETRY. On Ck = Ck —
{0}, we consider frames (Z,el, ...,ex) wWhere z € Ckand ey, ... e is

we have : De, = Z 67 ea(é“O - 6 = 0). In particular, the differential

a unitary frame with e; = —. Using the calculus of frames as in [3]],

o=1
forms &/ = (Dey, e,) are horizontal forms in the frame bundle over C*.
[ —_ k i

Since 0 = 0z = D" (|z|le1) = 0dlzler + [z] (Z A ep>, we find that

p=1

" v 0lz] =
6 =0(a = 2,...,k) and 6, T = —0dlog|z|. It follows that

z

) =0(@=2,...,k)and 8" =

0l = (0—0) - log|z].

Given a frame (z; ey, ..., ), the e, give a basis for the (1,0) tangent
space to C¥ at z. Thus there are (1,0) forms w', ..., wf dualtoey, ..., ¢,
and we claim that

1 I
w' = 2|z|6,
. 8.3
W = [2l%(a = 2,....K) } (8.3)

k
Proof. By definition dz = ), w”e,. But z = |z]e; and so dz = (J|z] +

p=1
k a z
‘Zw}/)el + 22 |Z|0‘1’ea. Since 9}/ = ||_|
a=

, we get (83) by comparing both
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sides of the equation :

k k
e, =20zl8] er + Y [2l6eq

p=1 a=2
k k
Now let 7 = 21 e, and w = 21 &,wP be respectively a smooth
P= pP=

k
vector field and (1,0) form on CX. Then {w,7) = Y, &7° is a C*
p=1

function on C¥. We want to construct a (k — 1,k — 1) form y;(7) on Ct
such that

{w, Ty = ling) f @k(‘r) A W, (8.4)
OB

where B, — CF is the ball of radius €. Let I'(k) be the reciprocal of the
area of the unit 2k — 1 sphere in C* and set

- L(k) | : gl : i gl
Ui(t) = = H 010, + > el [ 1610, ¢ (8.5)
Z‘ a=1 B=2 a#p

What we claim is that iy (7), as defined by ®3), is a (k— 1,k — 1)
form on C* satisfying (84). |

Proof. Tt is easy to check that g (7) is a scalar C* form on Ck of type

k k
(k—1,k—1). Now w = Zlgpwp = |z|(2&10) + 22509?),and S0
P= a=

k
w A (T {Z rpgp} {9}' 11 9;’9;} . (8.6)
a=2
Using (8.6), we must show : If f is a C* function of C¥, then

k
tim (o) [ s ] 50, = 7o) ®7)
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But, by @B3), w'w’@’...ofd" = 2%V ¢g).. .64, and so

k ~
I'(k)6] Hz 696}, is a 2k — 1 form on C* having constant surface inte-
a=

gral one over all spheres 0B, for all €. From this we get (8.7). O

Z1

Remarks. (i) Using coordinates z = [ : ],
Zk

k —1+k=p g1 k =l - k

/ —1)° d7' ... dF%d7 ...dZ° ... dZ
9}9%95...9’;9,1:2( ) < ||2Z < °

Z

p=1

(8.8)

(ii) If uis a C™ differential form on C* which becomes infinite at zero
at a slower rate than (1), then

lim | w A gi(t) = lim | w A Wi(t) + ). (8.9)

e—0
0B 0B,

(iii) On C' x CK, let w be a C* form of type (I + 1,1). Then, if

k k
7=, 1P, isa C™ vector on C¥, we may write w = Y, ¥, A
p=1 p=1
k
where the C* form £*w - T = Y, 1y, is of type (1,/) on C' and
p=1

is uniquely determined by w and 7.

Suppose now that w has compact support in C/ (i.e. is supported in
Al x Ck for some polycylinder A = C¥). Then, as a generalization
of ([84), we have

ff*w 7= lim Ui(1) A w. (8.10)
C! C!x 0Bk
Y1

Note that £&*w = [ :

] is here the Poincaré residue of w on C! x
Yk

{0} = C! x CK.
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(iv) Combining remarks (ii) and (iii) above, we have :

Let w be a C* form of type (I + 1,1) with support
in A’ x CF and let (1) be a C* form on C! x C*

whose principal part (i.e. term with the highest ®.11)
order pole on C’ x {0}) is @k(r) given by (8.3). Then
ff*w 7= lim w A Ui(7). (8.12)
e—>

C! C!x 6B,

(b) SomE FormuLAE IN HERMITIAN GEOMETRY. Let W be a complex
manifold and E — W a holomorphic, Hermitian vector bundle with
fibre CK. We suppose that E has a non-vanishing holomorphic section
o and we let S be the trivial line sub-bundle of E generated by o~. Thus
we have over W

0-S—-E—-Q—0. (8.13)

. . o . .
We consider unitary frames ey, ..., e, where e; = m is the unit vector
o

in S. The metric connection in E gives a covariant differentiation De,, =
2. 05es(67 + ¢, = 0) with D” = 0. From 0 = do- = D"(|oe;) =
o

= " k "
(0| + |ol6] )er + |o] <Z 67 ea>, we find

a=2
6" = 0(a=2,...,k),0! = (0—0)log|o]. (8.14)
) k
Now then Do = D'c = (d|o| + |o]] Jer + |0 (Z H‘fea) -
a=2
k
o] {29{,61 + 226(1"630} = vy - o where
a=

k
y=20{e1®ef + > e, ®e} (8.15)

a=2

is a global (1, 0) form with values in Hom(E, E). In terms of matrices,
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201" 0...0
g7 0...0
y=1 . (8.16)
'k
¢ 0...0

Letting § = 6 — y, we get a (1,0) connection D in E with D” = @
and Do = 0. This was one of the ingredients in the construction of
outlined above.

For later use, we need to compute 0y = D"y. Since y is of type
(1,0), D"y is the (1,1) part of Dy = dy + 0 Ay + v A 6. Also, we
won’t need the first column of D"y, so we only need to know (Dy)s, =
DYL + DAL (since v, = 0) = y’f 6.. This gives the formula :

T T

Iy 1 I 1
« 200 6l ... 20 ¢
. 2 1 2 1
sy | G 6 e ®.17)
‘k 1 ‘k 1
05 6 .. 6 o

As another part of the construction of Y with Yy = kPi(. @  :7),

k—1
k _
welett = ), e, be a C* section of E with 07 = - o (c.f. below

p=1
@&1D). Set
ko p
1=1@c* =) Hep@e’f. (8.18)
p=1 7
In terms of matrices,
. 0 ... 0
A:H Do . (8.19)
0 0
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We want to compute the Hom(E, E)-valued (0, 1) form 04, and we claim
that

k
1
A= Z’ff"#@eT —HZT’)%%@@;. (8.20)
p=1 P

Proof.

5)/:57@(7* +1T®dT"

— Zr;‘]ep@el + prep D’ (;,)

_ ey - ey -/ 1
(since — = oc*and 0t = 5-0). Now D" | — | = 0| — | e} +
o] ) ) o] o]

1 " "
—D"e} and D"ef = Zl 0" et = — Zl 0} ¢’ (since 6 + '0* = 0).
= p:

]
- 1 1 1// 1 e 1//
But 0 o) 0, = —(—partiallog|o| — 6, ) = 0 by (8.14)
o

o] ! IU\

e* k ,
so that D" <—> — Z le* (since §) = 0 by 8I4)). Thus

ol !

_ k
2D Tﬁep ®ef — ‘ 2 Z P} vep ® e as required.
p=1 \a
In terms of matrices,

- 1l 191
TI1 T_92 ﬂ 1 1 1 1
~ o] lor| | * T 60, ... T 0
ol = — : : = —— : :
ol kgl || # gl # ol
77k 2 k 2 k
LY ol T o]
(8.21)
O

(¢) CompLETION OF THE PrOOF. Given E — V and o € H(V,O(E))
withZ = {z € V : 0(z) = 0}, we let E = E — {0} and lift E up to lie
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over E. Letting W = E, the considerations in [Bi(b) above apply, as well
as the various formulae obtained there. Using o : V — Z — E, we may
pull everything back down to V — Z. In particular, |o-| may be thought

of as the distance to Z, and the forms €, will go to infinity like |—’ near
o
Z (c.f.[8(a)). 3 3
Now, since ® -0 = dy-oandn-o = 0y -0 onV — Z we have
0 = kPi(® — dy;n — 0A). (8.22)
—
k—1
Expanding (8.22)) out, we will have
kP(_© im) = du, (8.23)
k—1

on V — Z. It is clear that ; will be a polynomial with terms containing
0., 1., 6°, v/. Furthermore, from (8.16), (8.17), and (8.2I), the highest

1
order term of i will become infinite near Z like W From (8.3)
o

and (8.I7)), the expression

— liII(l) w A Yk (8.24)
€E—>
0Te
will depend only on this highest order part of . Let us use the notation

s . 1
= to symbolize “ignoring terms of order ——— or less.” Then from

o262
®22)), we have
= (—1)*kP . dy ;04 ). 8.25
lﬂk()k()l’k?’z‘l) (8.25)

This is because ® and iy are smooth over Z. Note that the right hand side
1
of (823) behaves as W near Z. Using ®3) and (8.11) from [§)a),
o

to prove the commutativity of (8.I), we must show:
—D*%P( y 5)/ ;o
(—1)"kPi( : )
1 k—2
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(k) d
=36 ] ]et0) +2 Z Popo) [ [ o708 (8.26)
a=2

a#p

where vy, dy, and 0. are given by (816), (817), and ®Z).

The left hand side of (8.26)) is, by (A4.4)

200 20 6 ... 76, ... 20" @
i RORL LA B
b (&
2ni k_l | |a 2 .
R S SN S S
(8.27)
Fixing a, the coefficient of 7'} on the right hand side of §27) is
2 2 gl ~ 2 gl
26 ... a .. 6 6
(=1)%det | = :
ko ok pl 1
o & 0 o 0

(@ means that the column beginning 0291 is deleted). This last determi-
nant is evaluated as

> senat'o76) .. Q)67 6, (8.28)

where the sum is over all permutations of 2, . . ., k. Obviously then (8.28])
isequal to (k—1)!(—1)*~ 167 T] Qf 9[]3. This then gives for the coefficient
Bra

of 7! in (827) the term

L\ (k=1
_ <_> ( = )T erel. (8.29)

27

B
201" 200" 6} 201" 0!
2 2 1 2 1
( 1948 det o o 6, I
@>p : :
k k 1 1
91 01 02 Hlf Qk



Some Results on Algebraic Cycles on Algebraic Manifolds 177

=2(k —1!9%“(1_[9 )

Y#B.a

Thus, combining, (8.27) is evaluated to be

2|(r| { f[ +26) Zrﬁel He“el}

a#p

where T(k)~! = | w'w?*@”...0"" inBla). Comparing with (§26)
aB
we obtain our theorem.

9 Proof of (6.8) for the General Chern Classes. The

argument given in section[8above will generalize to an arbitrary nonsin-
gular Chern class Z,(E). The computation is similar to, but more com-
plicated than, that given in §8l (a)-(c) above. However, in general Z,(E)
will have singularities, no matter how ample E is. Thus the normal
bundle N — Z,(E) is not well-defined, and so neither the infinitesimal
variation formula (3.8) nor makes sense as it now stands.

We shall give two proofs of (6.8). The first and more direct argu-
ment makes use of the fact that the singularities of Z,(E) are not too
bad; in particular, they are “rigid,” and so the argument in §8l can be
generalized. The second proof will use the transformation formulae of
§4t it is not completely general, in that we assume the parameter space
to be a compact Riemann surface and not just a disc.

First ProoF oF (6.4) (BY DIRECT ARGUMENT). To get an understanding
of the singularities of Zq(E), let oy, 0 be general sections of E — V
so that Z;_(E) is given by o A 0 = 0. If, say, o(z0) # 0, we
may choose a local holomorphic frame ey, ..., e, with e; = o1. Then

k
o2(z) = Zl £%(z)eq, and Z;_1(E) is locally given by &2 = ... = &k =
a=

0. We may thus assume that the singular points of Z;_; (E) will come
where o = 0 = 0. If n > 2k, there will be such points; choosing
a suitable holomorphic frame ey, ..., e, we may assume that o (z) =
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7%, and 0 (z) = k+a¢,. Then Z;_1(E) is locally given by

S

i >~

=]

i D>
[\l

1
A =0 (1<a<pB<k). ©.1)

For example, when k = 2, (O.I) becomes 774 — 2222 = 0, which is
essentially an ordinary double point.

Now let {E,} be a family of ample (c.f. §7) vector bundles satis-
fying H'(V,O(E,)) = 0 (c.f. (ZI8)). Then we may choose general
sections o (4), ..., 0k (1) of E; which depend holomorphically on A; in
this case, Z; = Z,(E,) is defined by 071 (1) A ... A 0k—g41(A) = 0. Let-
ting Z = Zp, we see that, although the Z, are singular, the singularities
are rigid in the following sense:

There are local biholomorphic mappings f, : U — U (U = open set
on V) such that

ZinU=fH(Z~NU) (9.3)
We now define an infinitesimal displacement mapping:
p: To(A) — H°(Z, Hom(I/I*,0;)), 9.4)

where I < Oy is the ideal sheaf of Z. To do this, let z', ..., z" be local

coordinates in U and f(z; 1) = f/l( ) the mappings given by (@.3). Let
i

6¢(z) be the local vector field Z of ( ) ;l
I (so that £(z) = 0 on 2), then Hf f gives a section of Oy/I = Oz.
Furthermore, the mapping & — 6 - £|Z is linear over Oy and is zero on
I2, so that we have a section of Hom(1/1?,07) over U.

To see that this section is globally defined on Z, we suppose that fA :
U — U also satisfies f(ZnU) = ZynU. Then f(z; 1) = f(h(z,1); 1)
where h(z; ):ZnU—ZnU.Then

0 f’ Ofi ohi o¢ ofi o
aa puit Z o0 a1 oz 277 (hz )2 o7

If £(z) is a function in

Thus,at/lzOandforzeZ,HA-f—Hf-f

-Sie 0L @0 Z @0 - | Zevuenon], o
€Z
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From this we get that Qf = 6¢& in Oz. The resulting section of

Hom(I/I?,0;7) is, by definition, p <8é:l>

Examples. (a) In case Z is nonsingular, Hom(//I?,0;) = Oz(N)
0
where N — Z is the normal bundle; then p (ﬁ) € H%(Z,0z(N))

is just Kodaira’s infinitesimal displacement mapping (3.8)).

0
(b) In case Z < V is a hypersurface, p <ﬁ> & vanishes on the sin-

gular points of Z. This is because & = ng where g(z) = 0
is a minimal equation for Z n U. Then, in the above notation,

Of - €1Z = = 0, which
is the singular locus of Z.
Now suppose that
dimZ =n —¢q and that w = Z w7dz I7a?
I=(itseesin—gq+1)
j=(j17"'9jn—£])

is a C* form of type (n — g + 1,n — g). Then

ll - )
b, w) = Z —Huﬁ—dz” AcoondZDA LA dE e A dT
1J1

isa C*(n—q,n— q) form in U whose restriction to the manifold points
Zweg  Z is well-defined. Thus, there exists a C*(n — g,n — g) form

0
Q= (*w,p ( >> on Zyeg such that § o JQ converges. Just as
Zreg

in the proof of (3.7) (c.f. [9], §4)), we can now prove:

The differential ¢ : To(A) — HI™19(V) of the mapping
$() = ¢¢(Z) — Z) 9.5)
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Jo.(5) no-[€on(5) 9.6)
\%4 V4

where the right-hand side of (9.6) means, as above, that we take the
Poincaré residue £*w of w on Z,., and contract with

is given by

0 (é%) e H(Z,Hom(I/I>,0y))

given by (@.4).

Example. The point of (9.3)) can be illustrated by the following ex-
ample. Let Z = C? be given by xy = 0 and 6§ € Hom(I/I?,0z) by

6(xy) = 1. Then, on the x-axis (y = 0), 6 is the normal vector field
1o

——; on the y-axis, 6 is — —. If now w = dxdy, then, on the x-axis,
x 0y y Ox
(£*w,0) = —dx and so { (&*w,d) becomes infinite on the singular
X
Zreg
points of Z.

More generally, if g(x,y) = x* —y” with (a,b) = 1, and if 0 €
Hom(I/I?,07) is given by 6(g) = 1, then 6 corresponds to the normal

dxdx
Thus, if w = dxdyd¥, (E*w,0) = ————

vector field )
(0g/0y)

0g/dy 0y’
Letting x = i, y = t%, we have

b*\ |t|*2drdt
=1y °

* , 0 _ _
o)~ (*
which may be highly singular at t = 0(= Zpg).

We now reformulate ([©.3) as follows.

Let {E,}ica be our family of bundles and ¢ : A — T,(V) the map-
ping (3.1} corresponding to Z,(E;) — Z,(Eo). If 1(2),...,0%(1) are
general sections of E; — V which depend holomorphically on 4, then
Z,(Ey) is given by o1 (A1) A ... A Ok—g+1(2) = 0. Welet Y; < Z, be
the Zariski open set where 071 (1) A ... A 0k—¢(2) # 0. Then Y, < Vis
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a submanifold (not closed) and {Y,}ea forms a continuous system. We
letp : To(A) — H°(Y,O(N)) (where N — Y = Y, is the normal bundle)
be the infinitesimal displacement mapping. If then ¢ € H"~4T1"=4(V),
we have the formula:

Jm(§>Aw=l@(g)fwx ©8)

0
where ¢ <5> e H9714(V) and &*y € A"~9"~4(Y,N*) is the Poincaré

residue of i along Y.
With this formulation, to prove (6.4) we want to show that

0\
— = P,(0,...,0; 9
[0(5)e0= [ oman  ©9
Y v q—1
where @ is a curvature in E — V and € H*!'(V,Hom(E,E)) is the
Kodaira-Spencer class & <a—i> (c.f. @3)).

Now Z, 11 (E) is definedby oy A ... A Ok—g =0,andwelet W c V
be the Zariski openset oy A ... A 0f—g # 0; thus W = V — Z, 1 (E).
Clearly we have

JqPq(&...,@;n) /\z,ltzfqPq(&...,@;n) N2 (9.10)
\% qg—1 w

On the other hand, over W we have an exact sequence
0—-S—Ey—-Q—0, 9.11)

where S is the trivial bundle generated by o1, ...,0%—4. Suppose that 171
we have an Hermitian metric in E — V such that ©® is the curvature of
the metric connection. Using this, we want to evaluate the right hand
side of (©.10).
We now parallel the argument in §8lfor a while. Since H' (V,O(E)) =
0, noy = Oy, for some C* section y, of E — V(a = 1,...,k — q).
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On W =V —Z,,1(E) we find a section ¢, of E¥* — V such that
(lar0p) = 0. We claim that we can find such £, having a first order
pole at a general point of Z,,(E).

Proof. On W, we look at unitary frames ey, ..., e, such thatey,..., e,
k—q

is a frame for S. Then o, = ) hopes where det(h,g) vanishes to
=1

k—q
first order along Z,+1(E). Set &y = X, (h™)paels; then (Lo, 0p5) =
p=1
2 (h™)yahpales. ea) = 6. O
.4
0 eik
Remark. Inthecasek—g=1,¢; = — and {} = —.
Loy o1

k=g —
On W, we define y = ( > e ®ya> . Then 0y -0y = n- 04 and so,
a=1

if 7 =y — dy,7- 0o = 0and 7 has a pole of order one along Z,1(E).
By Stoke’s theorem then,

P,(0,...,0;n) = P,(0,...,0;n). 9.12
jq q( n) fq q( n) ( )
w q—1 w q—1
In terms of the natural unitary frames for0 - S — Eyy - Q — 0,
~ 0] *
- (o)
We now work on the curvature ©. The curvature © in S ®Q - W

may be assumed to have the form 0= <8 é%% (since ®g = 0), and the

same techniques as used in the Appendix to §4fcan be applied to show:

qP,(0,...,0:7) — qP,(®,...,0;7) = a4, (9.13)
where A has a pole of order 2¢g — 1 along Z,1(E) (c.f. (A4.24)) and the
accompanying calculation). By Stoke’s theorem again,

P(®,....0:7) = | gP,(0,...,0:7). 9.14
Jq q( ) Jq q( ) (9.14)
w q—1 w q—1
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From (©.9), (3-10), (0:12), and [@©.14)), we have to show
o\ . S
J(p (ﬁ) JEY) = JqPq(G,...,G,n) AY. (9.15)
Y W

g—1

*

Now write = (8 o ); clearly we have

~

P,(0O,...,0:7) = P,(®0,...,00:70).
a( : 1) = Py(Oq Q:71Q)
q— g—1

Thus, to prove (3.9), we need by (3.13)) to show that
o\
lp R L) = | gPg(Bq, ..., 0q;nq)- (9.16)
Y W

The crux of the matter is this. Over W, we have a holomorphic
bundle Q — W and a holomorphic section o € H*(W,0(Q)); o is
just the projection on Q of ox_y+1 € H*(V,O(E)). The subvariety Y is

0
given by o = 0, and the normal bundle of Y is Q — Y. Thus p <ﬁ>

is a holomorphic section of Q — Y, and (@.16)) is essentially the exact
analogue of (82) with Y replacing Z and W replacing V. To make the

analogy completely precise, we need to know that n¢g and p <ﬁ are

related as in 8.2). If we know this, and if we can keep track of the
singularities along Z, 1 (E), then can be proved just at (82)) was
above. Thus we need the analogues of (ZI7) and (Z.I9); what must be
proved is this:

There exists a C* section 7 of Q — W such that 7|Y is

0 ((%) and 0t = Q0. (9.17)

In addition, we must keep track of the singularities of 7 along
Z,+1(E) so as to insure that the calculations in §8 will still work.
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For simplicity, suppose that ¢ = k — 1 so that Z;_; (E) is given by
o1 Aoy =0and Z(E) by oy = 0. Let E; — V be given by {g,s(1)}
(c.f. §6) and o j(2) by holomorphic vectors {0 jo(1)}(j = 1,2). Then
T ja(A) = gap(d)ojp(4) and

ao— ja (90'j (9 @ B
_ja(f) = gapd) a’lw * ga’lwgwﬂu) Hgap(Do ()}

At A = 0, this says that

aO'j

oo .

where — is a zero cochain for the sheaf O(E) and n = {gaﬁggﬁl} is
o

the Kodaira-Spencer class (6.3).

0
Let’ denote ﬁ} . Then from (9.18]) we have
1=0

(1 Ano) =0 Aoa+o1 Aoy =n-(01 A02). (9.19)

Thus, over Z;_1(E), (01 A 02)’ is a holomorphic section of A’E —
Zi—1(E). On the other hand, over Y = Z;_(E) — Z(E), o is non-
zero. Since S < Eyy is the sub-bundle generated by 0|, we have on W
an exact sequence:

0—->S—>Ey >0 AEy —0, (9.20)

where the last bundle is the sub-bundle of AZEy of all vectors & such
that & A o = 0in A’Eyy.

Along Y, o1 Aoy =0andso oy A (0] A o) = 0;thus (o A o)
is a section along Y of 7} A E. But o; A E is naturally isomorphic to Q
and, under this isomorphism, we may see that

0

(crron) =p <a) . (9.21)

Thus we have identified p (%) .
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Let now 17 € A%!(V,Hom(E, E)) be a Dolbeault class corresponding
to {(g;aﬁg;ﬁl}. Then oy = dy; and 77 - 0, = Oy, where yy, y; are C*°
sections of E — V. Clearly these equations are the global analogue of
(©.18)). In particular, we may assume that, along Z;_ (E),

0
0'/1/\0'24—0'1/\0"2:)/1/\0'24—0'1/\yzzp(a). (9.22)

Now y1 A 03 + 01 A 2 is a C® section of A’Ey — W, but will
not in general lie in oy A Eyy = A’Ey. However, letting y = &1 ® v,
be as just above (thus {1 is a C* section of Ej;, — W satisfying
{1,011y = 1), we may subtract

Y (o1 A02) =y1 Aoyt o AL o0y

from y; A 02 + 01 A y» without changing the value along Y. But then

T=YIAO2+0T1AY2—y (01 A02) =01 Aya — {1, 02)01 Ayl
lies in o1 A Ew. This gives us that:

0
7is a C* section of Q — W such that 7|Y = p (ﬁ) ) (9.23)

Also, 0t f(_'ﬁyl A0+ 0 /\572—_5)/- (1 A02)=n-01 A0+
orAnoy—0y- (o1 Aoa) = (—0y) o1 Aoy =1 (01 A 02).
Under the isomorphism oy A Ey = Q, 77 (07 A 072) = 071 A o (since
n - o1 = 0) corresponds to nq - o, i.e. we have

0t = nqo. (9.24)

Combining (9.23) and (0.24) gives (©.17).

The only possible obstacle to using the methods of §8]to prove
is the singularities along Z,(E). Now 7 has at worst a pole of order
one along Z,,(E), ®q has a pole of order 2, and so the forms which
enter into the calculation will have at most a pole of order 2q along
Z,+1(E). But this is just right, because Z, | (E) has (real) codimension
2g + 2, and we can use the following general principle.
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Let X be an n-dimensional compact, complex manifold and S < X
an irreducible subvariety of codimension r. If Q is a smooth 2n-form
on X — S with a pole of order 2r — 1 along S, then § Q converges.

X—S

Furthermore, if Q;, Q, are two C™ forms on X — S such that deg(Q;) +
deg(Q;) = 2n— 1 and such that {order of pole of (€;)} + {order of pole

of ()} =2r —2,then § dQ; A Q = (—1)%&% [ O A dD,.
X-S X-S

Proof. The singularities of S will not cause trouble, so assume S is

nonsingular and let 7¢ be an e-tube around S. Then clearly ling) { Q
VX1,
converges and, by definition, equals | Q = (Q. Also, { dQ; A
X—S X X—T,
Q — (=14l O AdDy =— § Q A Q. But, on 0T,
X— 0T

Te

Ql/\

/62r—1

>

| < %d,u where du is the volume on 0T. Since § du < c
€ T,

lim § Q) AQy=0. O

e—0 aTE

Second proof of (6.4) (by functoriality). We shall consider over V a
family of holomorphic vector bundles {E,}cc parametrized by a non-
singular algebraic curve C; this family is given by a holomorphic bun-
dle E - V x C where E; =~ &|V x {1}. Welet X = V x C and
Vi =V x{a},V =V, where Ay € C is the marked point. It may be as-
sumed that & — X is ample and H' (V,O(E,;)) = 0 = H'(X,0(E)) = 0
for all A € C (c.f. §Xc)).

Let 2, < X be the g™ Chern class of & — X and Z, (1) = 2, - Vy;
thus Z,(2) is the g™ Chern class of E; — V. More precisely, letting
m: X — V be the projection, (2, - V,) — Z,() is the g™ Chen class
of E/l — V.

Now let

Ly=24 Va— 24 Vg = Zq- (Va—Vy) and Zy = Z,(2) — Zy(o).

Then %) is a cycle of codimension ¢ + 1 on X which is algebraically
equivalent to zero, and Z; = n(%)) is a similar cycle of codimension ¢
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on V. Using an easy extension of the proof of (£.14), we have :

Tyt1 (X)

C T (9.26)

Iy

q

Ty(V),

where 7, : H*(X,C) — H*(V,C) is integration over the fibre and

G011 (X)() = dg1(X)(22) (similarly for ¢, (V).
In infinitesimal form, (9.26)) is:

He4+1(X)

T3 (C) * (9.27)

Hi~M(V).

Weletw = ¢,(V)x (%) and Q = ¢g41(X)« <(9%>’ so that 1, Q = w

in H9=14(V). The class w € H?~'4(V) is characterized by

jQ AT = Jw Ay, forall y € H'4T1n=a(y). (9.28)
X 4

The family of divisors V, < X defines ¢;(X) : C — T;(X), and,
from the mapping

$1(X)s : T (C) > H'(X), (9.29)

0
we let 0 = ¢1(X)x <ﬁ> Thus 6 is the infinitesimal variation of

V) measured in the Picard variety of X. Letting ¥ € H?9(X) be the
Poincaré dual of 2, we have by @.I7) that

Q= ov. (9.30)
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Because V; < X is a divisor and because of (3.10), we know how
to compute 8 € H*!(X). By @30), Q € H?*!(X) is known, and so
we must find 7, (Q). This calculation, when carried out explicitly, will

prove (6.4).

First, let L — X be the line bundle [V,,] and o € H°(X,O(L))
the holomorphic section with V,, given by oo = 0. Then L|V = N is
the normal bundle of V in X; in fact, N — V is clearly a trivial bundle

. o .0 : .
with non-vanishing section Fr where A is a local coordinate on C at Ay.

0
Choose a C* section 7 of L — X with 7|V = 7 and write

ot = Go. (9.31)

Then, by §7(e), 6 € H*!(X) and gives ¢ (X). < ¢

(M) By the same

argument as in (3.10), we have :

J(ﬁ‘l’)/\nw——hm 5( )\P/\n'lp J< (¥ A ')

e—0
X 0T

(&* being given by (B.6)) = S< f*‘1’> A . Combining, we have

SQ A TR = S<— EXPY for all y € H™4H1=4(V); by @.28), we
see then that

0
= (Q) = (77.6"¥). (9.32)

This equation is the crux of the matter; in words, it says that:
The infinitesimal variation of Z,(E) in T, (V) is given by the Poincaré
residue, relative to d/04 along V x {Ap} in V x C, of the form

Py(©,...,0)onV x C where ® is a curvature in & — V x C. (9.33)

Since @|V = O is a curvature in E — V, and since

0 0

(57 Pa(O.....0)) = gP,(©.....0.(=.0)).
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to prove (6.4) we must show that:
J 0.1 . .
<ﬁ’ ®) =ne H”> (V,Hom(E,E)) is the Kodaira-Spencer class

0 .
) (8_/l> given by (6.3). (9.34)

Let then A be a neighborhood, with coordinate A, of 1o on C and
{U,} an open covering for V. Then E|V x A is given by transition
functions {g.s(z,4)}, and a (1,0) connection 6 for & — V x C is given
by matrices 6, = 60,(z, A;dz,dA) of (1,0) forms which satisfy

g
-1 -1 ap gaﬁ —1
O _gaﬁeﬁgalg = dgaﬁgaﬁ = (Z oz dz J d/l) ﬁ' (9.35)

The curvature ®|U, x A is given by O|U, x A = 0,. Thus

<%,®>|Ua x A is given by 5<a%’9“>' But, on U, x {Ap} (19 = 0), we

0 0 _ —_—
have <5, Ou) — gaﬂ<ﬁ, 9,3>gaﬁl = gwﬂgaﬁl, so that
=(,0
3 (ool x 20}

. 0
is a Dolbeault representative of the Céch cocycle {gaﬁg(;l} =4 (5>

0 0
by (©3). Thus 6 <ﬁ) is given by <ﬁ,®>|V x {Ao} which proves
©.34).
10 Concluding Remarks. Let V be an algebraic manifold and
2, the group of algebraic cycles of codimension g which are algebraically

equivalent to zero. Letting T, (V) be the torus constructed in §2] there is
a holomorphic homomorphism

¢: %, — T,(V), (10.1)
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given by (3.2). Letting A, be the image of ¢, we have that:
A, is an abelian variety (c.f. (Z.6)) and To(A,) = H4"4(V). (10.2)

The two main questions are: What is the equivalence relation de-
fined by ¢ (Abel’s theorem), and what is To(A,) (inversion theorem)?
While we have made attempts at both of these, none of our results are
definitive, and we want now to discuss the difficulties.

The obvious guess about the image of ¢ is:

To(A,) is the largest rational subspace contained in HY~"4(V).
(10.3)

Remark. A subspace S — H?~"4(V) is rational if there exist integral
cycles I'y,...,T; € Hyy1(V,Z) such that § = {w € HI~14(V) for

which {w=0,p=1,...,1}.
rﬂ

We want to show that:

(I0.3) is equivalent to a special

case of the (rational) Hodge conjecture. (10.4)

Proof. LetS — HY~14(V) be arational subspace and Sg = H*~!(V,R)
the corresponding real vector space of all vectors w + w(w € S'). Then
Sg N H?*Y(V,Z) is a lattice T's and Sg/T's = J,(V) is a torus which
has a complex structure given by: S < Sg ® C is the space of holomor-
phic tangent vectors of J,(V). Furthermore, J,(V) is an abelian variety
which will vary holomorphically with V, provided that its dimension re-
mains constant and that S g (V) varies continuously (c.f. §2)). The space
of holomoprhic 1-forms on J, (V) is $* < H"~4tln=4(V).

Now suppose that Z < J, x V' is an algebraic cycle of codimension g
on J, x V such that, for a general point A € J,, Z-{A} x V = Z, isacycle
of codimension ¢ on V. This gives a family {Z;} e 7, of codimension g-
cycles on V, and we have then a holomorphic homomorphism

¢, — T,(V). (10.5)
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At the origin, the differential is
¢y 1S — HITM(V), (10.6)

and to compute ¢, we shall use a formula essentially proved in the last
part of §0t Let e € S be a (1,0) vector on J, and ¥ on J, x V the (¢,¢q)
form which is dual to Z. Then (e, ¥)is a (¢ — 1, ¢) form on J, x V and
we have (c.f. (033):

b+ (e) is {e,¥) restricted to {0} x V. (10.7)

What we must do then is construct a rational (g, g) form ¥ on J, x V
such that, according to (I0.7),

(e,¥) is equal to e on {0} x V. (10.8)

Letey,...,e,beabasisforS < H7~ 14 and U1, ..., Y, the dual basis
for $* < H"~4*1"=4_ Then the ¥, can be thought of as (1,0) forms on
Jg, the e, become (1, 0) vectors on J,, and {e,, ;) = & on J,. We let

!
Y= (W@ + ¥, %) (10.9)
p=1

Then ¥ is a real (¢,q) formon J, x V and {e,,¥) = ¢, isa (¢ — 1,q)
form on V. Thus (I0.8) is satisfied and, to prove (I0.4) we need only
show that ¥ is rational.

If fi,..., o is arational basis for Sg = H>?~!(V,R) and 0y,...,65,

2r
a dual rational basis for S < H*'~24"1(V,R), then e, = ﬁ;} Mg, f3 and

fo = D mpae, + mpqe,. This gives mM = I and mM = 0 where m is
p=1
an r x 2r and M a 2r x r matrix. Thus (ﬂ> (MM) = (}9). We also

m
2r

see that ¥, = >, mp.0, and so ¥ = X(m,,Mp, + ﬁpaﬁlgp)% ® fz =
a=1

2r

Y. 0, ® fo, which is rational on J, x V. O

a=1
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Remark. A similar class ¥ of J, x V has been discussed by Lieberman,
who calls it a Poincaré cycle, from the case ¢ = 1. In this case J; (V) =
Pic(V) = H*'(V)/H'(V,Z), and there is a line bundle ¥ — J; x V
with ¢ () = ¥ and such that Z|{1} x V = L, is the line bundle over
V corresponding to A € H*'(V)/H'(V,Z) = H'(V,0%).

We now prove:

If (I0.3) holds, then the equivalence relation defined by ¢
in (I0.I) is rational equivalence on a suitable subvariety ~ (10.10)
of a Chow variety associated to V.

Proof. Let Z < V be an irreducible subvariety of codimension g on V,
and let ® parametrize an algebraic family of subvarieties Z < V such
that Z € @. Then (c.f. §3) @ is a subvariety of the Chow variety of Z.

Now, if (I0.3) holds, then in proving it we will certainly be able to
find a family {W,} of effective subvarieties W, < V of codimension n —
g+ 1 which are parametrized by A € J,,_, 1 and such that ¢, ;| (Wy—
Wp) = A. Then, as in §3 each Z € @ defines a divisor D(Z) on J,,— 441
and we want to prove :

D(Z) = D(Z) if, and only if, ¢,(Z — Z) = 0in T,(V). (10.11)

Let ¢ be a residue operator for Z — Z (c.f. §la)) and set § =

Wa

d< § v} onJ,_gi1 (cf. B2ID). Then 6 is a meromorphic form of the
Wo

third kind on J,,_ ;41 associated to the divisor D(Z) — D(Z). By (5.24),

we have:

D(Z) = D(Z) on J,_,, if, and only if, there exists w € H'(J,_441)

such that {6 + w = 0(1) forall 6 € H (Jy—g+1,Z).
5
(10.12)

Denote by § < H"~%"~4+1(V) the largest rational subspace; then
S is the holomorphic tangent space to J,441. The holomorphic one
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forms H'“9(J,_,41) are then S* < H%9~Y(V). Given Q € S*, the
corresponding form w € H'0(J,_,.1) is defined by

Wa
w=d JQ
Wo

Given 6 € Hi(Jy—q+1,Z), there is defined a 2¢ — 1 cycle T(6) €
H,—1(V,Z) by tracing out the W, for A € 6. Clearly we have

f@—l—w: j ¥+ Q. (10.13)

5 7(5)
Combining (I0.13) and (I0.12)), we see that:

D(Z) = D(Z) on J,_g41, if, and only if, (¢ +Q = 0(1)
r (10.14)
for some Q € S* and allT" € Hy,—(V,Z).

O

Now taking into account the reciprocity relation (3.30), we find that
(I0.14) implies (I0.10).
Remark. The mapping T : H{(Jy—g+1,Z) — Hyy—1(V,Z) may be
divisible so that, to be precise, (10.10) holds up to isogeny.
Example 10.15. Take ¢ = n, so that @ is a family of zero-cycles on
Vand ¢, : ® — T,(V) is the Albanese mapping. Then J,_,41 =

Ji = Pic(V) and we may choose {W,} cpic(v) to be a family of ample
divisors. In this case we see that:

Albanese equivalence on @ is, up to isogeny,
linear equivalence on Pic(V).

The conclusion drawn from (10.4) and (I0.10) is:

(10.16)

The generalizations to arbitrary cycles of both the inversion
theorem and Abel’s theorem, as formulated in (10.3) and (I0.10),

essentially depend on a special case of the Hodge problem.
(10.17)
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The best example I know where the inversion theorem (10.3)

and Abel’s theorem hold is the case of the cubic threefold
worked out by F. Gherardelli. Let V < P4 be the zero locus of a
nonsingular cubic polynomial. Through any point zg in V,

there will be six lines in P4 lying on V.
(10.18)

Proof. Using affine coordinates x, y, z, w and taking zg to be the ori-
gin, V will be given by f(x,y,z,w) = 0 where f will have the form
fx,y,zow) = x+ g2(x,y,z,w) + g3(x,y,z,w). Any line through zp will
have an equation x = apt, y = a1t, z = axt, w = ast. If the line is to lie
on V, then we have aot + g2 (o, a1, a2, @3)1% + g3 (o, @1, @2, a3)> = 0
for all #; thus ap = 0 and g2(0,a1,a2,a3) = 0 = g3(0,a1, a2, 3).
Thinking z¢ are given by the points of intersection of a quadric and cu-
bic in P, so there are six of them.

Let @ be the variety of lines on V. Then it is known that @ is a non-
singular surface and the irregularity 2% (®) is five. Butalso 2'2(V) = 5
and h%3(V) = 0. Thus, in this case, Jo(V) = T,(V) is the whole torus.
Fixing a base point zgp € @, there is defined ¢, : ® — T,(V) by the
usual method. What Gherardelli has proved is:

@2 @ Alb(®) — T»(V) is an isogeny. (10.19)
Thus, in the above notation, we have:

For the cubic threefold V, Ay — Jo, = T5 and so the inversion
theorem (I0.3)) holds. Furthermore, the equivalence relation
given by the intermediate torus is, up to an isogeny, linear
equivalence on ®.
(10.20)
O
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APPENDIX

A Theorem on the Cohomology of Algebraic Mani-
folds. Let V be a compact, complex manifold and A? (V) the vector
space of C* forms of type (p, g) on V. From

D APA(V) — APTLA(V), 0% = 0, Al
L APA(V) = APATV(V), T = 0,00 + 00 = 0, A1

Dl D

we find a spectral sequence (c.f. [7l, section 4.5) {EF*?} with Ef 1=
HY(V) = H9(V,QF) (Dolbeault). This spectral sequence was dis-
cussed by Frolicher [6]], who observed that, if V was a Kéihler manifold,

then E]? = EN'? = ... = EL. This proved that:
- Pt pHa vy — gp+
thatThere is a filtration F, (V) < --- < Fy (V) = H'"(V,C) such
Fyr(v)/Fri(v) = HZ(V) = HI(V, Q). (A2)
Thus
FPHav) = ;)H§+”q’(V). (A3)

We call the filtration (A3) the Hodge filtration. Our object is to give
a description of the Hodge filtration {F}(V)} using only holomorphic
functions, from which it follows, e.g., that the Hodge filtration varies
holomorphically with V. It will also prove that

i (S S,

r=0 r=0
(A4)
which is the result (A3.3)) used there to prove (A3.6)), the fact that the
mappings ¢, : X, — T,4(V) depend only on the complex structure of V.
(a) Let V be a complex manifold and QF the sheaf on V of closed
holomorphic p-forms. There is an exact sheaf sequence:

00" > S ot . (A.5)

195

183



196 P. A. Griffiths
Theorem A.6. (Dolbeault) In case V is a compact Kihler manifold,
we have H1(V,QF) — H4(V,QF) — 0, so that the exact cohomology
sequence of (AJ) is

0 — HI- (VX - HI(V,QF) — HI(V,QP) — 0. (A7)
Proof. We shall inductively define diagrams:

e k+2
HI=1 (v, QP2

Q, -
k+1
— - 6

—~
—~

HI(V,Qp) — 2 s ga—k(y, QP (A.8)k

T |

Hq_k(V, Qp+k+l)
(k=0,...,q), where the first one is:

H (V. Q%)
7
o3 -

HI(V,QF) —2 > H1(V, Q) (A.8)

gy

HA(V, Q)

184  and where[(A.8),] will define e after we prove that 8 = 0. In[(A.8)]

the mapping ¢ is the coboundary in the exact cohomology sequence of

k+1 0 k+2
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We want to prove that g = 0. If a1 = 0, then o = 0 so it will
suffice to prove that @, = 0. Now [(A.8),]is

0

|

HY(V, Q) — HO(v, Q0P (A8),

T |

HO(V, Qq+p+1)’

and so we have to show that 8, = 0. Thus, to prove Theorem [A.6] we
will show that:

The maps By in[(A.8)are zero fork = 0,...,q. (A9)
The basic fact about Kdhler manifolds which we use is this:

Let ¢ € AP4(V) be a C*(p, q) form with 0¢ = 0,
so that ¢ defines a class ¢ in the Dolbeault group
Hg’q(V) ~ H?(V,QP). Suppose that ¢ = Oy for
some i € AP~14(V). Then ¢ = 0 in Hg’q(V).

(A.10)

O

Proof. Let[3 and Hz be the Laplacian and harmonic projection for 0,
and similarly for [Jo and Hp. Thus H3 is the projection of A”4(V') onto
the kernel H5/ (V) of [J5, and likewise for Hp. Since [ is self-adjoint
and [z = [y (because V is Kéhler), H = Hp. Thus, if ¢ = oy,
H;(¢) = Hx(¢) = 0. Butif Hx(¢) = 0 and 0 = 0, ¢ = 30 G¢
where 0 is the adjoint of 0 and G3 is the Green's operator for [I3
(recall that ¢ = Hi(¢) + [15G5(¢) and 0G5 = G=0). Thus ¢ = 0 in
Hg’q (V)if ¢ = oy.

Now Sy : H;"’(V) — H;H’q(V) is given by Bo(¢) = 0¢ so that
Bo = 0 and «a; is defined.
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Write 0¢p = 5(&1 where y; € APt (V). Then 0(dy) = —ddy, =
—0%¢ = 0so that Ay is a 0-closed form in AP+24=1(V). We claim that,
in the diagram

H2(V,007)
7
(%3 -
=7,

HI(V, Q) — > HI-1(V,QF"2) (A.8)

T

qul (‘/’ Qp+2),

Bi(¢) = . o

Proof. We give the argument for ¢ = 2; this will illustrate how the
general case works. Let then {U,} be a suitable covering of V with
nerve I, and denote by C4(21, S)(Z%(1, S )) the g-cochains (g-cocycles)
for 2 with coefficients in a sheaf §. Now ¢ € Z>(U, QP), and ¢ = 6&;
for some & € C'(U,AP) (AP being the sheaf of C*(p,q) forms).
Then 0&) € Z' (W, AP) and 0¢, = 6&, for & € CO(U, AP!). Now 0, €
70(1, AP2) and the global form & € AP2(V) defined by £|U, = 0&; is a
Dolbeault representative in H%(V, QP) of ¢.

Clearly 0¢ € APT12(V) is a Dolbeault representative of By(¢) €
H2(V,QP*Y), and 0 = 0y, for some y; € APTLI(V). We want to
find a Céch cochain 6 € C'(U, QPT!) with 66 = 0¢. To do this, we
let & = 0& + ¢ € CO(ULAPTLY). Then 0, = —0& + dy = 0 so
that > = 04, for some 1, € CO(U, APT1O) We let £ = 0&1 + 645 €
C'(W, APT10) Then 64 = 60¢, = 0¢, and 0Ly = —30&) + 60, =
—00&| + 60y = —06& + 08¢, = 0so that § = £ € C'(,QPTY).
In[AR)d a1(¢) € H'(V,Q7"?) is represented by 06 € Z' (2, Q711
Observe that 600 = 6071 = 6(0%¢) + 604,) = 0.

We now want a Dolbeault representative for 08 € Z'(1, QP+,
Since 06 = 801, where 01, € CO(U, AP*20), such a representative
is given by 001, € Z0(u, AP+, But 00, = —00d, = —00r =
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—0(0& + Y1) = —0y; that is to say, —dy is a Dolbeault representa-
tive of a1 (¢) € H'(V, QP*2), which was to be shown.

Now B1(¢) = 0 by the lemma on Kéhler manifolds, and so dy; =
0Oy where y € APT24-2(V). Then 0(0y) = —0dyy = —0%y; = 050
that Ay, is a O-closed form in APT39=2(V). As before, we show that, in
the diagram,

HI73 (v, Q0

)

HY(V,QP) —2> HI72(V, QP (A.8),

T

Hq72(‘/’ Qp+3),
Ba(¢) = 2.
Inductively then we show that S;(¢) = 0 in HI=¥(V, QPT¥+1) be-
cause Bi(¢) = Oy for some Yy € APTRIK(V). At the last step,

Bq(¢) = 0 because no holomorphic form on V can be d-exact. This
completes the proof of (A.9), and hence of Theorem m|

Examples. For g = 0, the sequence (A7) becomes
0— H'(V,Q) — H°(V,QF) — 0, (A.11)
which says that every holomorphic p-form on V is closed (theorem of

Hodge).
For p = 0, (A10) becomes:

0 — HY(v,Ql) - HI(V,C) & HY(V,0) — 0, (A1.12)

and « is just the projection onto Hg’q(V) ~ H4(V,0) of a class ¢ €
H?(V,C). In particular, for g = 1, we have:

0—-H(v,Q"Y - H (V,C) - H'(V,0) - 0. (A.13)
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As a final example, we let H' (V,0*) be the group of line bundles on
V. Then we have a diagram

0—H'(V,Q*) ——=H'(V,Q) —= H'(V,Q') —=0

7z
-
leog P

1
-

H'(V,0%)
(Al1.14)
(here cy is the usual Chern class mapping).

(b) What we want to show now is that there are natural injections
0 — HI(V,QF) & HPHI(V,C) (A1.15)
such that

(i) the following diagram commutes:

0 —— HP*4(V,C) =—— HP4(V,C)
1
5
0 HY(V, Q) —"— HP*4(V,C)
5
0—— HI- (v, ") 2 grta(y,C) (A1.16)
1
J

0— HO(V, Q") _A HPH4(V,C);
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188 (i1) the following diagram commutes:

HI(V, Q) A HP™4(V,C

e

HI(V, Q) — 2
where Hg_”q(V) is the space of harmonic (p, ¢) forms;

(iii) In the filtration {F£"?(V)} of H?*4(V,C) arising from the spec-
tral sequence of (&), F5 (V) is the image of H4(V,QF); and
is represented by a d-closed form ¢ € >, APT"477(V) defined

r=0
modulo dy where

ye Y APy (ef. (BD)). (A.18)

r=0

Proof of (i). This is essentially a tautology; the vertical maps ¢ are
injections by (A7), and so the requirement of commutativity defines A :
HY(V,QF) — HPT4(V,C). For later use, it will be convenient to have a
prescription for finding A, both in Céch theory and using deRham, and
so we now do this.

Let then {U,} be a suitable covering of V with nerve X and let ¢ €
H9(V,QF). Then ¢ is defined by ¢ € Z¢(U, QF), and ¢ = dy, for some
Y1 € C1U, QP71 Now déy = ddyy = 6¢ = 0 so that ¢ = Sy €
Za+(u, Q{,’_l). In fact, ¢; = 6(¢) in (ALIG). Continuing, we get
¢y € Z9T2(,QP7%), ..., on up to ¢, € ZPT(U,C)(C = QF), where
¢ = do. dx = oWy with g1 = dy(yy € CITF1(U,QP7F)), and then
A(§) = ¢p.

To find the deRham prescription for A, we let A*' be the sheaf of
C™ forms of type (s,z) on V and B = > AST"="_ Also, By will be

r=0
the closed forms. Then dB*' — Bff“rl, and we claim that we have exact
sheaf sequences:

0— B — B L prtl 0, (A1.19)
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189  Proof. Let ¢ be a germ in Bff”rl and write ¢ = > Psirrr1—r. Since

r=0
d¢ = 0, 5¢x,t+l = 0 and 50 ¢y,y1 = aps,z- Then ¢ — dis; € Bg—H’[,
and continuing we find ¥, ..., Y510 Withd —d(Ws, + - + Ysi00) €
B§+’+1’0. But then ¢ — d(¥s; + -+ + Ys110) is a closed holomorphic
s+1t+ 1-form, and so ¢ —d(Ys;+ - - +Ws110) = dnst10; i.e. d is onto
in (AT.19), which was to be shown.
The exact cohomology sequence of gives:

0— H'(V,B"") > H I (V,BX) > 0 (r=>1);
0 s,t+1 0 1 5.t (A.20)
0— H(V,B.""")/dH"(V,B*") — H (V,B;") — 0.
Using these, we find the following diagram:
HI(V.Q7) = H(V. B")
R
H\(v, B2
(A.21)

|
I
Hl(V, Bg’q—l) ~ HO(V, Blg’q)/dHO(V, Bp,q—l);

the composite in (A21) gives
0 — H(V.QF) = BI(V)/dB"™ (V) = 0. (A22)
This A is just the deRham description of A in (AL.16)), and by writing
down (A.22) we have proved (iii) above. m|
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STANDARD CONJECTURES ON ALGEBRAIC
CYCLES

By A. Grothendieck

193
1 Introduction. We state two conjectures on algebraic cycles, which

arose from an attempt at understanding the conjectures of Weil on the
{-functions of algebraic varieties. These are not really new, and they
were worked out about three years ago independently by Bombieri and
myself.

The first is an existence assertion for algebraic cycles (considerably
weaker than the Tate conjectures), and is inspired by and formally anal-
ogous to Lefschetz’s structure theorem on the cohomology of a smooth
projective variety over the complex field.

The second is a statement of positivity, generalising Weil’s well-
known positivity theorem in the theory of abelian varieties. It is formally
analogous to the famous Hodge inequalities, and is in fact a consequence
of these in characteristic zero.

WHAT REMAINS TO BE PROVED OF WEIL'S CONJECTURES ? Before stating
our conjectures, let us recall what remains to be proved in respect of the
Weil conjectures, when approached through /-adic cohomology.

Let X/F, be a smooth irreducible projective variety of dimension 7
over the finite field Fq with ¢ elements, and / a prime different from the
characteristic. It has then been proved by M. Artin and myself that the
Z-function of X can be expressed as

[40)

20 Ty

LQ(Z)Lz( ) .LG([)
L(t) B L t)Lg(t) LG_](l‘)’
L() = 5.
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where P;() = (™' (X)0,(r~1), Q; being the characteristic polynomial
of the action of the Frobenius endomorphism of X on H(X) (here H'
stands for the i [-adic cohomology group and X is deduced from X by
base extension to the algebraic closure of F,). But it has not been proved
so far that

(a) the P;(r) have integral coefficients, independent of /(# char F);

(b) the eigenvalues of the Frobenius endomorphism on H(X), i.e.,
the reciprocals of the roots of P;(t), are of absolute value g*/2.

Our first conjecture meets question (a). The first and second together
would, by an idea essentially due to Serre [4]], imply (b).

2 A weak form of conjecture 1. From now on, we work with
varieties over a ground field k which is algebraically closed and of arbi-
trary characteristic. Then (a) leads to the following question: If f is an
endomorphism of a variety X /k and [ # char k, f induces

f1H(X) — H'(x),

and each of these f* has a characteristic polynomial. Are the coefficients
of these polynomials rational integers, and are they independent of |
? When X is smooth and proper of dimension n, the same question is
meaningful when f is replaced by any cycle of dimension n in X x X,
considered as an algebraic correspondence.

In characteristic zero, one sees that this is so by using integral coho-
mology. If char k > 0, one feels certain that this is so, but this has not
been proved so far.

Let us fix for simplicity an isomorphism

ok* ~ Q/Z (a heresy!).
We then have a map
cl : ﬁpi(X) ®z Q — HIZi(X)
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which associates to an algebraic cycle its cohomology class. We denote
the image by C ; (X), and refer to its elements as algebraic cohomology
classes.

A known result, due to Dwork-Faton, shows that for the integrality
question (not to speak of the independence of the characteristic polyno-
mial of /), it suffices to prove that

1
TrfiN € —Z forevery N =0,
m

where m is a fixed positive integelﬁ. Now, the graph T'yv in X x X of f N
defines a cohomology class on X x X, and if the cohomology class A of
the diagonal in X x X is written as

AZEH’,’

0
where 7; are the projections of A onto H(X)®H"~(X) for the canonical
n . .
decomposition H"(X x X) ~ >’ H'(X)® H"'(X), a known calculation
i=0

shows that

Tr(fM) g = (=1) (T )m € H"(X x X) ~ Q..

1
Assume that the n; are algebraic. Then m; = — cl(Il;), where II; is an
m
algebraic cycle, hence
: 1
Tr(fN) i = (=1)(I; - Tw) € —Z
H(M) = (<1 Tp) e —
and we are through.
WEaK ForM OF CONJECTURE 1. (C(X)): The elements 7! are algebraic,
(and come from an element of %" (X) ®z Q, which is independent of /).

N.B. 1. The statement in parenthesis is needed to establish the indepen-
dence of P; on [.

*This was pointed out to me by S. Kleimann.
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2. If C(X) and C(Y) hold, C(X x Y) holds, and more generally, the
Kiinneth components of any algebraic cohomology class on X x Y
are algebraic.

3 The conjecture 1 (of Lefschetz type). Let X be smooth
and projective, and & € H*(X) the class of a hyperplane section. Then
we have a homomorphism

UE" L H(X) - HU(X) (i <n). (*)

It is expected (and has been established by Lefschetz [2], [3] over the
complex field by transcendental methods) that this is an isomorphism
for all characteristics. For i = 2j, we have the commutative square

2 & oo
HY(X) H™=7(X)

]

C/(X) —=C"/(X)

Our conjecture is then: (A(X)):
(a) (*) is always an isomorphism (the mild form);

(b) ifi = 2j, (*) induces an isomorphism (or equivalently, an epi-
morphism) C/(X) — C"/(X).

N.B. If C/(X) is assumed to be finite dimensional, (b) is equiva-
lent to the assertion that dim C"~/(X) < dim C/(X) (which in particular
implies the equality of these dimensions in view of (a).

An equivalent formulation of the above conjecture (for all varieties
X as above) is the following.

(B(X)) : The A-operation (c.f. [3]) of Hodge theory is algebraic.

By this, we mean that there is an algebraic cohomology class 4 in
H*(X x X) such that the map A : H*(X) — H*(X) is got by lifting
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a class from X to X x X by the first projection, cupping with A and
taking the image in H*(X) by the Gysin homomorphism associated to
the second projection.

Note that B(X) = A(X), since the algebraicity of A implies that of
A" and A"~ provides an inverse to U&" ' : H/(X) — H*'~(X). On
the other hand, it is easy to show that A(X x X) = B(X) and this proves
the equivalence of conjectures A and B.

The conjecture seems to be most amenable in the form B. Note that
B(X) is stable for products, hyperplane sections and specialisations. In
particular, since it holds for projective space, it is also true for smooth
varieties which are complete intersections in some projective space. (As
a consequence, we deduce for such varieties the wished-for integrality
theorem for the Z-function !). It is also verified for Grassmannians, and
for abelian varieties (Liebermann [3]]).

I have an idea of a possible approach to Conjecture B, which relies
in turn on certain unsolved geometric questions, and which should be
settled in any case.

Finally, we have the implication B(X) = C(X) (first part), since
the ; can be expressed as polynomials with coefficients in Q of A and
L = u¢. To get the whole of C(X), one should naturally assume further
that there is an element of Z°(X x X) ®z Q which gives A for every L.

4 Conjecture 2 (of Hodge type). For any i < n, let P'(X) be
the ‘primitive part’ of H'(X), that is, the kernel of U&"~*! : H/(X) —
H?"~*2(X), and put C} (X) = P* ~ C/(X). On C}, (X), we have a
Q-valued symmetric bilinear form given by

(x,y) = (1)K (x-y- &%)

where K stands for the isomorphism H?"(X) ~ Q. Our conjecture is
then that

(Hdg(X)): The above form is positive definite.

One is easily reduced to the case when dimX = 2m is even, and
Jj=m.
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Remarks. (1) In characteristic zero, this follows readily from Hodge
theory [55]].

(2) B(X) and Hdg(X x X) imply, by certain arguments of Weil and
Serre, the following: if f is an endomorphism of X such that
f*(&) = q - & for some g € Q (which is necessarily > 0), then the
eigenvalues of fyi(x are algebraic integers of absolute value g
Thus, this implies all of Weil’s conjectures.

(3) The conjecture Hdg(X) together with A(X)(a) (the Lefschetz con-
jecture in cohomology) implies that numerical equivalence of cy-
cles is the same as cohomological equivalence for any /-adic co-
homology if and only if A(X) holds.

Thus, we see that in characteristic 0, the conjecture A(X) is equiv-
alent to the well-known conjecture on the equality of cohomolog-
ical equivalence and numerical equivalence.

(4) In view of (3), B(X) and Hdg(X) imply that numerical equivalence
of cycles coincides with Q;-equivalence for any /. Further the
natural map

Z(X)Q1 — Hi(X)

is a monomorphism, and in particular, we have
dimq C'(X) < dimg, H}(X).

Note that for the deduction of this, we do not make use of the
positivity of the form considered in Hdg(X), but only the fact that
it is non-degenerate.

Another consequence of Hdg(X) and B(X) is that the stronger ver-
sion of B(X), viz. that A comes from an algebraic cycle with rational
coefficients independent of [, holds.

Conclusions. The proof of the two standard conjectures would yield
results going considerably further than Weil’s conjectures. They would
form the basis of the so-called “theory of motives” which is a systematic
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theory of “arithmetic properties” of algebraic varieties, as embodied in
their groups of classes of cycles for numerical equivalence. We have
at present only a very small part of this theory in dimension one, as
contained in the theory of abelian varieties.

Alongside the problem of resolution of singularities, the proof of the
standard conjectures seems to me to be the most urgent task in algebraic
geometry.
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FORMAL LINE BUNDLES ALONG EXCEPTIONAL
LOCI

By Heisuke Hironaka

Introduction. If A is a noetherian ring with an ideal 7, then we
define the /-adic Henselization to be the limit of all those subrings of
A which are étale over A, where A denotes the I-adic completion of
A. This notion naturally globalizes itself. Namely, if X is a noetherian
scheme with a closed subscheme Y, then the Henselization of X along Y
is the local-ringed space X with a structural morphism 4 : X — X such
that | X| = |Y| and 053(U) = the Iy(U)-adic Henselization of O, (U) for
every open affine subset U of |Y|, where | | denotes the underlying topo-
logical space and Iy the ideal sheaf of Y in O,. If X is the completion (a
formal scheme) of X along Y with the structural morphism f : X - X,
there exists a unique morphism g : X — X such that f = hg. In this
article, I present some general techniques for “equivalences of homo-
morphisms” with special short accounts in various special cases, and
then briefly sketch a proof of the following algebraizability theorem :
Let k be a perfect field and n : X — Xo a proper morphism of algebraic
schemes over k. Let X ( resp. X ) be the Henselization (resp. comple-
tion) of X along n~'(Yy) with a closed subscheme Yy of Xo. If & induces
an isomorphism X — n='(Yy) = Xo — Yo, then the natural morphism
g : X — X induces an isomorphism g : Rlp(Q;%) = Rlp(Q;i(), where

p denotes the continuous map from |X| = |X| = |7~ (Yp)| to in-
duced by m. In other words, if z is a closed point of Yy, every line bundle
onXina neighborhood of 771(z) is derived from a line bundle on X in
some neighborhood of 77! (z).

A Henselian scheme is, by definition, a local-ringed space S with a
coherent sheaf of ideals J such that (|S|, O, /J) is a noetherian scheme
and S is locally everywhere isomorphic to a Henselization of a noethe-

rian scheme. Such J (resp. the corresponding subscheme) is called a
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defining ideal sheaf (resp. subscheme) of §. If S is a scheme (resp.
Henselian scheme, resp. formal scheme) and I a coherent sheaf of ide-
als on §, then the birational blowing-up m : T — S of I is defined in the
category of schemes (resp. Henselian schemes, resp. formal schemes,
where morphisms are those of local-ringed spaces) is defined to be the
one which has the universal mapping property : (i) /0, is invertible as
O,-module, and (ii) if 7/ : 7" — S is any morphism with the property
(i) and with a scheme (resp. Henselian scheme, resp. formal scheme)
T’, there exists a unique morphism b : T’ — T with 7/ = 7b. One can
prove the existence in those categories. Now, let 7 be any noetherian
scheme (resp. Henselian scheme, resp. formal scheme), and Y a noethe-
rian scheme with a closed embedding : Y < T. Let p : ¥ — Y be any
proper morphism of schemes. Then the birational blowing-down along
p (in the respective category) means a “proper” morphism 7 : T — S
(in the respective category) together with as embedding Yy < S such
that there exists a coherent ideal sheaf J on S which has the following
properties : (1) J I/ for Jj >> 0, where [ is the ideal sheaf of Y in
S,and 2)ifa: T — T and B : S’ — S are the birational blowing-up
of the ideal sheaves JO, and J, respectively, then the natural morphism
T’ — S’ is an isomorphism. Now, given a noetherian scheme X and a
closed subscheme Y of X, we let X (resp. )A() denote the Henselization
(resp. completion) of X along Y. Let p : ¥ — Y be a proper mor-
phism of noetherian schemes. We then propose the following problem:
If there exists a birational blowing-down of X along p in the category
of formal schemes, does there follow the same of X along p in the cate-
gory of Henselian schemes ? For simplicity, let us consider the case in
which X, Y, Y are all algebraic schemes over a perfect field k. In this
case, we can prove that, X—>S being the formal birational blowing-
down, the Henselian blowing-down exists if and only if S is locally
everywhere algebraizable, i.e. isomorphic to completions of algebraic
schemes over k. Clearly the problem is local in S. Suppose we have
an algebraic scheme X containing Yj in such a way that § is isomor-
phic to the completion of Xy along Yy. By a somewhat refined Chow’s
Lemma we may assume that there exists an ideal sheaf Jin S which
contains I/ for j >> 0, where T = the ideal sheaf of Yp in S, and such
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that X — S is the birational blowing-up of J. Clearly, J is induced by
an ideal sheaf J on Xj. Let X’ — X be the birational blowing-up of J,
and X (resp. X') the Henselization of X (resp. X') along Y (resp. the in-
verse image of Y). Then we can prove that Xis isomorphic to X, using
the above algebraizability theorem of line bundles and some techiniques
of “equivalence of embeddings along exceptional subschemes.”. All the
details in these regards will be presented elsewhere. I like to note that
recently M. Artin obtained an outstanding theorem in regard to “érale
approximations”, which produced a substantial progress in the above
Blowing-down Problem as well as in many related problems.

The work presented in this article was done while I was financially
supported by Purdue University and by N. S. F. through Harvard Uni-
versity. To them, I am grateful.

1 Derivatives of a map. Let R be a commutative ring with unity,
let A and B be two associative R-algebras with unity, and let £ be an
(A, B)g-module, i.e. a left A-and right B-module in which the actions of
A and B induce the same R-module structure. Then an endomorphism 7
of E as an abelian group will be called a (A, B)g-module derivation of E
(into itself) if there exist ring derivations in the usual sense, say a (resp.
B, resp. d) of A (resp. B, resp. R) into itself, such that

1.1.1 7(aeb) = a(a)eb + at(e)b + aeB(b) for all a € A, e € E and
b€ B, and

1.1.2 «a(ra) = d(r)a+ ra(a) and B(rb) = d(r)b + rB(b) for all r € R,
aceAandb e B.

Remark 1.2. If the actions of R, A, and B upon E are all faithful, then
7 determines all the other @, 8 and d. In any case, under the conditions,
we say that a, § and d are compatible with 7.

We are interested in applying the above definition to the follow-
ing situation. Let L and L’ be two R-modules, let A = Endg(L) and
B = Engg(L’), and let E = Homg(L',L). If D is an R-module of ring
derivations of R into itself, then we obtain an R-module, denoted by
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Derp(L', L), which consists of all the (A, B)g-module derivations of E
which are compatible with the derivations in D. If L’ and L are both
finite free R-modules with fixed free bases, say b’ = (b},...,b}) and
b = (by,...,by) respectively, then we can give explicit presentations to
all the elements of Derp(L’, L). Namely, if d € D and f = ((f;j)) € E,
then we let dy, ;y (f) = ((dfij)) € E, where the matrix presentation (( )
is given by means of the free bases b and o’. The following fact is then
immediate from a well-known theorem about ring derivations of a full
matrix algebra.

Theorem 1.3. Let L, L', b, b', A, B and D be the same as above. Then
every (A, B)g-module derivation T of Homg(L', L), compatible with d €
D, can be written as follows:

7(e) = dpp(e) + ape — ebg

for all e € Homg (L', L), where ap € A and by € B.

As is easily seen, if we define a@(a) = dpp(a) + apa — aag for all
a € AandB(b) = dy (b) + bob — bby for all b € B, then « (resp. B) is
ring derivation of A (resp. B) which is compatible with 7.

From now on, we assume that R is noetherian. Given a homomor-
phism f : F’ — F, of finite R-modules, we consider various permissible
squares (p,a,B, f) over f,ie.p: L' > L,a:L' — F andB:L— F
such that Bp = fa, that both a and S are surjective, that both L’ and L
are finite free R-modules and that p(Ker(e)) = Ker(B). We can prove

Theorem 1.4. Let R, f : F' — F, and D be the same as above. Let
h : F — F be a homomorphism of R-modules. Then there exists an
R-submodule B = B(f,h, D) of Homg(F', F) such that for every per-
missible square (p, @, B, f) over f as above,

B = a* ' (hB)«(Derp(L, L)p)

where a* : HomR(F’,f) — HomR(L’,f) is induced by a, (hB)s :
Homg (L', L) — Homg(L', F) induced by hpB, and Derp(L', L)p is the
R-submodule of Homg(L', L) of all the derivatives of p by the elements
of Derp(L, L).
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Definition 1.5. If f, D and & are the same as in (IL4), then we define the
obstruction module for (f, h, D) to be

Tr(fh, D) = K(f,h)/B(f,h,D) 0 K(f,h)

where K (f,h) = Ker(Homg(F', F) — Homg(Ker(f), F).

We shall be particularly interested in the two special cases, the one
in which £ is the natural homomorphism F — Coker(f) and the other
in which £ is the identity automorphism of F. We write Tg(f, D) for
Tr(f,h,D) in the former special case, and Ty (f, D) in the latter. We
also write Tg(f) for Tr(f, (0)), and T7(f) for T (f,(0)).

Remark 1.5.1. It is easy to prove that if 1f = 0, then B(f, h,D) is
contained in K(f, h).

Remark 1.5.2. Assume that both F and F’ are free. In virtue of (3],
one can then find a canonical isomorphism

Tr(f) = Exty(E,E),

where E = Coker(f). Moreover, one can find a homomorphism of
D into Exty(E, E) whose cokernel is Tg(f, D). In particular, if E =
R/J with an ideal J, we have a canonical homomorphism g : D —
Ext}e (E, E) having the property. Namely, there is a canonical isomor-
phism Homg(J, E) —> Ext}e(E, E), and an element of D induces an R-
homomorphism from J to R/J. The canonical isomorphism Tg(f, D) —
Coker(p) is then induced by the obvious epimorphism

K(f,h) — Exth(E, E).

Remark 1.5.3. Let (p, @, 3, f) be a permissible square over f as before.
Then B induces an isomorphism from Coker(p) to Coker(f). If E de-
notes this cokernel, @ induces a homomorphism from Homg(F’', E) to
Homg(L', E). We can prove that this homomorphism induces a mono-
morphism m : Tg(f,D) — Tg(p,D) and that m is an isomorphism
if F and F’ are projective. Let us say that two homomorphisms f; :
F! — F;(i = 1,2) are equivalent to each other if they admit permissible
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squares (p, @;,B;, f;) with the same p : L' — L. Let C be an equiv-
alence class of such homomorphisms. Then Tg(f, D) with f € C is
independent of f : F/ — F, so long as F and F’ are projective.

Remark 1.5.4. If x is a prime ideal in R (or any multiplicatively closed
subset of R), then D generates an R,-module of derivations of R, into
itself. Let D, denote this module. Let f, : F', — F,and hy : F, — F,
denote the localizations of f and A respectively. Then there exists a
canonical isomorphism :

Tr(f,h,D)x(= Tg(f,h,D) ® Ry) = Tr,(fr,hx, Dyx).

Remark 1.5.5. Assume that both F and F’ are free. Let N(f) = {A €
Homg(L', L)|A(Ker(f)) < Im(f)}. Then the natural homomorphism
h : F — E = Coker(f) induces an epimorphism N(f) — K(f,h).
This then induces an isomorphism N(f)/B(f,id,D) — Tr(f,D). As
N(f) = K(f.id), we get a monomorphism w : T (f, D) — Tg(f, D) in
general.

Remark 1.5.6. Let

FLlrlitp 12  pfcoo

be an exact sequence of R-modules, where r is an integer > 1 and all
the F's (ie., F', F, F;, 0 < i < r — 2) are free. Take the case of D =
(0). Then we get a canonical isomorphism T3 (f) — Im(Ext,(E, F) —
Exth(E,E)), with E = Coker(f), and the monomorphism w of
in this case is nothing but inclusion into Ext}Q(E , E) with respect to the
isomorphism of (L3.2). Moreover, we get a canonical isomorphism
T#(f) — Im(Exty(G, F) — Exty(G, E)).

Remark 1.5.7. Let C be an equivalence class of homomorphisms in the
sense of (I.3.3). Then, for any two f; and f> belonging to C, there exists
a canonical isomorphism from T3 (f1, D) to Tz(f2, D), i.e. Tg(f) with
f € C is uniquely determined by C provided the f; and f are homomor-
phisms of projective R-modules.
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2 Two equivalence theorems of homomorphisms. Let
R be a Zariski ring with an ideal of definition H, and D an R-module of
ring derivations of R. Let us assume :

2.1 There is given a group of ring automorphisms of R, denoted by
(D), such that for every integer j > 1 and every d € H’D, there exists
A€ (D) with A(r) = r + d(r)mod H* for all r € R.

When R is complete, (D) denotes the closure of (D) in Aut(R) with
respect to the H-adic congruence topology.

If f and f’ are two homomorphisms of R-modules from F’ to F,
then we ask whether there exists a (D)-equivalence from f to f’, i.e. a
triple (4, @, B) with A € (D) and A-automorphisms « and B of F and F’,
respectively, such that f'a = Bf.

Let F be a finite R-module. We say that F is (D)-rigid (with respect
to the H-adic topology in R) if the following condition is satisfied :

2.2 Letb : L — F be any epimorphism of R-modules with a finite
free R-module L. Then one can find a pair of nonnegative integers
(r0, o) such that if @ is a A-automorphism of L, = id; mod H/L with
J = to and with A € (D), then there exists an R-automorphism o’ of L,
= id; mod H/~"°L, such that o’ induces a A-automorphism of F, i.e.
o a(Ker(b)) = Ker(b).

Note that the (D)-rigidity is trivial if (D) consists of only the iden-
tity. As to the other nontrivial cases, we have the following useful suffi-
cient condition : If F is locally free on Spec(R) — Spec(R/H), then it is
(D)-rigid for any (D). In fact, we can prove

Theorem 2.3. Let X = Spec(R) and Y = Spec(R/H). Let L be a finite
R-module, locally free on X — Y, and K a submodule of L such that L/K
is locally free on X — Y. Then there exists a pair of nonnegative integers
(to, ro) which has the following property. Let K’ be any submodule of
L such that L/K' is locally free on X — Y and that rank((L/K"),) >
rank((L/K),) for every x € X — Y. If K' = Kmod H’/L with j > 1,
then there exists an automorphism o of the R-module L such that o =
id, mod H/~"L and o(K) = K'.
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We have two types of equivalence criteria, the one in terms of the
obstruction module Tk (f, D) and the other in terms of 77 (f, D). Each
of the two serves better than the other, depending upon the type of ap-
plications, as will be seen in the next section.

Equivalence Theorem 1. Let us assume that R is complete. Let f :
F' — F be a homomorphism of finite R-modules, such that

(i) both F and F' are (D)-rigid, and

(ii) HTg(f,D) = (0) forall c >> 0.

Then there exists a triple of nonnegative integers (s,t,r) which has
the following property. Let us pick any integer j = t and any homomor-
phism ' : F' — F such that

(a) Ker(f) < Ker(f') + H'F', and

(b) f' = fmod H/F.

~

Then there exists a (D)-equivalence from f to f’ which is congruent
to the identity mod H/=".

The last congruence means, of course, that if (4, @, ) is the (D)-
equivalence then 1 = idgmod H/~", @ = idrmod H/~"F and 8 =
idp mod H/~"F'.

Equivalence Theorem II. Let us assume that R is complete. Let f :
F" — F be a homomorphism of finite R-modules, such that

(1) f is injective,
(i) both F and F' are (D)-rigid, and
(ii) HT;(f,D) = (0) for all ¢ >> 0.

Then there exists a pair of nonnegative integers (t,r) which has the 209
following property. Let us pick any integer j > t and any homomor-
phism f' : F' — F such that f' = fmod H/F. Then there exists a (D)-
equivalence from f to f' which is congruent to the identity mod H/~".
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Remark 2.4.1. If (D) consists of only idg, then the (D)-equivalence is
nothing but a pair of R-automorphisms @ and § with the commutativity.
In this case, the equivalence theorems hold without the completeness of
R.

Remark 2.4.2. Let us assume that both F and F’ are locally free on
Spec(R) — Spec(R/H). Let us say that two homomorphisms of finite
R-modules f; : Flf — F;, i = 1,2, are f-equivalent to each other if
there exist epimorphisms of finite free R-modules e¢; : L} — L;, an
isomorphism b : F1@L; — F>@®L; and an isomorphism »" : F{®L] —
F, @ L', such that (f> @ e2)b" = b(fi @ e1). Let C be the f-equivalence
class of the given map f. Then (s, ¢,r) of E.Thlll(resp. (¢, r) of E.Th[I)
can be so chosen to have the property of the theorem not only for the
given f but also for every f; : F| — F| belonging to C (and satisfying
(i) of E.Th[I.

Remark 2.4.3. The equivalence theorems can be modified in a some-
what technical fashion so as to become more useful in a certain type of
application. To be precise, let ¢ be any nonzero element of R which is
not a zero divisor of Coker( f), for any point x of Spec(R) —Spec(R/H).
Then, under the same assumptions of the respective E. Th.’s, we can
choose (s,17,r) (resp. (z,r)) in such a way that : If f” satisfies the stronger
congruence f' = fmod gH/F, instead of mod H/F, then we can find
a (D)-equivalence from f” to f, = idmod gH’~". This modification of
the E.Th.’s is used in establishing certain equivalence by a dimension-
inductive method in terms of hyperplane sections.

3 Examples of applications.

Example I (Equivalence of Singularities). Let k be a noetherian ring
(for instance, a field). Let Ry = k[x] = k[xi,...,xy], a polynomial
ring of N variables over k. (In what follows, Ry may be replaced by a
convergent power series over an algebraically closed complete valued
field.) Let R be a ring of fractions of Ry with respect to a multiplica-
tively closed subset of Ry, and H; a non-unit ideal in R;. Let R be the
H-adic completion of Ry, and H = H|R;. Let J be an ideal in R,
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let X = Spec(R/J), let Y = Spec(R/J + H) and 7 : X — S be the
projection map with § = Spec(k). We assume:

3.1 X — Y is formally S-smooth, i.e. for every point x of X — Y, the
d x d-minors of the jacobian 0(fi,..., fi)/d(x1,...,xy) generate the
unit ideal in the local ring Oy, where J = (fi,..., fix)R and d is the
codimension of X in Spec(R) at x. If X’ = Spec(R/J’) with another
ideal J’ in R, then we ask if there exists a k-automorphism o of R which
induces an isomorphism from X to X’. For this purpose, we pick and fix
an exact sequence

LASLLRERI -0 (3.2)

where L; are finite free R-modules for i = 1,2, Im(f) = J and & is the
natural homomorphism. Let D be the R-module of derivations of the k-
algebra R, which is generated by 0/0x, ..., 0/0xy. We apply our equiv-
alence theorem to this D and the map f. As was seen in (I.3.2), we have
a canonical homomorphism 8 : D — Exty(R/J,R/J) and an isomor-
phism Tg(f, D) = Coker(B). Thus the obstruction module Tk(f, D) is
seen to be independent of the choice of (g, f) in (3.2). Moreover, as is
easily seen, (B.I) is equivalent to saying that the localization of 3, or

By : Dy — Exth(R/J,R/J), (= Homg(J/J*,R/J)),
is surjective for every point x of X — Y. Hence it is also equivalent to
HTg(f,D) = (0) forall ¢ >>0. (3.3)

Therefore the following is a special case of E.Th.[ll

Theorem 3.3. Let the assumptions be the same as above. Then there
exists a triple of nonnegative integers (s,t,r) which has the follow-

ing property. Let j be any integer > t, and let g : L, — Ly and 211

f' 1 Ly — R be any pair of homomorphisms such that (a) f'g’ = 0, (b)
g = gmod H°L; and (¢) f' = fmod H’. Then there exists an auto-
morphism of the k-algebra R which induces an isomorphism from X to
X' = Spec(R/Im(f")) and which is congruent to the identity mod H/™",
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Example II (Equivalence of Vector Bundles) Let R be any noetherian
Zariski ring with an ideal of definition H. (For instance, R = (Ry/Jo)(1+
Ho)*1 with any pair of ideals Jy and Hy in the ring Ry). Let X =
Spec(R) and Y = Spec(R/H). Let V be a vector bundle on X — Y,
or a locally free sheaf on X — Y. Then there exists a finite R-module £
which generates V on X — Y. Let us fix an exact sequence

LA5L LB ESO (3.4)

where the L; are all free R-modules (i = 0,1,2). We apply our equiv-
alence theorem to f with D = (0). We have Tg(f) = Exty(E, E) by
(L30). Since E is locally free on X — Y, Exty(E,E), = (0) for all
x € X — Y. This implies

H°TR(f) = (0) forall ¢>>0. (3.5)
Thus we get the following special case of E.Th. [

Theorem 3.6. Let the assumptions be the same as above. Then there ex-
ists a triple of nonnegative integers (s, t, r) which has the following prop-
erty. Let j be any integer > t, and let g’ : L, — Ly and ' : Ly — L be
any pair of homomorphisms such that (a) f'g’ = 0, (b) g = gmod H’L,
and (c) f' = fmod H/Ly. Then there exists an automorphism of the R-
module Ly which induces an isomorphism from V to V', with the locally
free sheaf V' on X — Y generated by Coker(f"), and which is congruent
to the identity mod H/~" L.

Remark 3.7. An important common feature of Theorems 3.3] and
is that, when the singularity or the vector bundle is represented by an
R-valued point (f, g) in the affine algebraic scheme defined by the si-
multaneous quadratic equations fg = 0 (in terms of fixed free bases of
the L;), all the approximate points (with respect to the H-adic topology
of R) in the scheme represent the same singularity or the same vector
bundle respectively.

Example III. Let R be a regular Zariski ring with an ideal of definition
H. Let R = R/J with an ideal J, and H = HR. Let E be a finite R-
module. Let Z = Spec(R), X = Spec(R) and Y = Spec(R/H). Let us
assume :
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3.8 X is locally a complete intersection of codimension e in Z at every
point of X — Y, and

3.9 Eislocally freeon X — Y.

Let us take a resolution of E as an R-module by finite free R-modules:

L, B, I L 1y B E 0. Then, by IS@ TE(f,) is

isomorphic to the image of the natural homomorphism Exth (E, L, ) —
Extﬁ(E;E) with E = Coker(f,). By BX), Exth(R,R), = 0if p # e,
and = E, if p = e, for all points x of Z — Y. Thus, by (3.9), we get

3.10 For every positive p # e, HT(f,) = 0 for all ¢ >> 0.

Let F/ = Im(f,), F = L,—1 and f : F/ — F the inclusion. Then
T (f) is isomorphic to T7(f,), and the following is a special case of E.
Th. [

Theorem 3.11. Let the assumptions be the same as above, and let p be
a positive integer # e. Then there exists a pair of nonnegative integers
(t,r) such that if f' : L, — L,—1 is any homomorphism with Ker(f") o
Ker(f) and with f' = fmod H/L,_; for an integer j > t, then there
exists an equivalence from f' to f which is congruent to id mod H/~".

Example IV. Let us further specialize the situation of Example [IIl and
examine the case of p = e. Namely, we take (R, H) of Example [ and
assume (B.1) in addition to (3.8) and (3.9). Let D be the same as in
Example[ll We can then prove that 75 (f,, D)y = Oforallxe Z— Y, in
the following two special cases.

Case (a) ¢ = 1 and E has rank 1 on X — Y. (Or the case of a line bundle
on a sliced hypersurface.)

Case (b) ¢ = 2 and Ly = R, so that E = R/J. (Or the case of singular-
ity of embedding codimension two.)

Again, as a corollary of E.Th[IIl we obtain an equivalence theorem for
fe in these two special cases, in which (7, r) has the same property as
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that of (3.11) except that “equivalence” must be replaced by “Auty(R)-
equivalence”.

Remark 3.12. The equivalence theorems in Examples [IIl and V] give
us the following rather strong algebraizability theorem in the above spe-
cial cases. Let the notation be the same as above and as in Example [l
Assume the situation of either Case (a) or Case (b). Suppose E admits a
free resolution of finite length. (This is always so, if R is local and reg-
ular.) Then, for every positive integer j, we can find a finite Ro-module
E) and an automorphism A of R, = idg mod H/, such that EOR®R and
0

E®R are isomorphic to each other as R-modules, where ®, denotes the
2

tensor product over R as R is viewed as R-algebra by A. In fact, we can
prove the algebraizability of the homomorphism f,, (or, (D)-equivalence
from f}, to a homomorphism obtained by the base extension Ry — R)

by an obvious descending induction on p.

4 An algebraizability theorem of line bundles. Let
be a perfect field, and Ry a local ring of an algebraic scheme over k at a
closed point. Let Xy = Spec(Ry). Let ¥; be a closed subscheme of X
defined by an ideal Hy in Ry. Let R be the Hyp-adic completion of Ry,
and R’ the Hy-adic Henselization of Ry, i.e. the limit of those sub-rings
of R which are étale over Ry. Let X = Spec(R), X' = Spec(R’), Y =
Spec(R/H) with H = HyR, and Y’ = Spec(R'/H’) with H' = HyR'. We
have natural morphisms ¢ : X — X" and ¢/ : X’ — X, which induce
isomorphisms ¥ — Y’ and Y’ = Y. Note that every subscheme D of
X with |D| < |Y] has an isomorphic image in X’ and in Xo, where | |
denotes the point-set. The following is the algebraizability theorem of
line bundles along the exceptional locus of a birational morphism.

Theorem 4.1. Let 7' : X| — X' be a proper morphism which induces
an isomorphism X| — 7 NY') 3 X' — Y. Let X, be the completion
(a formal scheme) of X| along 77N, and i X, — X! the natural
morphism. Then W' induces an isomorphism

W™ : Pic(X]) S Pic(X)).
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If 7 : X; — X is the morphism obtained from 7’ by the base ex-
tension ¢ : X — X/, then we have a natural morphism / : )A(l — X.
By the GFGA theory of Grothendieck, this induces an isomorphism
h* : Pic(X;) = Pic(X)). Hence, @) amounts to saying that the natu-
ral morphism g : X; — X/ induces an isomorphism

g* : Pic(X]) = Pic(X;). 4.1.1)

Let U = X' — Y and U = X — Y. It is not hard to see that, for
each individual (Ry, Hp), @) for all n’ as above is equivalent to the
following

Theorem 4.2. The morphism ¢ : X — X' induces an isomorphism
A : Pic(U") = Pic(U).
In fact, we can easily prove:

(i) If w € Pic(U), then there exists a finite R-submodule E of H%(w)
which generates the sheaf w.

(i) If (w, E) is as above and if w = A(w’) with ' € Pic(U’), then
there exists a finite R’-submodule E’ of H"(w') such that E is
isomorphic to E’ xR.

R/
Now, to see the equivalence of (A1) and (@.2)), all we need is the follow-
ing “Cramer’s rule”.

Remark 4.3. Quite generally, let £ be a finite R-module which is locally
free of rank r in X — Y, and E the coherent sheaf on X generated by E.
Assume that Supp(E) is equal to the closure of X — Y in X. Let us pick
an epimorphism o : L — E with a free R-module of rank p. Let D
be the subscheme of X defined by the annihilator in R of the cokernel
of the natural homomorphism (A?~"Ker(a)) ® (A"L) — APL. Let
7 : X; — X be the birational blowing-up with center D, and let E| be
the image of the natural homomorphism 7*(E) — i,i*(7*(E)), where
i is the inclusion X; — 7~ !(Y) — X;. Then r induces an isomorphism
X, —n 1Y) 5 X — Y, n*(E) — E, is isomorphic in X; — 7~ (Y),
and E, is locally free of rank r throughout X;. Moreover, D has an

225

215



216

226 H. Hironaka

isomorphic image D" in X and if 7/ : X{ — X' is the birational blowing-
up with center D', then 7’ satisfies the assumptions in (.I). Note that a
birational blowing-up and a base extension commute if the latter is flat.

Let E be the same as in @.3). Let E/, i = 1,2, be finite R’-modules

such that we have an isomorphism frorn E!®R to E for each i. Then
Rl

there exists an isomorphism from E’1 to E’2 In fact, since R is R'-flat, we

have a natural isomorphism

Homg (E], E;)%;R — Homg(E, E)

with reference to the given isomorphisms. This means that idg is ar-
bitrarily approximated by the image of an element of Homg (E}, E}).
But, as is easily seen, any good approximation of idg is an isomorphism
itself. since R is faithfully R’-flat, this proves the existence of an isomor-
phism from E/ to E. Let us remark that this proves the injectivity of 1
of @.2). We can also deduce from this, without much difficulty, that g*
of @I1) (and hence #'* of @) is also injective.

The essence of the theorems is the surjectivity of g*, or the same of
A. Asis seen in the arguments given above, this surjectivity is equivalent
to the following

Theorem 4.4. Let E be a finite R-module which is invertible on X — Y.
Then there exists a finite R'-module E' such that E'QR is isomorphic

R/
to E.
We shall now indicate the key points in proving these theorems. As

a whole, the proof is a combination of induction on n = dim R and the
reduction to the case of (3.12)-(a).

Remark 4.5. Let the assumptions be the same as in (€. and in the
immediately following paragraph Let N’ be any coherent ideal sheaf on
X with N?=0.LetN = N Oy, Let X, (resp. X,) be the subscheme

of X/ (resp. Xl) defined by N’ (resp. N). Then we have the following
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natural commutative diagram

0 ll/ ! Q;; Q;; 0
0 N 0% 0% 0
—X 1 _X2

which yields the following exact and commutative diagram.
— H'(N'") — Pic(X}) — Pic(X}) — H*(N') —
lal laz i 4.5.1)

~ ~

—~ H'(N) —> Pic(X) —> Pic(Xs) —= H*(N) —~

We have natural isomorphisms H!(N')xR — Hi(N) because R is R'-
Rl

flat. Since Supp(H'(N’)) < |Y| for all i > 0, H'(N') — H'(N) are
isomorphisms for i = 1,2. Hence the surjectivity of a; implies the same
of ay.

Remark 4.6. By the standard amalgamation technique, one can eas-
ily reduce the proof of either one of the three theorems to the case of
dimY < n = dimX. Assuming this, let us try to prove @I) by in-
duction on n. Let d be any element of Hy such that dim Ry/dRy < n.
Let X (/) (resp. X{(j)) be the subscheme of X (resp. X!) defined by
the ideal sheaf generated by d/*!. Let h; X)) — X (Jj) be the
natural morphism. By induction assumption, we have isomorphisms
(7%)* : Pic(X(j)) =, Pic(X,(j)) for all j. In view of the cohomology
sequences of (£.3.1)) adapted to these cases, as the cohomology of co-
herent sheaves (those nilideal sheaves) is computable by any fixed open
affine covering, we get canonical isomorphisms:

Lim Pic(X; (j)) — Pic(X;) and Lim Pic(X}(j)) — Pic(X)),
J J

where X| = Lim X{ (/). Therefore, the natural morphism X, — X
J
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induces an isomorphism Pic(X;) — Pic(X). In short, to prove @I} (or
any of the other theorems), we may replace Hy by any dRy as above.

Remark 4.7. To prove @.4), we may assume that Ry is reduced and
dimRg/Hy < n = dimRy. (See @3) and #2)). We can choose a
system z = (z1,...,2Zn+1) With z; € Ry and an element d € k[z] such that
if S¢ is the local ring of Spec(k|[z]) which is dominated by R, then

(i) Ry is a finite S g-module,
(ii) d € Hy and dimRy/dRy < n,

(iii) Vo— W, is of pure dimension and k-smooth, where V() = Spec(So)
and Wy = Spec(S¢/dS), and

(iv) the natural morphism Xy — Vj induces an isomorphism Xo —
Yo — Vo — W, where Y, denotes the preimage of Wy in Xy. Now,
by (@.6), the proof of (@4) is reduced to the case of Hy = dR,
and, in view of (.2)), to the case in which Xy = Vj and X is the
closure of Xy — Yy. In short, to prove (&.4), we may assume that
Ry is a local ring of a hypersurface in an affine space over k and
that Xy — Yj is k-smooth and dense in Xj.

In this final situation, a proof of (£4) can be derived from the al-
gebraizability theorem for Case (a) of Ex. [Vl or Remark 312l To see
this, let T be the local ring of the affine space of dimension n + 1 which
carries Xy, at the closed point of Xy. Let Go be the ideal in Ty which
corresponds to Hy in Ry, T’ the Gy-adic Henselization of T, and T the
Go-adic completion of Ty. Let G = GoT. Then the result of (3.12)) (in
which R should be replaced by T') implies that, for every positive integer
J, we can find an automorphism A of 7" and a finite Tp-module E such
that A = idy mod G/ and EO(T@T is isomorphic to E(?T as T-module,

0

where E is view as T-module in an obvious way. Let E” = Ey®T’. Let
Ty

J' be the kernel of the epimorphism 7" — R’, and J” the annihilator in
T’ of E”. Clearly J'T is the annihilator of E. Thanks to the equivalence
theorem (3.6), it is now sufficient to find an automorphism A’ of R’, well
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approximate to A, such that '(J”) = J'. Namely, E’ = E"®T"’ then has
/l/

the property of (@.4). The existence of A’ is easy enough to prove, be-
cause J' is generated by a single element whose gradient does not vanish
at any point of X’ — Y’. (This is essentially Hensel’s lemma.)
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INVOLUTIONS AND SINGULARITIES

By F. Hirzebruch and K. J dnich]

Heinrich Behnke zum 70. Geburtstag gewidmet.

1 Introduction. Let X be a compact oriented differentiable mani-
fold without boundary of dimension 4k — 1 withk > 1. Let 7T : X — X
be an orientation preserving fixed point free differentiable involution. In
an invariant (X, T') was defined using a special case of the Atiyah-
Bott-Singer fixed point theorem. If the disjoint union mX of m copies
of X bounds a 4k-dimensional compact oriented differentiable manifold
N in such a way that T can be extended to an orientation preserving
involution 7'; on N which may have fixed points, then

(X, T) = nlq(T(N, T)) — 2(Fix Ty o Fix T1)). ()

Here 7(N, T)) is the signature of the quadratic form fr, defined over
Hy(N,Q) by
fri(xy) = x0Ty

where “o” denotes the intersection number. 7(Fix T o FixT;) is the
signature of the “oriented self-intersection cobordism class” Fix T o
Fix T. According to Burdick [4]] there exist N and T with m = 2.

In §2] we shall study a compact oriented manifold 2 whose bound-
ary is X — 2(X/T). This manifold 2 was first constructed by Dold [5];
we give a different description of it. Namely, Z is a branched covering
of degree 2 of (X/T) x I, where I is the unit interval. The covering
transformation is an orientation preserving involution 7'y of & which re-
stricted to the boundary is 7 on X and the trivial involution on 2(X/T),
and Fix T is the branching locus.

*Presented by F. Hirzebruch
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We show that
X, T) =1(2,T)) = —1(9),

where 7(2) is the signature of the 4k-dimensional manifold 2. Thus

a(X, T) is always an integer. The construction of Z is closely related to
Burdick’s result on the oriented bordism group of Bz, and can in fact be
used to prove it.

In [[7] it was claimed that if X*~! is an integral homology sphere
then 7(Z) = £B(X, T), where B(X, T) is the Browder-Livesay invariant
[3]. The proof was not carried through. It turns out that the definition
of Browder-Livesay is also meaningful without assumptions on the ho-
mology of X. In §3l we shall prove

BX.T) = —1(2). 3)

By (??), we obtain
a(X,T) =B(X,T). 4)
Looking at & as a branched covering of (X/T) x I has thus simplified
considerably the proof of () envisaged in [7].
Ifa = (ag,ai,...,ax) € Z**! with a; > 2, then the affine alge-
braic variety
)+ =0 (5)
has an isolated singularity at the origin whose “neighborhood boundary”
is the Brieskorn manifold [[1]]

24](71 c C2k+l
a

given by the equation (@) and
2%
Z zizi = 1. (6)
i=0

If all the a; are odd, then Tz = —z induces an orientation preserving
fixed point free involution T, on X,. The calculation of a(Z,, T,) is an
open problem (compare [[7]]). This problem on isolated singularities is
the justification for presenting our paper to a colloquium on algebraic
geometry. In §l we give the recipe for calculating a(X,, T,) for k = 1
in the case where the exponents ag, a;, a, are pairwise prime and odd.

231
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2 The Dold construction. Let Y be a compact differentiable
manifold without boundary and W a 1-codimensional compact subman-
ifold with boundary dW. Then, as it is well known, one can construct
a double covering of Y, branched at 0W, by taking two copies of Y,
“cutting” them along W and then identifying each boundary point of the
cut in copy one with its opposite point in copy two. The same can be
done if Y is a manifold with boundary and W intersects 07 transversally
in a union of connected components of 0W. The covering will then be
branched at 0OW — oW n 0Y.

We are interested in a very special case of this general situation.
Let M be a compact differentiable manifold without boundary and V a
closed submanifold without boundary of codimension 1 in M. Then we
define Y = M x [0,1]and W = V x [0, 1].

For the following we will need a detailed description of the double
covering corresponding to (M x [0, 1], V x [0, 1]). The normal bundle of
V in M defines a Z,-principal bundle V over V. If we “cut” M along V,
we obtain a compact differentiable manifold C with boundary 0C = V.
As aset, C is the disjoint union of M —V and V, and there is an obvious
canonical way to introduce topology and differentiable structure in (M —
V) U V. Similarly, let C’ be the disjoint union of M x [0, 1] — V x [0, 3
and V x [0, %), topologized in the canonical way. Then we consider
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two copies C| and C} of C’ and identify in their disjoint union each
x eV x {%} c (] with the corresponding point x € V x {%} c C
and for 0 < ¢ < % each point v € V x {t} = C} with the opposite
point —v € V x {t} = C}. Let Z denote the resulting topological space
and 7 : 9 — M x [0, 1] the projection. Then C}, C, and V x {1} are
subspaces, and Z — V x {%} has a canonical structure as a differentiable
manifold with boundary.

To introduce a differentiable structure on all of &, we use a tubular
neighbourhood of V in M. This may be given as a diffeomorphism

k:VxD' - M
Z
onto a closed neighbourhood of V in M, such that the restriction of «
to \N/; {0} = V is the inclusion V. = M. Let Z, act on D*> = C by
2

complex conjugation. Then we get a tubular neighbourhood of V' x { %}
in M x [0,1]
A1:VxD* — M x [0,1] by
Z .
1ol M

[v, x + iy] — (k(v,y), 5+ Zx)

Let the “projectin™ p : VxD? — VxD? be given on each fibre by
7 7

7z — 7%/|z|. Then Ap can be lifted to &, which means that we can
choose amap A; : VxD? — & such that
Z>

V x D? al 9
Z
l” 4 )

VxD?* —1~ M x [0,1]
Z

is commutative. Then there is exactly one differentiable structure on &
for which A, is a diffeomorphism onto a neighborhood of V' x {%} in%

233
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and which coincides on ¥ — V x {%} with the canonical structure. Up
to diffeomorphism, of course, this structure does not depend on «.

9, then, is a double covering of M x [0, 1], branched at V x {1}.
The covering transformation on Z shall be denoted by T';. Note that

on VxD? (identified by A; with a subset of &) the transformation T is
Z

given by [v,z] — [v, —z].

As a differentiable manifold, & is the same as the manifold con-
structed by Dold in his note [3].

Now consider once more the differentiable manifold C with bound-
ary 0C = V, which we obtained from M by cutting along V. Let C; uC,
be the disjoint union of two copies of C. If we identify x € Vi c G
with —x € ‘71 cCiand x € \72 with —x € ‘72, we obtain from C; U C;
the disjoint union of two copies of M :

If we identify x € \71 c Cy with —x € ‘72 c (C,, we get a differen-
tiable manifold which we denote by M :

If we identify x € ‘N/l c Cywithxe ‘72 c C,, then Cy U C, becomes
a closed manifold B (the usual “double” of C), and we use « to introduce
the differentiable structure on B :

If we, finally, identify for each x € V all four points x € 171, —X€ 171,
x € Vo, —x € V, to one, then we obtain a topological space A :

R 2
3)

C
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Now obviously we have 2M = ! (M x {1}),A = n~ (M x {1}) and
M = 7' (M x {0}), and by our choice of the differentiable structures
of Band Z (p in @) is given by z — z%/|z| instead of z — %), the
canonical map B — A defines an immersion

f:B— 9.

It should be mentioned, perhaps, that for the same reason 7 : ¥ —
M x [0,1] is not differentiable at V x {1}.

Up to this point, we did not make any orientability assumptions.
Considering now the “orientable case”, we shall use the following con-
vention : for orientable manifolds with boundary, we will always choose
the orientations of the manifold and its boundary in such a way, that the
orientation of the boundary, followed by the inwards pointing normal
vector, gives the orientation of the manifold.

Now if X is any compact differentiable manifold without boundary
and T a fixed point free involution on X with X/T =~ M, then (X, T) is
equivariantly diffeomorphic to (M, T,|M) for a suitably chosen V M,
and in fact our (M, T,|M) plays the role of the (X, T') in {1l Therefore
we will assume from now on, that M is oriented and T |M 1S orientation
preserving. Let us also write T for T |M .

Then the orientation of M defines an orientation of M and hence of
C, and since V=aC , an orientation of V is thus determined. Further-
more, the orientation of M — @9 induces an orientation of &, relative
to which

09 = M — 2M. 4)

Clearly T| on & is orientation preserving, V may not be orientable, and
V — V is the orientation covering of V, because M is orientable.

The relation of the construction of & to the result of Burdick is the
following. Let Q. (Z,) denote the bordism group of oriented manifolds
with fixed point free orientation preserving involutions. Then we have
homomorphisms

i
Qn (‘Dmnfl (—_> Qn(ZZ)
J
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as follows: if [M] € Q, is represented by an oriented n-dimensional
manifold M, the i[M] € Q,(Z,) is simply given by 2M with the triv-
ial involution. Now let [W], € 9,_; be represented by an (n — 1)-
dimensional manifold W, let W — W denote the orientation covering,
and let Y be the sphere bundle of the Whitney sum of the real line bundle
over W associated to W and the trivial line bundle W x R:

W x {1}

=

The manifold Y is orientable, and we may orient Y at w by the canonical
orientation of W followed by the normal vector pointing toward W x {1}.
Then we denote by i(W) the oriented double covering of Y correspond-
ing to (¥, W x {1}), and we define i[W] € Q,(Z,) to be represented by
i(W).

As already mentioned, any element of Q,(Z;) can be represented
by the (unbranched) double covering M corresponding to some (M, V),
and we define j[W,T] = [M] @ [V]>. Then i and j are well defined
homomorphisms and clearly j o i = Id, so i is injective. To show that
i is also surjective, we have to construct for given (M, V) and (n + 1)-
dimensional oriented manifold Z with boundary and with an orientation
preserving fixed point free involution, such that equivariantly 0% =
M —2M —i(V). But such a manifold is given by 2 = 7~ (M x [0,1] —
U),
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?('J M x {0}

where U is the interior of the tubular neighborhood (@) of V x {1} in
M x [0,1:

0% = 7~ (M x {0}) U '(M x {1}) U~ (U)
=M —2M —i(V).

Thus i : Q, ®N,—1 — Q,(Z,) is an isomorphism. Brudick uses in [4]
essentially the same manifold Z to prove the surjectivity of i.

We will now consider the invariant « and therefore assume that
dim M = 4k — 1 with k > 1. First we remark, that for the trivial involu-
tion 7 on 2M the invariant « vanishes: since the nontrivial elements of
Qyuy—1 are all of order two, there is an oriented X with 0X = 2M. Let
T’ be the trivial involution on 2X. Then 2a(2M,T) = 7(2X,T") = 0,
because it is the signature of a quadratic form which can be given by a
matrix of the form

o E

E 0

where E is a symmetric matrix. Hence it follows, that (02, T,|02) =
(M, T) and therefore by () of §Ilwe have

a(M,T) = 1(2.T,) — 7(Fix T} o Fix T} ). (5)
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Notice that here we apply the definition (1) of §Il of @ in a case, where
Fix T is not necessarily orientable, so that we have to use the Atiyah-
Bott-Singer fixed point theorem also for the case of non-orientable fixed
point sets.

Proposition. o(M,T) = 7(2.T,) = —1(2).

Proof. FixT) o FixT; = 0 € Q,, since the normal bundle of Fix T} =
V x {%} in Z has a one-dimensional trivial subbundle. Therefore by
@), a(M,T) = 7(2,T)). To show that 7(2,T) = —1(2), let again U
denote our open tubular neighbourhood of V' x {1 } in M x [0,1], U its
closure in M x [0, 1] and correspondingly U; = n~ (U ), Uy =21 (U).
Then 7(U) = 7(U;) = ©(U;,T;) = 0, because U and U, are disc
bundles of vector bundles with a trivial summand and hence the zero
section, which carries all the homology, can be deformed into a section
which is everywhere different from zero. Because of the additivity of
the signature (compare (8) of [7]), we therefore have

(2, T) =12 — Uy, T).

But 7 is fixed point free on Z — U/, and hence we can apply formula (7)
of [[7], which is easy to prove and which relates the signature 7(M*, T)
of a fixed point free involution with the signatures of M* and M* /T
and we obtain

7(2,T)) =1(2 — U, T)) =2t(M x [0,1] = U) —1(2 — Uy)
=27(M x [0,1]) — 7(2).

O

3 The Browder-Liversay invariant. The involution on V
which is given by x — —ux shall also be denoted by 7', because it is
the restriction of T on M to V if we regard V via Vl c C c M
as a submanifold of M. T is orientation reversing on V, and since the
intersection form (x,y) — x oy on Hy_;(V, Q) is skew-symmetric, the
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quadratic form (x,y) — x o Ty is symmetric on Hp;_; (\7, Q). Now we
restrict this form to

L = kernel of Hy,_1(V,Q) — Ha_1(C, Q), (1)

where the homomorphism is induced by the inclusion V =0C c C,
and we denote by B(M, V, T) the signature of this quadratic form on L.
(If M = =%~ is a homotopy sphere, then B(M, V,T) is by definition
the Browder-Livesay invariant [3] o(X*~1,T) of the involution T on
24k—1)‘

Theorem. a(M,T) = B(M,V,T).
Thus B(M,T) = B(M,V,T) is a well defined invariant of the ori-
ented equivariant diffeomorphism class of (M, T).

Proof of the Theorem. First notice, that the canonical deformation
retraction of M x [0,1] to M x {1} induces a deformation retraction
of 7 =n (M x [0,1]) o A = 7' (M x {3}). To study Hx(A, Q),
we consider the following part of a Mayer-Vietoris sequence for A (all

homology with coefficients in Q): Hox(V)®Hox(C1uC2) 2, Ho(A) LR

sz—l(‘~/1 V) ‘72) 4, Hop—1(V) @ Hoy—1(C1 L Ca)

where \71 U ‘72 and C; u C; denote the disjoint unions, see figure (3) of
2
In Hy;(A) we have to consider the quadratic forms given by (x,y) —
xoyand (x,y) — xoTy, where o denotes the intersection number in 2.
Now, the maps V = V x {%} c A and C; U C; — A, which induce the
homomorphism ¢, are homotopic in & to maps into  — A. Therefore
if x e Im¢ < Hy(A) and y is any element of Hy(A), then x oy = 0.
Thus if we denote
L' = Hy(A)/Im ¢, 2

then the quadratic forms (x,y) — xoyand (x,y) — x o Ty are well
defined on L', and their signatures as forms on L’ are 7(2) and 7(2, T )
respectively.
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L’ is isomorphic to the kernel of ¢, and hence we shall now take a
closer look at kery. For this purpose we consider the Mayer-Vietoris
sequences for M and B:

Hy (M) 5 Hoy (VU V) 4 Hy (V) ® Hy1(C1 L C2)
% SN >
Hoi(B) = Hoy—1(Vi v Va2) — Hoy—1(V) @ Hoy—1(C1 L Ca).

In the sequence for M, the homomorphism Hy— 1(V1 U Vg) — Hyy_ I(V)
is induced by the identity V1 — Von V1 and by the involution T :

V, — V on V,, in the sequence for B however by the identity on both
components. If we write Hpg_ 1 (V1 U Vz) as sz,l( ) @ Hop—1 (V), the
kernel of Hoy_1 (171 U \72) — Hy—1(C1 v Cy) is L® L, and so we get:

keryy = {(a,b) e L& L|a + Th = 0},
kery® = {(a,b) e L@® L|a + b = 0}.

Let a be an element of H,(V, Q). Then a + Ta vanishes if and only if a
is in the kernel of H,(V,Q) — H.(V, Q). Thus the kernel of ¢ is

kery = {(a,b) e L& Lla+ Ta+ b+ Th = 0}.
ker /% and ker s are subspaces of ker, and if we write (a, b) as
a—b b—a n a+b a+b
2 72 272 ’

we see that in fact

keryy = kery® + ker ). (3)
By the isomorphism L’ =~ kery, which is induced by y, (3) becomes

L' =18 +1,

where L? denotes the subspace of L’ correspondmg to ker v under this
isomorphism, and L corresponds to ker .
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Let us first consider L. Any element in L can be represented by an
element f (x), where x € Hy; (M) and f : M — A is the canonical map:

<3 ~ o~ ¥ -
Hoe(M) —> Hy—1 (Vi U Va) —> Hy—1 (V) ® Hy—1(C1 L C2)

S Id
N
Ho(A) —> Hy1(Vi U Va) —= Hy—1 (V) @ Hy—1 (Cy L C2).

But f is homotopic in Z to the inclusion M = 7' (M x {0}) c Z,
hence we have L? o L’ = 0. Therefore the quadratic forms on L’ given
by (x,y) — xoyand (x,y) — x o Ty can be restricted to L? and their
signatures will still be 7(2) and 7(2, T}).

Now, any element in L < Hy(A)/Im ¢ can be represented by an
element f53(x), where x € Hy(B) and f2 : B — A is the canonical map.
Furthermore, y induces an isomorphism between L? and the “Browder-
Livesay Module” L, because

LB T»kert//B = {(a,—a)lae L} =~ L.

Hence in view of the proposition in §2] out theorem would be proved if 230
we can show that the following lemma is true.

Lemma. Let x, y € Hy(B) and x = fi(x), ¥y = f«(y) the corre-
sponding element under the homomorphism f, : Hy(B) — Hx(2)
induced by the canonical map f : B — A < 2. By @), we have
X2 (x) = x(x) = (a,—a) and x*(y) = x(5) = (b, ~b) for some a,
b e L. We claim:

—xoy=aoTh “4)

Proof of the Lemma. First we note that we can make some simpli-
fying assumptions on x and y. By a theorem of Thom ([9], p. 55), up
to multiplication by an integer # 0, any integral homology class of a
differentiable manifold can be realized by an oriented submanifold, and
hence we may assume that x and y are given by oriented 2k-dimensional
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submanifolds of B, which we will again denote by x and y. Of course
x and y may be assumed to be transversal at V < B. Then V n x and
VA y are differentiable (2k — 1)-dimensional orientable submanifolds of
V. We orient V ~ x (and | similarly VA y) as the boundary of the oriented
manifold C; nx. Then VAxand V Ay represent a and b in Hyy— 1(V)
and we shall now denote V ~ x by a and VA y by b.

Since in a neighborhood of V,Bis simply VxRand xisa xR, itis
clear that any isotopy of a in V can be extended to an isotopy of x in B
which is the identity outside a given neighborhood of V in B, such that x
remains transversal to V during the isotopy. Therefore we may assume
that the submanifold a of V is transversal to b and Tb.

There are all the preparations we have to make in B. Now let us
immerse B into ¥ and thus get immersions of x and y into & which
will represent X and y € Hy (). To obtain transversality of these im-
mersions however, we immerse x into & by the standard immersion
f : BtoA < 2 and y by an immersion [’ : B — 2, which is different,
but isotopic to f.

To define f/,let 0 < € < i and choose a real-valued C*-function
h on the interval [0, 1] with a(t) = ¢ fort < 1€, h(t) = e fort > 1
and 0 < h(f) < e for all other 7. Using « : \N/;D1 — M, we get a

2

function on x(VxD') ¢ M by [v,] — h(t]), which we now extend to
Z
a function » on M by defining h(p) = € for all p ¢ x(VxD'). Then
Z>

M — M x [0,1], given by p — (p, 3 + h(p)) is obviously covered by
an immersion f’ : B — 2 which is isotopic to f.

Then in fact the immersions f : x — Z and f' : y — 2 are
transversal to each other, and for p € x, ¢ € y we have

f(p) ZfI(Q)c)p:qeamb or p=TgeanTh.
Looking now very carefully at all orientations involved, we obtain

—xoy=aoTb+aob. (5

fOr —a and —b, but we may replace y and x® in the Mayer-Vietoris sequences for
A and Bby —y and —y?, so let us assume that they represent a and b.
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Recall that V is the boundary 0C of the oriented manifold C and that
a and b are in the kernel of Ho;_1(0C) — Hpy—1(C). Then the inter-
section homology class s(a,b) € Hy(0C) is in the kernel of Hy(0C) —
Hy(C) (see Thom [8]], Corollaire V.6, p. 173), and therefore the inter-
section number a o b is zero, hence (3) becomes—xoy = a o Th, and the
lemma is proved.

4 Resolution of some singularities. For a tripel

a = (ap,ai,az)

of pairwise prime integers with a; > 2 consider the variety V, < c’
given by

ap | ar 4 @ _

zy +7, +z,2 =0. (1)

The origin is the only singularity of V,. We shall describe a resolution 232
of this singularity.

Theorem. There exist a complex surface (complex manifold of complex
dimension 2) and a proper holomorphic map

¢ M, —V,
such that the following is true:
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¢: M, — ¢~ (0) — V, — {0} is biholomorphic.

¢~ 1(0) is a union of finitely many rational curves which are non-
singularly imbedded in M,,.

The intersection of three of these curves is always empty. Two of
these curves do not intersect or intersect transversally in exactly
one point.

We introduce a finite graph g, in which the vertices correspond to
the curves and in which two vertices are joined by an edge if and
only if the corresponding curves intersect. o, is star-shaped with
three rays.

The graph g, will be weighted by attaching to each vertex the self-
intersection number of the corresponding curve. This number is
always negative. Thus g, looks as follows.

-b! bl b bl b by N
—eo—o----- Q—I—e ----- *——o—o

1 _btzz

1

1

1

1

—b§

—b%

—bf

b=1lorb=2; b{ > 2. Let qq be determined by
0<qgo<ayg and qo= —ajaymod ag
and define q1, q» correspondingly. Let q;. be given by
0<qj<a; and q;q;=1mod a;.
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Then the numbers b{ in the graph g, are obtained from the con-
tinued fractions

(vii) If the exponents ay, ay, ax are all odd, then

b=1<=q,+q)+q,=0mod 2,
b=2<:=>q6+q/1+q/251m0d2.

Before proving (i)-(vii) we study as an example

7+ z?j_l + zégj_l =0. (2)
We have
/

q0 = 4o = 2

g =4 for j=1and g =6j—7 for j=>2

gy =5j—1

0 =2,45=9j.

. . . 35 6j—1
By (vii) we get b = 2. The continued fractions for —, — resp. — ,
2 4 6j—7
187 —1
/ lead then to the graph
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-9j -2 -2 -2 -2
® ® I ® ®
-2
o 2
¢ -2

e -2 theendfor j=1
(11.1)
¢ -3 theendfor ;=2

1 4

» 2
| -
Proof of the preceding theorem. We use the methods of [6]. The
algebroid function

j—2 vertices

f= (_xTaz _ xglaZ)l/ao

defines a branched covering Vél) of C? (coordinates x1, x5 in C?). Blow-
ing up the origin of CZ (compare [6]], §1.3) gives a complex surface W
with a non-singular rational curve K < W of self-intersection number
—1 and an algebroid function f on W branched along K and along a;a»
lines which intersect K in the aja; points of K satisfying

—x{' =] =0 4)

where x1, x, are now regarded as homogeneous coordinates of K. The

algebroid function fN defines a complex space fo) lying branched over
W with aja, singular points lying over the points of K defined by (@).
In a neighborhood of such a point we have

f= (gt (5)
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where ¢, = 0 is a suitable local equation for K and {; = 0 for the line
passing through the point and along which VC(,Z) is branched over W. The
singularity of type (3) can be resolved according to [6], §3.4, where

w= (legfq)l/", (0<g<n,(¢g,n) =1) (6)
was studied. In our case, we have
n=ay and g =gqg, see (vi)above,

for all the aja, singular points of Véz). The resolution gives a complex
surface Vf) with the following property. The singularity of Vél) was
blown up in a system of rational curves satisfying (iii) and represented
by a star-shaped graph with aja, rays of the same kind. The following
diagram shows only one ray where the unweighted vertex represents the
central curve K which under the natural projection Vf’) — W has K as
bijective image

- -5 -5
® ® ° ° )
Vél) is of course just the affine variety
ao apaz ayaz __
Xy +x'"7+ x5 =0
which can be mapped onto V, (see ((I)) by
(x0, X1, X2) = (20,21,22) = (x0, X%, X5").
Denote by G the finite group of linear transformations
(x1,02) — (ex1,€1x2) with € = €' = 1. ®

v, =vi/G.
Then the group G operates also on V,§3). There are two fixed points,
namely the points 0 = (0,1) and 0 = (1,0) of K = K (with respect

to the homogeneous coordinates x;, x, on K). The aja, points of K
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in which the curves with self-intersection number —b?o of the aa, rays
intersect K are an orbit under G. The ayay rays are all identified in
Vc(f) /G. Thus Vc(f) /G is a complex space with two singular points Py,
P, corresponding to the fixed points. Vf) /G is thus obtained from V,
by blowing up the singular point in a system of 7y + 1 rational curves
showing the following intersection behaviour:

by b3 by

©)

but where the vertex without weight represents a rational curve passing
through the singular points Pg, Po.

We must find the representation of G in the tangent spaces of the
fixed points 0 = (0,1) and oo = (1,0). In the neighborhood of 0 we
have local coordinates such that

vi== and x = y®. (10)
X2

We consider G as the multiplicative group of all pairs (65, d1) with 65> =
6{' = 1 and put 6{° = € and 6, = & (see (§)). Then G operates in the
neighborhood of the fixed point O as follows:

(V1,y2) = (626, “y1.61y2). (11)

Thus Py is the quotient singularity with respect to the action (). If
we first take the quotient with respect to the subgroup G of G given by
01 = 1 we obtain a non-singular point which admits local coordinates
(l‘ 1» 1‘2) with

1 = ybll2 and £ = y2. (12)
Thus Py is the quotient singularity with respect to the action of G/G
which is the group of a;-th roots of unity. By (IT) and (I2) for 7' = 1

the action is
(l‘l,l‘z) — ((51_aoa2t1,51t2) = (5(1112‘1,(512‘2). (13)
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Looking at the invariants 1 = ', &, = #5' and w = 1;25' ' for which

wal — glé/gl_‘h

we see that P is a singularity of type (6). We use [6], §3.4 (or [2],
Satz 2.10) for Py and in the same way for P, and have finished the
proof except for the statements on b in (vi) and (vii). The surface M,
of the theorem is VLES) /G with Py and P, resolved. The function f
we started from gives rise to a holomorphic function on M,. Using the
formulas of [6], §3.4, we see that f has on the central curve of M, the
multiplicity aja;, and on the three curves intersecting the central curve
the multiplicities

(a1a2q6 + 1)/a0,a2q’1,a1q/2.
By [6]], §1.4 (1), we obtain
apaijarb = q6a1a2 + q’laoaz + q'zaoal + 1.
Therefore
apajarb < 3apaja; and b=1 or 2.
The congruence in (vii) also follows. This completes the proof.

Remark. Originally the theorem was proved by using the C*-action on
the singularity (1) and deducing abstractly from this that the resolution
must look as described. Brieskorn constructed the resolution explicitly
by starting from x{j + x| +x3(n = apa;az) and then passing to a quotient.
This is more symmetric. The method used in this paper has the advan-
tage to give the theorem also for some other equations zg" +h(z1,22) =0
as was pointed out by Abhyankar in Bombay.

Now suppose moreover that the exponents ag, aj, a, are all odd.
The explicit resolution shows that the involution 7z = —z of C> can be
lifted to M,. The lifted involution is also called T'. It has no fixed points
outside ¢~!(0). It carries all the rational curves of the graph g, over
into themselves [[7]. Thus 7T has the intersection points of two curves as
fixed points. Let Fix 7" be the union of those curves which are pointwise
fixed. Then Fix T is given by the following recipe.
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Theorem. For the involution T on M,(ay,ai,ar odd) we have: The
central curve belongs to FixT. If a curve is in Fix T, then the curves
intersecting it are not in Fix T. If the curve C is not in Fix T and not
an end curve of one of the three rays, then the following holds: If the
self-intersection number C o C is even, then the two curves intersecting
C are both in Fix T or both not. If C o C is odd, then one of the two
curves intersecting C is in Fix T and one not. If C is an end curve of one
of the three rays and if C is not in Fix T, then C o C is odd if and only if
the curve intersecting C belongs to Fix T.

Proof. The involution can be followed through the whole resolution. It
is the identity on the curve K. On the three singularities of type (6)
the involution is given by (z1,22) — (z1, —2z2). Here z; and z; are not
coordinate functions of C> as used in (I)), but have the same meaning
as in [6], §3.4. The theorem now follows from formula (8) in [6], §3.4.
Compare also the lemma at the end of §6 of [7].

For agp, ay, a, pairwise prime and odd, we can now calculate the in-
variant « of the involution 7, on X3 1) (see the Introduction). The

(aos
quadratic form of the graph g, is negative-definite. Therefore ([7], §6)

a(zﬁamaz), T,) = —(toy+1t +1 +1)—FixT o Fix T. (14)
Here 7y + t; + t, + 1 is the number of vertices of g, whereas Fix T o
Fix T is of course the sum of the self-intersection numbers of the curves
belonging to Fix T'. The calculation of « is a purely mechanical process
by the two theorems of this §. The number « in (I4)) is always divisible
by 8 (compare [[7]]) and for (ag, a;,az) = (3,65 — 1,18 — 1) we get for
a the value 8 (see (IT.1)).
Observe that
FixT o C = C o Cmod 2 (15)

for all curves in the graph g,, a fact which is almost equivalent to our
above recipe for Fix 7. The quadratic form of g, has determinant +1
because 23%“1’02) is for pairwise prime a; an integral homology sphere

([, [21, [Z1). The divisibility of @ by 8 is then a consequence of a well
known theorem on quadratic forms.
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The manifold 2"~! (see the Introduction) is diffeomorphic to the
manifold 2"~ (¢) given by

0+t =€ (16)
Xzizi =1,

where € is sufficiently small and not zero. 22"~ () bounds the manifold
N,(€) given by

0+t =€ (17)
Xzizi < 1.

This fact apparently cannot be used to investigate the involution 7, in
the case of odd exponents because then (I7) is not invariant under 7.
If, however, the exponents are all even, then (I7) is invariant under 7,
and for n = 2k the number (X!, T,) can be calculated using like

Brieskorn [[I]] the results of Pham on N,(€). We get in this way ]
Theorem. Leta = (ag,ay,...,ay) with a; = Omod 2. Then
(T Ty) = D e(f) (=10t (18)
J
The sum is over all j = (jo, ji,..., jox) € Z2F! with 0 < j, < a,
Jo J2k

and €(j) is 1, —1 or 0 depending upon whether the sum — + - - - +
ao ax
lies strictly between 0 and 1mod 2, or strictly between 1 and 2mod 2, or

is integral.

Remark. For simplicity the resolution was only constructed for the
exponents ag, a;, ay being pairwise relatively prime. The resolution of
the singularity
ao ai a __
zy +2, +z,°=0
can also be done in a similar way for arbitrary exponents and gives the
following information.
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Theorem. Ifay = a; = aymod 2 and d is any integer > 1, then

(100 day day) Tda) = da(Z] T,)+d—1.

ap,ar,az)’

For ag, a;, a> all odd and d = 2 we get

1
3 o 3
a(z(uo,al,az)’ T“) - 5(0(2(2a0,2a|,2a2)’ TZa) - 1)

and therefore a method to calculate @ also for odd exponents by formula

(3.
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GEOMETRIC AND ANALYTIC METHODS IN THE
THEORY OF THETA-FUNCTIONS*

By Jun-Ichi Igusa

IT is well known that theta-functions appeared in the early nineteenth
century in connection with elliptic functions. This theory, although it
has apparent analytic features, is basically geometric. However, the
Gauss proof of the transformation law for the Legendre modulus and
Jacobi’s application of theta-functions to number theory are not geomet-
ric. More precisely, if we start from the view-point that theta-functions
give nice projective embeddings of a polarized abelian variety over C,
we are in the geometric side of the theory. On the other hand, if we re-
gard theta-functions as functions obtained by the summations of normal
densities over a lattice in a vector space over R, we are in the analytic
side of the theory. After this naive explanation of the title, we shall start
discussing certain results in the theory of theta-functions.

1. Suppose that X is a vector space of dimension n over C and L
a lattice in X. Then, a holomorphic function x — 6(x) on X is called a
theta-function belonging to L if it has the property that

0(x + &) = e(Ag(x) + be) - 0(x)

for every £ in L with a C-linear form A¢ on X and with a constant b
both depending on &. The notation e(b) stands for exp(2nib). If the
theta-function is not the constant zero, it determines a positive divisor
D of the quotient Q = X/L, which is a complex torus. A fundamen-
tal existence theorem in the theory of theta-functions asserts that every
positive divisor of Q can be obtained in this manner (cf. [23]], [24]).

We observe that the function (x,77) — A,(x) on X x L can be ex-
tended uniquely to an R-bilinear form on X x X. Then, the bi-character

*This work was partially supported by the National Science Foundation.
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f of X x X defined by

f(x,y) = e(Ay(x) — Ax(y))

takes the value 1 on L x L and also on the diagonal of X x X. The divisor
D is called non-degenerate if f is non-degenerate. In this case, f gives
an autoduality of X, and the pair (Q, f) is called a polarized abelian
variety over C. Another fundamental theorem in the theory of theta-
functions asserts that the vector space over C of theta-functions which
have the same periodicity property as 8(x)> gives rise to a projective
embedding of this polarized abelian variety (c.f. [23]], [24]). We shall
consider the special case when f gives an autoduality of (X, L) in the
sense that the annihilator L, of L with respect to f coincides with L.
The polarized abelian variety is then called autodual. In this case, we

can choose a Z-base &1, ..., &, of L so that we get

2n 2n

f Z xii, Zyzfi =e(x' 1y = x"1y).

i=1 i=1
We are denoting by x” and x” the line vectors determined by xi, ..., x,
and x,41,...,Xz,; similarly for y’ and y”. We observe that there exists a
unique C-base of X, and hence a unique C-linear isomorphism X — C"
mapping the colomn vector determined by &1, .. ., &, to a 2n X n matrix

composed of an n x n matrix 7 and 1,. Then 7 is necessarily a point of
the Siegel upper-half plane S, and, if x is mapped to z, we have

6(x) =e(polynomial in z of degree two)

) e(%(p +m' )t (p+m') + (p+m')(z+m")),
peZL”

in which m’, m” are elements of R”. We shall denote this series by
0 (7, z) in which m is the line vector composed of m’ and m”.

The above process of obtaining the theta-function 6,,(t, z) of char-
acteristic m depends on the choice of the Z-base &1, ..., &, of L. How-
ever, once it is chosen, the process is unique except for the fact that the

255

242



243

256 J-1. Igusa

characteristic m is determined only up to an element of Z>". Now, the
passing to another Z-base of L is given by a left multiplication of an el-
ement o of S py,(Z) to the column vector determined by &1, ..., &,. If
o is composed of n x n submatrices a, 3, y, § the point 7* of S, which
corresponds to the new base is given by

o-1=(at+B)(yr+6)".

Furthermore, if 6,,+(7*,z*) corresponds to the new base, the relation
between 0« (t*,z*) and 6,,(7,z) is known except for a certain eighth
root of unity. This eighth root of unity has been calculated explicitly for
some special o, e.g. for those o in which 7y is non-degenerate. This is
the classical transformation low of theta-functions. In particular, if we
consider the theta-constants 6,,(t) = 6,,(t,0) for m in Q", the transfor-
mation law implies that any homogeneous polynomial of even degree,
say 2k, in the theta-constants defines a modular form of weight k be-
longing to some subgroup, say I, of S py,(Z) of finite index. We recall
that a modular form of wight k£ belonging to I" is a holomorphic function
Y on S, (plus a boundedness condition at infinity for n = 1) obeying
the following transformation law:

Yo - 1) = det(yr + sk Y(T)

for every o in I'. The set of such modular forms forms a vector space
A(T); over C, and the graded ring

AT) = DA

k=0

is called the ring of modular forms belonging to T.

Now, the above summarized theory does not give the precise nature
of the subgroup I', nor does it provide information on the set of modu-
lar forms obtained from the theta-constants. We have given an almost
satisfactory answer to these problems in [9]], and it can be stated in the
following way.

Let I',(/) denote the principal congruence group of level / and con-
sider only those characteristics m satisfying /m = Omod 1. Then, for any
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even level /, a monomial 6,,, .. .60, defines a modular form belonging
to I',(1) if and only if the quadratic form ¢ on R** defined by

2k

2
q(x) = (1/2) (Z (xtma) + (k/2)x"'x")

a=1

is Z-valued on Z*". Moreover, the integral closure within the field of
fractions of the ring generated over C by such monomials is precisely
the ring A(T,,(1)).

The proof of the first part depends on the existence of an explicit
transformation formula for 6,,, .. .8, valid for every o in I',(2). The
proof of the second part depends on the theory of compactifications (c.f.
[, [4]) and on the Hilbert ‘Nullstellensatz”. We would like to call
attention to the fact that this result connects the unknown ring A(I, (1))
to an explicitly constructed ring of theta-constants. As an application,
we have obtained the following theorem [12]:

There exists a ring homomorphism p from a subring of A(I,(1))
to the ring of projective invariants of a binary form of degree 2n + 2
such that p increases the weight by a %n ratio. Moreover, an element of
A(T,(1)) is in the kernel of p if and only if it vanishes at every “hyper-
elliptic point” of G,,.

This subring contains all elements of even weights as well as all
polynomials in the theta-constants whose characteristics m satisfy 2m =
Omod 1 and which are contained in A(I',(1)). It may be that A(T,(1))
simply consists of such polynomials in the theta-constants. If we denote
by 7,(1), for any even [, the ring generated over C by all monomi-
als 0y, ... 6y, satisfying Im = Omod 1, this is certainly the case when
<7, (2) is integrally closed. Now. Mumford informed us (in the fall of
1966) that <7| (4) is not integrally closed. Subsequently we verified that
<7 (1) is integrally closed if and only if / = 2. On the other hand, we
have shown in [8] that <% (2) is integrally closed. Therefore, it is possi-
ble that .27, (2) is integrally closed for every n. We can propose the more
general problem of whether we can explicitly give a set of generators for
the integral closure of <7, (/). Concerning this problem, we would like to
mention a result of Mumford to the effect that <7, (/) is integrally closed
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locally at every finite point. For this and for other important results, we
refer to his paper [16]. Also, we would like to mention a relatively re-
cent paper of Siegel that has appeared in the Gottingen Nachrichten [22]
II1].

For the application of the homomorphism p, it is useful to know that,
if ¢ is a cusp form, i.e. a modular form vanishing at infinity, at which p
is defined, the image p(y) is divisible by the discriminant of the binary
form. Also, in the case when n = 3, the kernel of p is a principal ideal
generated by a cusp form of weight 18. From this, we immediately get

dimc A(rn(l))g <1

for n = 1,2,3. Actually we have an equality here because each coeffi-
cient Y in

O+ 00)%) = +yr - N+ + oy,

in which the product is taken over the N = 2"~ (2" + 1) characteristics
m satisfying 2m = 0, 2m/'m"” = Omod 1, is an element of A(T', (1))
different from the constant zero for every n. Furthermore, by using the
classical structure theorem for the ring of projective invariants of a bi-
nary sextic, we have reproduced our structure theorem of A(I’2(1)) in
[12]. It seems possible to apply the same method to the case when n = 3
by using Shioda’s result in on the structure of the ring of projective
invariants of a binary octavic.

We shall discuss a special but hopefully interesting application of
what we have said so far to a conjecture made by Witt in [27]. He ob-
served that the lattice in R” generated by the root system D,, can be
extended to a lattice on which (%)x’x is Z-valued if and only if m is a
multiple of 8. In this case, there are two extensions, and they are conju-
gate by an isomorphism inducing an automorphism of D,,. The restric-
tion of (%)x’x to the extended lattice gives a positive, non-degenerate
quadratic form (of discriminant 1) to which we can associate, for every
given n, a theta-series called the class invariant. For m = 8k, this is
an element of A(T',,(1))ax different from the constant zero. If we denote
the first two elements by f,, g, the conjecture is that (f3)?> = g3. We
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note that dim¢ A(I'3(1))g < 1 gives an affirmative answer to this conjec-
ture. Also, M. Kneser has given another solution by a highly ingenious
argument in [14]].

Now, if we consider the difference (f4)> — g4, we get a cusp form
of weight 8 for n = 4. According to the property of the homomor-
phism p, this cusp form vanishes at every hyperelliptic point. We may
inquire whether it also vanishes at every “jacobian point”. This ques-
tion reminds us of an invariant discovered by Schottky which vanishes
at every jacobian point (c.f. [19]). We can see easily that the Schottky
invariant, denoted by J, is also a cusp form of weight 8 for n = 4. We
may, therefore, inquire how the two cusp forms are related. The answer
is given by the following identity:

(f2)* — g4 = 2723%5.7-times J.

Actually, this identity can be proved directly, and it provides a third
solution for the Witt conjecture.

In this connection, we would like to mention that, as far as we can
see it, Schottky did not prove the converse, i.e. the fact that the van-
ishing of J is “characteristic” for the jacobian point. In fact, he did not
even attempt to prove it. However, it appears that this can be proved.
A precise statement is that the divisor determined by J on the quotient
I'4(1)\ &4 is irreducible in the usual sense and it contains the set of jaco-
bian points as a dense open subset. We shall publish the proofs for this
and for the above mentioned identity in a separate paper.

2. We have considered the ring of modular forms so to speak alge-
braically. However, as we mentioned earlier, it depends on the possibil-
ity of compactifying the quotient I'\&,, to a (normal) projective variety,
say .('). This is a natural approach to the investigation of modular
forms. After all, to calculate the dimension of A(T'); is a problem of
“Riemann-Roch type”, and it was with this problem in mind that Satake
first attempted to compactify the quotient I',,(1)\ S, in [18]. The theory
of compactifications has been completed recently by Baily and Borel
[2], and it may be just about time to examine the possibility of applying
it to the determination of the dimension of A(T)y.
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Now, for such a purpose, it is desirable that . (I',(/)) becomes non-
singular for a large /. However, the situation is exactly the opposite. In
fact, every point of .’ (I, (1)) — ', (1)\ &, is singular on .7 (I, () ) except
for a few cases and, for instance, the dimension of the Zariski tangent
space tends to infinity with / (c.f. [10]). We may, therefore, inquire
whether .7 (T, (1)) admits a “natural” desingularization. If the answer is
affirmative, we may further hope to obtain the Riemann-Roch theorem
for this non-singular model. It turns out that the problem is quite delicate
and the whole situation seems to be still chaotic.

In order to explain some results in this direction, we recall that the
boundary of a bounded symmetric domain has a stratification which is
inherited by the standard compactification of its arithmetically defined
quotient. We shall consider only such “absolute” stratification. The
union of the first, the second.. .. .strata is called the boundary of the com-
pactification. Then we can state our results in the following way.

Suppose that D is isomorphic to a bounded symmetric domain, and
convert the complexification of the connected component of Aut(D), up
to an isogeny, into a linear algebraic group, say G, over Q. Denote by
I' the principal congruence group of Gz of level /. Then the monoidal
transform, say .# (I'), of the standard compactification ./(I") of I'\D
along its boundary, i.e. the blowing up of .7 (I") with respect to the
sheaf of ideals defined by all cusp forms, is non-singular over the first
strata for every / not smaller than a fixed integer. Moreover, the fiber of
A (') — . (I) at every point of the first strata is a polarized abelian va-
riety. In the special case when D = S, and G = S p;,(C), the monoidal
transformation desingularizes up to the third strata with 3 as the fixed
integer.

The proof of the first part is a refinement of the proof of a similar
result in [10]. It was obtained (in the summer of 1966) with the help of
A. Borel. The proof of the second part and the description of various
fibers are in [L1]]. (The number 3 comes from the theorem on projective
embeddings of a polarized abelian variety and from the fact that I, (/)
operates on &, without fixed points for / > 3). The basis of the proofs
is the theory of Fourier-Jacobi series of Pyatetski-Shapiro [[17]. In this
connection, we would like to mention an imaginative paper by Gindikin
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and Pyatetski-Shapiro [7]. However, their main result requires the exis-
tence of a non-singular blowing up of .%(I') which, so to speak, coin-
cides with the monoidal transformation along the first strata and which
does not create a divisor over the higher strata. The existence of such
blowing up is assured for I' = I',,(/) up to n = 3. In fact, the monoidal
transformation has the required properties (c.f. [11]]).

Because of the serious difficulty in constructing a natural desingu-
larization, we may attempts to apply directly to .#(I") the “Riemann-
Roch theorem for normal varieties” proved first by Zariski. According
to Eichler, his work on the “Riemann-Roch theorem” [6] contains addi-
tional material useful for this purpose. Eichler informed us (in the spring
of 1967) that he can calculate, for instance, the dimension of A(I2(1))
at least when k is a multiple of 6, and thus recover the structure theorem
for A(T2(1)).

3. We have so far discussed the geometric method in the theory
of theta-functions. The basic features are that objects are “complex-
analytic” if not algebraic. We shall now abandon this restriction and
adopt a freer viewpoint. This has been provided by a recent work of
A. Weil that has appeared in two papers ([23]], [26]). We shall start by
giving an outline of his first paper.

We take an arbitrary locally compact abelian group X and denote its
dual by X*. We shall denote by 7 the multiplicative group of complex
numbers 7 satisfying 77 = 1 and by (x, x*) — (x, x*) the bicharacter of
X x X* which puts X and X* into duality. Then the regular representation
of X and the Fourier transform of the regular representation of X* satisfy
the so-called Heisenberg commutation relation. Therefore the images
of X and X* by these representations generate a group A(X) of unitary
operators with the group T, of scalar multiplications by elements of 7',
as its center such that

AX)/T > X x X*,

the isomorphism being bicontinuous. Consider the normalizer B(X)
of A(X) in Aut(L?*(X)). Then the Mackey theorem implies that
T is the centralizer of A(X) in Aut(L*(X)) and that every bicontinuous
automorphism of A(X) inducing the identity on T is the restriction to
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A(X) of an inner automorphism of B(X). If B(X) denotes the group of
such automorphisms of A(X), we have

B(X)/T = B(X),

the isomorphism being bicontinuous. On the other hand, if .7 (X )H is
the Schwarz-Bruhat space of X (c.f. [3]]), Weil has shown that every s in
B(X) gives a bicontinuous automorphism ® — s® of .#’(X). The proof
is based on what might be called a five-step decomposition of ® — s®,
which comes from a work of Segal [20]. Now, if L is a closed subgroup
of X, every @ in .#(X) gives rise to a function F® on B(X) by the
following integral

FO(s) = L(S‘D)(f)df

taken with respect to the Haar measure d¢ on L. Weil has show that F®
has a remarkable invariance property with respect to a certain subgroup
of B(X) determined by L. Then he has specialized to the “arithmetic
case” and proved the continuity of (s, ®) — s® and s — F®(s) restrict-
ing s to the metaplectic group, which is a fiber-product over B(X) of
B(X) and of an adelized algebraic group.

We shall now explain some supplements to the Weil theory and our
generalization of theta-functions in [13]. For other group-theoretic treat-
ment of theta-functions, we refer to Cartier [3]].

If s is an element of B(X), it gives rise to a bicontinuous automor-
phism o of X x X* keeping

(6, %), (3,3")) = ey )}y, x*)7!

invariant. The group S p(X) of such automorphisms of X x X* is known
as the symplectic group of X. The Weil theory implies that s — o gives
rise to a continuous monomorphism

B(X)/A(X) — S p(X).

*There should be no confusion between . (I') and .#(X) because in the first case
the group is non-commutative and in the second it is commutative.
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We have shown that this monomorphism is surjective and bicontin-
uous. The topology of S p(X) is determined by the fact that the group
of bicontinuous automorphisms of any locally compact group becomes
a topological group by the (modified) compact open topology. We ob-
serve that neither B(X) nor S p(X) is locally bounded, in general. How-
ever, if G is a locally compact group and G — S p(X), a continuous
homomorphism, the fiber-product

B(X)s =B(X) x G
Sp(X)

is always locally compact. As for the continuity of B(X) x .(X) —
Z(X), it is false in general. However, if X is a locally compact sub-
set of B(X), the induced mapping X x . (X) — .#(X) is continu-
ous. In particular, the mapping B(X)g x . (X) — ¥ (X) defined by
((s,g), ®) — s® is continuous. Also, the function F® is always con-
tinuous on B(X). In fact, it can be considered locally everywhere as a
coimage of continuous functions on Lie groups.

The continuous function F® on B(X) may be called an automorphic
function because of its invariance property mentioned before. We may
then define a theta-function as a special automorphic function. For this
purpose, we observe that X can be decomposed into a product Xy x R”,
in which X is a closed subgroup of X with compact open subgroups. Al-
though this decomposition is not intrinsic (except when Xy is the union
of totally disconnected compact open subgroups), the dimension 7 is
unique and X; contains all compact subgroups of X. We consider a
function @y @ O, on X defined by

@ = the characteristic function of a compact open
subgroup of X
Qo5 (Xop) = exp(—7xop"xep).
Then finite linear combinations of elements of A(X()®y ® B(R")®,,
form a dense subspace ¢ (X) of .(X) which is B(X)-invariant. More-

over ¢(X) is intrinsic. We take an element ® of ¥(X) and call F® a
theta-function on B(X). Then, every automorphic function on B(X) can

263



264 J-1. Igusa

be approximated uniformly on any compact subset of B(X) by a theta-
function. Also, we can restrict F® to the fiber-product B(X)g. This
procedure gives rise to various theta-functions.

On the other hand, if a tempered distribution / on X vanishes on
% (X), it vanishes identically. Actually a smaller subspace than ¢ (X) is
dense in .(X). In fact, we can find a locally compact, solvable sub-
group X(X) of B(X) such that the vanishing of the continuous func-
tion s — I(s®) on X(X) is characteristic for the vanishing of I for
O = &y ® Oy. Consequently, we would have an identity I} = I
of tempered distributions /; and I, on X if they give rise to the same
function on X(X). It appears that these facts explain to some extent the
roles played by theta-functions in number theory. For instance, we can
convince ourselves easily that the Siegel formula (for the orthogonal
group) as formulated and proved by Weil [26] and the classical Siegel
formula by Siegel [22] involving theta-series and Eisenstein series are
equivalent. This does not mean that the Siegel formula for any given
® in .#(X) can be obtained linearly from the classical Siegel formula.
The space ¢ (X) is too small for this. We observe that, if we denote by
“(X) the subspace of .’ (X) consisting of elements of ¢ (X) multiplied
by “polynomial functions” of degree k, it is also B(X)-invariant. Such
a space has appeared (in the arithmetic case) in the proof of the func-
tional equation for the Hecke L-series. It seems that the meaning and
the actual use of elements of .’ (X) not contained in the union of

G(X) = %(X) c G (X) -

are things to be investigated in the future.

In rounding off our talk, we remark that, if we take a vector space
over R as X and a lattice in X as L, the theta-function F® becomes, up to
an elementary factor, the theta-function that we have introduced in the
beginning (with the understanding that the previous (X, L) is replaced
by (X x X*, L x L,)). Moreover, the invariance property of F® becomes
the transformation law of theta-functions.
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ON SOME GROUPS RELATED TO CUBIC
HYPERSURFACES

By Yu. 1. Manin

Introduction and motivation. Let V be a nonsingular cubic
curve in a projective plane over a field k. If the set V (k) of its k-points is
nonempty, one may endow V with a structure of an abelian variety over
k, taking one of the points for identity. Then the group law on V (k) may
be easily described geometrically. The description is especially simple
if identity is an inflexion point of V: then the sum of three points is iden-
tity if and only if they are collinear. It follows that the ternary relation
L(x,y,z) (“x, y, z are collinear”) may be considered as the basic one for
the theory of one-dimensional abelian varieties. This is the classical ap-
proach, which makes possible, for example, to give “elementary” proofs
of Mordell-Weil theorem and Riemann conjecture for elliptic curves.

The ternary relation L is defined not only for cubic curves but, say,
for all geometrically irreducible cubic hypersurfaces in a projective
space. However, this relation was scarcely utilized for studying of arith-
metic and geometric properties of these varieties. One of the main rea-
sons of it was that one could not relate L to some standard algebraic
structure: in fact, cubic hypersurfaces of dimension > 2 are definitely
not group varieties.

In this talk we suggest and discuss two different ways to construct a
group by means of the relation L.

The first way is to consider for any nonsingular point x € V/(k) the
birational automorphism ¢, : V — V, which in its existence domain is
given by the relation L(x,y,2,(y)). (In other words, 7, is “the reflection
relatively to point x”). Then one may consider the group B, generated
by automorphisms #, for all x € V (k) (or for some subset of points). If
dim V = 1, this group B is easily seen to be isomorphic to the canonical
extension of Z, by V(k) with usual group law. In particular one can
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reconstruct V (k) from B. So one can hope that properties of the group
B are of some interest in the general case.

The second way to construct a group is to imitate the one-dimensio-
nal definition, but applying it to some classes of points of V rather than
the points themselves. Namely, consider a decomposition of V(k) in
disjoint subsets V(k) = uC;, enjoying the following properties:

(a) if L(x,y,z), where x € Cp, y € Cy, z € C,, then any of classes C),
Cy, C, is uniquely defined by the other two;

(b) on the set of classes {C;} there exists a structure of abelian group
I' of period two such that the relation “sum of three classes is
equal to zero” coincides with the relation, induced by L on this
set.

(All this simply means that one can add two classes, drawing a line
through its representatives and then taking the class of the third point
of intersection of this line with V. In fact, one must be a little bit more
careful to avoid lines lying in V: c.f. the statement of Theorem[3]below.)

An example of such decomposition in case dimV = 1 is given by
the family of cosets V(k)/2V (k). So the groups constructed by this pro-
cedure are similar to “weak Mordell-Weil groups”. F. Chatelet has dis-
covered nontrivial groups of this kind for certain singular cubic surfaces
(0.

We shall describe now briefly our main results. The first section
below contains complete definitions and statements, the second gives
some ideas of proof.

The group B is studied in some detail for nonsingular cubic surfaces.
In particular, we give a complete system of relations between maps #,
for x, not lying on the union of 27 lines of V. Besides, we prove, that for
k-minimal surfaces such ¢, together with the group of projective trans-
formations of V generate the whole group of birational k-automorphisms
of V (Theorems [l and 2)).

The main result on the group I of classes of points of V(k) is proved
for all dimensions and states the existence of the unique “finest” decom-
position or “biggest” group I'. In fact, we consider such decompositions
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not only of the total set V(k), but of any subset of it fulfilling some nat-
ural conditions. It happens then that, say, the identity class of any such
decomposition may be decomposed again and so on. So one can con-
struct for any V a sequence of 2-groups I',, which for dim V = 1 is given
by I, = 2"V (k) /2" V (k) (Theorem J3).

The last Theorem H] shows a connection between groups B and I'.

Main statements. Let V be a nonsingular cubic surface in P?, de-
fined over a field k. All points we consider are geometric K-points for
subfields K of an algebraic closure k of k.

A point x € V(%) is called nonspecial, if it does not belong to the
union of 27 lines on V ® k.

A pair of points (x,y) € V(k) x V(k) is called nonspecial, if points
x, y are distinct and nonspecial and if the line in P3, containing x, y, is
not tangent to V and is disjoint with any line of V ® k.

For any point x € V(k) the birational k-automorphism ¢, : V. — V
is defined (c.f. Introduction). If the point 7,(y) is defined, we shall
sometimes denote it x o y. If x o y and y o x are both defined, then
Xoy=youx.

Theorem 1. Let W be the group of projective automorphisms of V ® k
over k and B the group of birational automorphisms generated by the
reflections t, relative to the nonspecial points x € V(%)

Then the group, generated by W and B, is the semidirect product of

these subgroups with normal subgroup B and the natural action

wtow ™! = tox), WEW, xeV(k).

Moreover, the complete system of relations between the generators
ty of group B is generated by

2=1; (titwyty)* =1 (1)

for all nonspecial pairs (x,y) of points of V (k).

In particular, it follows from relations (), that if (x,y) is a non-
special pair of points, defined and conjugate over a quadratic exten-
sion K/k, then the K-automorphism Ixlyoyty of V ® K is obtained by
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the ground field extension from some k-automorphism of V which we
shall denote s, ,.

Theorem 2. Suppose moreover that k is perfect and the surface V is
k-minimal (i.e. any birational k-morphism 'V — V' is an isomorphism).
Then the group of birational k-automorphisms of V is generated by the
subgroup of its projective automorphisms and by elements ty, sy, for all
nonspecial points x € V (k) and for all nonspecial pairs of points (x, y),
defined and conjugate over some quadratic extension of k.

We note that in the paper [2]] the following statement was proved:
two minimal cubic surfaces are birationally equivalent over k if and
only if they are (projectively) isomorphic. So Theorems [I] and 2] give
us a fairly complete description of the category of such surfaces and
birational applications. Note also an analogy with the category of one-
dimensional abelian varieties. It suggests the desirability to investigate
also rational applications of finite degree (“isogenies”).

To compare the two-dimensional case with one-dimensional one
note that if dimV = 1, then

2=1, () =1 2)

for all triples (x,y,z) of points of V. But even this is not a complete
system of relations: there exist relations, depending on the structure of
k and on the particular nature of some points. Thus in dimension 2 the
properties of group B are less subtle.

The statement of Theorem [l without essential changes should be
valid for all dimensions > 2.

Now we shall state the main notions necessary to define the groups
I.

Let V be a geometrically irreducible cubic hypersurface over a field
k. Let C < V(k) be a Zariski-dense set of points of V. We say that
a subset C' < C consists of almost all points of C, if C’ contains the
intersection of C with a Zariski-dense open subset of V.

The following definition describes a class of sets C, for which we 259
can construct “group decompositions”.
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Definition. C c V(k) is called an admissible set, if the following two
conditions are fulfilled.

(a) C is Zariski-dense and consists only of nonsingular points of V.

(b) Let x € C. Then for almost all points y € C the point t,(y) is
defined and belongs to C.

The following sets, if they are dense, are admissible:
1. the set of all nonsingular points of V;

2. the set of hyperbolic points of a nonsingular cubic surface over R,
if it is a connected component of V(R);

3. the minimal set, containing a given system of points and closed
under the relation L.

Theorem 3. Let C < V(k) be an admissible set. Let T'(C) be the abelian
group, generated by the family of symbols C(x) for all x € C, subject to
following relations :

2C(x) =0, C(x)+C(y)+C(z)=0 (3)

for all triples of different points x, y, z € C, lying on a line not belonging
to V. Then the map of sets

C—-TI(C):x— C(x)

is surjective. Thus the group T'(C) is isomorphic to a group of classes of
C under certain equivalence relation, with the composition law “draw-
ing a line through two points”.

Moreover, the union of classes, corresponding to any subgroup of
[(C), is an admissible set.

From this theorem it is clear that any different “group decompo-
sition” of I'(C) (c.f. Introduction) can be obtained from the one con-
structed by collecting together cosets of some subgroup of I'(C).
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As was stated, for dimV = 1 and C = V(k) we have ['(C) =
V(k)/2V (k). A certain modification of this result remains valid in the
dimension two.

Theorem 4. Let C be an admissible subset of nonspecial points of a
nonsingular cubic surface V. Let B(C) be the group of birational auto-
morphisms of V, generated by t,, x € C, and By(C) < B(C) the normal
subgroup generated by sy, for all nonspecial pairs (x,y) € C x C. Then

I'(C) ~ B(C)/By(C).

This is an easy consequence of the Theorem [[land so probably gen-
eralizes to all dimensions > 2.

Our knowledge of groups I'(C) is very poor. Unlike groups B they
depend on the constant field k in a subtle way. For example, if C con-
sists of all nonsingular points of V in an algebraically closed field, the
I'(C) = {0} (as is the one-dimensional case: the group of points of an
abelian variety is divisible).

On the other hand, I can construct examples of nonsingular cubic
surfaces V over number fields k such that the group C(V/(k)) has arbi-
trarily many generators. I do not know whether it can be infinite. Per-
haps for a reasonable class of varieties a kind of “weak Mordell-Weil
theorem” is true.

We wish to formulate some more problems which arise naturally in
connection with our construction. Beginning with some admissible set
Co, denote by C; = Cy the identity class of I'(Cp). As C; is admisible,
we can construct the identity class of I'(Cp), and so on. Let C;; be the
identity class of I'(C;); we get a sequence of sets of points Cy > C; D
C, O - - and of groups I'(C;).

Let k be a number field and Cyp = V(k). Does the sequence {C;}
stabilize? What is the intersection NC;? (In the one-dimensional case
it consists of points of odd order). Is it possible to “put together” all
of groups I'(C;) by constructing an universal group and say, a normal
series of it, with factors I'(C;) ?
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Theorem M) shows a certain approach to the last question. In fact,
I'(Ci) = B(C;)/Bo(C;), where

B(Cy) o --- © B(C;) © By(Ci) o B(Cis1) D -+

But the “gaps” By(C;) © B(C;41) are probably nontrivial.

One of the serious obstacles to studying I'(V(k)) is the lack of a
manageable criterion for a point to be in the identity class. More gener-
ally, one would like to have a substitute for the basic homomorphism

§:V(k)/2V(k) — H' (kaV(k)),

of one-dimensional case.
Ideas of proofs. Theorem[Ilis proved by a refinement of methods, de-
veloped in the section 5 of [2]], where a complete proof of Theorem P2lis
given.

Let V be a (nonsingular) projective k-surface. Let Z(V) = lim
Pic(V’ ),_where the system of groups Pic is indexed by the set of bi-
rational k-morphisms V' — V ® k with natural dominance relation. The

group Z(V) is endowed with the following structures all of which are
induced from “finite levels”.

1. Z(V) is a G-module, where G = Gal(k/k);

2. there is a G-invariant pairing “intersection index” Z(V) x Z(V) —
Z;

3. there is a G-invariant augmentation Z(V) — Z : “intersection
index with the canonical class™;

4. the cone of positive elements Z*(V);

5. the cone ZT T (V), dual to Z* (V) relative to the pairing.
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Now for any k-birational map f : V' — V an isomorphism f* :
Z(V) — Z(V’) is defined, preserving all of the structures above, and
(fe)* = f*g*. In particular, the group of birational k-automorphisms
of V is represented in the group Z(V).

To use this representation effectively, one must look at the group
Z(V) differently.

Construct a prescheme E(V) = (uUV’)/R, the sum of all V', k-
birationally mapped onto V ® k, by the equivalence relation R, which
patches together the biggest open subsets of V’ and V” isomorphic un-
der the natural birational application V' «— V”.

To understand better the architecture of E(V), look at the simplest
morphism V' — V, contracting a line [ onto a point x. Patching V' and
V by identifying V/\! with V'\x, we get a little bit of E(V). If k = C,
[ is the Riemann sphere; so the result of patching may be viewed as V
complemented by a “bubble” blown up from the point x € V. To get the
whole E(V) one must blow up bubbles from all points of V, then from
all points of these bubbles, and so on. So I suggest to call this E(V) “the
bubble space” associated to V.

Now, this bubble space is connected with Z(V) as follows. Each
point of Z(V) (k) defines its bubble to which in turn corresponds a certain
element of Z(V). So there is the natural homomorphism

Pic(V®k) @ CUE(V)) — Z(V)

where C%(V) is the free abelian group, generated by all k-points of V.

In fact it is an isomorphism. The structures on Z(V), defined ear-
lier, have a rather detailed description in this new setting. On the other
hand this presentation of Z(V) is well fit for calculations giving a nice
“geometric” set of generators for Z(V).

We omit these calculations which are rather long, especially those in
the proof of Theorem[Il Note only some similarity with the description
of all relations in Coxeter groups generated by reflections in an Euclid-
ian space.

The proof of Theorem [3 is much more elementary. To prove the
surjectivity of C — T'(C) it is sufficient to find for any x, y € C a
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third point z € C such that C(x) + C(y) = C(z). We say that points x,
y € C are in general position, if the line, containing them, is not tangent
to V (and in particular does not belong to V) and the third intersection
point of this line with V belongs to C. Then, by definition, C(x) +
C(y) = C(z). So one must consider the case, when x, y are not in

263  general position. One can find such points u, v € C, that the following
pairs of points are in general position:

(x,u);  (tu(x),v); (tutu(x),uov);  (tuoytyty(x),y).

yolov)o(vo(uox))]

So we are done:
C(x)+C(y) = C(x)+C(u)+C(v)+C(uov)+C(y) = C(yo(tyovtytyx)).

To find points (u, v) one may work in V(k), because C is dense, and
then one sees that such points exist on a plane section through (x, y).

The same argument shows the density and consequently the admis-
sibility of a subgroup of I'(C).
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ON CANONICALLY POLARIZED VARIETIES

By T. Matsusakeﬁ

Brief summary of notations and conventions. We shall
follow basically notations and conventions of [21]], [25]], [32]. For ba-
sic results on specializations of cycles, we refer to [24]. When U is a
complete variety, non-singular in codimension 1 and X a U-divisor, the
module of functions g such that div(g) + X > 0 will be denoted by
L(X). We shall denote by /(X) the dimension of L(X). The complete
linear system determined by X will be denoted by A(X). A finite set of
functions (g;) in L(X) defines a rational map f of U into a projective
space. f will be called a rational map of U defined by X. When (g;) is
a basis of L(X), it will be called a non-degenerate map. X will be called
ample if a non-degenerate f is a projective embedding. It will be called
non-degenerate if a positive multiple of X is ample. (In the terminology
of Grothendieck, these are called very ample and ample). Let W be the
image of U by f and I" the closure of the graph of f on U x W. We
shall denote by deg(f) the number [I" : W]. For any U-cycle Y, we
shall denote by f(Y) the cycle pry(T" - (Y x W)). We shall denote by
K(U) a canonical divisor of U. When X is a Cartier divisor on U, we
shall denote by .Z(X) the invertible sheaf defined by X. When U is a
subvariety of a projective space, Cyy will denote a hyperplane section of
U. When U is a polarized variety, a basic polar divisor will be denoted
by Xyu.

By an algebraic family of positive cycles, we shall understand the
set of positive cycles in a projective space such that the set of Chow-
points forms a locally closed subset of a projective space. By identifying
these cycles with their Chow-points, some of the notations and results
on points can be carried over to algebraic families and this will be done
frequently.

*This work was done while the author was partially supported by N. S. F.
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Finally, &;, &,, ~ will denote respectively the group of divisors
linearly equivalent to zero, the group of divisors algebraically equivalent
to zero and the linear equivalence of divisors.

Introduction. Let V" be a polarized variety and Xy a basic polar
divisor on V. Then the Euler-Poincaré characteristic y (V, £ (mXy)) is a
polynomial P(m) in m. We have defined this to be the Hilbert charac-
teristic polynomial of V (c.f. [T6]). If d is the rank of V, i.e. d = X,
any algebraic deformation of V of rank d has the same Hilbert charac-
teristic polynomial P(m) (c.f. [L6]]). As we pointed out in [16], if we
can find a constant ¢, which depends only on P(m), such that mXy is
ample for m > c, then the existence of a universal family of algebraic
deformations of V' of bounded ranks follows. The existence of such a
constant is well-known in the case of curves and Abelian varieties. We
solved this problem for n = 2 in [17] (compare [9], [10], [12]]). But the
complexity we encountered was of higher order of magnitude compared
with the case of curves. The same seems to be the case for n > 3 when
compared with the case n = 2. One of the main purposes of this paper
is to solve the problem for n = 3 when V is “generic” in the sense that
K(V) is a non-degenerate polar divisor.
In general, let us consider the following problems.

(A,) Find a constant ¢, which depends on the polynomial P(x) only,
such that 7' (V, £ (mXy)) = 0 for i > 0 whenever m > c.

(A}) Find two constants ¢, ¢/, which depend on P(x) only, such that
W (V, £ (mXy)) < ¢ fori > 0 whenever m = c.

(A) Find two constants ¢, ¢/, which depend on P(x) only, such that
|l(mXy) — P(m)| < ¢’ whenever m = c.

(B,) Find a constant ¢, which depends on P(x) only, such that mXy
defines a birational map of V whenever m > c.

(C,) Find a constant ¢, which depends on P(x) only, such that mXy is
ample whenever m > c.
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As we mentioned, what we are interested in is the solution of (C,). But
(An), (By,) could be regarded as step-stones for this purpose. It is easy to
see that the solution of (C,) implies the solutions of (4,) and (B,). In
the case of characteristic zero and &(V) a non-degenerate polar divisor,
(A,) can be solved easily (§1). Assuming that (A]) has a solution, we
shall show that (B,) has a solution for n = 3 when the characteristic
is zero. Assuming that (A,) and (B,) have solutions and that K(V) is
a non-degenerate polar divisor, we shall show that (C,) has a solution
when the characteristic is zero. Hence (C3) has a solution when the
characteristic is zero and &(V) is a non-degenerate polar divisor.

Chapter I. (A7) and (B,,)

1 Canonically polarized varieties. We shall first recall the
definition of a polarized variety as modified in [[16]. Let V" be a com-
plete non-singular variety and .# a finite set of prime numbers consist-
ing of the characteristic of the universal domain (or the characteristics
of universal domains) and the prime divisors of the order of the torsion
group of divisors of V. Let 2" be a set of V-divisors satisfying the fol-
lowing conditions: (a) 2 contains an ample divisor X; (b) a V-divisor
Y is contained in 2" if and only if there is a pair (r, s) of integers, which
are prime to members of .#, such that rY = sXmod ®,. When there is
a pair (#, Z") satisfying the above conditions, .2 is called a structure
set of polarization and (V, Z") a polarized variety. A divisor in 2~ will
be called a polar divisor of the polarized variety. There is a divisor Xy
in 2" which has the following two properties: (a) a V-divisor Y is in 2
if and only if ¥ = rXymod ®)a where r is an integer which is prime to
members of .#; (b) when Z is an ample polar divisor, there is a positive
integer s such that Z = sXymod &, (c.f. [16]). Xy is called a basic
polar divisor. The self-intersection number of Xy is called the rank of
the polarized variety. A polarized variety will be called a canonically
polarized variety if R(V) is a polar divisor.
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Lemma 1. Let V" be a canonically polarized variety and P(x) = X, x'
the Hilbert characteristic polynomial of V. Then K(V) = pXymod 6,
where p is a root of P(x) — (—1)"y, = 0.

Proof. It follows from Serre’s duality theorem that

x(V.Z(mXy)) = (=1)x(V,. Z(](V) —mXy)) (c.f. [23]).

We may replace &(V) by pXy in this equality since y is invariant under
algebraic equivalence of divisors (c.f. [4], [16]). Then we get P(m) =
(—=1)"P(p — m). Setting m = 0, we get (—1)"P(p) = y,. Our lemma is
thereby proved. |

Proposition 1. Let V be a canonically polarized variety in character-
istic zero and P(x) the Hilbert characteristic polynomial of V. Then
there is a positive integer py, which depends on P(x) only, such that
H(V,Z(Y)) = 0fori > 0and h°(V,Z(Y)) = I(Y) > O whenever
m = pg and Y = mXymod ®,.

Proof. Let vy, be the constant term of P(x) and sp the maximum of the
roots of the equation P(x) — (—1)"y, = 0. Let !(V) be a canonical
divisor of V and k an algebraically closed common field of rationality of
V, Xy and &(V). There is an irreducible algebraic family $ of positive
divisors on V, defined over k, such that, for a fixed k-rational divisor Cy
in 9, the classes of the C — Cy, C € 9, with respect to linear equivalence
exhausts the points of the Picard variety of V (c.f. [13]). We shall show
that 2o can serve as pg.

Take 7 so thatt — (so —p) = ¢ > 0andt —2(so —p) = m > 0
where &(V) = pXymod 6,. Forany C' in 9, tXy + C' — Co + ](V) =
(' 4+ so)Xymod ®, and ¢’ + so > 0. Hence tXy + C' — Co + ](V) is
non-degenerate (c.f. [16]], Th. 1) and the higher cohomology groups of
the invertible sheaf <7 determined by tXy + C' — Cop + 28(V) vanish
by Kodaira vanishing theorem (c.f. [11l]). tXy + C' — Cp + 28(V) =
(m + 250)Xymod ®, and y(V, /) = P(m + 2s¢) since y is invariant
by algebraic equivalence of divisors. Moreover, P(m + 2sp) > 0 by our
choice of m and 5. It follows that hO(V, o/ > 0. Therefore, in order
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to complete our proof, it is enough to prove that a V-divisor Z such that
Z = (m + 2s9)Xymod &, has the property that Z ~ Xy + C' — Co +
28(V) for some C’ in $. Clearly, such Z is algebraically equivalent to
tXy + 28(V). Hence

Z— (tXy +28(V)) ~ C' — Cy

for some C’ in $. Our proposition is thereby proved. |

2 Estimation of /(Cy) on a projective surface. Let v
be a non-singular surface in a projective space and I" a curve on V. Let
R be the intersection of local rings of I at the singular points of I". Using
only those functions of I' which are in R, we can define the concept of
complete linear systems and associated sheaves, as on a non-singular
curve. Let I be a V-divisor such that I” ~ T, that [” and I intersect
properly on V and that no singular point of I" is a component of I - I".
Similarly let &(V) be such that R(V) and I intersect properly on V and
that no singular point of T is a component of I' - &(V). Then T - (I" +
K(V)) = K(I) is a canonical divisor of I, p,(I') = 1+ 5 deg(K(T')) and
the generalized Riemann-Roch theorem states that /(m) = deg(m) —
pa(T) + 1+ I[(](T) = m) for a [-divisor m (c.f. [20], [22]]).

If C is a complete non-singular curve, the theorem of Clifford states
that deg(m) = 2/(m) — 2 for a special C-divisor m. We shall first extend
thisto I'.

Lemma 2. Let V, T and K(T') be as above and m a special positive
divisor on T (i.e. (](T) —m) > 0). Then deg(m) = 2I(m) — 2.

Proof. When [(m) = 1, our lemma is trivial since m is positive. There-
fore, we shall assume that /(m) > 1.

Let I'* be a normalization of T', @ the birational morphism of I'* on
I" and T the graph of @. For any I'-divisor a, we set a* = o~ !(a) =
prrs=((a x I*) - T). When the f are elements of L(a), i.e. elements of R
such that div(f) 4+ a > 0, the foa = f* generate a module of functions
on I'* which we shall denote by @~ !L(a). The module L(R(T') — m) is
not empty since m is special. Hence it contains a function g in R. Let
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div(g*) = m* +n* — K(I')*. Let N be the submodule of functions f* in
a~'L(K(I)) defined by requiring f* to pass through n*, i.e. requiring
S to satisfy: coefficient of x in div(f™) > coefficient of x in n* for each
component x of n*. Let dimN = dim L(!(I')) — 7. Then n* imposes
t linearly independent conditions in a~'L(R(T’)). When these ¢ linear
conditions are imposed on the vector subspace @~ ' L(K(I") —m), we get
the vector space generated by g* over the universal domain. It follows
that /(R(I')—m)—t < 1,ie. t = [(]()—m)—1. Since [(](T)) = pa(T),
we then get p,(I') — dimN > ({(I') —m) — 1. L(m) has a basis (h;)
from R. The A; - g are elements of L(K(T')) and i} - ¢* € N. Hence
the multiplication by g* defines an injection of a~!L(m) into N. It
follows that /(m) < dimN and p,(I') — I(m) = [(]T) — m) — 1.
By the generalized Riemann-Roch theorem, we have [(}(T') — m) =
I(m) — deg(m) + pu(T') — 1. When this is substituted above, we get the
required inequality. m|

Proposition 2. Let V be a non-singular surface in a projective space
such that p, > 1. Let Cy be a curve on V such that the complete

linear system A(Cy) is without fixed point and that C(()z) > 0. Then
dimA(Co) < 1l + 1.

Proof. If dim A(Cy) = 0, there is nothing to prove. Therefore we shall
assume that dim A(Cp) > 0. Let R be the intersection of local rings of
Cy at the singular points of Cy. There is a canonical divisor R(V) of V
whose support does not contain any singular point of C. Such &(V) and
Cy intersect properly on V. There is a member C of A(Cy) which does
not contain any singular point of Cy. Such C and Cy intersect properly
on V. We have

pulCo) = 1+ 3 deg(Cy - (C + (V)

and Cy - (C + &(V)) = tis a canonical divisor of Cy. Let m = Cy - C.
By the generalized Riemann-Roch theorem, we get /(m) = deg(m) —
pa(Co) + 1+ 1(f—m)and f —m = Cp - ](V). By our assumption there
is a function f, other than 0, in the module L(&(V)). Since the support
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of &(V) does not contain any singular point of Cy, f is regular at these
points. Let f” be the function on Cy induced by f - f” is then regular at
every singular point of Cy and is contained in R. Since div(f)+K(V) >
0 it follows that div(f’) + Co. K(V) > 0. Hence f" € L(Cy - ](V)) =
L(tf — m), which proves that /(f — m) > 0 and that m is a special Cy-
divisor.

By Lemma 2] we have deg(m) = C(()Z) > 2I(m) — 2. Every function
gin L(C) induces a function g’ on Cy contained in R since Cy - C has no
singular component on Cy. Hence div(g’) + m > 0 and it follows that
g eL(m).If g =0,div(g) = Cop — C. Consequently I(m) = [(C) — 1
and C(()z) > 2I(C) — 4. Our proposition follows at once from this.

We shall recall here the definition of the effective geometric genus
of an algebraic variety W. Let W and W’ be complete normal vari-
eties and assume that there is a birational morphism of W’ on W. Then
pe(W) = po(W’). Hence there is a complete normal variety W”, bira-
tionally equivalent to W, such that p,(W”) has the minimum value p,
among the birational class of W. This py is called the effective geometric
genus of W. When W is non-singular, p,(W) = p, (c.f. [13]], [31). ©

Proposition 3. Let U be an algebraic surface in a projective space and
Cy a hyperslane section of U. Assume that the effective geometric genus
pg of U is at least 1. Let A be the linear system of hyperplane sections

of U and denote by ngz) the degree of U. Then dim A < %ngz) + 1.

Proof. Let V be a non-singular surface in a projective space and f a
birational morphism of V on U (c.f. [34]). Let k be an algebraically
closed common field of rationality of U, V and f. Let T be the graph of
fonV x U and P the ambient projective space of U. We may assume
that U is not contained in any hyperplane. Then T and V x H intersect
properly on V x P for every hyperplane H. We set f~!(H) = pry (T -
(V x H)). Let A* be the set of f~!(H). It is a linear system on V.
Since f is a morphism, it has no fixed point. Therefore it has no fixed
component in particular. Let H be a generic hyperplane over k and Cy =
U-H. The pry,(T - (V x H)) = pry(T - (V x Cy)) where the latter
intersection-product is taken on V x U (c.f. [25], Chap. VIII). Setting
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= (Cy) = pry(T-(VxCy)), £~ (Cy) is a generic member of A* over
k. Since f is a birational transformation, every component of f~!(Cy)
has to appear with coefficient 1. It follows that f~!(Cy) is an irreducible
curve by the theorem of Bertini (c.f. [23]], Chap. IX) and A* has no fixed
point. Moreover, py(V) = p, and dim A = dim A*.

Let Cy and Cj, be two independent generic members of A over k.
When Q is a component of Cyy n C}, it is a generic point of U over k
and is a proper component of multiplicity 1 on U. When that is so, we
get f~H(Cy) - f71(Cy) = f~'(Cy - C)) (c£. [25], Chap. VIII). Then
deg(Cy - Cy;) = deg(f~'(Cy) - f~1(C};)) and our proposition follows
from these and from Proposition 21 m|

3 A discussion on fixed components. Let V" be a complete
variety, non-singular in codimension 1 and X a divisor on V. We denote
by A(X)eq the reduced linear system determined uniquely by A(X).
Then A(X) = A(X)rea + F and F is called the fixed part of A(X). A
component of F is called a fixed component of A(X).

Lemma 3. Let V" be a complete variety, non-singular in codimension 1,
X a positive V-divisor and F = X! a;F; the fixed part of A(X). Assume
that [((a — 1)X+ F) > I((@ — 1)X) for some positive integer & > 1 and
that X # F. Then we have the following results: (a) there is a positive
divisor F' = 2\ alF; such that F — F' > 0, that I((a — 1)X + F') =
I((a —1)X +F)andthat l((a — )X + F' — F}) < ((« —1)X + F) for
all jwith F' — Fj > 0; (b) let I be the set of indices i such that a, # 0.
Then the F;, i € I, are not fixed components of A((a — 1)X + F').

Proof. (a) follows immediately from our assumption. Let k be an alge-
braically closed common field of rationality of V, X and for the compo-
nents of F. Let L be a generic divisor of A((@ — 1)X + F’)eq Over k.
The fixed part of A((@ — 1)X + F’) is obviously of the form X! b,F.
Suppose that b; # 0 for some i € I. Then L + EIIbSFS — F; is positive
and is a member of A((e@ — 1)X + F' — F;). Hence l((« — )X + F') =
I((a —1)X + F' — F;) which is contrary to our choice of F’. Our lemma
is thereby proved. m|
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Lemma 4. Using the same notations and assumptions of Lemma
let B = Hla;. Then there is the smallest positive integer vy satisfying
Blai —a;) —ya; = 0 fori € I and B(ai, — a; ) —ya;, = 0 for some ig € 1.
Moreover, A(BaX + y(a — 1)X) has the property that F;, is not a fixed
component of it.

Proof. Let Z be a generic divisor of A(X)eq over k. Then aX ~ (a —
DX +ZlaiFi +Z = (0 — 1)X + Z1dFi) + Zi(a; —d)Fi + F" + Z
for some positive divisor F” which does not contain the F;, i € I, as
components. By the above lemma, A((@—1)X+X;a.F;) has the property
that no F;, i € I, is a fixed component of it. Let m be a positive integer.
Then (8 + m)((a — )X + Zja.F;) + BZ + X;(Ba; — pa; — ma))F; +
BF" ~ BaX + m(a — 1)X. By what we have seen above. the F;, i € I,
are not fixed components of the complete linear system determined by
(B+m)((@ —1)X + Z;a.F;) + BZ. By the definition of 3, the B(a; — )
are divisible by the a!. Hence we can find the smallest positive integer
v as claimed in our lemma. Then there is an index ip € / such that F,
is not a component of X;(Ba; — Ba. — ya.)F;. From these our lemma
follows at once. |

Proposition 4. Let V" be a complete non-singular variety, X a positive
non-degenerate divisor on 'V and F the fixed part of A(X). Assume that
there is an integer a > 1 such that [((« — 1)X + F) > I((a — 1)X) and
that X # F. Letd = X" and u(X, @) = (d%a + d**'(a — 1))\. Then
there is a component F; of F such that it is not a fixed component of the
complete linear system determined by u(X, a)X.

Proof. We shall estimate 8 and y of Lemmall Let Z be as in the proof
of Lemma [l and /( , ) denote the intersection number. Since X ~
Z+3laiF;, X = 1(X0"D,Z) + = a;1(X"~V, F;) = d. Hence a; > 0
and 2 a; < d. It follows that B8 < I1;a; < d-y satisfies f(a; —a}) = ya].
Hence y < (a; —a}) < fa; < d®*!. Our proposition now follows from
these and from Lemmalfdl m|
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4 Estimation of some intersection numbers and its
application. Let W" be a non-singular projective variety and 7"~
a subvariety of W. Let Y be a non-degenerate divisor on W and k a
common field of rationality of W, T and Y. Let m be a positive integer
such that /[(mY) > 1 and Ay,...,A,n independent generic divisors of
A(mY) over k. Let the D; be the proper components of |[Aj| N -+ N |Ay]
on W and a; = coef.p,(A; ...As). Let I be the set of indices i such that
D; contains a generic point of W over k. Then we define the symbol
I(A;...A;/W, k) to denote X;a;. We shall denote by (A; ...A;/W, k) the
W-cycle Xja;D;. Let the E; be the proper components of [Aj| N --- N
|As| N |[T| on W and b; = coef.g,(A;...As - T). Let J be the set of
indices j such that E; contains a generic point of 7 over k. Then we
denote by (A;...As; - T/T,k) and by I(A,...As - T/T, k) the W-cycle
2sb;E; and the number X;b; respectively.

Lemma 5. Let W" be a non-singular projective variety and T"~' a
subvariety of W, both defined over a field k. Let Y be a non-degenerate
W-divisor, rational over k, and m a positive integer such that [(mY) > 1.
Let Ay,...,As, s < n, be s independent generic divisors of A(mY) over
k. Then we have the following inequalities: (a) I(Ay...As/W,k) <
m YW (b) I(Ay ... Ay - T/T, k) < m* 1Y), T).

Proof. We shall prove only (b). (a) can be proved similarly. We set
XhiE; = Ay % ...% A; = T. If the b; are zero for all i, our lemma is

obviously true. Hence we shall assume that the b; are positive.
Let r be a large positive integer such that rm Y is ample and Cy, ...,

Cs,CY,...,C! _ n—1Iindependent generic divisors of A(rm Y) over k.

Since (Ay... Ay T/T, k) < Ay =...%xAg+ T, it follows that [(A; ... Ay -
T/T,k) < Tb;. Since Y is non-degenerate, h;I(E;, Y"~5=1) > Zb;.
We have

(1/(rm)" ") deg{(A; % ...« A, + T) - C}...C"__} = bl (E;, Y"57D),
The left hand side can be written as

(1/r* (rm)" 1) deg{(rA; ... x rA; « T)C} ...C. |}
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The rA; are members of A(rm Y). Hence ((rA;), T, (C’])) is a spe-
cialization of ((C;), T, (C})) over k. Letm = Cj ... CS-T-C.’1 LC
and m’ an arbitrary specialization of m over k over the above specializa-
tion. Then, when Q is a component of 7Ay ... rA;,. T-C|...C _ |
with the coefficient v, Q appears exactly v times in m’ by the compati-
bility of specializations with the operation of inter-section-product (c.f.
[24]). It follows that deg(m) = (mr)" ' I(Y"~1),T) > deg{(rA; * ... *

rAg« T)Cy...Cl . }. (b) follows easily from these. O

As an application of Lemma[3] we shall prove the following propo-
sition which we shall need later.

Proposition 5. Let W" be a non-singular projective variety and Y a
non-degenerate divisor on W. Let m be a positive integer such that
I(mY) > Y®Wm'=! 4+ n — 1. Let f be a non-degenerate rational map
of W defined by mY. Then deg(f) # 0, i.e. the image of W by f has
dimension n.

Proof. By our assumption, [(mY) > Y"m* + sfor 1 < s <n— 1. Let
U* be the image of W by f. Then A(mY);eq consists of f~1(H) where
H denotes a hyperplane in the ambient space of U. Let k be a common
field of rationality of W, Y and f and A4, ..., A, (resp. By, ..., By) inde-
pendent generic divisors of A(mY) (resp. A(mY)eq) over k. As is well
known and easy to prove by means of the intersection theory. deg(U) <
I(B;...Bs/W,k). Moreover, I(B;...Bs/W,k) = I(A...A;/W,k) as
can be seen easily. Then we get deg(U) < m*Y" by Lemma[3l Let
A be the linear system of hyperplane sections of U. We have dim A <
m*Y™ 4 5—1 (c.f. [I7]). On the other hand, I(mY) = dim A(mY)+1 =
dim A(mY )rea+1 = dim A+ 1. This contradicts our assumption if s < n.
Our proposition is thereby proved. m|

5 A solution of (B3), (I). First, we shall fix some notations
which shall be used through the rest of this chapter. Let V3 be a polar-
ized variety of dimension 3 and P(m) = 2(3)73_ ;m’ the Hilbert character-

istic polynomial of V. Letd = X£/3 ). Asis well known, yg = d/3! As we
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pointed out in our introduction, we shall solve (B3) under the assump-
tion that (A%) has a solution. As we showed in Proposition [T} (A%) has
a solution when V is canonically polarized and the characteristic is zero.
Therefore, we shall assume that there are two constants cy and ¢, which
depend on the polynomial P(x) only, such that |[(mXy) — P(m)| < ¢
whenever m = co. We shall denote by X the set of polarized varieties
of dimension 3 such that P(x) is their Hilbert characteristic polynomial.
We shall use V to denote a “variable element” of X.

From our basic assumption, we can find a positive integer ey > co,
which depends on P(x) only, such that [(mXy) > dm? + 2 for m > e.
For such m a non-degenerate rational map of V defined by mXy maps V
generically onto a variety of dimension 3 by Proposition [l Moreover,
when that is so, A(mXy )req is irreducible, i.e. it contains an irreducible
member (c.f. [23], Chap. IX).

The following lemma has been essentially proved in the course of
the proof of Proposition [l

Lemma 6. Let r > eq and F' = X\b;F; the fixed part of A(rXy). Then
v < rid, Xb; < d and b; < rd.

When r is a positive integer, we shall set P(rx) = P,(x) to regard it
as a polynomial in x. For two positive integers r and m, we set 6(r,m) =
3(yor®)m? — (1/rd)m? + 2c + 2; &' (r,m) = 2(yor®)m? + 2¢ + 2.

Lemma 7. When a positive integer r is given, it is possible to find a
positive integer o, which depends on P(x) and r only, such that P,(m)—
P,(m— 1) > 6(r,m) and > &'(r, m) whenever m = o'

Proof. P,(m) = yor’m?+--- and P,(m)—P,(m—1) = 3(yor*)m>+- - -
Therefore such a choice of @’ is possible. |

Proposition 6. There are positive integers v, v, which depend on P(x)
only, and e, a, which depend on a member V of X, with the following
properties : (a)eg < e < v, a <V, (b)when F = leaiF i 1S the fixed part
of A(eoXy), there is a positive integer t such that t < 1 < ega’ and that
F1,..., Fyare not fixed components of A(eXy); (¢) P.(m)—P,(m—1) >
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6(e,m) and > &' (e,m) for m = «; (d) when F* is the fixed part of
A(eXy), [((a — 1)eXy + F*) = I((a — 1)eXy).

Proof. We can choose ¢, depending on P(x) only, such that P, (m) —
P, (m — 1) > 6(ep,m) and > &' (eg.m) whenever m > ap by Lemmal[7l
Assume that I((ap — 1)eoXv + F) > I((@o — 1)egXy). Then, after rear-
ranging indices if necessary, we may assume that F is not a fixed com-
ponent of the complete linear system determined by u(eoXy, @o)eoXy
by Propositiond] where

p(eoXv,ao) = (s*ao + s (ap — 1)! and s = ejd.

Let ey = eou(eoXy,ap) and F’ the fixed part of A(e;Xy). By
Lemma[7] we can find a positive integer @, depending on P(x) only, so
that P,, (m) — P,,(m—1) > §(e;,m) and > ¢'(e;, m) whenever m > «;.
Assume still that [((a; — 1)e1 Xy + F') > I((a1 — 1)e1Xy). Then the
complete linear system determined by u(e; Xy, a;)e; Xy has not F, as a
fixed component, after rearranging indices if necessary (c.f. Proposition
4.

Since [ < egd by Lemmal@] this process has to terminate by at most
egd — 1 steps. Positive integers e;, @; we choose successively can be
chosen so that they depend only on P(x). To fix the idea, let us choose
a; as follows. Let r; be the largest among the set of roots of the equations
P (x) — Po,(x — 1) — 8(ei, x) = 0, Py, (x) — Pe,(x — 1) — 8 (ej,x) =0
and let @; = |r;| + 1. Suppose that our process terminates when we
reach to the pair (e;, ;). Then t < | < ejd. From the definition of the
function u (c.f. Proposition M) and from our choice of the a;, we can
find easily upperbounds v, v for e;, @, which depend on P(x) only and
not on t. Moreover, when F” is the fixed part of A(e;Xy), Fi,...,F;
are not components of F” and I((a; — 1)e;Xy + F") = I[((a; — 1)e;Xy)
by our assumption made above. Our proposition follows from these at
once. O

6 A solution of (Bg), (IT). In this paragraph, we shall keep the
notations of Proposition [fl Let k be an algebraically closed common
field of rationality of V and Xy and T a generic divisor of A(eXy)req
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over k. A(aeXy) is canonically associated to the module L(@eXy). Let
K be a field of rationality of T" over k and L’ the module of rational
functions on 7T induced by L(@eXy). Let g be a non-degenerate rational
map of 7 defined by L', defined over K. Let U be the image of T by g. A
non-degenerate rational map of V defined by meXy maps V generically
onto a variety of dimension 3 since me > e > ¢y by Proposition [3
whenever m > 0. Since T is a generic divisor of A(eXy)wq Over k, it
follows that dim U = 2. Let & be a non-degenerate rational map of T
defined by the module of rational functions on 7 which is induced by
L(eXy). Then the image W of T by h has dimension 2 also as we have
seen above.
We shall establish some inequalities.

1
dim T, A(ceXy) > 5e3a2d — (1/ed)a® + 1. (6.1)

In fact, dim TrrA(aeXy) = l(aeXy) — l(@eXy — T) — 1 = l(@eXy) —
I((@—1)eXy + F*) — 1 = l(aeXy) — I((@ — 1)eXy) — 1 by our choice
of @ and e (c.f. Proposition[6). By Proposition[@] (c) and by the equality
vo = d/6, l(aeXy) — I((@ — 1)eXy) > P.(a@) — Po(a — 1) — 2¢ >
%e3a/2d — (1/ed)a® + 2. Our inequality is thereby proved.

The following formulas are well known and easy to prove by means

of the intersection theory (c.f. [23]], Chap. VII).

deg(g) - deg(U) = I(A1 - A2 - T/T, K),
deg(h) - deg(W) = I(B1 - B, - T/T, K), (6.2)
where Ay, A; (resp. By, By) are independent generic divisors of A(aeXy)

(resp. A(eXy)) over K.
Next we shall find an upperbound for deg(U).

deg(U)
deg(U)

(1/deg(g))(e?a’d — ¢*a®) if F* #0;  (6.3)

<
< (1/deg(g))e’a’d if F* =0.

In fact, A; ~ @eXy and Xy is non-degenerate. Applying Lemma[3]to our
case, we get (A} - Ay - T/T,K) < ezazl(X‘(,z), T)and T + F* ~ eXy.
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We have I(X\7, T) = 1(XP, exy) — 1(XP, F*) = ed — 1(x7, F).
(6.3) follows from these.

Let A be the linear system of hyperplane sections of U. From (6.3))
and from Theorem 3 in [I7], we immediately get

dimA < (1/deg(g))(e*a’d — e*a?) + 1 if F* #0;
dimA < (1/deg(g))e’a’d +1 if F* =0. (6.4)

In order to estimate an upper bound for deg(g), it is enough to do so
for deg(h). By doing so, we shall get

deg(g) < €'d. (6.5)

From (6.2) we getdeg(h) < I(B; - B, -T/T,K). By Lemmal[3 the latter

is bounded by eI (X‘(,z), T). This, in turn, is bounded by e’/ (X‘(,z), T +

F*) = e3d. This proves our inequality since deg(g) < deg(h).
Combining (6.4) and (6.3)), we get

dimA < (1/deg(g))e’a’d — (1/ed)a® +1 if F* #0.  (6.6)

As is well known, dim7TrrA(aeX) = dimA. Consider now the
case F* # 0 first. From (6.I) and 6.6), we get (1/deg(g))e’a’d —
(1/ed)a* + 1 > Je’a*d — (1/ed)a* + 1. Hence deg(g) < 2 and conse-
gently deg(g) = 1 and g is birational. From the definition of g, it follows
that a non-degenerate rational map f of V defined by aeXy induces on
T a birational map. When that is so, f is a birational map since 7 is
a generic divisor of the linear system A(eXy)rq of positive dimension
over k, a proof of which will be left as an exercise to the reader.

Next, consider the case when F* = 0. By Proposition 6] we have
P.(a) — P,(a — 1) > &'(e,@). Then we get dimTrrA(aeXy) >
(1/3)e*a*d + 1, a proof of which is quite similar to that of (6.I). Com-
bining this with (&4), we get (1/deg(g))e’a*d > (1/3)e’a’d. Hence
deg(g) < 3. This proves that deg(f) < 2, a proof of which will be left
to the reader again.

By Proposition [ e is bounded by v and « is bounded by v. Let
p1 = (vv)! We shall summarize the results of this paragraph as follows.
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Proposition 7. There is a constant py, which depends on P(x) only, such
that the following properties hold: (a) if A(eXy) has a fixed component,
p1Xy defines a birational transformation of V; (b) if A(eXy) has no
Jfixed component, a non-degenerate rational map of V defined by pi Xy
is of degree at most 2; (c) p; is divisible by e and «.

7 A solution of (33), (III). Propositionsolves our problem in
the case when A(eXy) has a fixed component. In order to treat the other
case, we shall review the concept of minimum sums of linear systems
and fix some notations.

In general, let W be a variety and .#, .4#" two modules of rational
functions of finite dimensions on W. We shall denote by A(.#), A(.A")
the reduced linear systems on W defined by these two modules. Let %
be the module generated by f - ¢ with f € .# and g € 4. Then the
reduced linear system A(Z) is known as the minimum sum of A(. )
and A(./#"). We shall denote this minimum sum by A(.Z) @ A(A).
When A is a reduced linear system on W and A’ the minimum sum of r
linear systems equal to A, we shall write @A for A'.

Let W’ be another variety and 8 a rational map of W’ into W. Let
I be the closure of the graph of S on W x W and A a linear system of
divisors on W. Let A’ be the set of W’-divisors 87! (Z) = pry,(T'- (W' x
Z)) with Z € A. Then A’ is a linear system of W’-divisors and this will
be denoted by 87! (A).

Lemma 7. Let f be a non-degenerate rational map of V defined by p1 Xy
and W the image of V by f. When N is the dimension of the ambient
space of W, the following inequalities hold:

P(p1) —c— 1< N<Pp) +c—1; deg(W) < pid.

Proof. N = I(p1Xy) — 1. Hence the first inequality follows from (A%).
Let k be a common field of rationality of V, Xy and f and Z,, Z,, Z3
independent generic divisors of A(p;Xy) over k. Then deg(W) < I(Z; -
Z, - 73/V,k) < pid by Lemma[3 Our lemma is thereby proved. m]

Corollary. Let kg be the algebraic closure of the prime field. There is
a finite union of irreducible algebraic families of irreducible varieties
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in projective spaces, all defined over kg, such that, when V € X and
when f, W are as in our lemma, W is a member of at least one of the
irreducible families.

Proof. This follows at once from our lemma and from the main theorem
on Chow-forms (c.f. [3]]). |

In the following lemma, we shall assume that global resolution,
dominance and birational resolution in the sense of Abhyankar hold for
algebraic varieties of dimension n (c.f. [33]]). These hold for character-
istic zero (c.f. [5]]) and for algebraic varieties of dimension 3 when the
characteristic is different from 2, 3 and 5 (c.f. [33]).

Lemma 8. Let ¥ be an irreducible algebraic family of irreducible vari-
eties in a projective space and k an algebraically closed field over which
& is defined. Then § can be written as a finite union | ; §jof irreducible
algebraic families, all defined over k, with the following properties: (a)
§i 0§ = J whenever i # j; (b) for each j, there is an irreducible
algebraic family $; of non-singular varieties in a projective space, de-
fined over k; (c) when W; is a generic member of §; over k, there is a
generic member W of $; over k and a birational morphism ¢; of W}
on W; such that W, ¢; are defined over an algebraic extension of the
smallest field of definition of W; over k; (d) when Wl.’ is a member of §,
[ the graph of ¢; and when (I, Wl.*/) is an arbitrary specialization of
(Ti, W) over k over the specialization W; — W/ ref. k, Wl.*/ is a member
of Oiand T’ i is the graph of a birational morphism gb; of Wl.*, on Wi, (e)
when C' is a generic hyperplane section of W over a filed of definition
of Wi, ¢'i_] (C!) is non-singular.

Proof. Let W be a generic member of & over k and K the smallest field
of definition of W over k. There is a non-singular variety W* in a projec-
tive space and a birational morphism ¢ of W* on W, both defined over K.
For the sake of simplicity, replace W* by the graph of ¢. Then ¢ is sim-
ply the projection map. Therefore, we can identify the graph of ¢ with
W*. A multiple projective space can be identified with a non-singular
subvariety of a projective space by the standard process. Chow-points
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of positive cycles in a multiple projective space can then be defined by
means of the above process. Let C be a hyperplane section of W, ra-
tional over K. W* can be chosen in such a way that ¢~!(C) = U is
non-singular. Let w, w*, u be respectively the Chow-points of W, W*,
UandT, T the locus of w, (w*,u) over k. An open subset T of T over
k is the Chow-variety of &. The set T* of pomts onT corresponding to
pairs of non-singular varieties is k-open on T" as can be verified with-
out much difficulty. Let Z be the locus of (w, w*,u) over k on T x T*.
Let T'; be the set of points of 7" over which Z is complete (i.e. proper).
Then T is non-empty and k-open (c.f. [23], Chap. VII, Cor., Prop. 12).
The set-theoretic projection of the restriction Z; of Zon T x T* on T}
contains a non-empty k-open set Fj. Let H; be the locus of w* over k.
Then the families &, $; defined by Fy, H; satisty (b), (c), (d) and (e)
of our lemma which is not difficult to verify. 7y — F| can be written
as a finite union of locally closed irreducible subvarieties of 7', defined
over k, such that no two distinct components have a point in common.
Then we repeat the above for each irreducible component to obtain the
lemma. |

Corollary. There are two finite sets of irreducible algebraic families
{&i}, {D:} with the following properties : (a) when V € X and f a non-
degenerate rational map of V defined by p| Xy, there is an index i such
that the image W of V by f is a member of §;, (b) every member of the
9 is a non-singular subvariety of a projective space; (c) the &; and the

9, satisfy (c), (d) and (e) of our lemma.

Proof. This follows from the Corollary of Lemma[7l Lemmal§Jand from
the basic assumptions on resolutions of singularities. m|

Lemma 9. Let the characteristic be zero, V € X and f a non-degene-
rate rational map of V defined by p1Xy. Let W be the image of V by
f. Then there is a non-singular projective variety W* and a birational
morphism ¢ of W* on W with the following properties: (a) when k is a
common field of rationality of V, Xy, f and ¢ and when Cy is a generic
hyperplane section of W over k, $~'(Cyw) is non-singular; (b) when Cy
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and Cy, are independent generic over k, ¢~ (Cw) - ¢~ (C},) is non-
singular; (c) there is a positive integer nt, which depends only on P(x),
such that |p, (¢~ (Cw))| < .

Proof. When a non-singular subvariety of a projective space is special-
ized to another such variety over a discrete valuation ring, the virtual
arithmetic genus is not changed (c.f. [2I], [4]]). Take the &;, $; as in the
Corollary of Lemma [9] and take W* from a suitable ;. Then there is
a birational morphism ¢ of W* on W, satisfying (a). (c) follows from
(a) when we take the above remark into account. (a) and (b) follow eas-
ily also from the theorem of Bertini on variable singularities since the
characteristic is zero. |

Lemma 10. There is a constant py, which depends on P(x) only, such
that mp Xy has the following properties for m = pj, provided that it
does not define a birational map and the characteristic is zero: (a) when
f" is a non-degenerate rational map of V defined by mp\ Xy, k' a field of
rationality of V and Xy and T a generic divisor of ®" A(p1Xy) over K/,
T is irreducible and the effective geometric genus of the proper trans-
form of T by ' is at least 2; (b) deg(f’) = 2 and f induces on T a
rational map of degree 2.

Proof. Let f, W, W*, ¢, k be as in Lemmal[I0l Let Cy be generic over k
and U = ¢~ (Cy). Let U’ be a generic specialization of U over k, other
than U. By the modular property of pﬂ, we get p,(mU) = mp,(U) +
2’1"*1 pa(sU'-U). Applying the modular property again to p,(sU’-U) on
U, which is non-singular by Lemma [[0] we get the following equality:

1
spa(U' - U) + Es(s — DU - U)? —5—1=p,(sU"-U).

From the definition of U, it is clear that U®) > 0 on W*. Hence (U’ -
U)? = U®) > 0. Moreover |p,(U)| < x, by Lemma[I0l Using these

"This can be proved exactly in the same way as Lemma 5 of [31] because of our
Lemmal[IQ
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and 2’1"*1s(s —1)=(m—1)m(2m —1)/6, we get
pa(mU) > —m(n+ 1) —m(m—1) + (m — 1)m(2m — 1)/12 + 1.

We can find a positive integer p,, which depends on P(x) only, such
that the right hand side of the above inequality is at least 2 whenever
m = p>. When that is so, any member A of A(mU) satisfies p,(A) > 1
since the virtual arithmetic genus of divisors is invariant with respect to
linear equivalence.

Let A be the linear system of hyperplane sections of W. Clearly
¢~ (@"A) = ¢"p~'(A) and the latter contains a non-singular member
A by the theorem of Bertini on variable singularities. Let pg, pa, g
denote respectively the effective geometric genus, effective arithmetic
genus and the irregularity of A. Then ¢ = p, — p, and p,(A) = p,.
Since g > 0, it follows that p, > 1 whenever m > p,. When C,, is a
generic divisor of @"A over k, we can take for A the variety ¢~ (C,).
Therefore, the effective geometric genus of Cy, is at least 2 when m >
P2-

Assume that f” is not birational for some m > p, and rational over
k. Then A(mp;Xy) has no fixed component and deg(f’) = 2 by Propo-
sition[7l By the same proposition, the same is true for A(p;Xy) and f.
Let W’ be the image of V by f’. Since deg(f) = deg(f), there is a bi-
rational transformation / between W’ and W such that f = i o f/ holds
generically. Then f~!(C,) = T is irreducible (c.f. [25], Chap. IX)
and is a generic divisor of @" f~1(A) = ®"A(p1Xy) over k. Let L be
the proper transform of T by f’. C,, and L are birationally correspond-
ing subvarieties of W and W’ by 4! and, when that is so, the effective
geometric genus of L is at least 2. Our lemma follows easily from this.

Let now f” denote a non-degenerate rational map of V defined by
201Xy, and assume that f’ is not birational. By Proposition [7, deg
(f") = 2 and A(p2p1Xy) has no fixed component. By Lemma [T} the
complete linear system contains a linear pencil whose generic divisor
T has the property that its proper transform D by f’ has the effective
geometric genus which is at least 2.

Let f be a non-degenerate rational map of V into a projective space
defined by mpyp1 Xy and assume that f has still the property that deg
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(f) = 2. Let E be the proper transform of 7 by f and g the rational
map induced on 7 by f. Then D and E are clearly birationally equiv-
alent and the effective geometric genus of E is at least 2. As in (&),
dim Trr A(mpop1 Xy) = ((mT)—I(mT —T)—1 > Py, (m)— Py, p, (m—
1) — 2¢ — 1. The leading coefficient of the right hand side of the above
inequality is given by %(p] 0)3d. |

Let K be the smallest field of rationality of T over k and Z;, Z;
two independent generic divisors of A(mT) over K. Then exactly as in
©2), we get deg(g)deg(E) = I(Z, - Zy - T/T,K). By Lemmal3 the
latter is bounded by (p1p7)*m?d. By Lemmal[[Iland by our assumption,
deg(g) = 2. Hence deg(E) < 1(p1p2)*m?d. Let A be the linear system
of hyperplane sections of E. By PropositionBl dim A < 1(p102)*m?d +
1. Since g is defined by TryA(mT), it follows that dim Try A(mT) =
dim A. Therefore,

1
PPIPZ(m) - PPIPz(m —1)=2c—-1< Z(Plpz)3m2d + L.

Since the leading coefficient of the left hand side is %(p 102)d, we can
find a constant p3, which depends on P(x) only, such that the above
inequality does not hold for m > p3. For such m, g and hence f has
to be birational. Setting %p4 = p1p2p3 and combining the above result
with that of Proposition[7, we get

Theorem 1. Let the characteristic be zero, V2 a polarized variety, P(m)
= x(V, Z(mXv)) and assume that (A%) is true. Then there is a constant
04, which depends on P(x) only, such that mXy defines a birational
transformation of V. when m = py.

Corollary. Let the characteristic be zero and V3 be canonically polar-
ized. Then (B3) is true.
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Chapter II. The Problem (C,).

In this chapter, we shall solve (C,) for canonically polarized vari-
eties V" under the following assumptions: (A,) and (B,) are true; theo-
rems on dominance and birational resolution in the sense of Abhyankar
hold for dimension n. As we remarked already, this is the case when the
characteristic is zero (c.f. [5]]) or when n = 1,2, 3 if the characteristics
2,3 and 5 are excluded for n = 3 (c.f. [33])).

8 Preliminary lemmas.

Lemma 11. Let U and U’ be two non-singular subvarieties of pro-
jective spaces and g a birational transformation between U and U’.
Then we have the following results: (a) g(K(U)) + E' ~ K(U’) where
E' is a positive U'-divisor whose components are exceptional divisors
for g1 (b) I(mK(U)) = I(mK(U")) for all positive integers m; (c)
AmR(U")) = A(g(mK(U))) + mE' for all positive integers m

Proof. These results are well known for characteristic zero. (b) and
(c) are easy consequences of (a). (a) can be proved as in [33] using
fundamental results on monoidal transformations (c.f. [29], [33]]) and
the theorem of dominance. ]

Lemma 12. Let U be a non-singular subvariety of a projective space
such that Cy ~ mS(U) for some positive integer m. Let U’ be a non-
singular subvariety of a projective space, birationally equivalent to U.
Then mR(U’) defines a non-degenerate birational map h' of U', map-
ping U’ generically onto a non-singular subvariety U* of a projective
space such that Cyx ~ m{(U*). Moreover, U and U* are isomorphic.

Proof. Let g be a birational transformation between U and U’. Then
g(Cy) ~ gmK(U)) and A(g(K(U))) + mE' = A(mR(U’)) where E’
is a positive U’-divisor whose components are exceptional divisors for
¢~ ! by Lemma[[2l Assume first that the set of hyperplane sections of U

*A subvariety of codimension 1 of U’ is called exceptional for g=! if the proper
transform of it by g~ is a subvariety of U of codimension at least 2.
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forms a complete linear system. Then g(Cy) is irreducible for general
Cy (c.f. [23], Chap. IX). Hence mE’ is the fixed part of A(mK(U")).
Since [(mR(U)) = I(mK(U’)) by Lemma[I2] it follows that all members
of A(g(mK(U))) are of the form g(Cy). This proves that g~ is a non-
degenerate rational map defined by mK(U’). If our assumption does
not hold for U, apply a non-degenerate map of U, defined by Cy, to
U. This amp is obviously an isomorphism and the image of U by this
clearly satisfies our assumption. O

Lemma 13. Let U" (resp. U') be a complete non-singular variety,
K(U) (resp. K(U")) a canonical divisor of U (resp. U') and O a dis-
crete valuation ring with the quotient field ko and the residue field ké).
Assume that U, K(U) are rational over ky and that (U',K(U")) is a
specialization of (U,R(U)) over O. Assume further that the follow-
ing conditions are satisfied: (i) there is a positive integer mgy such that
I(moK(U)) = l(moK(U")); (ii) a non-degenerate rational map h (resp.
') defined by moK(U) (resp. moSK(U")) is birational; (iii) W' (U') = W’
is non-singular and Cy ~ moQ(W'). Then the following two state-
ments are equivalent: (a) There is a birational map g of U, between
U and a non-singular subvariety W* of a projective space such that
Cws ~ tR(W*) for some positive integer t and K(W')") = {(W*)();
(b) deg(h(U)) = deg(W' (U")). Moreover, when (a) or (b) is satisfied,
h(U) = W is non-singular, Cyy ~ moQ(W) and K(W)(") = (W),

Proof. First assume (a). h is uniquely determined by moS(U) up to a
projective transformation. Therefore we get deg(h(U)) > deg(h'(U’))
by PropositionZ.J] of the Appendix since specializations are compatible
with the operation of algebraic projection (c.f. ([24]). Let the Z; be n
independent generic divisors of A(moR(U)) over kg. Then deg(h(U)) =
I(Z; ...Z,/U, ko) since h is birational. Let dy = K(W')") = {(W*)().
Then deg(h'(U")) = my"dy by (iii). Hence deg(h(U)) = mg"dy. By
Lemma [[1l A(g(mK(U))) + mE* = A(mK(W*)) for all positive m
where E* is as described in the lemma. Let L be a common field of
rationality of W* and g over ko and the Y; (resp. Y) n independent
generic divisors of A(mK(U)) (resp. A(mK(W*))) over L. Then we

300



On Canonically Polarized Varieties 301

have I(Y...Y,/U,L) = I(Yy...Y/W* L). By Lemmal[3
I(YE...YF/W*, L) < m'dp.

Setting m = my, we therefore get I(Y;...Y,/U, L) < my"dy. The left
hand side of this is obviously /(Z; ...Z,/U,kp). Combining the two
inequalities we obtained, we get deg(h(U)) = mo"dy = deg(h' (U’)).
Hence (a) implies (b).

Now we assume (b). Let W = h(U), C = Cy, C' = Cyr. By
Proposition 2.]] of the Appendix and by the compatibility of specializa-
tions with the operation of algebraic projection, we get (U, }(U), W) —
(U, ](U"),W’) ref. O. Since W’ is non-singular, W is non-singular
too. Since & is defined by moR(U), there is a positive U-divisor F
such that h=1(C) + F ~ moR(U). Hence there is a positive divisor
T with h(mgR(U)) ~ C + T. There is a positive divisor E such that
C+T+E ~ myS(W) by Lemmal[ll Let C”+T’+ E’ be a specialization
of C + T + E over O over the specialization under consideration. Since
linear equivalence is preserved by specializations (c.f. [24]), C' ~ C”
and C' + T' + E' ~ mpR(W') (c.f. Lemmal[LIl of the Appendix; U, U’
are clearly non-ruled since I[(mR(U)), [(mR(U’)) are positive for large
m). Since moR(W') ~ C’ by (iii), it follows that 7/, E’ are positive and
T" + E' ~ 0. This proves that T = E = 0 and moR(W) ~ C. Our
lemma is thereby proved. O

9 A proof of (C n). In order to solve (C,), we shall fix some no-
tation. We shall denote by X the set of canonically polarized varieties
with the fixed Hilbert characteristic polynomial P(x) and by V" a “vari-
able element” of . As we have shown in Lemma [T} there is a root p
of the equation P(x) — (—1)"y, = 0 such that (V) = pXymod G,.
Then X can be expressed as a union of subspaces X, corresponding to
p. In order to solve (C,), we may restrict our attention to X,. From our
basic assumptions stated at the beginning of this chapter, there is a con-
stant ps, which depends on P(x) only, having the following properties:
(a) higher cohomology groups of .#(Y) vanish and /(Y) > 0 whenever
Y = mXymod G, and m > ps; (b) such Y defines a birational transfor-
mation of V. When V € X, and when Xy is replaced by &(V), (a) and
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(b) still hold since K(V) = pXymod G, and p is a positive integer by
the definition of a basic polar divisor. From now on, we shall restrict
ourselves to the study of X, and V shall denote a “variable element” of
this set. We set dg = (V)™ and pg = p - ps.

Let f be a non-degenerate birational map of V defined by psK(V).
f maps V into the projective space of dimension P(pg) — 1 and the
degree of the image is bounded by p6"X$,") = ps"dy, which follows
easily from Lemma 3l When we do this for each member of X,, we
see that each such image is contained in a finite union § of irreducible
algebraic families of irreducible varieties by the main theorem on Chow-
forms (c.f. [3]]). Let A’ be the set of images of members of %, in § thus
obtained. Applying Lemma[§ to &, we get immediately the following
results.

Lemma 14. There are finite unions | J; &; and | J; 9i of irreducible al-
gebraic families of irreducible varieties in projective spaces with the
following properties: (a) each §; contains some members of W and A
is contained in Ui Sir (b) Ui 9; consists of non-singular varieties, ()
when W is a member of §;, there is a member U of 9; and a birational
morphism of U on W.

Let $ be a finite union of irreducible algebraic families of positive
cycles in projective spaces and u a set of members of $. We shall say
that  is u-admissible if each component family of $ contains some
members of 1. We shall denote by 2 the set of members U of [ J; 9; such
that there is a birational morphism of U on a member of A'. Then Ui i
is A-admissible by Lemma T3l Elements U of U satisfy the following
three conditions (c.f. Lemma [13):

(I) mK(U) defines a birational transformation f,, of U for large m;
(I) f,(U) is non-singular for large m;
() I((ps + m)K(U)) = Py(ps + m) for m > 0.

We shall find a subset of | ); 9i, containing U, satisfying the above three
conditions, which can be expressed as a finite union of irreducible al-
gebraic families of non-singular varieites. From this we shall recover
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members of Z,, in some definite projective space, up to isomorphisms, in
such a way that hyperplane sections are some fixed multiple of canoni-
cal divisors. This is the main idea of the rest of this paragraph.

Lemma 15. There is a finite union | J; 3 of irreducible algebraic fam-
ilies contained in | J; i having the following properties: (a) Uj Jjis
W-admissible; (b) every member of | J 3 satisfies the condition (III).

Proof. Since Ui 9; is A-admissible, there is a member V of X, and a
member U of §; such that V and U are birationally equivalent. Then
I((ps + m)K(V)) = I((os + m)K(U)) for all positive integers m by
Lemmal[l2 Setting my = ps, m; = ps + i, gm, = P,(ps + i) and then
gm; = Pp(ps5+1)+ 1 in the Corollary to Proposition[LIlin the Appendix,
we get our lemma easily. |

Lemma 16. There is a finite union | J; J; of irreducible algebraic fam-
ilies contained in | J; 3; having the following properties: (a) | J; Ji is
A-admissible; (b) every member of Ui 3 satisfies the condition (1).

Proof. Let k be a common field of definition of the component families
Ji. Let Up € Jj n W and U a generic member of J; over k. mK(Up)
defines a birational map for large m by Lemma[I2l Therefore mK(U) de-
fines a rational map f of U such that f does not decrease the dimension
by Lemma [Tl and the Corollary to Proposition 2.1] of the Appendix.
Then we see that mR(U) defines a birational map for large m which is
an easy consequence of the technique of normalization in a finite alge-
braic extension of the function field (c.f. [25], Appendix I).

Fix a positive integer mg such that moR(U), moR(Uy) both define bi-
rational transformations. Then moR(U) is, in particular, linearly equiva-
lent to a positive U-divisor Y. Consider an algebraic family with divisors
over k such that (U, Y) is a generic element of it over k and apply Propo-
sition 2.2l and its Corollary Bl of the Appendix to it (c.f. also Lemma[L.T]
of the Appendix). Then we see that there is an irreducible algebraic fam-
ily S; such that the Chow-variety of S; is k-open on that of J; and that
moR(U’) defines a birational map of U’ whenever U’ is in 3; -3 S; is
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a finite union of irreducible algebraic families. Apply the above proce-
dure to all those components of J; —J’, which contain some members of
A. This process cannot continue indefinitely. Doing the same for each
J;, we get easily our lemma. m|

Lemma 17. Let & be a finite union of irreducible algebraic families in
projective spaces and B a set of members of }. Assume that the fol-
lowing conditions are satisfied : (1) | consists of non-singular varieties;
(1) & is B-admissible; (iii) B is a subset of N; (iv) every member of
R satisfies the conditions (I) and (III). Then there is a finite union |*
of irreducible algebraic families, contained in K, having the following
properties: (a) 8* is B-admissible; (b) for each component K} cf K7,
there is a U; € 8T N B and a positive integer m; > ps such that m;}(Uy;)
defines a non-degenerate birational map h; of U; such that h;(U;) = W;
is non-singular and that Cy, ~ mi&(W;); (c) when U is a generic mem-
ber of ] over a common field k of definition of the K, m;R(U) defines
a non-degenerate birational map h of U such that deg(W;) = deg(W),
where W = h(U); (d) for each member U" of K%, miR(U’) defines a
birational map.

Proof. We proceed by induction on the dimension of &. When the di-
mension of K is zero, our lemma is trivial. Therefore we assume that our
lemma is true for dimension up to s — 1 and set dim & = s. In order to
prove our lemma, it is clearly enough to do so when & is an irreducible
algebraic family.

Let Y be a positive divisor on U such that Y ~ ps&(U), where U
denotes a generic member of & over k. Then we consider an algebraic
family with divisors defined over k such that (U, Y) is a generic member
of it over k and apply Corollary [lto Proposition 2.2]in the Appendix to
our situation. By doing so, we can find a positive integer myg such that
mK(U’) defines a birational map for every member U’ of & whenever
m = my.

Let U; be a member of B. Since B is contained in A, there is a posi-
tive integer my = ps, mgy with the following properties: m](U;) defines
a non-degenerate birational map h; of Uy and W) = h;(U;) is non-
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singular; Cy, ~ m&(W;) (c.f. Lemmal[I3). Let & be a non-degenerate
birational map defined by m;}(U). Since A is determined uniquely by
mK](U) up to a projective transformation, we see that deg(h(U)) >
deg(hi(Uy)) = deg(W;), Wy = hi(U,), by applying Proposition 2.1]
of the Appendix and using the compatibility of specializations with the
operations of algebraic projection.

Let &’ be the set of members U’ of & with the following properties:
when /' is a non-degenerate birational map of U’ defined by m;K(U’),
then deg(h'(U")) < deg(W;). We claim that ) > B and is a finite union
of irreducible algebraic families. We consider the same algebraic fam-
ily with divisors as above, which is defined over %, having (U,Y) as a
generic element over k. In applying Corollary [{lto Proposition22]in the
Appendix to our situation, we let deg(h;(U;)) = so. In view of Lemma
[LTlof the Appendix, it is then easy to see that the set of Chow-points of
members of &' is a closed subset of that of & over k. Let U” be a member
of B. Then it is contained in A and there is a member V” of %, such that
there is a birational map f” of V”, mapping V" generically onto U”. Let
k' be a common field of rationality of U”, V" and f over k. By Lemma
I A(f"(miK(V"))) + mE = A(m;K(U")) where E is a positive U”-
divisor whose components are exceptional divisors for f”~'. Let h” be a
non-degenerate rational map of U” defined by m; R (U”) and the Z; (resp.
Z!) independent generic divisors of A(miR(V")) (resp. A(miK(U")))
over kK. Then the above relation between two complete linear systems
show that I(Z; ...Z,/V",k") = I(Z} ...Z}/U" k"). Moreover, h" is bi-
rational by our choice of my, deg(h”(U")) < I(Z}...Z,/U" k') and
1(Zy...Z,/V" k') < m"dy by Lemmal[3 It follows that deg(h” (U")) <
my"dy. On the other hand, U is the underlying variety of some mem-
ber of X, by Lemma[I3l Consequently deg(W;) = m/dp by the same
lemma. This proves that U” is contained in &’. Our contention is thereby
proved. |

Let &” be the union of those components of & which contain U .
Denote by U” now a generic member of a component of &” over k. As
before, from Proposition 2.1 and from the compatibility of specializa-
tions with the operation of algebraic projection, we see that deg(h” (U"))
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> deg(h(U;)) and consequently deg(h”(U")) = deg(hi(U;)). More-
over, 8” is &” ~ B-admissible.

We have B = (] n B) + (] —]”) nB). ]} — K” is a finite union
of irreducible algebraic families. Call & the union of those components
of & — K" which contain some members of B and set B; = BN K. We
have dim & > dim &. By our induction assumption, (a), (b), (c), (d) are
satisfied by &1, B;. We have shown that &, 8” n B satisfy these too by
Lemma(I4]l Thus our lemma is proved.

From our lemma, Lemma[I4]and from Lemmal[L Il of the Appendix,
we get

Corollary 1. U and h in (c) of our lemma further satisfy the following
properties : W = h(U) is non-singular, Cyy ~ m;{(W) and (W)™ =
KW)" = dj.

Corollary 2. In our Lemma [l and Corollary [l above, m; may be re-
placed by a positive integer which is a multiple of m;.

Proof. This is an easy consequence of Lemma [Tl m|

Theorem 2. Let V" be a canonically polarized variety and P(x) its
Hilbert characteristic polynomial. Assume that (A,) and (B,) have so-
lutions for V and that theorems on dominance and birational resolution
in the sense of Abhyankar hold for dimension n. Then there is a constant
07 which depends on P(x) only such that p7Xy defines a non-degenerate
projective embedding of V.

Proof. As we pointed out at the beginning of this paragraph, it is enough
to prove this for V € X,. By Lemmas the finite union 3 of
irreducible families constructed in Lemmal[L6] together with 2, satisfies
the requirements of Lemma [[7l Therefore, there is a finite union I of
irreducible algebraic families satisfying the conclusions of Lemma [T71
For the sake of simplicity, we shall say that a non-singular projective
variety D has a property (*) with respect to t' if  R(D) defines a non-
degenerate birational map /& of D such that A = k(D) is non-singular, is
the underlying variety of a member of X and that C4 ~ 'R(A).
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Let the Mi; be the components of Mt and the U;, m; as in Lemma
7 (b) (]7 in the Lemma is our 9t;). By Corollary 2l of Lemma [I7, m;
may be replaced by ¢ = II;m; or by any positive multiple of ¢. Let k be
an algebraically closed common field of rationality of the M; and U a
generic member of Mi; over k. U has the property (*) with respect to ¢
by Lemma[I7land its corollaries. Let U’ € I; and 4’ a non-degenerate
birational map defined by tR(U’). Assume that /2’ has the properties that
deg(W' (U")) = deg(h(U)) and that &’ (U’) is non-singular. A is uniquely
determined by r&(U) up to a projective transformation. Therefore, we
may assume without loss of generality transformation. Therefore, we
may assume without loss of generality that W = h'(U’) is a special-
ization of W = h(U) over k by Lemma [[.T] and Proposition 2.1] of the
Appendix, since specializations are compatible with the operation of
algebraic projection. Since self-intersection numbers and linear equiv-
alence are preserved by specializations, it follows that W’ has also the
property (*) with respect to 7 (c.f. Lemma [Tl of the Appendix and [2]]).

Let Y be a member of A(tR(U)) and consider an algebraic family
with divisors, defined over k, with a generic element (U, Y) over k. We
apply Corollary [3] to Proposition in the Appendix to this. By do-
ing so, we can find an irreducible algebraic family i, of non-singular
varieties, having the following properties: (a) the Chow variety of I
is k-open on that of M;; (b) when U’ € M!, tR(U’) defines a non-
degenerate birational map of U’ such that #/(U’) is non-singular; (c)
deg(h'(U’")) = deg(h(U)). Let M' = [ J; M} and A* = A~ D', As we
have shown above U’ € U* has the property (*) with respect to z.

Let B = (M — ) N A-M — M is a finite union of irreducible
algebraic families. When we remove from it those components which
do not contain members of B, we get a finite union N of irreducible
algebraic families, which is contained in i, B-admissible and satisfies
dim M > dim N. When we apply our process to 9t and B and continue
it, applying Lemma[I7] and its corollaries, it has to terminate by a finite
number of steps. Consequently, we can find a positive integer ¢ such
that a member of B has the property (*) with respect to 7. When we set
p7 = t-t' - p, this constant satisfies the requirements of our theorem. O
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Corollary. Let the characteristic be zero, V? a canonically polarized
variety and P(x) the Hilbert characteristic polynomial of V. Then (C3)
is true for V? and P(x).

Proof. This follows easily from our theorem, Theorem[Iland from Propo-
sition [T} i

Appendix

1 Lemma 1.1. Ler U" and U’ be non-singular and non-ruled subva-
rieties of projective spaces such that U’ is a specialization of U over a
discrete valuation ring O. Let K(U) be a canonical divisor of U and
(U',Y) a specialization of (U,](U)) over O. Then Y is a canonical
divisor of U'.

Proof. When n = 1, the complete linear system of canonical divisors
on U (resp. U’) is characterized by the fact that it is a complete linear
system of positive divisor of degree 2g — 2 and dimension at least g — 1.
Hence our lemma is easily seen to be true in this case.
Assume that our lemma is true for dimensions up to n — 1. Let k
(resp. k') be a common field of rationality of U and &(U) (resp. U’ and
295  Y)and C, C* (resp. C’, C'™) independent generic hypersurface sections
of U (resp. U’) over k (resp. k'). Then (U’, Y, C’,C"") is a specialization
of (U,K(U),C,C*) over O. C - (C* + K(U)) is a canonical divisor
of C (c.f. [31]) and this has the unique specialization C’ - (C'* + Y)
over the above specialization with reference to O, since specializations
and intersection-product are compatible operations. It follows that C” -
(C"™ +Y) is a canonical divisor of C’. When R(U’) is a canonical
divisor of U’, rational over k', C’ - (C'* +Y) ~ C' - (C"* + K(U")). C’
is a generic hypersurface section of U’ over a filed of rationality of C'*
over k’. Moreover, when the degree of the hypersurface is at least two,
a generic linear pencil contained in the linear system of hypersurface
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sections consists of irreducible divisors (c.f. [19]). It follows that ¥ ~
K(U’) by an equivalence criterion of Weil (c.f. [27], Th. 2B

We shall consider a family of varieties with divisors on them. Let A
be an irreducible algebraic family of subvarieties in a projective space, A
the Chow-variety of it and a a generic point of A over a field of definition
k of A, corresponding to a variety U(a). Let X(a) be a divisor on U(a)
and X(a) = X(a)t — X(a)~ the reduced expression for X(a) where
X(a)*, X(a)~ are both positive divisors. Let u (resp. v) be the Chow-
point of X(a)™ (resp. X(a)™) and z = (u,v). Let A’ be the locus of
(a,z) over k. When (&',7') is a point of A’, @’ defines a cycle U(d')
in the projective space uniquely such that the support of Y is contained
in the support of U(a’). When every member of U is irreducible. A’
defines an irreducible family whose member is a variety with a chain of
codimension 1 on it. We shall call this an irreducible family of varieties
with chains of codimension 1. When k' is a field of definition for A’, we
shall call k" a field of definition or rationality of the family. O

Proposition 1.1. Let W be an irreducible algebraic family of non-sin-
gular varieties U(d') with divisors X(d') and {qu,} an increasing se-
quence of positive integers starting with q,,, > 1. Assume that there
is a member (U(ap), X(ao)) such that [(m;X(ao)) = qm, for all i. Let
(U(a), X(a)) be a generic member of W over a common field k of ratio-
nality of W, ay and assume that [(m;X(a)) = gm, for 0 < i < s— 1 but
I(msX(a)) < gm,. Then, there is a finite union € of irreducible families,
defined over k and contained in U, such that a member (U(d'),X(d'))
of Wis in € if and only if (m;X(a'")) = g, for 0 <i < s.

We shall prove this by a series of lemmas.

Let dimU(ag) = n and Hy,...,H,_; independent generic hyper-
surfaces of degree f over k. Let HO = H,...H,_|and H(l), ... ,H(’) r
independent generic specializations of H(!) over k. For each point ' of

$In [27], Th. 2, it is claimed that ¥ — S(U’ ~ Zm,T; where the T; are some sub-
varieties of U’. But these T; are components of reducible members of such a pencil
contained in the linear system of hyperplane secitons. We can eliminate them using
linear systems of hypersurface sections.
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A, weset U(d') - HY) = C(a'); whenever the intersection is proper. We
take r and ¢ sufficiently large.

Lemma 1.2. Let B be the set of points a’ on A’ satisfying the following
conditions: (1) C(d'); is defined for all i; (ii) the C(a’); are non-singular
for all i; (iil) X(d') and C(d'); intersect properly on U(d') for all i. Let
k' be an algebraically closed common field of rationality for the H
over k. Then B is a k'-open subset of A'.

Proof. These are well-known and easy exercises. Therefore, we shall
omit a proof. O

We shall show that the set of points @’ on B such that [(m X (d’)) =
gm, forms a k’-closed subset of B. We can cover A’ by open sets B
by changing the H (). Therefore our problem is reduced to the similar
problem on the family defined by B. In order to solve our problem on
this family we may replace B by a variety with a proper and surjective
morphism on it. Therefore, we may assume without loss of generality
that the C(a’); carry rational points over k' (da’).

For each @' in B, let J(d’); be the Jacobian variety of C(a’); and
['(d'); the graph of the canonical map ¢(a’); of C(d’); into J(da');. We
assume that these are constructed by the method of Chow so that these
are compatible with specializations (c.f. [, [8]]). In order to simplify
the notations, we simply denote by I(Y - C(d’);) the Abelian sum of
Y-C(d);on J(d');, whenever Y is a U(a’)-divisor such that Y - C(da’); is
defined. It should be pointed out here that the J(a); and the I'(d’); are
rational over k’(a’).

Let P be the ambient projective space of the U(a) and F* the closed
subset of a projective space, consisting of Chow-points of positive cy-
cles in P which have the same dimension and degree as members of
A(myX(ap)). There is a closed subset 7* of B x F* such that a point
(a,y) of B x F*isin T* if and only if U(a) carries the cycle Y(y) de-
fined by y (c.f. [3]). Let F be the geometric projection of 7* on F* and
T = Bx FnT* Tisak'-closed subset of B x F. Let a be a generic
point of B over k’. Since the J(da'); are defined over k’(a’) for @’ € B,
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there is a subvariety Z of B x I1;P;, where the P; are ambient spaces for
the J(a);, such that Z(a) = I1;J(a); (c.f. [23], Chap. VIII).

Lemma 1.3. Let U and U’ be non-singular subvarieties of a projective
space such that U’ is a specialization of U over a field k. Let X (resp.
X') be a divisor on U (resp. U’) such that (U',X") is a specialization
of (U,X) over k. Let u' be a given point of U'. Then there are divisors
D, E (resp. D', E') on U (resp. U’) with the following properties: (a)
X~D—-—EonUandX ~ D' — E' on U’; (b) the supports of D, E’
do not contain u'; (c) (U', X', D', E') is a specialization of (U, X, D, E)
over k.

Proof. Let C (resp. C’) be a hypersurface section of U (resp. U’) by a
hypersurface of degree m. Then, as is well known, X + C (resp. X’ +C”)
is ample on U (resp. U') and [(X + C) = (X' + C'), [(C) = I(C") when
m is sufficiently large (c.f. [23]], Chap. IX, [31l], [21], [4]]). Denote by
G(#) the support of the Chow-variety of the complete linear system de-
termined by *. Since linear equivalence is preserved by specializations
(c.f. [24]), it follows that (U, X', G(X’ + C’),G(C")) is a specialization
of (U, X,G(X + C),G(C)) over k. When a point x’ in G(X’ + C’) and a
point y" in G(C) are given, there is a point x in G(X + C) and a point y in
G(C) such that (x,y) — (x,)) ref. k over the above specialization. We
can choose x, ¥ so that the corresponding divisors D', E’ do not pass
through . Since X’ ~ X'+ C' — C"and X ~ X + C — C, our lemma
follows at once from the above observations. O

Corollary. Let T, be a component of T and (a,y) a generic point of 298
T, over k'. There is a rational map f, of T, into Z such that fy(a,y) =
(a,...,.7(Y(y) - C(a)),.. )E‘ Moreover, f, satisfies the following con-
ditions: (a) when (d',y') € T, fo(a,y) has a unique specialization
(d', Q) over k' over (a,y) — (d',y’) ref. k'; (b) when Y’ is a U(d')-
divisor such that Y' ~ Y(y') and that Y' and the C(d'); intersect prop-
erlyon U(d), Q' = (d,..., 7Y, C(d)),...); (c) the locus L of
(a,...,"(mgX(a) - C(a)i),...) over k' is a subvariety of Z and con-

1y (y) denotes the divisor defined by y.
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tains (d', ..., (msX(d') - C(a);),...) whenever ' € B and the latter is
a unique specialization of the former over k', over a — a' ref. k'.

Proof. This follows easily from Lemma [[.3] from the compatibility of
specializations with the Chow-construction of Jacobian varieties, the op-
eration of intersection-product (c.f. [24]]), the Abelian sums and from
the invariance of linear equivalence by specializations. |

Let W} be the closure of the graph of f, on B x F x Z, W* the
union of the W and W = W* n B x F x L. W is a k’-closed subset of
B x F x L.

Lemma 1.4. The set E' of points a’ € B such that W na’ x F x L has
component of dimension at least q,,, — 1 forms a k'-closed proper subset
of B.

Proof. When a is a generic point of B over k’, the projection of the inter-
section on F is the support of the Chow-variety of A(m X (a)) (c.f. [14],
[26])). Then our lemma follows at once from [27]], Lemma[7l applied to
B x F x L where L denotes the closure of L in its ambient space. |

Lemma 1.5. Let d’ € B such that [(mX(d')) < qm,. Thend' ¢ E'.

Proof. Assume the contrary. Then the intersection W na’ x F x L
contains a component ¢’ x D of dimension at least g,,, — 1 by Cor.,
Lemma|[l.3l Let k" be an algebraically closed field, containing k’, over
which D is defined and Q" a generic point of D over k”. It is of the
form (y',¢') where ¢/ = (d,...,."(mX(d') - C(d');),...) (c.f. Cor,
Lemma [[3). Since r is sufficiently large, there is an index i such that
HY is generic over k(a’,y’) (c.f. [26], Lemma 9). Then Cor., Lemma
[[3implies that .7 (mX(d’) - C(d');) = L (Y(Y') - C(d’);). Since 1 is
sufficiently large and since H @ is generic over k(da’,y"), it follows that
mgX(a') ~ Y(y') by an equivalence criterion of Weil (c.f. [27], Th. 2;
see also the footnote for Lemmal[L.T)). Hence I(m X (a’)) = g, and this
contradicts our assumption. O
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Lemma 1.6. Let @’ € B such that [(mgX(d') €) = gm,. Thend' € E'.

Proof. Let D' be the Chow-variety of the complete linear system
A(sX(d")). Then dimD’ > ¢, — 1 > 0. Let k” be an algebraically
closed field, containing k’, over which D’ is rational. Let y’ be a generic
point of D’ over k”. Then (@’,y") is contained in some component 7, of
T. Let (a,y) be a generic point of T, over k”. Let

d=(d,....,.7"mX(d) Cd)),...

and e = (a,...,.7(Y(y) - C(a)i),...). Then (a,y,e) — (d’,y',¢) ref.
k" by Cor., Lemma[l.3] Hence (¢, ¢’) is a point of W. It follows that
W nd x F x L contains @’ x D' x ¢ and d’ is contained in E’. Our
lemma is thereby proved. |

As we have pointed out, Lemmas[T.4} [[.3] [T.6] prove our proposition.

Corollary to Proposition [.Il Let the notations and assumptions be
as in our proposition. There is a finite union € of irreducible families,
defined over k and contained in U, such that a member (U(d'),X(d’))
of Wis in € if and only if (mX(d")) = qy, for all m.

2 Proposition 2.1. Let V" (resp. V") be a complete abstract variety,
non-singular in codimension 1, and X (resp. X') a divisor on V (resp.
V). Let k be a common field of rationality of V and X, O a discrete
valuation ring of k and assume that (V',X') is a specialization of (V, X)
over O and that [(X) = I(X"). Let T" be the closure of the graph of a
non-degenerate rational map of V' defined by X'. Then, there is a field K
over k, a discrete valuation ring O’ of K dominating O and the closure
I of the graph of a non-degenerate rational map of 'V defined by X such
that (V', X',T" + Z') is a specialization of (V,X,T') over O, where Z' is
such that pry:Z' = 0.

Proof. Letk’ be the residue field of O. Since X is rational over K/, A(X")
is defined over k. Let g| = 1, g},..., g}, be functions on V' which
define I''. From Lemmas 4 and 5, [16]], we can see easily that there is a
filed K over k, a discrete valuation ring O’ of K which dominates O and
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a basis (g;) of L(X) over K such that (V',X’, (g})) is a specialization of
(V. X, (g;)) over ©'. LetT be the closure of the graph of a non-degenerate
rational map of V defined by X, determined in terms of (g;). Let T be a
specialization of " over O'. It is clear and easy to see that I is contained
in the support of 7. Therefore, I is a component of 7. When that is so,
our proposition follows from the compatibility of specializations with
the operation of algebraic projection (c.f. [24]]).

In the discussions which follow, we shall need the following defi-
nition. Let U and W be two abstract varieties, f a rational map of U
into W and U’ a subvariety of U along which f is defined. Let f’ be the
restriction of f on U’ and W’ the geometric image of U’ by f’. We shall
denote by f[U’] the variety W’ if dim U’ = dim W’ and 0 otherwise. O

Corollary. Notations and assumptions being the same as in our propo-
sitions, let f (resp. f') be a non-degenerate rational map of V (resp. V')
defined by X (resp. X'). When f'[V'] # 0, then f[V] # 0.

Proof. Let k' be the residue field of O and Q’ a generic point of V’ over
k'. Then there are n independent generic divisors X! of A(X") over k’
such that Q' is a proper point of intersection of (), X!. Let the X; be
n independent generic divisors of A(X) over k and O* a discrete valu-
ation ring, dominating O, such that (V’, X', (X)) is a specialization of
(V. X, (X;)) over O* (c.f. [16]). By the compatibility of specializations
with the operation of intersection-product (c.f. [24], in particular, Th.
11, Th. 17), there is a point Q in V such that it is a proper component of
(); X; and that Q' is a specialization of Q over the above specialization
with reference to O*. This proves our corollary. O

We shall consider again, as in §Il an algebraic family (irreducible)
A" with divisors in a projective space. We shall assume that every mem-
ber (U(a),X(a)) satisfies the conditions that U(a) is non-singular in
codimension 1 and that X(a) is a positive divisor on U(a). Therefore,
a is a pair of the Chow-point of U(a) and that of X(a). Let k be an
algebraically closed field of rationality of 2 and A’ the locus of a over
k, where a corresponds to a generic member of A’ over .
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Proposition 2.2. W' and A’ being as above, assume that the following
conditions are satisfied: (i) when a' € A', then [(X(d')) = 1(X(a))
where a is a generic point of A’ over k; (ii) when f is a non-degenerate
rational map of U(a) defined by X(a), then f[U(a)] # 0. Then the set
E of points a’ in A" such that a non-degenerate rational map ' of U(a')
defined by X(d') has the property deg(f'[U(d’)]) < s = deg(f[U(a)])
is a k-closed subset of A'.

Proof. Since X(a) is rational over k(a), there is a non-degenerate ratio-
nal map f of U(a), defined by X(a), which is defined over k(a). Let T’
be the closure of the graph of f and # the Chow-point of I. We shall
denote I' by I'(#). Let w be the Chow-point of f[U(a)]|. We shall denote
flU(a)] also by W(w). Let T (resp. W) be the locus of # (resp. w) over k
and D the locus of (a, f,w) over k. D is then a subvariety of A’ x T x W.

Let W, be the set of points w' such that the corresponding W(w')
with the Chow-point w’ is irreducible and not contained in any hyper-
plane. Let Tj be the set of points # such that the corresponding I'(¢')
with the Chow-point ¢’ is irreducible and Dy = D n A’ x Ty x Wy. As
is well known, W) is k-open on W and T is k-open on T. Hence Dy is
a closed subvariety of A" x Ty x Wy, defined over k. The set-theoretic
projection of Dy on A’ contains a k-open subset of A’ (c.f. [28]). Let D’
be the largest k-open subset of A’ contained in this projection.

Let @’ € D'. There is a point (a’,#,w’) € Dy. By our choice of
Wo, Ty and Dy, I'(¢') is irreducible, W(w') is irreducible, deg(W(w')) =
deg(W(w)) = s and W(w') is not contained in any hyper-plane. More-
over, (U(d"),X(d"),T(¢"), W(w')) is a specialization of (U(a), X (a),I'(z),
W(w)) over k. Since linear equivalence is preserved by specializa-
tions and since specializations are compatible with the operations of
intersection-product and algebraic projection (c.f. [24]), it follows that
[(z) is the closure of the graph of a non-degenerate map of U(a’) de-
termined by X(a') and pr, ['(¢') = mW(w') if prI'(t) = mW(w). Thus
a point of E cannot be contained in D’.

A’ — D' is a k-closed subset of A’. Let A” be a component of it and
a’ a generic point of A” over k. Let f” be a non-degenerate rational map
of U(d') defined by X(a’) and assume that f'[U(a’)] = 0. If A” has
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another point @”, let f” be a similar map of U(a”) defined by X(a”). We
consider a curve C on A” which contains @’ and a”. The existence of
such a curve is well known and easy to prove by using the theorem of
Bertini. Normalizing C and localizing it at a point corresponding to a”,
we apply the result of Proposition 21 Then we see that f”[U(a")] =
0 since specializations are compatible with the operation of algebraic
projection. Assume this time that f/[U(a’)] # 0. Consider a curve C
on A" which contains a and @’ and proceed as above. Then we see that
deg(f[U(a)]) = s = deg(f'[U(d')]). When a”, f” are as above, we
see also that deg(f'[U(d’)]) = deg(f"[U(d")]) by the same technique.
Therefore, choosing only those A” such that deg(f'[U(da’)]) = s and
repeating the above process, we get our proposition easily. O

Corollary 1. Let so < s be a non-negative integer. Then the set E; of
points a’ of A’ such that a non-degenerate rational map f' defined by
X(d') has the property deg(f'[U(d')]) < so is a k-closed subset of A'.

Proof. This follows easily from our proposition. m|

Corollary 2. With the same notations and assumptions of our proposi-
tion, assume further that f is a birational map. Then there is a k-open
subset A6 of A’ such that the following conditions are satisfied by points
a’ of Ay: When ' is a non-degenerate map of U(a') defined by X(a'),
S is a birational map and deg(f(U(a))) = deg(f"(U(d'))).

Proof. Using the same notations of the proof of our proposition, let @’ €
D’. Then a point (d’,7,w') € Dy was such that I'(') is irreducible,
W(w') is irreducible, deg(W(w)) = deg(W(w')) = s and W(w') is not
contained in any hyperplane. Then I'(#) is the closure of the graph of
a birational map defined by X(a’). Therefore, it is easy to see that D’
satisfies our requirement as A,. m|

Corollary 3. With the same notations and assumptions of our proposi-
tion, assume further that f is a birational map and that f(U(a)) is non-
singular. Then there is a k-open subset A6 of A" such that the following
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conditions are satisfied by points a' of Ay: When f' is a non-degenerate
rational map of U(d’) defined by X(d'), f" is a birational map, f'(U(d'))
is non-singular and that deg(f(U(a))) = deg(f"(U(d"))).

Proof. In the proofs of our proposition and corollary, above take W
to be the set of points w’ such that W(w’) is irreducible, non-singular
and not contained in any hyperplane. W is also a k-open subset of W.
The rest of our proof will then be exactly the same as that of the above
corollary. |

Corollary 4. With the same notations and assumptions of our propo-
sition, assume that f is not birational. Then there is a k-open sub-
set A of points ' of A" with the following property: When f' is a
non-degenerate rational map defined by X(d'), f' is not birational and

deg(f[U(a)]) = deg(f'[U(d)]).

Proof. The proof of Corollary 2] above goes through almost word for
word when we make the following change: (i) “birational” should be
changed to “not birational”. It should be noted that pr, I'(£) = mW(w),
pr, ['(¢) = mW(w') and m > 1 in the proof of our proposition since f
in our case is not birational. O
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BI-EXTENSIONS OF FORMAL GROUPS

By David Mumford

In the Colloquium itself, I announced that all abelian varieties can
be lifted to characteristic zero. The proof of this, as sketched there, is
roughly as follows.

(1) It suffices to prove that every char p abelian variety is a spe-
cialization of a char p abelian variety with multiplicative formal
group (an “ordinary” abelian variety), since Serre (unpublished)
has shown that these admit liftings.

(i1) A preliminary reduction of the problem was made to abelian va-
rieties X such that the invariant

a(X) = dimg Hom(a), X)
is 1.

(iii)) A method was found to construct deformations of a polarized
abelian variety from deformations of its polarized Dieudonné mod-
ule.

(iv) Finally, some simple deformations of polarized Dieudonné mod-
ules were constructed to establish the result.

However, it seems premature to give this proof here, since the basic
method used in (iii) promises to give much fuller information on the
local structure of the formal moduli space of a polarized abelian variety,
and this would make my ad hoc method obsolete. I want instead to give
some basic information on the main new technical tool which is used in

(iii).
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1 Cartier’s result.In the note [1], Cartier has announced a
module-theoretic classification of formal groups over arbitrary ground-
rings R. We require only the special case where p = 0 in R, which
is foreshadowed in Dieudonn’es original paper [2]], before the category
men got a hold of it, modifying the technique until the restriction “R =
perfect field” came to seem essential.

Definition. Let R be a ring of characteristic p. Let W(R) be the ring of
Witt vectors over R, and let

(ag,ar,az,...)” = (a,a’.d,...),
0419

(ao,al,az, .. .)t = (0, ap,di, .. )

Then Ag will denote the ring

modulo the relations:

(@) FV = p,

(b) VaF = d,
(¢) Fa=a"F,
(d) aV =Va’,

forallae W(R).

Theorem (Dieudonné-Cartier). There is a covariant equivalence of cat-
egories between

(A) the category of commutative formal groups ®© over R, and
(B) the category of left Ag-modules M such that
(@ VM = (0),
i

b)) Vim=0=m=0,allme M,
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() M/VM is a free R-module of finite rank.

The correspondence between these 2 categories can be set up as
follows. Recall first that a formal group ®/R (by which we mean a set
of n power series @;(X1,..., X5 V15--.,¥n), | < i < n, satisfying the
usual identities, c.f. Lazard [[3]) defines a covariant functor F¢ from
R-algebbras S to groups : i.e. V S/R,

Fo(S) = {(ai,...,an)|a; € S, a; nilpotent}
where

(ary...,ay) - (b1,....by)
= (d1(ar,....an;b1,....by),....d0n(a1,...,an;b1,...,by)).

N. B. In what follows, we will often call the functor F¢ instead of the
power series @ the formal group, for simplicity.
Let W be the functor 309

W= {(ao,ai,...)|a; € S,a; nilpotent, almost all a; = 0},
gp law = Witt vector addition.

Then we attach to the commutative formal group @ the set
M = Homgp. functors/R(W, F(D),

and since Ag = Hom(W, W)O, we can endow M with the structure of
left Ag-module. Conversely, to go in the other direction, first note that
any Ag-module M as in the theorem can be resolved:

0 AL L An % M 0. (%)
In fact, choose my,...,m, € M whose images mod VM are a basis of
M/VM as R-module. Define

n
@(Pr,....Py) = ). Pim.
i=1
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n
It is easy to check that Fm; can be expanded in the form »; Q;;(V)m;,
j=1
Q;j a power series in V with coefficients in W(R). Define

n n
B(P1,...,P,) = (213,- - Qit — 6 F.... ) Piv Qin — 6,-,,F> :
i=1 i=1
It is not hard to check that (*) is exact. Then 5 defines a monomorphism
of group functors B* : (W)" — (W)", and let F be the quotient functor
(W)"/B*(W)". Then F is isomorphic to Fo for one and-up to canonical
isomorphism-only one formal group ®@.
Moreover, we get a resolution of the functor F:

~ ﬁ* A~
0— (W) 5 (W) — Fg — 0.

When R is a perfect field, the above correspondence can be extended
to an analogous correspondence between p-divisible groups over R and
W(R)[F, V]-modules of suitable type (c.f. [4], [5]). However, it does
not seem likely at present that such an extension exists for non-perfect
R’s. This is a key point.

2 Bi-extensions of abelian groups. Let A, B, C be 3 abelian
groups. A bi-extension of B x C by A will denote a set G on which A
acts freely, together with a map

GLBxC

making B x C into the quotient G/A, together with 2 laws of composi-
tion:

+1:GxG —> G i +2:GxG —> G
B C
def def
{(g1.82)|m(g1), m(g2) have {(g1,82)|m(g1),m(g2) have
same B-component} some C-component}
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These are subject to the requirement:

@)

(i)

(iii)

forall b € B, G’b = (b x C) is an abelian group under +1, 7 is
a surjective homomorphism of G/ onto C, and via the action of A
on G;, A is isomorphic to the kernel of 7;

forall c € C, G = n~!(B x c) is an abelian group under +,, 7 is
a surjective homomorphism of G2 onto B, and via the action of A
on GZ, A is isomorphic to the kernel of r;

given x, y, u, v € G such that
n(x) = (by1,c1)
n(y) = (b1,c2)
m(u) = (ba, c1)
n(v) = (by, c2),

then
(x+1y) +2 (u+1v) = (x +2u) +1 (y +2v).

This may seem like rather a mess, but please consider the moti-
vating example: let X be an abelian variety over an algebraically
closed field k, let X be its dual, and let P be the universal, or
Poincaré, line bundle on over X x X. Then Py, the underlying set
of closed points of P, is a bi-extension of X; x Xi by k*!

Notice that if G is a bi-extension of B x C by A, then 7~ (B x 0)
splits canonically into A x B, and 7~!(0 x C) splits canonically into
A x C. In fact, we can lift B to 7~'(B x 0) by mapping b € B to the
element of G which is the identity in 77! (b x C); and we can lift C to
7~ 1(0 x C) by mapping c € C to the element of G which is the identity

inz!

(B x c).

Bi-extensions can be conveniently described by co-cycles: choose a
(set-theoretic) section

N

¥\

G?BXC
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Via s and the action of A on G, we construct an isomorphism
G=xAxBxC

such that the action of A on G corresponds to the action of A on A x
B x C which is just addition of A-components, leaving the B-and C-
components fixed. Then +; and +7 go over into laws of composition on
A x B x C given by:
(a,b,c) +1 (d',b,c") = (a+d + ¢(b;c,c),b,c + ')
(a,b,c) +2 (d',b',c) = (a+d +y(b,b;c),b+ b, c).
For +1, +, to be abelian group laws, we need:
@) ¢(bsc+ ")+ d(bse,d') = ¢(bse, + ")+ (b, )
¢(bsc,c') = ¢(bic',c);
®) y(b+b,0";¢)+y(b,b;c) =y(b,b +b";¢) +y(b,b";c)
w(b,b'ic) = y(b',bic).
The final restriction comes out as:
© ¢p(b+bic.d) —d(bie,c) = ¢V, )
=y(b,b'sc+ ) —y(bbsc) — (b, b ).
What are the co-boundaries? If you alter s by adding to it a map p :
B x C — A, then you check that the new ¢, i/ are related to the old
ones by
¢'(bic.c) = p(bic,c') = p(b,c + ) — p(b.c) — p(b.c)
W' (b,b';c) — (b, b';c) = p(b+b,c) —p(b,c) — p(b,c).
Using this explicit expression by co-cycles and co-boundaries, it is

clear that the set of all bi-extensions of B x C by A forms itself an abelian
group, which we will denote

Bi-ext (B x C,A).

It is also clear, either from the definition or via co-cycles, that Bi-ext
is a covariant functor in A, and a contravariant functor in B and C.
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3 Bi-extensions of group-functors.

Definition. If F, G, H are 3 covariant functors from the category of
R-algebras to the category of abelian groups, a bi-extension of G x H
by F is a fourth functor K such that for every R-algebra S, K(S) is a
bi-extension of G(S') x H(S) by F(S) and for every R-homomorphism
S1— Sy, themap K(S1) — K(S2) is a homomorphism of bi-extensions
(in the obvious sense). In particular, if F, G, H are formal groups, this
gives us a bi-extension of formal groups.

If F, G, H are formal groups, it is easy again to compute the bi-
extensions K by power series co-cycles. In fact, one merely has to check
that:

(1) there is a functorial section

N

Yy~ \

K——> GxH
P

(this follows using the “smoothness” of the functor F,i.e. F(S) — 313
F(S/I) is surjective if I is a nilpotent ideal);

(i) any morphism of functors from one product of formal groups to
another such product is given explicitly by a set of power series
over R in the appropriate variables.

In fact, we will be exclusively interested in the case where F' = Gm
is the formal multiplicative group; that is

A~ Units in S of form 1 + x, x nilpotent,
Gn(S) = . e
composed via multiplication.
Then if G and H are formal groups in variables xi, ..., x, and yi,..., Ym,

a bi-extension of G x H by Gy, is given by 2 power series
. / / / /.
O—(-x1$"'9xn’y1’-'"y}n’yle"~’y;n)aT(x17~-~axn’x]""’xn’yl""’ym)
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with constant terms 1 such that - abbreviating n-tuples and m-tuples:

o(x@(,Y),y") - o(x,Y) = o(x3,00,y")) - o(xy,y")
o(xy.y) = o(xy,y)

T(P(x,x), x",y) - 1(x, x5 y) = t(x, ¥ (X, x");y) - (', x5 )

T(x, x5 y) = (¥, x;y)

a(¥(x,x); 3,y oy, y) o (@) T = (A 0n)):
7(x, xl;)’)_l -7 (x, x’;y’)_1 ,

if @, ¥ are the group laws of G and H respectively.

We want one slightly non-trivial fact about general bi-extensions.
This result gives essentially the method for computing Bi-ext’s via res-
olutions.

Proposition 1. Let E, G, G’ be abelian group functors as above. Sup-
pose
0—>F —-Fy—-G—0
0—>F —>Fy—>G —0
are 2 exact sequences of such functors. Then
Ker{Bi-ext (G x G',E) — Bi-ext (Fy x Fy, E)}

{(f.e)|f : Fox F{ > E and g: F| x Fj — E bi-homomorphisms
res f =resg on Fy x F|}

{(f.g)|3h : Fo x F — E bi-homomorphism, f and g restrictions of A}

~

314

The proof goes along these lines: let H be a bi-extension of G x G’
by E. If it lies in the above kernel, then the induced bi-extension of
Fo x Fyis trivial:

H x (FoxF})~Ex FyxF,.
(GxG")

Consider the equivalence relation on the functor £ x Fg x F, (’) induced by
the mapping of it onto H. It comes out that there are maps f : Fox F| —
E, g : F\ x Fjy — E such that this equivalence relation is generated by
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(a,b,c) ~ (a+ f(b,c),b,c +¢),ac E(S),be Fy(S)
ce Fi(S).ce FI(S). (15.1)

and

(a,b,c) ~ (a+ g(b,c),b+b,c),ac E(S),be Fy(S)
be Fi(S).ce Fj(S). (15.2)

Moreover, f and g have to be bi-homomorphisms with res f = res g
on F; x F}. Conversely, given such g and g, define the functor H to
be the quotient of £ x Fy X F 6 by the above equivalence relation. H
turns out to be a bi-extension. Finally, the triviality of H can be seen to
be equivalent to f and g being the restrictions of a bi-homomorphism
h:Fox Fy— E.

4 Bi-extensions of W.

Proposition 2. Bi — ext(W x W, Gw) = (0).

Proof. Consider functors F from (R-algebras) to (abelian groups) which
are isomorphic as set functors to D/, where

DI(S) = {(ai)|a; € S, all i € I, a; nilpotent, almost all a; = 0}

and where / is an indexing set which is either finite or countably infinite.
Note that all our functors are of this type. Then I claim that for all R of
char p, all such F, there is a canonical retraction pg:

PF
Hom (W’ F)Q Hom (W, F)
set-functors inclusion gp-functors

which is functorial both with respect to (I3.1) any homomorphism
F — G, and (I5.2) base changes R; — R,.

The construction of pr is based on Theorem 1 of Cartier’s note [1I].
Let W* be the full Witt group functor (i.e. based on all positive integers,
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rather than powers of p), and leti : D — W* be the canonical inclusion
used in [1]. Then Theorem 1 asserts that for all formal groups F , every
morphism ¢ : D — F extends uniquely to a homomorphism u : W* —
F.

O

Cartier informs me that this theorem extends to all F”’s of our type. On
the other hand, W over a ring of char p, is a direct summand of W

wH w.

Construct pg as follows: given f : W — F,let ¢ = resto D of fomn;
let u = extension of ¢ to a homomorphism u; let pr (f) =uoj.

Now let F be a bi-extension of W x W by G,,. For every R-algebra
S and every a € W (S), let F (resp. Fy) denote the fibre functor of F
over {a} x W (resp. W x {a}) (ie. F, ( ) = {b e F(T)|1% (resp. 2"%)
component of 77(b) is induced by a via § — T}). Then F! and F/ are
group functors of the good type extending W by (A}m over ground ring
S. Now since G, is smooth, one can choose a section s to 7:

N

¥\

F— (W x W)

s restricts to morphisms s, : W/S — F/, for all a € W(S) Take
pri(s4). As a varies, these fit together into a new section p’(s) to 7.
But p’(s) is now a homomorphism with respect to addition into the 2"
variable, i.e.

P'()(wv) +1 p'(8) (V') = p'(s)(w,v +1/). *y
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Now switch the 2 factors : p/(s) restricts to morphism p’(s), : W/s —
F”, forall a € W(S). Take Prr(P'(5)a). As a varies, these fit together
into a new section p”(p’(s)) to x.

Then this satisfies :

PP () (w.v) +2 p"(p' () (' v) = p"(p' () (u+u'sv). (9

But now, using the functoriality of p, and the property of bi-extensions
linking +; and -+, it falls out that p”(p’(s)) still has property (x)’ en-
joyed by p'(s)! So p”(p'(s)) preserves both group laws and splits the
extension F. m|

Definition. Ay will denote the ring W(R)|[F, V]] modulo the relations
(a) FV=p
(b) VaF = d’
(c) Fa=a"F
(d) aV =Va’, allae W(R).

Every element in this ring can be expanded uniquely in the form:
0 0
P=ay+ Z Viai + Za_iFi.
i=1 i=1
For every such P, let
0 e}
P* = ap + ZaiFi + Z Via,,'.
i=1 i=1

Then * is an anti-automorphism of Ay of order 2. We shall consider Ag
as an Ag X Ag-module via
(P.Q) x=P-x- Q" ()

Proposition 3. Bi-homg(W x W, G,,) = Ag.

Moreover, since Ag = Homg (\/’\\7, W)O, the left-hand side is an Ag x Ag-
module; under the above isomorphism, this structure corresponds to the
Ag x Ag-module structure on Ag defined by ().
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Proof. Cartier [1]] has shown that for all R, the Artin-Hasse exponential
defines isomorphisms

Homg(W, G,,) = W(R)
where W is the full Witt functor

W(R) = {(ag,ay,-..)|a; € R}
group law = addition of Witt vectors.

Therefore,
Bi-Homg(W x W, Gp) = HomR(W, Ww).
Define a homomorphism

ZR i) HOIHR(W, W)
by P — the map [b — P(b)].

Here P(b) means that V and F operate on Witt vectors in the usual way:
note that the doubly infinite series P operators on b since b has only
a finite number of components and all are nilpotent, whereas P(b) is
allowed to have all components non-zero.

Let

W.(R) = {(ao,al,...)|afn =0, all #; almostall a; = 0}.
Notice that . .
Homg(W, W) x~ LiLnHomR(Wn, W),

n

and that ¢ factors through maps
ZR/ZR - F" & HOHIR(W",W).

It suffices to show that ¢, is an isomorphism for all n. But for n = 1,
AR/AR -F = R[[V]], while

Homg (W1, W) = Hom,, 1 jc aigebras (Lie(W, Lie(W)).
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Also Lie(W) is the free R-module on generators &y, 1, s, ... with
0
Efp ) — ¢i+1; and Lie(W) is the R-module of all expressions Y, a;e;,
i=0
:D .
a; € R, with same p™ power map. Moreover > Via; € R[[V]] goes via

i=0
0

@1 to the lie algebra map taking ¢y to >, a;e;. Thus ¢; is an isomor-
i=0
phism. Now use induction on 7, and the exact sequences

0>W, | — W, 5 W, 0.

This leads to the diagram:

0 — Homg(W1, W) <= Homg(W,,, W) — Homg(W,_1, W)

b -

Xanl

0—>ZR/ZR . F%ZR/ZR - F" HZR/ZR -F 0.

The bottom line is easily seen to the exact, so if ¢ and ¢, are isomor-
phisms, the diagram implies that ¢, is an epimorphism. m|

Corollary. Let F\ and F; be group functors isomorphic to (W)”’ for
some ny, ny. Let M; = Homg(W, F;) be the corresponding finitely gen-
erated, free Agr-module. Then there is a 1 — 1 correspondence between
bi-homomorphisms

B:F| x Fy —> G,

and maps
B: M x My — Ag,

bi-linear in the following sense: 319
B(Pm,Qn) = P - (m,n) - O*
(allme My, ne M», P, Q € Ag).
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S Applications. Putting Propositions [} 2 and [3 together, we con-
clude the followng

Corollary. (a) Let ©, V¥ be formal groups over R.
(b) Let M, N be the corresponding Dieudonné modules.
(c) Let

O0—-F—-Fp—>M—-0
0—-G —-Gy—>N—-0

be resolutions of M and N by finitely generated, free Ag-modules.
Then the group Bi — extg(® x ¥, G,,) of bi-extensions of formal
groups can be computed as the set of pairs of bi-linear maps:

B: Fo x G| — Ag,
y: F1 x Go — Ag,

such that B = y on F x Gy, taken modulo restrictions of bi-linear
maps « : Fo x Gy — Ag.

In another direction, bi-extensions can be linked to p-divisible
groups, as defined by Take [6].

Proposition 4. Let F and F' be formal groups over a char p ring R.
Assume that the subgroups G(resp. GI,) = Ker(p" in F(resp F')) form
p-divisible groups over R(i.e. F and F' are “equi-dimensional”, or of
“finite height”). Then there is a 1 — 1 correspondence between (1) bi-
extensions of F x F' by G and (2) sets of bi-homomorphisms B, :
Gy x Gy, — py, such that for all x € G,11(S), y € G, (),

Bu(px, py) = Bn+1(x.y)".

Proof. We will use descent theory and existence of quotients by finite,
flat equivalence relations: c.f. Raynaud’s article in the same volume as
Tate’s talk [6]. Starting with the B,,’s, let L, be the quotient functor in
the flat topology of G, x Gy % G, by the equivalence relation:

(A, x,y) ~ (- Bu(x,b), x,y + b)
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where 1 € Gyu(S), x € Gu(S), y € G, (S), b € G,(S). Then L, is a
bi-extension of G, x G/, by ém Moreover, L, is a subfunctor of L, 1, so
if we let L be the direct limit of the functor L,, then L is a bi-extension
of F x F' by G

Conversely, if we start with L, let L, be the restriction of L over
G, x G),. In the diagram

G, x G, G, x G,

Ixp"
I want to define a canonical map ¢ which is a homomorphism in both
variables, i.e. which splits the induced bi-extension over G, x G .
Suppose x € G,(S),y € G,(S) for some R-algebra S. Choose z; € L(S)
such that (z;) = (x,y). If we add z; to itself p” times in the 1% variable,
we obtain a point:

But 7~ ((0 x F') is canonically isomorphic to G, x (0) x F’, s0 25 =
(1,0,y), some A € G,,(S ). Now choose a finite flat S-algebra S’ such
that A = p for some u € G, (S’). Letting z; also denote the element of
L(S’) induced by z;, define z/ = p~" - z;. This is a new point of L over
(x,y), which now satisfies [p"]4, (z}) = (1,0,y). Now add Z] to itself
p" times in the 2" variable. This gives a point

[P"]+,(2)) = 23 € L;(S"),
n(zy) = (x,p"y).

Clearly, 7} is independent of the choice of u, so by descent theory, z} 321
must be induced by a unique element z3 € L,(S). Define ¢(x,y) = z3.
It is easy to check that ¢ is a homomorphism in both variables.
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We can use ¢ to set up a fibre product diagram:

G, x G, x G, ¢ L,

G x Gy ———— G, x G,
n

(Ixp")

where @ is a homomorphism of bi-extensions. Since p” is faithfully flat,
so is @, and L, is therefore the quotient of G,, x G, x GlZn by a suitable
flat equivalence relation. For every x € G,(S),y € G5 (S), b € G,(S)

and 1 € G,,(S), there is a unique element B, (x,y,b,1) € G,(S) such
that

a((4,x,y)) = a((A-Bu(x,y,b,2),x,y + b)

and this function S, describes the equivalence relation. Using the fact
that @ is a homomorphism of bi-extensions, we deduce

(1) that 8, does not depend on A,

(2) Bu(x,y,b) - Bu(x,y + b,b") = Bu(x,y,b + b') (via associativity of
equivalence relation),

(3) Bu(x..0) - Bu(x'.y.b) = Bn(x + x',y, b) (e preserves +1),

4) Bu(x,y,b) - Bu(x,¥',b") = Bn(x,y + ¥ ,b + ) (a preserves +;).
By (4) and (2) with b =y = 0,

Bn(x,y, 0) 'IBn(X’ 0, b,) :ﬁn(x’y’ b/) :ﬁn('x’y’ 0) -,Bn(x,y, b/),

hence £, is independent of y too. Then (3) and (4) show that 8, is a
bi-homomorphism, so L, is constructed from a 3, as required. We leave
it to the reader to check that if we start from a set of §8,,’s, and construct
a bi-extension L, then the above procedure leads you back to these same

Bn’s. O

I think that with these results, bi-extensions can be applied to the
problem of determining the local structure of the moduli space of polar-
ized abelian varieties.
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SOME QUESTIONS ON RATIONAL ACTIONS OF
GROUPS

By Masayoshi Nagata

THE contents are divided into two parts. In Part [ we discuss the
rings of invariants of a finite group in a noetherian ring. In Part[I we
raise some questions on rational actions of groups, mostly connected
algebraic groups. By a ring, we mean a commutative ring with identity.
By a subring, we mean a subring having common identity.

Part 1.

0 We discuss here the following question.

Question 0.0. Let R be a noetherian ring and let G be a finite group
acting on R. Let A be the ring of invariants in R. Is A noetherian ?

Unfortunately, the answer is not affirmative in general as will be
shown later by counter-examples. Since the examples which we have
non-normal, we raise a question.

Question 0.1. Assume, in Question [0.0] R is a direct sum of normal
rings. Is then A noetherian ?

We shall begin with some simple cases. We maintain the meanings
of R, G, A of Question[0.0l

Proposition 0.2. If the order g of G is not divisible by the characteristic
of any residue class field of R, in other words, if g is a unit in R, then A
is noetherian.

Proof. If hy,...,hs € Aand if f € (ZR) N A, then f = Zh;ri(r; € R).
Then gf = >, of = > > hi(or), and f = Y hi(g™' > ori) €
oeG i 0eG i oeG

2h;A. Thus we have (£h;R) nA = Zh;A. From this the assertion follows
easily. m|
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Proposition 0.3. If R is a Dedekind domain, then A is also a Dedekind
domain, and R is a finite A-module.

The proof is obvious in view of the following well known lemma
(see for instance [LI]).

Lemma 0.4. Let A’ be a normal ring and let k' be an integral extension
of A’ in an algebraic extension L of the field of quotients K of A'. Assume
that a € R’ generates L over K. Let f(x) be the irreducible monic
polynomial for a over A’. Then letting d be one of (i) discriminant of
f(x) and (ii) df (a)/dx, we have dR' < A'[a].

Another easy case is:

Remark 0.5. If R is a ring of quotients of a finitely generated ring Ry
over a subring F of A and if F is pseudo-geometric, then A is a ring of
quotients of a finitely generated ring Ag over F, hence A is noetherian.

As our example below (see the proof of Proposition [0.1T)) shows,
Question is not affirmative even if we assume that R is a pseudo-
geometric local integral domain of Krull dimension 1, whose derived
normal ring is a valuation ring: this fact shows that:

Remark 0.6. Assume that a subring S of R is G-stable and that B is the
ring of G-invariants in S. Even if R is a discrete valuation ring of the
field of quotients of S and is a finite S-module, A may not be a finite
B-module.

On the other hand, one can show:
Remark 0.7. If, for a subring S of a noetherian ring R, R is a finite

S-module, then S is noetherian. (Proof of this remark will be published
somewhere else.)

Therefore the writer believes it is an important question to ask for
reasonable sufficient conditions for R to be a finite A-module.
Now we are going to construct counter-examples to the question.

Proposition 0.8. Let F be a field of characteristic p # 0 and let xi,

X2, ... infinitely many indeterminates. Consider the derivation D =
0

> xl.s’a— of the field K = F(xy,...,Xy,...), such that (i) each s; is

i=1 Xi

1
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a non-negative integer = 0, 1 modulo p, either O or greater than p — 1
and (i) infinite number of s; are = 1 modulo p. Let C be the field of
constants with respect to D. Then [K : C| = 0.

Proof. For simplicity, we assume that s; = p+1fori =r, r+1,.... We
show that x,, x,41, ... are linearly independent over C. For, if > x;c; =

izr
0(c; € C), then by the operation of D, we have Xx;’c; = 0 which can
be written in(xf ¢;) = 0. Since xlp c; € C, we have got another linear

relation, and we get a contradiction. O

Proposition 0.9. Let K be a field of characteristic p # 0. Let y be an
element defined by y* = 0. Consider the ring R = K[y] = K + yK. Let
D be a derivation of K. Then the map o : f +yg — f+yg+yDf
gives an automorphism of R and o? = 1.

Proof is easy and we omit it.
Now we have

Proposition 0.10. In the question stated at the beginning, even if R is
an artinian ring, A can be non-noetherian.

Proof. Let K, C and D be as in Proposition [0.8] and then let y, o be as
in Proposition[0.91 For G = {1,0,...,07 '}, A = {f + yg|Df =0} =
C + yK. Since [K : C] = o0, A is not noetherian. m]

Proposition 0.11. In the question, even if R is assumed to be a pseudo-
geometric local integral domain of Krull dimension 1, A can be non-
noetherian.

Proof. Let F be a field of characteristic p # 0 and let y, z1, 20,...
be infinitely many indeterminates. Set K* = F(zj,z2,...) and V =
K*[y](y)- Then V is a discrete valuation ring and has an automorphism o~
such that oz; = z;+y and o fixes every element of F|[z2,23,...,y]-0? =
1. We set

2 +1 . 2 2 .
xi =z xi =5+ YT (= 2), w1 =y wi = y (i = 2).
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326 Then oz; = z; + w; and ow; = w;. Thus G = {1,0,...,077 !} acts

on the ring R' = F[x1,Xx2,...,wi,Wa,...]. SetR = R;VGR, Then G

acts on R. The ring of invariants A is of the form A, ,, with A" =

A N R'. We observe elements of A’. It is of the form f(x) + Zw;t;(x)+
0f (x)

(terms of higher degree in w). Invariance implies that Zw; =
Xi

0(mod sz’H V). This implies that, denoting by D the derivation — (3x1

> po o of K = F(x1,x2,...), Df(x) = 0. Therefore A’/yV n A’ is
i=2
contained in the field of constants with respect to this D. Thus, Proposi-

tion[0.8shows that [R/yV "R : A/yV nA] = oo and that the sequence of
2

ideals (y*?*'V A A) + X w;A(n = 2,3,...) gives an infinite ascending
i=2

chain of ideals. Thus A is not noetherian. That R is a pseudogeometric

local integral domain of Krull dimension 1 follows from the fact that

R > F(x1,x2,...)[y*"]. o

Remark 0.12. The examples above can be modified to be examples in
case of unequal characteristics. In the first example, R is such that (i)
characteristic is p?, (ii) R/PR = K. In the latter example, let y be pl/r.

At the end of this Part[lL we raise the following question in view of
our construction of these counter-examples.

Question 0.13. Let R be a noetherian ring and let S be a subring such
that R is integral over S. Assume that for every prime ideal P of E, the
ring R/P is an almost finite integral extension of S /(P n §) and that
there is a non-zero-divisor d € S such that dR < §. Is S noetherian ?

We note that the following fact can be proved easily.

Remark 0.14. Question [0.13]is affirmative if R is either an artinian ring
or an integral domain of Krull dimension 1, even if we do not assume
the existence of d. Without assuming the existence of d, one can have
a counter-example in case R is a normal local domain of Krull dimen-
sion 2. (In [[L], there is an example of a local domain, say B, of Krull 327
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dimension 2 such that there is a non-noetherian ring S between B and
its derived normal ring R. These S and R give a counter-example.)

Part I1.

1 LetGbea group acting on a function field K over an algebraically
closed ground field kH We say that the action is rational if there is a pair
of an algebraic group G* and a model V of K, both defined over &, such
that (i) G is a subgroup of G* and (ii) the action of G is induced by a
rational action of G* on V. Thus we are practically thinking of rational
actions of algebraic groups.

At first, we discuss the choice of V. Namely, we fix a group G,
which may be assumed to be algebraic, and a function field K over an
algebraically closed field k such that G is acting rationally on K. Then
there may be many models V of K which satisfy the requirement in the
above definition.

Proposition 1.1. When a V satisfies the requirement, then so does the
derived normal model of V.

The proof is easy.

Proposition 1.2. If a quasi-affine variety V satisfies the requirement,
then there is an affine model V' of K which satisfies the requirement.

Proof. Let R be the ring of elements of K which are everywhere regular

on V. Then the rationality of the action of G on V implies that >, (o f)k
oeG

is a finite k-module for every f € R([F]). Let fi,. .., f, be elements of R

such that K = k(fi,..., f;) and let g1, ..., g, be a linearly independent
n

base of > > (o f;)k. Then the affine model V' defined by k[gi, .. ., gs]

. i=loeG
is the desired variety. m|

“Though many of our discussions can be adapted to the case where k is a ground
ring, we assume that & is an algebraically closed field for the sake of simplicity.
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Proposition 1.3. If an affine variety V satisfies the requirement, then
there is a projective model V' of K which satisfies the requirement.

Proof. As is seen by the proof above, we may assume that the affine
N

ring R of V is such that R = k[gi,...,gs], where >, g;k is a represen-
i=1

tation module of G. Then the projective variety V' with generic point

(1,g1,...,8s) is the desired variety. O

Remark 1.4. In the case above, the action of G is practically that of a
linear group.

It was proved by Kambayashi ([K]]) that

Proposition 1.5. If G is a linear group and V is a complete variety, then
there is a projective model V' of K which satisfies the requirement (and
such that every element of G defines a linear transformation on V').

These results suggest to us the following question.

Question 1.6. Does the rationality of the action of G imply the existence
of a projective model of K which satisfies the requirement? How good
can the singularity of such a model be?

In connection with this question, we raise

Question 1.7. Let G be a connected linear group acting rationally on a
normal abstract variety V. Let L be a linear system on V. Does it follow
that there is a linear system L* on V which contains all oL(o € G)?

If this question has an affirmative answer, then at least for linear
groups, Question [[LA has an affirmative answer. Note that Question [L7]
is affirmative if V is complete ([KI]).

On the other hand, if there is a quasi-affine variety V which satisfies
the requirement, then for every model V' of K satisfying the require-
ment, it is true that the orbit of a generic point of V' is quasi-affine.
Thus, even if G is a connected linear algebraic group, if, for instance,
the isotropy group (=stabilizer) of a generic point contains a Borel sub-
group of G, then there cannot be any quasi-affine model of K satisfying
the requirement (unless the action of G is trivial). Therefore we raise
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Question 1.8. Assume that the orbit of a generic point of a V is quasi-
affine. Does this imply that there is an affine model of K which satisfies
the requirement ?

2 We observe the subgroup generated by two algebraic groups acting
on a function field. More precisely, let G and H be subgroups of the
automorphism group Auty K of the function field K over the group field
k. We shall show by an example that

Proposition 2.1. Even if G and H are linear algebraic groups, which
are isomorphic to the additive group G, of k and acting rationally on K,
the subgroup G v H generated by G and H (in Auty K) may not have
any rational action on K.

Example. Leta and b be non-zero elements of k and let Ko, x, y be such
that ax®> + by> = 1, Ko = k(x,y) and trans. deg, Ko = 1. We assume
here that k is not of characteristic 2. Let (z, w) be a copy of (x,y) over
k and let K = k(x,y,z,w) = (quotient field of k(x,y)@;)k(z, w)). Set

t = (y—w)/(x —z). Then K = k(x,y,t) = k(z,w,1). We note the

y w

p_ ! bt* —a —2bt
"T b2 +a\ —2at a—b*)"

Auty, K contains the following subgroups G and H :

with

G = {oc € Auty ) K|c € k,oct =t + ¢} = G,
H = {TC € AUtk(z,w) K|C eK,tt=1+ C} ~ G,.

Aut; K has an element p such that p> = 1, px = z, y = w. Then H =
p~'G,. G acts rationally on the affine model of K defined by k[x,y,1]
and H acts rationally on the affine model of K defined by k[z, w,1].
Thus G and H act rationally on K. For ¢; € k, we observe the ele-
ment 7., PT¢,P . .. PTcPs; let us denote this element by [cy, ..., cs]. Then
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[c](?) = TC(;‘) = Frie(?) Note that if @(7) = F7(?) for @ € Autk

and with F;" € GL(2,k(t)), then

10)(7) - #teri()

Thus, to each [cy,...,c;] there corresponds a matrix in GL(2,k(¢)). In
view of this correspondence, one can see easily that the dimension of
the algebraic thick set (0G)" = pGpG ... pG tends to infinity with n.

Remark 2.2. Similar example is given so that G and H are isomorphic
to the multiplicative group of k, by changing ot =t+cand 7.t =t+c¢
to ot = ct and 7.t = ct respectively.

Now we raise

Question 2.3. Give good conditions for connected algebraic subgroups
G and H of Autg K so that G v H is algebraic.

3 Let G be an algebraic group acting on a variety V. Then there may
be fixed points of G on V. In particular, if G is linear and if V is com-
plete, then there is at least one fixed point ([Bl]). The following fact was
noticed by Dr. John Forgarty.

Proposition 3.1. If G is a connected unipotent linear group and if V is a
projective variety, then the set F of fixed points on V is connected. More
generally, if W is a connected closed set in a projective variety and if G
is a connected unipotent linear group which acts rationally on W, then
the set F of fixed points of G on W is connected.

Proof. We shall prove the last statement by induction on dim G. Then
we may assume that dimG = 1, i.e. G is isomorphic to the additive
group of k. Thus, in the following until we finish the proof of the propo-
sition, we assume that G is the additive group of k and that varieties and
curves are projective ones. |

Lemma 3.2. Under the circumstances, let C be an irreducible curve on
which G acts rationally. If there are two fixed (mutually different) points
on C, then every point of C is a fixed point.
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Proof. G can be imbedded in a projective line L biregularly. Then L
consists of G and a point. If P € C is not fixed, then C — GP is a point,
which is not the case. O

Corollary 3.3. Under the circumstances, let C be a connected reducible
curve on which G acts rationally. Let C' be an irreducible component
of C. If either there are two points (mutually different) on C' which are
on some other components of C or there is a fixed point P on C" which
is not on any other irreducible component of C, then every point of C' is
fixed.

The proof is easy because (i) since G is connected, every component
of C is G-stable and therefore (ii) every point which is common to some
mutually different irreducible components of C is a fixed point.

Corollary 3.4. Under the circumstances, let C be a connected curve
on which G acts rationally. Then the set Fq of fixed points on C is
connected.

Proof. 1If C is irreducible, then either Fy consists of a point or Fy = C,
and the assertion holds good in this case. We assume now that C is
reducible. If P € C is not fixed, then let C’ be the irreducible component
of C which carries P. C’ carries only one fixed point, say Q. Then every
component of C, which has a common point with C’, goes through Q.
Therefore C — GP is a connected curve, whose set of fixed points is
Fo. Thus we finish the proof by induction on the number of irreducible
components of C.

Now we go back to the proof of Proposition3.1l Let W;(i = 1,...,n)
be the irreducible components of W. Since G is connected solvable,
W; n W; contains a fixed point P;;, unless W; n W; is empty. If one
knows that every F' n W; is connected, then the existence of P;; shows
the connectedness of F. Thus we may assume that W is irreducible.
Let P* be generic point of W and let P be a point of F. If P* is fixed,
then every point of W is fixed, and our assertion is obvious in this case.
Therefore we assume that P* is not a fixed point. Let C be the closure of
GP*. Then C — GP* consists of a point, say Q*. Consider a specializa-
tion of (C, Q*) with reference to P* — P: let (C, Q*, P*) — (C, Q, P)
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be such a specialization. The locus D of Q* (i.e. the subvariety of W
having Q* as its generic point) consists only of fixed points. Q lies on
D n C. By the connectedness theorem, C is connected, whence F' n C
is connected by Corollary[3.4l Thus F contains a connected subset con-
taining P and Q*. Since this is true for every P € F, we complete the
proof. m|

On the other hand, it is obvious that

Proposition 3.5. If G is a connected linear algebraic group whose rad-
ical is unipotent, acting on a projective space rationally as a group of
linear transformations, then the set of fixed points forms a linear subva-
riety.
Now our question is
Question 3.6. Find a good theorem including Proposition 3.1and 3.3
In connection with this question, we give an example.
Example 3.7. There is a pair of a semi-simple linear algebraic group G
and a connected closed set V in a projective space P such that (i) G acts

rationally on P as a group of linear transformations, (ii) GV = V,i.e. V
is G-stable and (iii) the set F' of fixed points on V is not connected.

The construction of the example. Let n be an arbitrary natural num-
berandlet G = GL(n+1,k). Each o € G defines a linear transformation
on the projective space P of dimension n + 2 defined by the matrix

0
1
0

c o -
q oo

A point (ag,...,a,+2) is a fixed point if and only if a = ... =
an+2 = 0. Let V be the algebraic set defined by XpoX; = 0. Visa
connected and GV = V. But V has only two fixed points (1,0,...,0)
and (0, 1,0,...,0).
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4 We assume here that G is a connected linear group acting rationally
on a projective variety V. Let P* be a generic point of V and let D* be
the closure of GP*. Then we can think of the Chow point Q* of D*. We
raise a question.

Question 4.1. Is the function field K of V purely transcendental over
k(Q*)? In other words, is D* rational (in the strong sense over k(Q™*)?

Since G is linear, it is obvious that K is uni-rational over k(Q*).

Proposition 4.2. If G is the additive group of k, then the answer is
affirmative.

Proof. The assertion is obvious if P* is a fixed point. In the other case,
D* has a unique fixed point, which must be rational over k(Q*). There-
fore D* must be rational over k(Q*). ]

5 In this last section, we add some questions related to the Mumford
Conjecture. As was proved by Dr. Seshadri, the Mumford Conjecture on
the rational representation of linear algebraic groups is true for S L(2, k).
Let us call a linear algebraic group “semi-reductive” if the statement of
the Mumford Conjecture holds good for the group. Then the following
three propositions are well known.

Proposition 5.1. If a linear algebraic group G is semi-reductive, then
(1) so is every normal subgroup of G and every homomorphic image of G
(by a rational homomorphism) and (ii) the radical of G is a torus group.
Conversely, when N is a normal subgroup of a linear algebraic group
G, if both N and G/N are semi-reductive, then G is semi-reductive.

Proposition 5.2. Finite groups and torus groups are semi-reductive.

Proposition 5.3. If k is of characteristic zero, then a linear algebraic
group G is semi-reductive if and only if its radical is a torus group.

The Mumford Conjecture itself is a hard question. The writer feels
that if the following two questions have affirmative answers, then it may
help our observation on the conjecture.
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Question 5.4. Let G be a connected, semi-simple semi-reductive lin- 334
ear algebraic group. Then its connected algebraic subgroup H is semi-
reductive if the following conditions are satisfied :

(i) H is semi-simple and (ii) G/H is affine.

Question 5.5. Let G be a connected semi-simple algebraic linear group
such that every proper closed normal subgroup is finite. Then there is a
pair of a natural number » and a linear algebraic group G* such that (i) G
and G* have finite normal subgroups N and N* such that G/N = G*/N*
and (ii) G* is a subgroup of GL(n, k) and (iii) GL(n, k) /G* is affine.

Note that (1) if the Mumford Conjecture has an affirmative answer,
then these two questions have affirmative answers and (2) if these ques-
tions have affirmative answers, then we have only to prove the Mumford
Conjecture for S L(n, k) for each natural number n.

Added in Proof: Question has been answered negatively by K.
R. Nagarajan, Groups acting on noetherian rings, Nieuw Archief voor
Wiskunde (3) XIV (1968), 25-29. (Though his proof contains an error,
the example is good.)
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VECTOR BUNDLES ON CURVES
By M. S. Narasimhan and S. Ramanarﬂ

1 Introduction. We shall review ‘in this paper some aspects of the
theory of vector bundles on algebraic curves with particular reference
to the explicit determination of the moduli varieties of vector bundles
of rank 2 on a curve of genus 2 (see [3]]). Later we prove, using these
results, the non-existence of (algebraic) Poincaré families parametrised
by non-empty Zariski open subsets of the moduli space of vector bun-
dles of rank 2 and degree 0 on a curve of genus 2 [Theorem, §3]|. This
result is of interest in view of the following facts :

(1) there do exist such families when the rank and degree are coprime;

(i1) in general (i.e. even if the degree and rank are not coprime) every
stable point has a neighbourhood in the usual topology parametris-
ing a holomorphic Poincaré family of vector bundles;

(iii) there exists always a Poincaré family of projective bundles para-
metrised by the open set of stable bundles.

The essential point in the proof of the non-existence of Poincaré
families is to show that a certain projective bundle, which arises geo-
metrically in the theory of quadratic complexes, does not come from a
vector bundle. The reduction to the geometric problem is found in §71
The geometric problem, which is independent of the theory of vector
bundles, is explained in §3land the solution is found in §8]

The idea of reducing this question to the geometric problem arose
in our discussions with Professor D. Mumford, to whom our warmest
thanks are due.

“Presented by M. S. Narasimhan.
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2 The moduli variety U (n, d). Let X be a compact Riemann
surface or equivalently a complete non-singular irreducible algebraic
curve defined over C. We shall assume that the genus g of X is > 2.
If W(# 0) is a vector bundle (algebraic) on X we define (W) to be the
rational number degree W/rank W. A vector bundle W will be called
stable (resp. semi-stable) if for every proper sub-bundle V of W we
have u(V) < p(W) (resp. u(V) < pu(W)). D. Mumford proved that
the isomorphism classes of stable bundles of rank n and degree d on
X form a non-singular quasi-projective algebraic variety (of dimension
n?(g—1)+1).

A characterisation of stable bundles in terms of irreducible unitary
representations of certain discrete groups was given by M. S. Nara-
simhan and C. S. Seshadri [4]]. This result implies that the space of
stable bundles of rank n and degree d is compact if (n,d) = 1 and that
a vector bundle of degree O is stable if and only if it arises from an irre-
ducible unitary representation of the fundamental group of X. Moreover
two such stable bundles are isomorphic if and only if the correspond-
ing unitary representations are equivalent. These results suggest a natu-
ral compactification of the space of stable bundles, namely the space of
bundles given by all unitary representations (not necessarily irreducible)
of a given type.

C. S. Seshari in proved that this natural compactification is a
projective variety. More precisely, Seshadri proved the following. Let
W be a semi-stable vector bundle on X. Then W has a strictly decreasing
filtration

W=WyoW; >--->W,=(0)

such that, for 1 < i < n, W;/W;_; is a stable vector bundle with
n
w(Wi_1/W;) = p(W). Moreover the bundle GrW = @ W,_1/W; is
i=1
determined by W upto isomorphism. We say that two semi-stable bun-
dles W and W, are S-equivalent it Gr W, ~ Gr W,. Obviously two
stable bundles are S-equivalent if and only if they are isomorphic. It
is proved in [7]] that there is a unique structure of a normal projective
variety U(n, d) on the set of S -equivalence classes of semi-stable vector

351

336



337

352 M. S. Narasimhan and S. Ramanan

bundles of rank » and degree d on X such that the following property
holds: if {W,}.er is an algebraic (resp. holomorphic) family of semi-
stable vector bundles of rank n and degree d parametrised by an alge-
braic (resp. a complex) space T, then the mapping T — U(n, d) sending
t to the S -equivalence class of W, is a morphism.

Regarding the singularities of the varieties U (n, d) we have the fol-
lowing result [3]].

Theorem 2.1. The set of non-singular points of U(n,d) is precisely the
set of stable points in U(n,d) except when g = 2, n = 2 and d even.

It is easy to see that the above characterisation breaks down in the
exceptional case. It will follow from the results quoted in §4l that when
g = 2, d even, the variety U(2,d) is actually non-singular.

Now let L be a line bundle of degree d. Let Uy (n, d) be the subspace
of U(n,d) corresponding to vector bundles with the determinantal bun-
dle isomorphic to L. It is easy to see [4] §3] that all stable vector bundles
Vin UL (n,d) can be obtained as extensions

0—>E—V—(detE)'®L— 0,

where E is a suitably chosen vector bundle, depending only on U (n, d).
Let U be the Zariski open subset of H!(X,Hom(L, E) ® det E) corre-
sponding to stable bundles. Then the natural morphism U — Uy (n,d)
given by the universal property has as image the set of stable points of
UL(n,d). This shows that the varieties Uy (n, d) are unirational.

By a refinement of the above, it has been shown that the variety
UL(n,d) is even rational if d = +1(mod n). The rationality of these
varieties in general is not known.

3 Poincaré families. The next problem in the theory of vector
bundles is the construction of universal (Poincaré) families of bundles
on X parametrised by U(n, d). The existence of such a universal bundle
is well-known in the case n = 1.

Definition. Let Q be a non-empty Zariski open subset of U(n,d) or
Ur(n,d). A Poincaré family of vector bundles on X parametrised by
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is an algebraic vector bundle P on Q x X such that for any w € Q the
bundle on X obtained by restricting P to w x X is in the S -equivalence
class w. The bundle P will be called a Poincaré bundle.

The following theorem has been proved independently by D. Mum-
ford, S. Ramanan and C. S. Seshadri.

Theorem. [f n and d are coprime, there is a Poincaré bundle on
U(n,d) x X.

However we prove, in contrast, the
Main Theorem. Let X be a compact Riemann surface of genus 2.
Then there exists no algebraic Poincaré family parametrised by any non-
empty Zariski open subset of U(2,0).

The theorem will be proved in §8 In the next sections we recall
some results on vector bundles on a curve of genus 2 which will be used
in the proof.

4 Vector bundles of rank 2 and degree 0 on a curve
of genus 2.

Theorem 4.1. Let X be of genus 2 and S be the space of S -equivalence
classes of semi-stable bundles of rank 2 with trivial determinant on X.
Let J' be the variety of equivalence classes of line bundles of degree
1 on X and O the divisor on J' defined by the natural imbedding of X
in J'. Then S is canonically isomorphic to the projective space P of
positive divisors on J' linearly equivalent to 20.

For the proof see [3]], §6.

Remarks. (i) The space § is identified with the set of isomorphism
classes of bundles of rank 2 and trivial determinant which are ei-
ther stable or are of the form j @ j~!, where j is a line bundle
of degree 0. The space of non-stable bundles in S, which is iso-
morphic to the quotient of the Jacobian J of X by the canonical
involution of J, gets imbedded in P as a Kummer surface.

(i) This theorem shows in particular that S is non-singular. It fol-
lows easily from this that U(2,0) is non-singular if g = 2. In
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fact, U(2,0) is isomorphic to the variety of positive divisors alge-
braically equivalent to 2@, which is a projective bundle over the
Jacobian.

339 (iii) This theorem suggests a close connection between U(2,0) and the
variety of positive divisors on the Jacobian algebraically equiva-
lent to 2@, when g is arbitrary. This relationship has been studied
when g = 3 and will be published elsewhere.

5 Quadratic complexes and related projective bun-
dles. Before stating the next theorem it is convenient to recall certain
notations connected with a quadratic complex of lines in a three dimen-
sional projective space. For more details see [J3]].

Let R be a four dimensional vector space over C. Then the Grass-
mannian of lines G in the projective space P(R) is naturally embedded

. 2 . .
as a quadric in P(AR). Consider the tautological exact sequence
0->L'5R->F—0

of vector bundles on P(R) where L is the hyperplane bundle on P(R).
This leads to an exact sequence

O—>F®L_1 — /Z\R—> /Z\F—>().
This induces an injection P(F ® L~') — P(XR) x P(R); the image
is contained in G x P(R) and is the incidence correspondence between
lines and points in P(R). Consider the diagram

P(FRL™")

Pi P2

G P(R)

The map p; is a fibration with projective lines as fibres, associated to
the universal vector bundle on G. For w € P(R), p, !(x) is mapped
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isomorphically by p; onto a plane contained in G. A quadratic complex
of lines is simply an element of PH®(G, H?), where H is the restriction

to G of the hyperplane line bundle on P( /Z\R)
A generic quadratic complex in P(R) is a subvariety Q of G defined 340
by equations of the form

I14e
=
=t
Il
L

M

/lixiz =0, A; distinct, A; € C,

—_

6
with respect to a suitable coordinate system in P( /Z\R), where )] xl.2 =0
i=1
defines the Grassmannian. Let ¥ = pfl (Q). We then have a diagram

where g1 and ¢; are surjective. For w € P(R), g, !(w is imbedded in the
plane p; !(w) as a conic. A point w € P(R) where q, "(w) is a singular
conic (i.e. a pair of lines) is called a singular point of the quadratic
complex Q. The locus .#” of singular points in P(R) is a quartic surface
with 16 nodes viz. a Kummer surface. Thus if Q is a Zariski open subset
of P(R) — %, the restriction of ¢ to ¢, 1(Q) is a projective bundle over
Q. The geometric problem referred to in the introduction is whether this
projective bundle is associated to an algebraic vector bundle. We shall
show in §8that this is not the case. In view of the results of §7] this will
prove the main theorem.
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6 Vector bundles of rank 2 and degree 1 on a curve
of genus 2. It has been shown by P. E. Newstead [6]] that the space of
stable bundles of rank 2 with determinant isomorphic to a fixed line bun-
dle of degree —1 on a curve of genus 2, is isomorphic to the intersection
of two quadrics in a 5-dimensional projective space. The following the-
orem, which is proved in [3]], is a canonical version of this result which
brings out at the same time the relationship between vector bundles (of
rank 2) of degree 0 and —1. This relationship is of importance in the
proof of non-existence of Poincaré families.

Theorem 6.1. (i) Let X be of genus 2 and x a non-Weierstrass point of
X (i.e. a point not fixed by the canonical rational involution on
X). Let S x denote the variety of isomorphism classes of stable
bundles of rank 2 and determinant isomorphic to Ly, where Ly
is the line bundle determined by x. Let P be the projective space
defined in Theorem and G the Grassmannian of lines in P.
Then S | x is canonically isomorphic to the intersection Q of G and
another quadric in the ambient 5-dimensional projective space.

(i1) The quadratic complex Q is generic and the singular locus of Q is
the Kummer surface & in P corresponding to non-stable bundles
inS.

(ii1) With the identifications of S with P and S with Q, the projective
bundle on S — ¥ defined by the quadratic complex Q (see §3) is
Just the subvariety of S — & x S| x consisting of pairs (w, v) with
H°(X,Hom(V,W)) # 0, where V (resp. W) is in the class v (resp.
w).

(i) and (ii) have been explicitly proved in [3], Theorem 4, §9. It has
been proved there that if v € S, and A, the line in P defined by v, then
apoint w € P belongs to A, if and only if H%(X, Hom(V, W)) # 0 where
V(resp. W) is a bundle in the class v(resp. w), (see §9 of [3]). (iii) is
only a restatement of the above.

Remark. One can show that the space of lines on the intersection Q
of the two quadrics is isomorphic to the Jacobian of X[3, 6]. This result
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is to be compared with the following theorem of D. Mumford and P. E.
Newstead [2]]. Let X be of genus g > 2, and U’(2, 1) be the subspace
of U(2, 1) consisting of bundles with a fixed determinant. Then the in-
termediary Jacobian of U’(2, 1), corresponding to the third cohomology
group of U’(2, 1), is isomorphic to the Jacobian of X. The Betti numbers
of U'(2,1) are determined in [5].

7 Reduction of the Main Theorem to a geometric
problem.

Lemma 7.1. Let W be a stable bundle of rank 2 and trivial determinant.
Let x € X. Let O, = Ox/m, be the structure sheaf of x.

() IfV is a stable bundle of rank 2 and determinant L' and f = V —
W a non-zero homomorphism, then we have an exact sequence

0-VLW-o0,-0
Moreover dim H(X,Hom(V, W)) < 1.

(i) If W — O, is a non-zero homomorphism, then the kernel is a
locally free sheaf of rank 2, whose associated vector bundle is a
stable bundle with determinant L; .

Proof. (i) Itis clear that f must be of maximal rank; for, otherwise
the line sub-bundle of W generated by the image of f would have

degree > 0, since V is stable. Now the induced map A f: /Z\V —

AW is non-zero and hence can vanish only at x (with multiplicity
1). Hence f is of maximal rank at all points except x and f is
of rank 1 at x. This proves the first part of (i). Now suppose f
and g are two linearly independent homomorphisms from V to
W; choose y € X, y # x, and let f,, g, be the homomorphisms
Vy — W, induced by f and g on the fibres of V and W at y. Then
there exist A, u € C, (4, 1) # (0,0) such that Af; + ug, is not an
isomorphism. Then Af + ug would be a non-zero homomorphism
V — W which is not of maximal rank at y. This is impossible by
earlier remarks.
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(i) Let V be the vector bundle determined by the kernel. It is clear
that det V = L;'. To show that V is stable we have only to show
that V contains no line subbundle of degree > 0. If L were a
line subbundle of V of degree > 0, there would be a non-zero
homomorphism L — W, which is impossible since W is stable of
degree 0.

Let p : P — Q x X be a Poincaré bundle on Q x X, where Q is
an open subset of S (see Theorem F.1)) consisting of stable points. Let
x € X and let O, = Ox/m, be the structure sheaf of the point x. Then
the sheaf JZom(P, p*x0,) on Q x X is pq flat. Moreover, for each
weQ

dim H(w x X, #20m(P, p*x0,)|wxx)
= dim H%(w x X, #om(P|,xx, 0y))
— dim P*
= dim P((M)
= 2.

Hence by [1]], the direct image (pq).« Hom(P, p*O,) is a locally free
sheaf on Q and consequently defines a vector bundle £ on . |

Proposition 7.1. There is a morphism
P (E) - QxS Ix

such that the diagram

QXSlx

\/

is commutative. Moreover this morphism is an isomorphism onto the
subvariety of pairs (W, V) such that H°(X,Hom(V,W)) # 0, V € S,
WeQ
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Proof. Consider on Q x X the sheaf ¥ = om(P, p30,). Then we
have clearly the canonical isomorphisms

P+(T®p*Y) ~ p«(T) @Y ~ p,(E)* x ¥,

where p : P(E) x X — Q x X is the natural projection and 7 is the
tautological hyperplane bundle in P(E) x X. Moreover, the direct image
of p&(E*) x ¢ on Q is isomorphic to E* x pq, (¥) ~ E* @ E. Hence
H(P(E) x X, (T ® p*¥4)) ~ H°(Q,E* ® E). Hence the canonical
element of H(Q, E* ® E) (viz. the identity endomorphism of E) gives
rise to an element of HY(P(E) x X, T® p*%). In other words, we have a
canonical homomorphism p*P — p%(0,) ® T of sheaves on P(E) x X.
Consider the commutative diagram

P(E) x X — P(E)

l”

Qx X

p

Q

The direct image of T ® p*(¥) on P(E) is simply T ® p*(E), where T
also denotes the tautological bundle on P(E), and the canonical element
in HO(P(E) x X,T® p*(¥¢)) defined above is given by the tautological
element of H°(P(E), T ® p*(E)). From this we see that for f € P(E),
the restriction of the homomorphism p*(P) — p%(0,) ® T to f x X
can be described as follows. The restriction of p*(P) to f x X is the
restriction of P to p(f) x X and hence is a stable vector bundle W with
trivial determinant. Moreover f gives rise to a 1-dimensional subspace
of HO(X, ##0om(W,0,)). Any non-zero element in this 1-dimensional
space gives rise to a surjective homomorphism of p*P|f x X = W into
PxOx x T|¢xx ~ O,. This homomorphism (upto a non-zero scalar) is
the restriction of the canonical element. In particular it follows that the
canonical homomorphism p*(P) — p%(0,)®T is surjective. Moreover
since p%(0x) ® T has a locally free resolution of length 1 we see that
the kernel of the homomorphism p*(P) — p*(0,) ® T is locally free.
Let F be the vector bundle on P(E) x X associated to the kernel. O
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Lemma 7.2. The restriction of the vector bundle F to f x X, f € P(E)
is a stable vector bundle of rank 2 and determinant L;l.

In view of our earlier identification the lemma follows from Lemma
1

We now complete the proof of the proposition. By Lemma [Z.2] and
the universal property of S, we have a morphism g : P(E) — S,.
Then the morphism (p,q) : P(E) — Q x S, satisfies the conditions
of the proposition, in view of Lemmal[ZIl The morphism is an isomor-
phism onto the subvariety described in Proposition [Z.1] as this subvari-
ety is non-singular by Theorem

From Proposition [Z1land Theorem [6.1] we have immediately the

Corollary. If there is a Poincaré family on an open subset Q of the
set of stable points in S, then the projective bundle on Q defined by the
quadratic complex Q = S| is associated to a vector bundle.

8 Proof of the Main Theorem. Solution of the geo-
metric problem. It is easy to see that if there is a Poincaré family
parametrised by a Zariski open subset of U(2,0), there would exist a
Poincaré family parametrised by a Zariski open subset of the space of
stable points in S . In view of the Corollary of Proposition[Z.]l the main
theorem in {3l follows from

Proposition 8.1. With the notation of §3 let Q be a Zariski open subset
of P(R) — ¥ . Let q; : qz_l(Q) — Q be the projective bundle defined
in §31 Then there is no algebraic vector bundle on Q to which this
projective bundle is associated.

Proof. If there is such a vector bundle there would exist a Zariski open
set Q' of Q and a section o over Q' of the projective bundle g5 Q) -
Q. Let D be the Zariski closure of o(Q') in Y. Then D is a divisor
of Y and, since Y is non-singular, D defines a line bundle Lp on Y.
The restriction of the first Chern class of Lp to a fibre ¢, Nw), w e
Y, is the fundamental class of the fibre. On the other hand, we shall
show that every element of H>(Y,Z) restricts to an even multiple of
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the fundamental class of ¢, "(w) in H?(q; "(w),Z); this contradiction
would prove the proposition. We have the commutative diagram

HX(P(F®L™'),Z) — H*(p; ' (w),Z) ~ H*(P2,Z)

| |

H2(Y,Z) H*(q, ' (w). Z),

with the notation of §31 We first note that the canonical mapping
H?*(G,Z) — H*(Q,Z) is an isomorphism, by Lefschetz’s theorem on
hypersurface sections. Moreover since p; : P(F® L™') — G (resp.
q : Y — Q) is the projective bundle associated to a vector bundle,
H?(P(F® L™")Z) (resp. H*(Y,Z)) is generated by the first Chern class
of the tautological line bundle of the fibration P(F ® L™!) — G (resp.
Y — Q) and by pi(H*(G,Z)) (resp. ¢3H*(Q,Z)). Since this tau-
tological line bundle on P(F ® L~') restricts to the tautological line
bundle of the fibration ¥ — Q and H?*(G,Z) — H*(Q,Z) is an iso-
morphism, it follows that H>(P(F x L™'),Z) — H?(Y,Z) is surjec-
tive. Now from the commutativity of the diagram we see that image
H*(Y,Z) — Hz(qz_1 (w),Z) is contained in the image

H(p; (). Z) — H(q; ' (). Z).

But g, '(w) is imbedded in the plane Py '(w) as a conic and hence the
image H*(Y,Z) — H*(q, ' (w), Z) consists of even multiples of the fun-
damental class of g, Hw). m|
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MUMFORD’S CONJECTURE FOR GL(2) AND
APPLICATIONS

By C.S. Seshadri

IN [12]], it was shown that on a smooth projective curve X of genus 347

> 2 over C, there is a natural structure of a normal projective variety on
the isomorphic classes of unitary vector bundles of a fixed rank. This can
also be given a purely algebraic formulation, namely that on the classes
of semi-stable vector bundles of a fixed rank and degree zero, under
a certain equivalence relation, there is a natural structure of a normal
projective variety when X is defined over C. In fact this was used in
[12]]. It is then natural to ask whether this algebraic result holds good
in arbitrary characteristic. The main obstacles to extending the proof of
[12]] to arbitrary characteristic are as follows:

(1) to carry over the results of Mumford (obtained in characteristic 0)
on quotient spaces of the N-fold product of Grassmannians for the
canonical diagonal action of the full linear group (c.f. §4, Chap.
4, [BI), to arbitrary characteristic, and

(2) to find a substitute for unitary representations which have been
used in [12], mainly to show that the varieties in question are
complete.

It is not hard to see how to set about (2). One has to show that a
certain morphism is proper (see §3] Lemma[2)). This is not difficult but
requires some careful analysis and it is an improvement upon some of
the arguments in [12]. The difficulty (1) appears to be more basic. If
Mumford’s conjecture generalizing complete reducibility to reductive
groups in arbitrary characteristic (cf. §1, Def. 3) is solved for all special
linear groups, (1) would follow. In this we have partial success, namely
we solve Mumford’s conjecture for GL(2), which allows us to solve (1)
for the case of a product of Grassmannians of two planes. Consequently
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the results of carry over to the case of vector bundles of rank 2 in
arbitrary characteristic.

The proof of Mumford’s conjecture for GL(2) is rather elementary
and we give it in §I1 As for applications to vector bundles, only the
solution of (2) above is given in detail (§3 Lemma[2 (3)). The other
points are only sketched and proofs for most of these can be found in
(3] or [12]].

The algebraic schemes that we consider are supposed to be defined
over an algebraically closed field K and of finite type over K. The points
of an algebraic scheme are the geometric points in K and the algebraic
groups considered are reduced algebraic group schemes. By a rational
representation of an algebraic group G in a finite dimensional vector
space. V, we mean a homomorphism p : G — AutV of algebraic
groups.

1 Mumford’s conjecture for GL(2).

Definition 1. An algebraic group G is said to be reductive if it is affine
and rad G (radical of G) is a torus, i.e. a product of multiplication
groups.

Definition 2. An algebraic group G is said to be linearly reductive if it
is affine and every rational representation of G in a finite dimensional
vector space is completely reducible.

It is a classical result of H. Weyl that if the characteristic of the base
field is zero, every reductive group is linearly reductive. A torus group
is easily seen to be linearly reductive in arbitrary characteristic. If the
characteristic p of the base field is not zero, there are not many more
linearly reductive groups other than the torus groups; in fact, there is the
following result due to Nagata: an algebraic group G is linearly reduc-
tive if and only if the connected component G° of G through identity is
a torus and the order of the finite group G/G? is prime to p (c.f. [6]).

It is proved easily that an affine algebraic group G is linearly reduc-
tive if and only if any one of the two following properties holds :

(1) for every rational representation of G in a finite dimensional vec-
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tor space V and a one dimensional G-invariant linear subspace V)
of V, there exists a G-invariant linear subspace V; of V such that
V=VioVy

(2) for every rational representation of G in a finite dimensional vec-
tor space V and a G-invariant point v € V, v # 0, there exists a
G-invariant linear form f on V such that f(v) # 0.

Definition 3. An algebraic group G is said to be geometrically reductive
if it is affine and for every rational representation of G in a finite dimen-
sional vector space V and a G-invariant point v € V, v # 0, there exists
a G-invariant polynomial f on V such that f(v) = 1 and f(0) = 0 or,
equivalently, there is a G-invariant homogeneous form f on V such that
fv) =1

Let G be a geometrically reductive algebraic group acting on an
affine algebraic scheme X (we can even take X to be an arbitrary affine
scheme over the base field K, i.e. not necessarily of finite type over K)
and X;, X, two G-invariant closed subsets of X such that X; n X, is
empty. Then there exists a G-invariant f € A(X = SpecA) such that
f(X1) = 0and f(X,) = 1. This is proved easily as follows : there ex-
ists an element g € A (not necessarily G-invariant) such that g(X;) = 0
and g(X,) = 1. Now the translates of g by elements of G span a finite-
dimensional G-invariant linear subspace W of A. For every h € W,
h(X;) = 0 and h(X;) is a constant. We have a canonical rational rep-
resentation of G on W and therefore also on the dual W* of W. The
canonical inclusion W < A defines a G-morphism ¢ : X — W* of X
into the affine scheme W* (to be strict the affine scheme whose set of
geometric points is W*) and we have ¢(X;) = 0 and ¢(X2) = w, w # 0.
Now by the geometric reductivity of G, there exists £ in the coordinate
ring of W* such that 2(0) = 0 and hA(w) = 1. Now if f is the image of
h in A by the canonical homomorphism of the coordinate ring of W* in
A, then f has the required properties.

The following statements are proved easily.

(1) G is geometrically reductive if and only if for every rational repre-
sentation of G in a finite-dimensional vector space V and a semi-
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invariant point v € V, v # 0 (i.e. the one-dimensional linear sub-
space of V spanned by v is G-invariant), there is a semi-invariant
homogenous form f on V such that f(v) = 1.

(2) G is geometrically reductive if and only if for every rational repre-
sentation of G in a finite-dimensional vector space V, a G-invariant
linear subspace Vj of V of codimension one and Xy an element of
V such that Xy and Vj span V and X, is G-invariant modulo Vj,
there exists a G-invariant F € S ,,(V) (m™ symmetric power) for
some m > 1, such that F is monic in Xy when F is written with
respect to a basis Xo, X1,...,X, € V, Xje Vo, i > 1.

(3) Let N be a normal algebraic subgroup of an affine algebraic group
G such that N and G/N are geometrically reductive. Then G is
geometrically reductive. In particular, a finite product of geomet-
rically reductive groups is geometrically reductive.

(4) Let G be a reductive group. Then G is geometrically reductive if
and only if G/rad G is so.

(5) A linearly reductive group is geometrically reductive. A finite
group is geometrically reductive.

The conjecture of Mumford states that a reductive group is geomet-
rically reductive (c.f. Preface, [3]]). On the other hand it can be shown
that a geometrically reductive group is necessarily reductive (c.f. [8]]).

Theorem 1. The full linear group GL(2) of 2 x 2 matrices is geometri-
cally reductive.

Proof. Let G be an affine algebraic group and p, o’ rational representa-
tions of G in finite-dimensional vector spaces W, W’ respectively. Let
¢ : W — W be a homomorphism of G-modules and w, w' semi-
invariant points of W, W’ respectively such that w' = ¢(w), w' # 0.
Now if there is a semi-invariant polynomial f on W’ such that f(w') = 1
and f(0) = 0, then there is a semi-invariant polynomial g on W such
that g(w) = 1 and g(0) = 0; in fact we can take g to be the image of
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f under the canonical homomorphism induced by ¢ of the coordinate
ring of W into that of W. Using this simple remark, the proof of the
geometric reductivity of GL(2) can be divided into the following steps.

ey

2

It is a well-known fact (c.f. §1, exposé 4, Prop. 4, [2]) that if
G is an affine algebraic group and p a rational representation of
G in a finite dimensional vector space W, then the G-module W
can be imbedded as a submodule of A" (n-fold direct sum of A),
where A is a submodule of the coordinate ring of G, considered
as a G-module for the regular representation (we should fix the
right or the left regular representation). Thus to prove geometric
reductivity of G, we have only to consider submodules A of the
coordinate ring of G such that there exists a semi-invariant a € A,
a#0.

Let G = GL(n), R the coordinate ring of G and (X;;), | <i < n,
1 < j < n, the canonical coordinate functions on G. The lin-
ear space generated by X;; is a G-module and we can identify it
with the G-module V" = V@ --- @ V (n times), where V is an
n-dimensional vector space and G is represented as Aut V. Let &
be the function det |X;;| and L the 1-dimensional G-submodule of
R spanned by &. Now if W is a finite-dimensional linear subspace
of R, there exists an integer m > 1 such that for any g € W, g&™
is a polynomial in (X;;). A polynomial in (X;;) can be uniquely
expressed as a sum of multihomogenous forms in the sets of vari-
ables

Vi = (X1, Xo1, ... Xn1), Yo = (X12, X2, .. .. X2), - ...
Yo = (Xins Xans - -+ » Xow) (¥; — i column of (X;))).

The space of multihomogenous forms in (X;;) of degree m; in Y;
can be identified with the G-module W (my, ..., m,), where

W(my,..., my,) = @ S™ (V)(S™ (V) — m{" symmetric power of V).
i=1

Thus if W is a finite dimensional G-invariant linear subspace of
R, W® L™ can be embedded as a G-submodule of a finite direct
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sum of G-modules of the type W (my, ..., m,), where L™ denotes
the 1-dimensional G-module L& - - - ® L (m times). Thus to prove
the geometric reductivity of GL(n), it suffices to consider the G-
modules of the form W(my,...,m,) such that there is a non-zero
semi-invariant element in it.

Now it is easy to see that W(mj, ..., m,) has a non-zero semi-inva-
riant element v if and only if m; = my = ... = m, = m and then that
v is in the 1-dimensional linear subspace spanned by &” (¢ = det | Xjj|).
This is an immediate consequence of the following remarks:

®

(i)

(iii)

every 1-dimensional G-module (given by a rational representa-
tion) is isomorphic to L for some n € Z and

the only G-invariant elements of R are the scalars.

Thus to prove the geometric reductivity of GL(n), we have only
to consider the G-modules W (m),

W(m) = W(m,...,m) = ®S"(V)(n-fold tensor product of $"(V))
with the semi-invariant element being £”, & = det |X;;|.

Let G = GL(2). Let J : W(m) — S?"(V) be the canonical homo-
morphism, where for an element f in W(m) being considered as a
multi-homogeneous polynomial of degree m in Y; = (Xi1, X21),
Y2 = (X12,X22), j(f) is the homogeneous polynomial of degree
2m in two variables obtained by setting ¥; = Y,. Now jis a
G-homomorphism. Let 6,,—; : W(m — 1) — W(m) be the ho-
momorphism defined by 6, (f) = f& f € W(im — 1). Now
Om—1 is a homomorphism of the underlying S L(2) modules and it
“differs” from a GL(2) homomorphism only upto a character of
GL(2). Consider the following sequence

0— Wim—1) 2% wim) L s2(v) - o. ()
We claim that this sequence is exact. It is clear that 6,,_; is in-
jective. Further the kernel of j consists precisely of those polyno-
mials f in (X;;) which belong to W(m) and such that f vanishes
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(iv)

when we set (X;;) to be a singular matrix. Therefore [ = gé&,
which means that ker j = 6,_1W(m — 1). Now dimW(m) =
(m+1)%, dimW(m — 1) = m? and dim S?"(V) = (2m + 1), so
that diim W(m) = dim W(m — 1) + dim S?*(V). From this one
concludes that (*) is exact.

We shall now show that the exact sequence (*) has a “quasi-
splitting”, i.e. there is a closed G-invariant subvariety of W (m)
such that the canonical morphism of this subvariety into $2"(V)
is surjective and quasi-finite i.e. every fibre under this morphism
consists only of a finite number of points. Let D,, be the subset
of W(m) consisting of decomposable tensors, i.e. D,, = {f|f =
g®h,g,he S™(V)}. Then D,, is obviously a G-invariant subset
of W(m). We have a canonical morphism

W ST(V) x S™(V) — S™(V)®S™(V) = W(m)

and D,, = ¥(S™(V) x §™(V)). From the fact that ¥ is bilinear,
we see that D,, is the cone over the image of ¥/, where ¥’ is the
canonical morphism

W P(S™(V)) x P(S™(V)) — P(W(m))

induced by W, P indicating the associated projective spaces. It fol-
lows now that D,, is a closed G-invariant subvariety of W(m). The
morphism j; : D,, — S?"(V) induced by j is surjective, because
every homogeneous form in two variables over an algebraically
closed field can be written as a product of linear forms, in partic-
ular as a product of two homogeneous forms of degree m. We see
also easily that j; : D,, — S?"(V) is quasi-finite (it can also be
shown without much difficulty that j; is proper so that j; is indeed
a finite morphism but we do not make use of it in the sequel). An
element f ® g € D,, becomes zero when we set Y| = Y» if and
only if f and g are zero, i.e. we have D, "6, (W(m—1)) = (0).

Let G = GL(2). We shall now show by induction on m, that
there exists a closed G-invariant subvariety H,, of W(m) passing
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through 0 and not through £”. This will imply that GL(2) is geo-
metrically reductive.

For m = 0, the assertion is trivial. Let H,,_; be a homogeneous
G-invariant hypersurface of W(m — 1) not passing through &,_;. Let
H,, be the join of 6,,_; (H,,—1) and D,,, i.e.

Hy = {/l +,u|/l € Qm—l(Hm—l)nu € Dm}

We shall now show that H,, is a homogeneous G-invariant hypersurface
of W(m) not passing through &”. It is immediate that £&™ is not in H,, for
itém = A+ u, Ain 0,1 (Hy—1), 4 € Dy, then by setting Y, = Y, since
&™ and A become zero, we conclude that u becomes zero. As remarked
before, this implies that u itself is zero so that &" € 6,1 (Hy—1). It
would then follow that f’"‘l € H,,_, which leads to a contradiction so
that we conclude that &™ is not in H,,. The subset H,, is G-invariant
and also invariant under homothecy. Thus to complete the proof of our
assertion it suffices to show that H,, is closed and of codimension one in
W(m). This is an immediate consequence of the following lemma, since
H,, is the join of the two homogeneous subvarieties 6, (W (m—1)) and
D,, whose common intersection is (0). ]

Lemma 1. Let Qy, O be closed subvarieties of a projective space P
such that Q1 n Qy is empty. Then the join Q of Q1 and Q> is a closed
subvariety of P and dim Q = dim Q| + dim Q; + 1.

Proof of Lemma. Let A be the diagonal in P x Pand R = (P x P —A).
If r = (p1p2), pi € P, let L(r) be the line in P joining p; and p,. Then
the mapping r — L(r) defines a correspondence between R and P, and
it is seen easily that this is defined by a closed subvariety of R x P. Since
01 N QO is empty, we have Q1 x Q> < R. LetI'} = prl_l(Ql x 02), pr;
being the canonical projection of R x P onto the first factor. Now the join
Q = pr,(I'1), pr, being the projection of R x P onto the second factor.
Since Q| x O, is complete, it follows that Q is a closed subvariety of P.

We see that dim Q; + dim Q@ < dimQ < dimQ; + dimQ, + 1.
Therefore to show that dim Q = Qdim Q| + dim Q, + 1, it suffices to
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show that dim Q > dim Q; + dim Q» + 1. Since Q1 N Q» is empty, we
cannot have dimP = dim Q1 +dim Q. If dimP = dim Q| +dim O, +1,
we see that the lemma is true in this case. Suppose then that dimP >
dim Q1 +dim Q, + 1. Then there is a point p € P which is not in the join
Q of Q1 and Q». Let us now project Q; Q> and Q from p in a hyperplane
H not passing through p. Let 0}, Q) and Q' be the images of Q1, Q> and
Q respectively in H. Then @}, Q’, and Q' are isomorphic to Oy, Q> and
Q respectively. Further Q| n Q7 is empty and Q' is the join of Q' and
Q) in H. This process reduces the dimension of the ambient projective
space by one. By a repetition of this procedure, we are finally reduced
to the case dimP = dim Q; + dim Q, + 1, in which case the lemma
is true as remarked before. This completes the proof of the lemma and
consequently the proof of theorem is now complete.

Corollary. A finite product of algebraic groups of the type GL(2),
S L(2) or torus group is geometrically reductive.

Remarks. (1) That H is a closed G-invariant subset of codimension
one in W(m) (in the above proof) can also be done by showing
that the morphism ¢ : W(m — 1) x D,, — W(m), defined by
#(w,d) = w + d is a surjective finite morphism. The proof that
dim Q = dim Q| + dim Q; + 1 in the above lemma, is due to C.
P. Ramanujam.

(2) In characteristic 2, the geometric reductivity of GL(2) was proved
by Oda (c.f. [9]).

(3) The above proof gives also an analogue of geometric reductivity
of GL(2) over Z and consequently for more general ground rings
as well.

(4) M. S. Raghunathan has pointed out another proof of the exis-
tence of a hypersurface in W(m)(G = GL(2)) with the required
properties. We have an isomorphism of the GL(2)-modules V
and V* (V* dual of V). If m = p® — 1, a a positive integer,
p being the characteristic of the ground field, he points out that
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S™M(V) ~ S™(V*) ~ (S™(V))* as GL(2)-modules. Therefore in
this case
W(m) ~ Hom(S™(V),S™(V))

and then the hypersurface defined by endomorphisms with zero
determinant will have the required properties. Since we can find
arbitrarily large integers of the form p® — 1, the existence of the
required hypersurface for arbitrary m follows easily.

2 Quotient spaces.

Definition 4. Let X be an algebraic scheme on which an affine algebraic
group G operates. A morphism ¢ : X — Y of algebraic schemes is said
to be a good quotient (of X modulo G) if it has the following properties :

(1) ¢is asurjective affine morphism and is G-invariant; (2) ¢, (OX)G =
Oy and (3) if X, X are closed G-invariant subsets of X such that X; n
X, is empty, then ¢(X)), #(X2) are closed and ¢(X;) N ¢(X2) is empty.
We say that ¢ is a good affine quotient if ¢ is a good quotient and Y is
affine.

The first two conditions are equivalent to the following : ¢ is sur-
jective and for every affine open subset U of ¥, ¢! (U) is affine and
G-invariant and the coordinate ring of U can be identified with the G-
invariant subring of ¢~!(U). We see then that if ¢ is a good affine quo-
tient, X is also affine. The following properties of good quotients are
proved quite easily.

(1) The property of being a good quotient is local with respect to
the base scheme, i.e. ¢ is a good quotient if and only if there
is an open covering {U;} of Y such that every V; = ¢~ 1(U;) is
G-invariant and the induced morphism ¢; : V; — U; is a good
quotient.

(2) A good quotient is also a categorical quotient, i.e. if Yy : X — Z

is a G-invariant morphism, there is a unique morphismv: Y — Z
such that vo ¢ = .
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(3) Transitivity properties. Let X be an a one algebraic scheme on
which an affine algebraic group G operates. Let N be a normal
closed subgroup of G and H the affine algebraic group G/N. Sup-
pose that ¢; : X — Y is a good quotient (resp. good affine quo-
tient) of X modulo N. Then we have the following.

(a) The action of G goes down into an action of H on Y.

(b) If ¢ : Y — Zis a good quotient (resp. good affine quotient)
of Y modulo H, then ¢» o ¢; : X — Z is a good quotient
(resp. good affine quotient) of X modulo G.

ood
X g

\

\ good
\
N

z

(c) If ¢ : X — Zis a good quotient (resp. good affine quotient) 357
of X modulo G, there is a canonical morphism ¢, : ¥ — Z
such that ¢ = ¢, o ¢; and ¢, is a good quotient (resp. good
affine quotient of ¥ modulo H.

good

good

Z

(4) If ¢ : X — Y is a good quotient (modulo G), Z a normal algebraic
variety on which G operates and j : Z — X a proper, injective
G-morphism, then Z has a good quotient modulo G; in fact it
can be identified with the normalisation of the reduced subvariety
(¢ o j)(Z) in a suitable finite extension.
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The basic existence theorem on good quotients is the following.

Theorem 2. Let X = Spec A be an affine algebraic scheme on which a
geometrically reductive algebraic group G operates. Let Y = Spec A®
(AS invariant subring of A) and ¢ : X — Y the canonical morphism
induced by A® < A. Then ¢ is a good affine quotient.

For the proof of this theorem, the only non-trivial point is to check
that Y is an algebraic scheme, i.e. AC is an algebra of finite type over
K and this is assured by a theorem of Nagata, namely that if A is a
K-algebra of finite type on which a geometrically reductive group G
operates (rationally), then A is also a K-algebra of finite type (c.f. Main
theorem, [6]). The other properties for ¢ to be a good quotient, are
verified quite easily.

Definition 5. Let X be a closed subscheme of the projective space P,
of dimension n. An action of an affine algebraic group G on X is said
to be linear if it comes from a rational representation of G in the affine
scheme A, 1 of dimension (n + 1).

The above definition means that we have an action of G on A, ;| =
Spec K[Xj, ..., X,+1] given by a rational representation of G on A,
and that if a is the graded ideal of K[X1, ..., X,1] defining X, then a is
left invariant by G. We have X = ProjR, R = K[X,...,X,+1]/a. We
denote by X the cone over X (X = Spec R) and by (0) the vertex of the
cone X. The action of G lifts to an action on X and this action and the
canonical action of G, on X (homothecy) commute. We observe that
the canonical morphism p : X— (0) — X is a principal fibre space with
structure group G,, and that p is a good quotient (modulo G,,).

Definition 5. Letr X be a closed subscheme of P, and let there be given a
linear action of an affine algebraic group G on X. A point x € X is said
to be semi-stable if for some X € X - (0) over x, the closure (in X ) of
the G-orbit through X does not pass through (0). A point x € X is said
to be stable (to be more precise, properly stable) if for some X € X— (0)
over Xx, the orbit morphism y; : G — X defined by g — X o g is proper.
We denote by X* (resp. X®) the set of semi-stable (resp. stable) points
of X.
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We have now the following

Theorem 3. Let X be a closed subscheme of P, defined by a graded
ideal a of K[X1,...,Xpt1] so that X = ProjR, R = K[X1,..., Xut1]/a.
Let there be given a linear action of an affine algebraic group G on X,
Y = ProjR® and ¢ : X — Y the canonical rational morphism defined
by the inclusion R° < R. Suppose that G is geometrically reductive
or, more generally, that the cone X over X has a good affine quotient
modulo G (c.f. Theorem[l)). Then we have the following:

(1) x € X* if and only if there is a homogeneous G-invariant element
f € Ry(R+ being the subring of R generated by homogeneous
elements of degree > 1) such that f(x) # 0 (in particular, X** is
open in X and ¢ is defined at x € X*°).

2) ¢ : X* — Y is a good quotient and Y is a projective algebraic
scheme.

(3) X% is a ¢-saturated open subset, i.e. there exists an open subset
P P
Y* of Y such that X* = ¢~ (Y®) and ¢ : X* — Y* is a geometric
quotient, i.e. distinct orbits of X*° go into distinct points of Y*.

This theorem is proved quite easily.
Let H,, ,(E) denote the Grassmannian of r-dimensional quotient lin-
ear spaces of a p-dimensional vector space E. We have a canonical

immersion of H, ,(E) in the projective space associated to PAE and if
X = H)),(E) denotes the N-fold product of H,, ,(E), we have a canon-
ical projective immersion of X, namely the Serge imbedding associated
to the canonical projective imbedding of H),,(E). There is a natural
action of GL(E) = AutE on H), ,(E) and this induces a natural action
(the diagonal action) of GL(E) on Hi}f +(E). The restriction of this ac-
tion to the subgroup G = SL(E) is a linear action with respect to the
canonical projective imbedding of X. We denote by X*¢ (resp. X*) the
set of semi-stable (resp. stable) points of X with respect to the canonical
projective imbedding of X. Let R be the projective coordinate ring of X,
Y = ProjRC, X the cone over X and ¢ : X — Y the canonical rational
morphism as in Theorem [3labove. Then the result to be applied for the
classification of vector bundles on an algebraic curve is as follows.
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Theorem 4. Let X = HY (E) with 1 < r < 2. Then for the canonical

action of G = S L(E) on the cone X over X, X has a good affine quotient
modulo G so that by Theorem[3] the rational morphism ¢ : X — Y has
the properties (1), (2) and (3) of Theorem Bl in particular, ¢ : X** — Y
is a good quotient and Y is a projective algebraic scheme.

Further for x € X, x = {Ei}1<i<n, Ei a quotient linear space of
dimension r of E, x € X*° (resp. X®) if and only if for every linear sub-
space (resp. proper linear subspace) F of E, if F; denotes the canonical
image of F in E;, we have

dim F

N
x Zl dim F;
= > (resp. >)
p

r

Indication of proof. Let W be the space of (p x r) matrices. Then we
have canonical commuting operations of GL(p) and GL(r) on W. Let
W be the N-fold product of W and o the canonical diagonal action
of GL(p) on WV. Let o be the induced action of SL(p) on WN. We
have a natural action 7| of GL(r)¥ on WV. Let H be the subgroup of

N
GL(r)N defined by elements (gi,...,gy) such that [ ] detg; = 1 and 7
i=1
the restriction of the action 7 to H. We note that H/(S L(r))" is a torus
group. Therefore H is geometrically reductive since 1 < r < 2. Then
in view of Theorem 3 and the transitivity properties of good quotients,
for proving the first part of the theorem, it suffices to show that a good
quotient of WV exists, respectively for the actions of S L(p) and H, and
that the good quotient of WY modulo H can be identified with the cone
X over X.

ww " X
good
good | SL(p) d SL(p)
g00
H ~
e Y
() good
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These last two statements follow easily from the facts that for arbitrary
r (i.e. without assuming 1 < r < 2), a good quotient of W modulo the
canonical action of S L(r) exists and that it can be identified with the
cone over H, ,(E). These facts can be checked explicitly, using a result
of Igusa that H), ,(E) is projectively normal (c.f. [4]).

The proof of the last part of the theorem is the same as in §4, Chap.
4, [5] and we remark that for this it is not necessary to suppose that
1 < r < 2. It should be noted that our definition of stable and semi-
stable points differs, a priori, from that of [4], when the group is not
geometrically reductive and that the computations of §4, [4] hold in arbi-
trary characteristic for reductive groups provided we take the definition
of stable and semi-stable points in our sense.

3 Vector bundles over a smooth projective curve.
Let X be a smooth projective curve over K. Let us suppose that the

genus g of X is = 2. By a vector bundle V over X, we mean an algebraic
vector bundle; we denote by d(V) the degree of V and by r(V) the rank
of V. We fix a very ample line bundle L on X, let / = d(L). If Vis a
vector bundle (resp. coherent sheaf) on X, we denote by V(m), the vec-
tor bundle (resp. coherent sheaf) V ® L™, where L™ denotes the m-fold
tensor product of L. If F is a coherent sheaf on X, the Hilbert polyno-
mial P = P(F,m) of F is a polynomial in m with rational coefficients,
defined by

P(m) = P(F,m) = y(F(m)) = dim H*(F(m)) — dim H'(F (m)). If
F is the coherent sheaf associated to a vector bundle V, we have

P(m) =d(V(im)) —r(V)(g—1)=d(V) +r(V)(ml — g + 1).

We recall that a vector bundle V on X is said to be semi-stable (resp.
stable) if for every sub-bundle W of V (resp. proper sub-bundle W of
V), we have

r(VYd(W) < r(W)d(V)(resp. r(V)d(W) < r(W)d(V)).

Let @ be a positive rational number and S(e) the category of semi-
stable vector bundles V on X such that d(V) = ar(V). Then S(e) is an
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abelian category and the Jordan-Holder theorem holds in this category
(c.f. Prop. 3.1, [12] and Prop. 1, [10]). For V € S(@), we denote by gr V
the associated graded object; now gr V is a direct sum of stable bundles
W such that d(W) = ar(W) (we note that gr V is not a well-determined
object of S(«), it is determined only upto isomorphism). Let S(a, r) be
the sub-category of S(a) consisting of V € S(«a) such that r(V) = r. It
can be proved that S(a, r) is bounded, i.e. there is an algebraic family of
vector bundles on X such that every V € S(a, r) is found in this family
(upto isomorphism). We can then find an integer m such that H%(V(m))
generates V(m) and H'(V(m)) = 0 for all V € S(a,r). We fix such an
integer m in the sequel. Let E be the trivial vector bundle on X of rank

p=rle+Iim—g+1).

If V e S(a,r), then dim H(V(m)) = p, V(m) is a quotient bundle
of E and the Hilbert polynomial P of W = V(m) is given by P(n) =
r(a+Im+In—g+1), P(0) = p. The Hilbert polynomial is the same for
all V(m), V € S(a,r). Let Q(E/P) = Quot(E/P) be the Grothendieck
scheme of all 8 : E — F, where F is a coherent sheaf on X; 8 makes
F a quotient of E and the Hilbert polynomial of F is the above P; then
Q(E/P) is a projective algebraic scheme (c.f. Theorem 3.2, [3]). If
g € Q(E/P), we denote by F, the coherent sheaf which is a quotient
of E, represented by g. Let R be the subset of Q(E/P) determined by
points ¢ € Q(E/P) such that (i) F, is locally free and (ii) the canonical
mapping B, : E — HO(Fq) is surjective. If follows easily that for
q € R, B, is indeed an isomorphism and that H'(F,) = 0. It can be
shown that R is an open, smooth and irreducible subscheme of Q(E/P)
of dimension (p> — 1) + (r*(g — 1) + 1) invariant under the canonical
operation of Aut E on Q(E/P) and that for q1, ¢» € R, F, is isomorphic
to F,, if and only if ¢, ¢» lie in the same orbit under GL(E) = AutE
(c.f. §6, [12] and §5 a, [[10])). for g € R, F, is locally free and is therefore
the sheaf of germs of a vector bundle; let R** (resp. R®) denote the subset
of R consisting of ¢ such that (the bundle associated to) F, is semi-stable
(resp. stable). Let n be an ordered set of N distinct points Py, ..., Py
on X. Let t; : R — H),,(E) be the morphism into the Grassmannian of
r-dimensional quotient linear spaces of E (considered canonically as a
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vector space of dimension p), which assigns to ¢ € R, the fibre at P; of
the vector bundle associated to F,, considered canonically as a quotient
linear space of E. Let

T:R— H) (E)

be the GL(E)-morphism defined by 7 = {7;}1<;<y. Then we have the
following basic

Lemma 2. Given the category S(a,r), we can then find an integer m
and an ordered set n of N points on X as above such that the morphism
T:R— ng(E) = Z has the following properties:

(1) tisinjective;

(2) 7(R*) < Z*° and for q € R*, ©(q) is stable if and only if F, is a
stable vector bundle;

(3) the induced morphism 7 : R*> — Z*° is proper.

Remark. It can indeed be shown that 7 : R — Z** is a closed immer-
sion for a suitable choice of m and n.

Excepting (3), the other assertions have been proved before (§7,
[12])). We shall now give a proof of (3).

Let R; be the subset of Q(E/P) consisting of points g € Q(E/P)
such that the corresponding coherent sheaf F is locally free. Then R <
R; and R; is an open subscheme of Q(E/P) invariant under GL(E) (c.f.
Prop. 6.1, [12]]). Let n be an ordered set of N points Py,..., Py on the
curve X. Let 7; : R — H, ,(E) be the morphism (extending the above
7;) into the Grassmannian of r-dimensional quotient linear spaces of E
which assigns to g € Ry, the fibre of the vector bundle associated to F,
at the point P;, considered canonically as a quotient linear space of E.
Let 7 : Ry — H},(E) be the morphism defined by 7 = {7;}1<i<n.

We shall now extend the morphism 7 : Ry — HJ)) (E) to a multi-
valued (set) mapping of Q(E/P) into H)/,(E) and we shall denote this
extension by ® = {®;},<;<n. Suppose now that for ¢ € Q(E/P), F,
is not locally free. Then we have F, = V,(m) ® T,, where T, is a
torsion sheaf and V, is locally free (this decomposition holds because
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X is a non-singular curve). Suppose that P; ¢ Support of 7,. We then
define ®;(q) € H, ,(E) as the fibre of the bundle V, (m) at P; considered
canonically as a quotient linear space of dimension r of E. Suppose that
P; € Support of T,;; we then define ®;(g) to be any point of H, ,(E). We
thus obtain a multivalued (set) mapping ®; : Q(E/P) — H,,(E) and
we define ® = {®;};<;<y. We claim now that ®; is a morphism in a
neighbourhood of ¢ € Q(E/P) if and only if P; ¢ Support of T,. For
this it suffices to show that given gy € Q(E/P) such that P; ¢ Support of
T,,, there is a neighbourhood U of g such that P; ¢ Support of T, for
any g in U. We observe that F, is locally free in a neighbourhood of P;
and therefore if F is the coherent sheaf on X x Q(E/P), which is a quo-
tient of E and defines the family {F,}, it follows by Lemma 6.1, [12]],
that F, is locally free in a neighbourhood of (P; x go) € X x Q(E/P).
From this the existence of a neighbourhood U as required above follows
easily and our claim is proved. It is now immediate that the graph of
®; in Q(E/P) x H,,(E) is closed and that it contains the closure of the
graph of 7; : Ry — H,,,(E) in Q(E/P) x H,,(E). From this it follows
easily that the graph of ® in Q(E/P) x H),(E) contains the closure of
the graph of 7 : Ry — HJ/ (E) in Q(E/P) x H,,(E). Then we claim
that

Claim (A). m and N can be so chosen that for g € Q(E/P), ®(q) is
semi-stable (resp. stable) if and only if g € R** (resp. R®).

Let us first show how (A) implies (3) of Lemma[2l Let us denote
by the same letter @, the graph of the multivalued set mapping @ :
Q(E/P) — H),(E). Let I be the graph of the morphism 7 : R —
H, ,(E)* and ¥ the closure of I"in Q(E/P) x HY .(E). Now (A) implies
that ® > ¥ and that

® n (Q(E/P) x H),(E)*™) =T.
This implies that
¥ (Q(E/P) x H),(E)") =T
since ® ¥ D I'. Since VY is closed, this means that I', which by defini-

tion is closed in R** x H)) (E)*, is also closed in Q(E/P) x H}} (E)*.
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Since Q(E/P) is projective, in particular complete, the canonical pro-
jection of Q(E/P) x Hy (E)** onto H),(E)** is proper and this implies
that

T:R* - H) (E)"

is proper.
We shall now prove ((A)). In view of (2) of Lemma [2] which has
been proved in §7, [12]], it suffices to prove the following:

Claim (B). m and N can be so chosen that for ¢ € Q(E/P), g ¢ R*,
®(g) is not a semi-stable point of H (E).

Let F(r) denote the category of all indecomposable vector bundles
V on X such that #(V) < rand d(V) > — gr(V). From the fact that the
family of all indecomposable vector bundles on X of a given rank and
degree is bounded (c.f. p. 426, Th. 3, [I]), it is deduced easily that there
is an integer mq such that for m > my, YV € F(r), H'(V(m)) = 0 and
H°(V(m)) generates V(m) (i.e. the canonical mapping of H%(V(m))
onto the fibre of V(m) at every point of X is surjective). In the following
we fix a positive integer m such that m = my.

If ¢ € Q(E/P), we have F, = V,(m) @ T,, where T, is a torsion
sheaf and V is the coherent sheaf associated to a vector bundle V,. We
denote by p; the natural projection of H°(F,) onto H°(V,(m)). For
proving ((B)), we require the following :

Claim (C). If ¢ ¢ R**, there is a proper linear subspace K of E (i.e.
K # E, K # (0)) and a sub-bundle W,(m) of V,(m) (W,(m) could
reduce to 0) such that

(@) (p1 o Bg)(K) = HO(Wy(m)) and (p o By)(K) generates W (m)
generically (i.e. there is at least one point P of X such that (p; o
Bq)(K) generates the fibre of W, (m) at P; we recall that 8, is the
canonical mapping £ — H°(F,)) and,

r(We(m)) r

. rWy(m) _r
(D dmK  p

We shall now prove ((C)) and this proof is divided into two cases.
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Case (i) ¢ ¢ R. Suppose that Ker(p; o 8,) # 0. Then we set K =
Ker(p; of,) and W, (m) = (0). Then K generates W, (m) and the
inequality (b) is obviously satisfied.

Suppose then that Ker(p; 0 3,) = 0,i.e. p1 0B, : E — H°(Vq(m))
is injective. Suppose further that for every indecomposable component
Vi(m) of V,(m), we have

d(V,) = —gI'(V,').

Then by our choice of m, we have H'(V,(m)) = 0 and H°(V,(m))
generates V,(m). For the torsion sheaf 7, we have T,(n) = T, for
all n and H'(T,) = 0. It follows then that H'(F,(n)) = 0 for every
n = 0. Then we have P(n) = H°(F,(n)) for every n > 0; in particular
p = dim H°(F,). But since py o B, : E — H°(V,(m)) is injective and
p = dim E, we conclude that H°(T,) = 0. Since T, is a torsion sheaf,
this implies that 7, = (0), i.e. that F, is locally free. Further it follows
that B, : E — H°(F,) is an isomorphism so that ¢ € R, which is a
contradiction.

We can therefore suppose that there is at least one indecomposable
component V;(m) of V,(m) such that

d(V,) < —g}’(Vi).

Let V,(m) = Wy (m)@ W»(m) such that for every indecomposable com-
ponent U(m) of W;(m), we have d(U) = —gr(U) and for every inde-
composable component S (m) of W(m), we have d(S) < —gr(S). We
note that since F, is a quotient of E and F, = V,(m)®T,, V,(m) is gen-
erated by its global sections; consequently W;(m) and Wa(m) are also
generated respectively by their global sections. If G is a vector bun-
dle on X generated generically by H°(G), it can be shown easily (c.f.
Lemma 7.2, [12]]) that

dim H(G) < d(G) + r(G)
and by applying this it follows easily that

dim HO (W5 (m)) < r(Wa)(Im — g + 1).
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We see then that there is a linear subspace K of E(~ H°(E)) such that
(P1©Bg)(K) = H (W (m)) and

dimK > p— r(Wa)(im — g + 1) = r(Wy)(Im — g + 1) = "),

This shows that

o rWiim)

p dim K

Let W,(m) be the sub-bundle of W;(m) generated generically by K
(through p; o B,). Then we have

r(Wy(m))  r(W(m))
dimK = dmK

Therefore, we have

This proves ((C)) in Case (i).
Case (ii) ¢ € R, ¢ ¢ R*. We have F, = V,(m), V, being not semi- 367

stable. We see easily that there exists a stable sub-bundle W, (m)
of V,(m) such that

=a>0.

The bundle W, is indecomposable and therefore W, € F(r). There-
fore by our choice of m, H'(W,(m)) = 0 and H°(W,(m)) gen-
erates W,(m). We have also H'(V,(m)) = O and B, : E —
H®(V,(m)) is an isomorphism. We set K = H°(W,(m)). Then by
applying the Riemann-Roch theorem, we get

dimK  d(W,(m)) W)
AR AR AT R
gzd(r‘zq—v(:;))—(g—l) (( )) tml—g+ 1.
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. d(Wy) _ d(Vy) r(Wy) .
Since > , We get — — — < 0. This completes
r(Wy) — r(Vy) dimK p
the proof of ((C)).

We shall now show that ((C)) implies ((B)). Let ¢ € Q(E/P), q ¢
R*. If L is a subspace of E, we denote by L; the canonical image of L
in the quotient linear space of E represented by ®;(q). Let

N
¥ > dimL;
Ly=—-r I
P dim L p

Then ((B)) would follow if we show that there is a proper subspace K
of E such that p(K) < 0 (see the last assertion of Th. H). Take a proper
linear subspace K of E as provided by ((C))) above. Then we have

_ r(Wy(m))  r
PK) = —gmx 5 ="
‘We have
N
u(K) — p(K)| < > |r(W,) — dim K] (a)
i=1

since dim K > 1. Now to estimate the right side, we should consider
those i for which r(W,) — dim K; could be different from zero. This
could occur for i such that P; € Support of T, or P; ¢ Support of 7.
Suppose that P; € Support of 7, and r(W,) — dim K; # 0. Then K does
not generate the fibre of W, (m) at P;. The number of distinct points of
X where K does not generate the fibre of W,(m) is at most d(W,(m))
(c.f. Lemma 7.1, [12]]). From these facts, we deduce that

u(K) — p(K)| < r(d(Wy(m))) + C;rd(Support of Tq). )

Now for F, = V,(m) ® T,, by applying the Riemann-Roch theorem,
we get for sufficiently large n that

dim H(F,(n)) = A+ nrl + dim H(T,) — r(g — 1)
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where d(V,(m)) = A > 0 (4 is positive because V,(m) is generated by
its global sections). On the other hand, for sufficiently large n,

dim H*(F,(n)) = P(n) = r(a + Im + In — g + 1).
Therefore we obtain that
dim H(T,) + A = r(ml + a). (©)
Since Card (Support of 7,,) < dim H%(T,) and A < 0, we get that
Card(Support of T;) < r(ml + a). (d)

We note that the family of vector bundles {V,(m)}, ¢ € Q(E/P) is
a bounded family. This could be seen as follows. The degree of every
indecomposable component of V,(m) is positive, in particular, bounded
below, because V, (m) is generated by global sections. On the other hand
from ((C)) above we see that

A+ d(Vy(m)) < r(ml + a),

i.e. the degree of V,(m) is bounded above. From these facts, it follows
that the degrees of every indecomposable component of V,,(m) are both
bounded below and above. This implies that {V,(m)} is a bounded fam-
ily (c.f. p. 426. Th. 3, [1l). Now W,(m) is generated generically by
K (through p; o ;) and therefore by its global sections as well. As we
just saw for the case of V,(m), it follows that the degrees of all the inde-
composable components of W,(m) are bounded below. Then since the
family {W,(m)}, g € Q(E/P) is a family of sub-bundles of the bounded
family {V,(m)}, ¢ € Q(E/P), it can be proved without much difficulty
that the degrees of the indecomposable components of W, (m) are also
bounded above (c.f. Prop. 11.1, [11]]). It follows then, as we just saw
for the case of V,(m), that {W,(m)}, g € Q(E/P), is a bounded family.
In particular, there is an absolute positive constant 6 such that

d(W,(m)) < 6.
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Looking at the inequalities (b), (c), and (d), we get that
u(K) = p(K)| < r(0+ r(ml + a)).

Suppose that N = 2p*r(6 + r(ml + «)). Then we have

1K) — p(K)| < =

2p%
On the other hand, since dim K < p and u(K) < 0, we have

1

/pz-

r ’”(Wq)
p dimK

We have

Therefore we get

which gives
—p(K)Z—z——2=—2>0.

Thus we have proved that if ¢ ¢ R* and N = 2p*(6 + r(ml + a)), then
there exists a proper linear subspace K of E such that p(K) < 0. This
completes the proof of and thus (3) of Lemma[2is proved.

Let us now take in the above lemma r = 2, i.e. we consider semi-
stable vector bundles V of rank 2 such that @ = d(V)/r(V). Then Z** has
a good quotient (modulo S L(E)) and the quotient is in fact a projective
variety (c.f. §21 Theorem[). Since R** is a smooth variety, in particular
normal, then by the properties of good quotients, it follows that R** has
a good quotient ¢ : R* — T modulo GL(E) (equivalently SL(E) or
PGL(E)) such that T is projective. It is checked easily that R® is non-
empty and that the closures of the GL(E)-orbits through ¢, g» € R*
intersect if and only if gr F,, = grF,,. It follows then that 7 can be
identified naturally with the classes of vector bundles in S(a,2) under
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the equivalence relation Vi, V; € S(a,2), Vi ~ V; if and only if gr V| =
grV, and that dim7 = (4g — 3). It can also be seen easily that 7' has
a weak universal mapping property (coarse moduli scheme in the sense
of Def. 5.6, Chap. 5, [4]]). Thus we get the following

Theorem 5. Let U, be the equivalence classes of semi-stable X of rank
2 and degree 2« under the equivalence relation V| ~ V, if and only if
grVy = grVa(a = 0 or L). Then there exists a structure of a normal
projective variety on U,, uniquely determined by the following proper-
ties:

(1) given an algebraic family of vector bundles {V,}, t € T, of rank 2
and degree 2a on X, parametrized by an algebraic scheme T, the
canonical mapping T — U,, defined by t — grV, is a morphism;

(2) given another structure U’ on U, having the property (1), the
canonical mapping U, — U’ is a morphism.

Remark. It can be shown that U is smooth when a = %
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THE UNIPOTENT VARIETY OF A SEMISIMPLE
GROUP

By T. A. Springer

Ir G is a connected semisimple linear algebraic group over a field 373
of characteristic 0, one easily sees that the variety V of unipotent ele-
ments of V is isomorphic to the variety B of nilpotent elements of its
Lie algebra g; moreover one can choose the isomorphism so as to be
compatible with the canonical actions of G on V and ®B. In this note
the analogous situation in characteristic p > 0 will be discussed. We
have to restrict p to be “good” for G (see[0.3). This is not so surprising,
since in “bad” characteristics there are anomalies in the behaviour of
unipotent elements.

Due to technical difficulties, we cannot prove the isomorphism of V
and B for p > 0, but only a slightly weaker result (Theorem 3.1)). This
is, however, sufficient for the applications which are discussed in §4l

0 Notations and recollections.

0.1 & denotes a field, k an algebraic closure of k and k a separable
closure. p is the characteristic of k.

An algebraic variety V defined over k (or a k-variety) is a scheme
which is of finite type and absolutely reduced over k. V(k) denotes its
set of k-rational points. We may and shall identify V with V (k), or V (k).

An algebraic group H defined over k (or a k-group) will mean here
a linear algebraic group, i.e. an affine group scheme, of finite type and
smooth over k. H” denotes the identity component of H.

The Lie algebra of an algebraic group H will be denoted by the
corresponding German letter I). H acts on b via the adjoint representation
Ad. If x € H, Z(x) denotes the centralizer of x in H, 3(x) = {X €
h|Ad(x)X = X} the centralizer of x in . If X € b, Z(X) = {x €
H|Ad(x)X = X} is the centralizer of X in H, 3(X) its centralizer in ) 374
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390 T. A. Springer
and N(X) = {xe HIAd(x)X € %*X} its normaliser in H.

0.2 G always denotes a connected semisimple linear algebraic group,
defined over a field k.

Let T be a maximal torus of G, B a Borel subgroup containing 7" and
U the unipotent part of B. Denote by X the set of roots of G with respect
to T. B determines an order on X, let £ be the set of positive roots. We
denote by ry,...,r; the corresponding simple roots. For r € X there is
an isomorphism x, of the additive group G, onto a closed subgroup G,
of G, such that

L (). = x(1E) (£€k),

where ¢ denotes the value of the character rof Tint € T. U is generated
by the G, with r > 0. G, and G_, generate a subgroup P, which is
connected semisimple of type Aj. X, € g will denote a nonzero tangent
vector to G,. We will say that G is simple if X is irreducible.

0.3 Let G be simple. Then there is a unique highest root r in X, for the
given order. Express r as an integral linear combination of the r;. The
characteristic p of k is called bad for G, if p is a prime number dividing
one of the coefficients in this expression. Otherwise p is called good for
G. If p is good and if moreover p does not divide the order of the centre
of the simply connected covering of G, then p is called very good for G.
p = 0 is always very good. For the simple types, the bad p > 0 are:

Apnone; B, C,, Dy p=2,E6,E7,F4,Gy:p=2,3;Eg: p =
2,3,5. A good p is very good, unless G is of type A; and p divides [+ 1.
If G is arbitrary, p is defined to be good or very good for G if it is so far
all simple normal subgroups of G.

0.4 x € G is called regular, if dim Z(x) equals rank G. We shall have
to make extensive use of the properties of regular unipotent elements of
G, which are established in [[14]], [[13]].

1 The unipotent variety of G. Let V(G) (or V, if no confu-
sion can arise) denote the set of unipotent elements of G. Then V(G)
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The Unipotent Variety of a Semi-Simple Group 391

is closed in G. We call V(G) the unipotent variety of G. The following
result justifies this name.

Proposition 1.1. V(G) is an irreducible closed subvariety of G of di-
mension dimG — rank G. G acts on V(G) by inner automorphisms.
V(G) and the action of G on it are defined over k.

Except for the last statement, this contained in ([14]], 4.4, p. 131).
We sketch the proof since we have to refer to it later on.

Suppose first that G is quasi-split over k. Let B be a Borel subgroup
of G, which is defined over k. Then U is also defined over k. Consider
the subset W of G/B x G, consisting of the (gB, x) such that g~!xg € U.
This is a closed subvariety of G/B x G ([3], exp. 6, p. 12, 1.13). It
follows from loc. cit. that W is irreducible and defined over k. V is the
projection of W onto the second factor of G/B x G, letnw : W — V
be the corresponding morphism. That V has the asserted dimension is
proved in ([[14], loc. cit). G/B being a projective k-variety, 7 is proper,
defined over k. V is closed in G and defined over k.

Let G act on G/BxG by (h, (gB, x)) — (hgB, hxh™"). This action is
defined over k, W is stable and r is a G-equivariant k-morphism W — V,
G acting on V as in the statement of the proposition.

If k is arbitrary, G splits over kg (see [2]], 8.3 for example). It follows
that V is defined over k. Since V is clearly stable under I' = Gal(k,/k),
it is defined over k. W is also defined over k, moreover if s € I there
exists g5 € G(ks) such that

‘B =gBg,", ‘U =yg,Ug,".

Define a new action (s, w) — swof I'on W by s(gB,x) = (*g- gsB, ).
W is stable under this action of I', hence this defines a structure of k-
variety on W, such that the projection 7 : W — V is a G-equivariant
k-morphism.

If G and G’ are two semisimple k-groups, and f a k-homomorphism,
there exists an induced k-morphism V(f) : V(G) — V(G').

Proposition 1.2.

(i) If f is a separable central isogeny, then V(f) is an isomorphism,
compatible with the actions of G and G/,
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(i) V(G x G') is isomorphic to V(G) x V(G') as a k-variety, the
isomorphism being compatible with the actions of G, G', G x G'.

The proof of Proposition[L2]is easy.
The following results are essentially contained in [15].

Proposition 1.3.
(i) V(G) is nonsingular in codimension 1;

(ii) V(G) is normal if G is simply connected, or if p does not divide
the order of the centre of the simple connected covering of G.

We may assume k to be algebraically closed. In V we have the open
subvariety O of the regular elements. O is an orbit of G and all its ele-
ments are simple points of V (see [13]], 1.2,[L.3lfor these statements). (i)
then follows from the fact, proved loc. cit. (6.11 e), that the irreducible
components of V — O have codimension > 2.

If G is simply connected, then by ([13], 6.1, 8.1) V is a complete
intersection in G. The first statement in (ii) then follows from known
normality criteria (e.g. [7], iv, 5.8.6, p. 108) and the second one is a
consequence of [L.2] (i).

We now prove some properties of the proper k-morphism 7 : W —
V, introduced in the proof of [Tl

Proposition 1.4. If G is adjoint, then n is birational.

Since a regular unipotent element is contained in exactly one Borel
subgroup, 7 is bijective on 77!(0) (O denoting as before the variety of
regular elements). [L.4] will then follow, if we show that 7 is separable
(see e.g. [7]], 1, 4.3.7, p. 133). We may assume k to be algebraically
closed. Let ¢ be the morphism G x U — G such that ¢(g,u) = gug™".
From the definition of x it follows that there exists a morphism ¢ :
G x U — W such that ¢ = m o . To prove the separability of x,
it suffices to prove that in some point a € G x U, the tangent map
(dg)a : T(G x U)g — T(G)g(q) has image of dimension dim V.

Let u be a regular unipotent element in U. We will take a = (e, u).
Identify the tangent space T'(G x U), with g @ u (via a right translation
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with (e, u)), identify T(G)4(,) with g. Then (d¢), becomes the homo-
morphism a : g@®u — g, which sends (X, U) into (1 — Ad(u)~")X + U.
It follows that a(g @ u) contains (Ad(u) — 1)g, which, by ([15]], 4.3, p.
58) has dimension equal to dim V. (Since G is adjoint, the 3 of loc. cit.
is now the zero element). This implies the result.

Remark. By dimensions one finds also that u = (Ad(u) — 1)g.

Proposition 1.5. The fibres of & are connected.

We may assume k to be algebraically closed. In view of the defi-
nition of W this can be stated in another way, namely that, B denoting
some Borel subgroup of G, the fixed point set in G/B of any unipo-
tent element g € G is connected. Identifying G/B with the variety of
Borel subgroups of G, [l.3can also be interpreted as follows: the closed
subvariety of G/B consisting of the Borel subgroups containing g, is
connected. follows, if G is simply connected, from [[.3 (ii) and [[.4]
by Zariski’s connectedness theorem (see [[7]], 4.3.7, p. 133). The gen-
eral case then follows at once, since central isogenies do not affect the
statement.

Another proof of[L.5lwas given by J. Tits. Since his method of proof
will be useful in §2] we will reproduce his proof here. We interpret G/B
as the variety of Borel subgroups of G. Let g € B be a unipotent element
of G, let B be another Borel subgroup containing g. By Bruhat’s lemma,
B n B’ contains a maximal torus 7. Let N be its normalizer and % =
N/T be the Weyl group. For w € #, denote by n,, a representative in N.
There exists then w € # such that B’ = n,,Bn,, ! B determines an order

on the root system X, let wy, ..., w; (I = rank G) be the reflections in #
defined by the corresponding simple roots. Since the w; generate %, we
can write w as a product w = w;, ... w;,. We take f as small as possible.

Putvo = L,vy =w;...w;,(1 <h <1), By = nvthv_h], so that By = B,
B, = B'. Let I, denote the set of r € X such that r > 0, vyr < 0. It is
known that the minimality of # implies that X, < X, (this follows e.g.
from [5]], p. 14-06, lemma). The intersection By N By, is generated by T
and the subgroups G, (see[Q.2) with r ¢ X, ([3]], exp. 13, No. 2). Hence
B, © By n B, = Bn B, in particular g belongs to all B,. Let X < G/B
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be the variety of Borel subgroups containing g. It suffices to show that
we can connect By, and By inside X by a projective line.

Put u = vywy, o 1v;1, then By, | = nuBhn;l, moreover u is a reflec-
tion in a simple root for the order on X determined by Bj. Changing the
notation, we are reduced to proving that B and B’ are connected inside
X by a projective line, if w is a reflection in a simple root r > 0. Then let
P, be the subgroup of G generated by G, and G_,. P, is of type A and
we may take n,, € P,. One easily checks that ABh~' > B n B’ for all
h € P,. P, n Bis a Borel subgroup of P,. Lety : P,/P, n B— G/Bbe
the canonical immersion. L = P,/P, n B is a projective line and /(L)
contains both B and B’. This establishes our assertion.

2 The nilpotent variety of G. We discuss now the Lie algebra
analogues of the results of §Il We recall that an element X € g is called
nilpotent if it is tangent to a unipotent subgroup of G. Equivalently,
X is nilpotent if it is represented by a nilpotent matrix in any matrix
realization of G (see [1I], §1, pp. 26-27). Let B(G) (or B) denote the set
of nilpotent elements in g, g being endowed with the obvious structure
of affine space over k. Then V is a closed subset of g.

Proposition 2.1. B(G) is an irreducible closed subvariety of § of di-
mension dim G —rank G. G acts on B(G) via the adjoint representation
of G. B(G) and the action of G on it are defined over k.

The proof is similar to that of [LTl First let G be quasi-split over k.
We use the notations of the proof of [LTl Instead of W, we consider now
the closed subvariety W of G/B x g, consisting of the (gB, X) such that
Ad(g)"'X € u. G acts on W by

(h,(gB,X)) — (hgB,Ad(h)X).

The projection of G/B x g onto its second factor induces a G-equivariant
proper morphism 7 : W — B. The argument parallels now that of the
proof of [Tl (see [2]], §2, where a similar situation is discussed).

If f: G — G’ is a k-homomorphism of semisimple k-groups, there
exists an induced k-morphism B(f) : B(G) — B(G’) (by [2]], 3.1).
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Proposition 2.2.

(i) If f is a separable isogeny, then B(f) is an isomorphism, com-
patible with the actions of G and G';

(i) B(G x G') is isomorphic to B(G) x B(G') as a k-variety, the
isomorphism being compatible with the actions of the G, G', G x
G

The proof is left to the reader.
can only be partially extended to B.

Proposition 2.3. Let p be good for G. Then B(G) is nonsingular in
codimension 1.

This will not be needed, so we only indicate briefly how this can be
proved. If p is good, there exist in g regular nilpotent elements (by [14]],
5.9 b, p. 138, this is also a consequence of [10], 5.3, p.8). The orbit O
in B of such an element is open and consists of nonsingular points. One
then uses the method of to prove that all irreducible components of
B — O have codimensions at least 2.

It is likely that B(G) is normal if G is simply connected and p is
good. However we are not able to prove this. A proof along the lines
of that of would require the analogue of (i1). In characteristic 0
this is a result of Kostant ([9]]). For a proof of the corresponding fact
in positive characteristics it seems that one needs detailed information
about the ring of G-invariant polynomial functions on g.

If the normality of B were known. Theorem [3.I] could be amelio-
rated and its proof could be simplified.

Proposition 2.4. Suppose that p is very good for G. Then T : W — B is
birational.

The proof is similar to that of [[4l Instead of results on regular
unipotent elements, one now uses those on regular nilpotent elements of
g, which are discussed in ([14], 4, p. 138).
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Proposition 2.5. The fibres of T : W — B are connected.

A proof based on Zariski’s connectedness theorem, as in[I.3] cannot
be given here since we cannot use normality of B. But Tits’ proof works
in the case of B and carries over with some obvious modifications.

3 Relation between V and B. In this number we shall prove
the following theorem.

Theorem 3.1. Suppose that G is simply connected and that p is good
for G. Then there exists a G-equivariant k-morphism f : V — B, which

induces a homeomorphism V (k) — B(k).

The normality of B would imply that f is an isomorphism. However
Bdlis already sufficient for the applications we want to make. In char-
acteristic 0, one easily gives a proof of 3.1} using the logarithm in some
matrix realization of G. For the proof we need a number of auxiliary re-
sults. The first three give some rationality results on regular unipotents
and nilpotents.

Proposition 3.2. Suppose that G is adjoint and that p is very good for
G. Let X be a regular nilpotent element of §(k). Then its centralizer
Z(X) is connected, defined over k and is a k-split unipotent group.

Recall that a connected unipotent k-group is called k-split, if there
exists a composition series of connected k-groups, such that the succes-
sive quotients are k-isomorphic to G, (see [L1], p. 97). That Z(X) is
connected unipotent is proved in ([14], 5.9b, p. 138). Len N(X) be the
normalizer of X in G (see [0.I). Under our assumptions, N(X) is also
defined over k ([10]], 6.7, p. 11). Moreover, N(X) is connected. In fact,
if S is a maximal torus of its identity component N(X)°, then for any
g € N(X), there exists s € S such that Ad(g)X = Ad(s)X, whence
N(X) < S - Z(X) = N(X)?, since Z(X) is connected.

Now N(X) contains a maximal torus S which is defined over k (by
a theorem of Rosenlicht-Grothendieck, see [[1]]). Define a character a
of S by Ad(s)X = s°X. Then a is clearly defined over k; moreover
since Z(X) is unipotent and since N(X)/Z(X) has dimension 1, we have
that dimS = 1. It follows that S is k-split. S acts on Z(X) by inner
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automorphisms. We claim that S acts without fixed points. To prove
this, we may assume k algebraically closed, moreover it suffices to prove
that S acts without fixed points on the Lie algebra 3 of Z(X) ([3]], 10.1,
p- 127).

Since all regular nilpotents are conjugate ([14], 5.9¢, p. 130), it
suffices to prove the assertion for a particular X. We may take, with the

!
notations of [0.21 X = >’ X,. (loc. cit. p. 138). Then one may take for
i=1
S the subtorus of 7', which is the identity component of the intersection

of the kernels of all r; — r;. This § acts without fixed points on u, hence
also on 3, since 3 < u ([14], 5.3, p. 138). By the conjugacy of maximal
tori, the assertion now follows for an arbitrary maximal torus of N(X).
S acting without fixed points on Z(X), it follows that Z(X) is k-split
([2], 9.12). This concludes the proof of
The following result generalizes ([13l], 4.14, p. 135).

Corollary 3.3. Under the assumptions of let Y be another regular
unipotent in g(k). Then there exists g € G(k) such that Y = Ad(g)X.

Let P = {g € G|Ad(g)X = Y}. P is defined over k. This is proved
in the same way as the fact that Z(X) is defined over k ([10], 6.7, p.
11, see [2I], 6.13 for a similar situation). P is a principal homogeneous
space of the k-split unipotent group Z(X), hence P has a k-rational point
¢ ([13]], III-8, Prop. 6), which has the required property.

Proposition 3.4. Suppose that G is quasi-split over k. Then
(i) G(k) contains a regular unipotent element;
(ii) if p is good, §(k) contains a regular nilpotent element.

Replacing G by its simply connected covering (which is defined over
k) we may assume G to be simply connected. Then we also may assume
G to be simple over k and even absolutely simple ([18]], 3.1.2, p. 6).

(1) First assume G is not of type A; (/ even). Let B be a Borel sub-
group of G which is defined over k. With the notations of
!

we take x = [] x, (&), where the order of the product and the
i=1
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& € k¥ are chosen such that x € G(k). This is possible, see ([13]],
proof of 9.4, p. 72 for a similar situation). If G is of type A; (/
even) a slightly different argument is needed, similar to the one of
(loc. cit. 9.11, p. 74). One could also prove (i) in that case by an
explicit check in case G is a special unitary group.

The proof of (ii) is similar (but simpler). Take as regular nilpotent
l
X = ) &X,,, with suitable &; € k¥. X is regular by ([14], p. 138).
i=1
In the next result we shall be dealing with the unipotent part U of a
Borel subgroup of a k-split G, and with its Lie algebra. Notations being
as in[0.2] we have the following formula,

() xs(m)x (&) x5 ()T = [ | xirtjs(Cijrs?) (Em € k), (19.1)

i,j>0

where r, s € X, r + s # 0. The product is taken over the integral
linear combinations of r, s which are in X, and the C;j,; are integers. We
presuppose a labelling of the roots in taking the product, the labelling

being such that the roots with lower height come first. The height of a
!
positive root r = > n;(r)r; is defined as h(r) = > n;(r). Now (19.1)
i=1 i=1
shows that there exists a groupscheme Uy over Z, such that U = Uy xk.
z

The same is true for B, so that B = BO>Z<I<. Uy is isomorphic, as a
scheme, to an affine space over Z, By is isomorphic as a scheme to
Uy x G,]n. By acts on Uy.

For simplicity, we shall identify Uy (By) here with the sets Uq(K)
(Bo(K)) of points with values in some algebraically closed filed K > Z,
likewise for G,.

Let s be the product of the bad primes for G, let R = Z; be the
ring of fractions n/s(n € Z). Put U; = U0>Z<R, B = UoéR- The

homomorphism x, : G, — U comes from a homomorphism of group
schemes over Z : G, — Uy, which leads to a homomorphism over
R : G, — U,;. The latter one will also be denoted by x,, the image
of x, is also denoted by G,. Let u; be the Lie algebra of U;. Itis a
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free R-module, having a basis consisting of elements tangent to the G,.
We denote these basis elements by X,, as in[0.2l We endow u; with its
canonical structure of affine space over R.

After these preparations, we can state the next result.

Proposition 3.5. There exists a By-equivariant isomorphism of R-sche-
mes ¢ : Uy — uy.

This is proved by exploiting the argument of ([14]], pp. 133-134)
used to determine the centralizer of regular unipotent and nilpotent ele-
ments in good characteristics.

!
Define v € Uj(R) by v.= ][] x,(1). Then the argument of loc.
i=1

cit. extends to the present case and shows that the centralizer Z of v in

U, is a closed sub-groupscheme of U, isomorphic as a scheme to 1-

dimensional affine space over R. Moreover, since Zx K is commutative
R

(18], 5.8, p. 1003) it follows that Z is commutative.
We claim that there is a homomorphism of R-groupschemes ¢ :
G, — Z, such that y(&) = [[x-(F.(£))(&é € I), where F, is a poly-

;
nomial in R[T] such that F,, = T(1 < i < [). This can be proved by the
method of ([14]], pp. 133-134), defining F, by induction on the height of
r. It follows, that the Lie algebra 3 of Z contains an element of the form
X =2 &X,,withé, € Rand &, = 1(1 < i < ). Since X is in the Lie

r>0
algebra of the commutative group scheme Z, we have Ad(Z2)X = X.

But the same which has been said above about the centralizer of v
applies to the centralizer Z; of X: this is also a closed sub-group scheme
of Uy, isomorphic to /-dimensional affine space over R (since the argu-
ment of [14]] applies also to nilpotent elements like X).

Z, and Z have the same Krull dimension / + 1. But since Z; is a
closed subscheme of Z;, we must have Z = Z;. Let F be the closed

subscheme of U, consisting of the [ [ x,(&;) suchthaté,, =1 (1 <i <
r>0

[). Using again the method of ([14], p. 133) one defines a morphism
x : F — Uy, such that y (x)vy(x) ™! = x(x € F).
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Let O be the open subscheme of U consisting of the | [ x,(&,) such
r>0
that &, # O(1 < i < [). y is easily seen to extend to a morphism

X : O — By such that y(x)vy(x)~' = x(x € 0). It follows that O is the
orbit of v under B;. Define a morphism ¢ : O — u; by

o(bvb™") = Ad(b)X (b e By). (19.2)

From the preceding remarks it follows that ¢ is well-defined, moreover
&(] ] x-(&)) is a polynomial function in &,, f;l(l <i<l).

r>0
We want to show that ¢ extends to a morphism ¢ : U; — uy,

satisfying (I9.2). Now there is a By x K-equivariant K-morphism ¢; :
R
U, xK — u; xK given by the logarithm is a suitable matrix realization
R R
of the algebraic group U; xK. ¢x id extends to a B; x K-equivariant
R R

K-morphism of an open set of U; x K which contains v into u; x K.

We have that ¢ (v) and ¢ x id(v) are conjugate in U, (K) (by [14]],
5.3,5.9 ¢ pp. 137-138). But since ¢; is completely determined by ¢; (v),
we have that ¢ x id = Ad(b) o ¢y, for suitable b € B (k). It follows that
¢ x id can be extended to all of U; x K. Hence ¢ can be extended to a
morphism U; — uy, as desired.

So we have a Bj-equivariant R-morphism ¢ : U} — uy, with ¢(v) =
X. Reversing the roles of U; and 1y, one gets in the same manner a Bj-
equivariant R-morphism ¢’ : 1; — Uj such that ¢'(X) = v. But then ¢
and ¢’ are inverses, so that is an isomorphism. This concludes the proof
of

Remark. The analogue of with R replaced by Z and U; by Uy,
uy by up, is false. In fact, this would imply that, over any field, the
centralizer of a regular unipotent element would be connected. This is
not true in bad characteristics ([14]], 4.12, p. 134).

We can now prove 3.1l First let G be split over k. We use the nota-
tions of [0.21 From[3.3we get a B-equivariant k-isomorphism A : U — u.
Let W, m; W, 7 be as in §dTand 2l Then

0: (gB,x) — (gB,Ad(g)A(g ' xg))
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defines a G-equivariant k-isomorphism of W onto 25. Denote by Oy

the sheaf of local rings on V. Since 7 and 7t are proper, we can apply
Grothendieck’s connectedness theorem ([[7l], III, 4.3.1, p. 130). Us-
ing [[L3(ii) and [L4] we find that the direct image 7.(Ow) = Oy. Let
W L B 2 B be the Stein factorization of 7 (loc.cit. p.131). Then
(71)%(Om) = Ow and 7} is finite. The definition of B’ ([7]], 111, p. 131)
shows that G acts on it, and that 7|, 7 are G-equivariant. V and B
are affine varieties (LIl and 2.1). Also, since B’ is finite over B, B’ is
affine ([7]], 111, 4.4.2, p. 136). It follows then from the definition of di-
rect image that the ring of sections I'(W, Oy ) is isomorphic to I'(V, Oy),
likewise that I'(2, Ogy) is isomorphic to I'(B, Oy ), these isomorphisms
being compatible with the canonical actions of G. This is obvious in the
first case, and in the second case it follows again from the definition of
B’. But V and B’ being affine. T'(V,0y) and T'(B’,Oy/) determine V
and B’ completely. Also, W and W are isomorphic via 6. Putting this
together, we get a G-equivariant k-isomorphism p : V — 9'.

By ([[7l], 111, 4.3.3, p.131), for any x € B, the number of connected
components of 7! (x) equals the number of points of (72)~!(y). By23
this implies that 5 is bijective on ¥’(k). Then f = 75 o u satisfies the
requirements of 3.11

Notice that f is not unique, but is completely determined by f(v),
where v is a given regular unipotent element. We now turn to the case
that G is arbitrary, not necessarily split over k. G being simply con-
nected, we may as well suppose that G is absolutely simple ([10], 3.1.2,
p- 46). We first dispose of the case that G is of type A. Then G is a k-
form of SL,,. Now there is, in the case of the split group of type SL,, a
very simple argument to prove 3.1l Identifying in that case G and g with
subsets of a matrix algebra, V becomes the set of unipotent matrices, V
that of nilpotent matrices and we can take f(v) = v — 1.

If we have another k-form G of SL,,, then it is obtained from SL,, by
a twist using a cohomology class in H' (k, AutSL,,). The corresponding
form g is obtained from sl, by the same twist. The above f then clearly
induces an isomorphism V — B having the required properties.

We may now assume G to be absolutely simple, but not of type A.
Then if p is good for G, it is also very good. Suppose that G is quasi-
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split over k. Let g € G(k) be regular unipotent, let X € g(k) be regular
nilpotent (they exist by B.4). Since G splits over k,;, we have, by the
first part of the proof, a G-equivariant ks-isomorphism f : V — B.
By B3] there exists 7 € G(ks) such that Ad(h)f'(v) = X. But then
f = f o Ad(h) is G-equivariant, defined over k; and satisfies *f = f
for all s € Gal(k,/k). Hence f is defined over k. Finally, an arbitrary -
form G is obtained by an inner twist from a quasi-split k-form G (this is
implicit, for example, in [18]], 3). Let f; have the required properties for
G. One easily checks then that f; determines an f having the properties
of 3.1l This concludes the proof of 3.1l

Corollary 3.6. Suppose that G is adjoint and that p is very good for G.
Let x be a regular unipotent element of G(k). Then its centralizer Z(x)
is connected, defined over k and is a k-split unipotent group.

Let f be as in[3.1l Then X = f(x) is a regular nilpotent element in
g. We have Z(x) = Z(X). The assertion then follows from [3.21

Corollary 3.7. Under the assumptions of let y be another regular
unipotent element in G (k). Then there exists g € G(k) such that y =
gxg ™.

The proof is similar to that of 3.3

Remark 3.8. The condition in and 37l that p be a very good prime
cannot be relaxed. As an example, consider the case where G = PSL,
and where k is a non-perfect field of characteristic 2. The ring of regular
functions of SL, being identified to A = k[X,Y,Z, U]/(XU — YZ — 1),
that of G is isomorphic to the subring of A generated by the products of
an even number of variables. Hence one can identify PSL, (k) with the
subgroup of SL,(k), consisting of the matrices a such that pa € GL, (k)
for some p € k with p? € k*.

In our situation, let p € k, p*> € k*. Then <(1) i) and <p01 8)
are both regular unipotents in PSL; (k), but it is easily checked that they
are not conjugate by an element of PSL; (k). On the other hand, if k is
perfect, and [3.7] are already true if p is good. But if p is bad, both
and 3.7 are false (see [14]], 4.14, p. 135 for the first statement and
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4.12, p. 134, 4. 15¢c, p. 136 for the others).
Corollary 3.9. With the notations of 3.1} we have f(e) = O.

For e is the only unipotent element of G in the centre of G and O
is the only nilpotent element of g invariant under Ad(G) (the last asser-
tion follows for example, by using the fact that any nilpotent element is
contained in the Lie algebra of a Borel subgroup).

4 Applications. First we give some applications of B.1]to rational-
ity problems.

Proposition 4.1. Let k be a finite field with q elements. Suppose that
G is simply connected and that p is good for G. Then the number of
nilpotent elements in g(k) is g™ G —rankG,

Steinberg has proved that the number of unipotent elements in G (k)
is gdimG—rankG ([[1@]], 15.3, p. 98). The assertion then follows from [3.11

Proposition 4.2. Suppose that p is very good for G. Then the following
conditions are equivalent:

(1) G is anisotropic;
(ii) G(k) does not contain unipotent elements # e.

We recall that G is called anisotropic, if G does not contain a non-
trivial k-subtorus S, which is k-split, i.e. k-isomorphic to a product of
multiplicative groups.

If G(k) contains a unipotent # e, then 3] and B.8] imply that g(k)
contains a nilpotent # O. One then argues as in ([10], 6.8, p. 11) to show
that G contains a k-split sub-torus S. Hence (i) = (ii). Conversely, if
G contains such a subtorus S, then G has a proper parabolic k-subgroup
([3], 4.17, p. 92). Its unipotent radical R is a k-split unipotent group
(1311, 3.18, p. 82) and it follows that R(k) # {e}, so that G has a rational
unipotent # e.

For perfect k and good p, 4.2 was proved in ([10], 6.3, p. 10). More
general results were announced in [[17]].
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Proposition 4.3. Suppose that p is good for G. For any g € G, dimG —
dim Z(g) is even.

This was conjectured for arbitrary p in ([13], 3.10, p. 56) and is
known to be true in characteristic O ([9], Prop. 15, p. 364).

We may assume that & is algebraically closed and G simply con-
nected. Let g = g,g, be the decomposition of G into its semisimple and
unipotent parts. Since Z(g;) is reductive and of the same rank on G, it
follows readily that dim G — dim Z(g;) is even. Because Z(g) is the cen-
tralizer of g, in Z(gy), it follows that it suffices to consider the case that
g is unipotent. Then 3.1l implies, that d.2] is equivalent to the assertion
that dimG — dim Z(X) is even for any nilpotent X € g. But dimZ(X)
equals the dimension of the Lie algebra centralizer 3(X) of X ([10], 6.6,
p. 11). So we have to prove that dim g—dim 3(X) is even if X is nilpotent
in g. This we do by an adaptation of the method used in characteristic 0
([@I, loc. cit.), even for arbitrary X. We use the following lemma.

Lemma 4.4.

(1) Suppose G is simple, not of type A,. If p is good for G, there
exists a nondegenerate, symmetric bilinear form F on g, which is
invariant under Ad(G).

(ii) There exists a nondegenerate symmetric bilinear form F on gl;(k),
which is invariant under AAGL,(k).

Proof of 4.4l (i) If G is of type B;, C;, D;, then p # 2 and we can
represent G as a group of orthogonal or symplectic matrices in
a vector space A, and g by a Lie algebra of skewsymmetric linear
transformations with respect to the corresponding symmetric or
skewsymmetric bilinear form on A. F(X,Y) = Tr(XY) satisfies
then our conditions.

If G is of type Eg, E7, Eg, F4, G, the Killing form on g is non-
degenerate if p is good ([12], p. 551) and can be taken as our
F.

(ii) F(X,Y) = Tr(XY) satisfies our conditions.
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To finish the proof of B3] we can assume G to be simple. Let
X € g. First if G is not of type A;, we let F be as in [£4] (i). con-
sider the skewsymmetric bilinear form F on g defined by F(Y,Z) =
F([XY],Z). Then 3(X) = {Y € g|F(Y,Z) = 0 forall Y € g}. Since
the rank of F is even, dim g—dim 3(X) is even, which is what we wanted
to prove. If G is of type A;, we apply the same argument, however not
for sl 1 but for gl;; 1, using A3 (ii).

Proposition 4.5. Suppose that G is adjoint and that p is good for G.
Let g be a unipotent element of G. Then g lies in the identity component
Z(g)° of its centralizer Z(g).

Let f: V — BbeasinBIl Put X = f(g), let A = f~1(kX).
Since f is a homeomorphism, this is a closed connected subset of V,
containing (by e and g. Moreover, since Z(X) = Z(g), we find
from the G-equivariance of f that A — Z(g). It follows that g € Z(g)°.

Remark. In bad characteristics the assertion of is not true ([[14],
4.12, p. 134).

The number of unipotent conjugacy classes in G (resp. of nilpotent
conjugacy classes in g) has been proved to be finite in good character-
istics by Richardson ([10], 5.2, 5.3, p. 8). By[B.] these two numbers
are equal. In characteristic 0, there is a bijection of the set of unipotent
conjugacy classes in G onto the set of conjugacy classes (under inner au-
tomorphisms) of 3-dimensional simple subgroups of G (see e.g. [8]], 3.7,
p. 988). Representatitives for the classes of such subgroups are known
(see [6]). In characteristic p > 0 it is not advisable to work with 3-
dimensional subgroups, one has to deal then directly with the unipotent
elements. We will discuss this in another paper. Here we only want to
point out one consequence of 3.1l We define a unipotent element g € G
to be semi-regular if its centralizer Z(g) is the product of the center of G
with a unipotent group. Regular unipotent elements are semi-regular (as
follows from [15], 3.1, 3.2, 3.3, pp. 54-55). The converse, however, fails
already in characteristic 0. In that case, it has been proved by Dynkin
([6]], 9.2, p. 169 and 9.3, p. 170) that for G simple semi-regular implies
regular if and only if G is of type A;, B;, C;, F4, G;. The result we want
to prove is the following one, which extends ([14], 4.11, p. 134).
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Proposition 4.6. Suppose that G is adjoint and that p is good for G. Let
g be a semi-regular unipotent element of G. Then the centralizer Z(g) is
connected.

By[B.l Z(g) < V is homeomorphic to the variety A of fixed points
of Ad(g) in B. We claim that A is the set of fixed points of Ad(g) in
the whole of g. For let X € g, Ad(g)X = X. Let X = X, + X, be the
Jordan decomposition of X([I]l, 1.3, p. 27), then Ad(g)X; = X,. But
this means that X; in the Lie algebra of Z(g) ([10], 6.6, p. 11). Z(g)°
being unipotent, it follows that X; = 0. This establishes our claim. It
follows that A is a linear subspace of g, so that it is connected, hence so

is Z(g).
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BASE CHANGE FOR TWISTED INVERSE IMAGE
OF COHERENT SHEAVES

By Jean-Louis Verdier

1 Existence Theorem. Let X /k be a complete smooth algebraic
variety of dimension n over a field k and wy be the sheaf of differentials
of degree n on X. There exists a canonical morphism:

f L H'(X, wy) — k,
X/k

such that for any quasi-coherent sheaf on X, the induced map:
Ext""?(X; F,wyx) — HP (X, F)*

(*means dual over k) is an isomorphism for all p.

Let X — Y be an immersion of schemes which is regular, i.e. de-
fined locally by a regular sequence of n parameters. Let I be the sheaf
of ideals on Y defining X and Ny,y = (AI/12)~! the inverse of the
highest exterior power of the cotangent sheaf. For any quasi-coherent
sheaf F" on X and any quasi-coherent sheaf G on Y, there exist canonical
isomorphisms:

Ext”"(X; FQNy)y) ~ Ext’(Y; F,G),
Oy

for all p.

These two results are special cases of Grothendieck duality theory
developed by Hartshorne in [1].

We use freely the notation of [I]] and unless otherwise stated, the
terminology of [[I]. The general duality theorem can be summarized as
follows.
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Theorem 1 (Existence Theorem). Let f : X — Y be a proper morphism
of noetherian schemes of finite Krull dimension. There exists an exact
functor

fHiDg(Y) = DJ(X)

and a morphism of functors

J:Rf*f'—dd

(denoted by Try in [Il]) such that for any F € Dy.(X) and any G € 394
D}.(Y) the morphism induced by § :

Ext’(X; F, f(G) — Ext’(Y : RfyxF,G)

are isomorphisms for all p.

It should be noted that the pair consisting of the functor f' and the
morphism of functors § p is unique up to unique isomorphism. An imme-

diate consequence of the existence theorem is that if X Lyandy %z
are proper morphisms of noetherian schemes of finite Krull dimension,
then there exists a canonical isomorphism f'g' = (gf)'. The functor f*
is called the twisted inverse image functor.

Theorem[Iis proved in a slightly weaker form under somewhat more
restricted hypotheses in ([1I], chap. VII). Of course, Hartshorne gives in
[1]] an explicit description of the functor f*. However, starting from this
explicit description, the proof of Theorem [Tl is rather long and leads to
many verifications of compatibility.

In [1]] Appendix, P. Deligne has pointed out that the existence theo-
rem can be proved simply and directly. Using only the existence theo-
rem, he has also proved Corollary [Tl below. We would like to show that
the results of [1]], except the theory of dualizing and residual complexes,
are easy consequences of the existence theorem.
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2 Base change Theorem.
Theorem 2. Let

X/

)

8

Y —————=Y
be a cartesian square of noetherian schemes of finite Krull dimension
where f is proper and g flat. Then the canonical morphism

g f = flg (20.1)
395  is an isomorphism. In particular, the functor f' is local on Y.
Let us first indicate some corollaries.

Corollary 1. The functor f' is local on X in the following sense. Let
U
Xl X2
\ /
Y

be a commutative diagram, where Y is noetherian of finite Krull dimen-
sion, fi and f, are proper and i| and i, are open immersions. For any
G in DJ.(Y), there exists a canonical isomorphism
fi6/U ~ fiG /U
Proof. Using a closure of U in the fiber product X; x X, and the iso-
Y

morphisms of composition of twisted inverse images, we are reduced to
study the case X; = Y, fi = idy. Let us consider the fiber product

U< xoxUu<2 U
Y

|,

Y2 X,
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and the section s : U — X, xY of the second projection p, defined
Y

by the open immersion i, : U <— X,. Since s is an open and closed
immersion, one has a canonical isomorphism s' ~ s*. Applying the

base change theorem, we obtain a canonical isomorphism
!, !
PyiiG = pifrG
and applying the functor s' ~ s* to both sides we obtain an isomorphism

L.
stl ”Splfz

However s' p’2 is isomorphic to the identity and therefore we have an
isomorphism
G/U ~ fiG/U. 0

Lemma 1. If G € D}.(Y) has coherent cohomology, then f'G also
has coherent cohomology. The functor f* carries direct sums into direct

sums. Let U < X ER Y be an open set in X on which f is of finite flat
dimension (finite tor-dimension in the terminology of [lIl].) Then if G is
a bounded complex on Y the complex f'G/U is also bounded (actually
the functor G — f'G/U is “way out” in the terminology of [I]]).

Proof. Since the statements are local on X and on Y, and since they
are “‘stable under composition” we are reduced at once to the following
two cases : case (1) f is a closed immersion and case (2) Y is affine,
X = P;(Y) and f is the canonical morphism. In those two cases the
verification is easy. |

Corollary 2. If f : X — Y is of finite flat dimension, then there exists
forany G € DZC(Y ) a canonical isomorphism

L
f'G < f1(0y) QLfFG.T (2.1
Ox

411
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If further f'(Oy) is of finite flat amplitude, this isomorphism holds for
all G € DJ.(Y).

Proof. The morphism () is defined by the universal property of f*
(Theorem[I)) and the projection formula (in a form slightly stronger than
I1. 5.6 in [1]]). To prove that is an isomorphism, the lemma on way out
functors (1.7 in [1]]) is used. |

Corollary 3. Let R}-/ be a dualizing complex on' Y (V. 2 in [1|]). Then
f !R)-/ = R}-( is a dualizing complex on X. Denote by Dy, Dy the corre-

sponding dualizing functors in D.(Y) and D.(X) respectively. For any
G € D, (Y) there exists a canonical isomorphism:

f'DyG ~ DYLf*G. 3.1)
In particular, for any G € D, (Y), there exists a canonical isomrophism:
f'G ~ DxLf*DyG. (3.2)

Proof. The first statement is local on Y and on X and is “stable under
composition”. Therefore we are reduced to proving it in the two cases
noted in the proof of Lemmal[ll In those cases the verification is easy
(for the case of a closed immersion use V.2.4. in [Il]; a similar proof
can be given in the case of the canonical morphism P;(Y) — Y). Now
the isomorphism (@.J)) is a formal consequence of Theorem [I] and the
projection formula. The isomorphism (3.2)) is deduced from (&) via
the defining property of a dualizing complex. |

So far we have used Theorem [2] only in the case when g is an open
immersion. We will use Theorem 2lin the case of a smooth morphism g
for the proof of Theorem 3] below.

Proposition 1. Let f : X — Y be a regular immersion, defined locally
by an Oy-sequence ty,...,t,. The Koszul complex built on t,...,t,

L
7X) denotes the total tensor product, i.e. the tensor product in the derived category.

412
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defines locally an isomorphism

£'(Oy) ~ Nyjy[—n],

where Nx y is the inverse of the highest exterior power of the cotangent
sheaf. This isomorphism does not depend on the choice of the parame-
ters ty,...,t, and thus defines a canonical global isomorphism.

Proof. See [1]], II1. 7.2. O

Theorem 3. Let f : X — Y be a proper morphism of noetherian
schemes of finite Krull dimension and U < X an open subscheme of
X smooth over Y of relative dimension n. Then, there exists a canonical
isomorphism

1 (0y)/U ~ wyy[n].”

where wy y is the sheaf of relative differentials of degree n on U.

Proof. Consider the diagram

U—2 suxx—2 o x
Y
Pll/ f
U
v—21"Y Ly

where p; and p; are the projections and A the diagonal. Using Theorem
2l we have alcanonical i§omorphi§m L{);‘ f ’O'Y ~ p!lO'U' and applying
the functor A we get an isomorphism A’Lp3 f*Oy ~ A’p;Oy. But p1A
is the identity morphism, hence we get A!Lp’zk f'Oy ~ Oy. Using Corol-

L
lary @ we obtain A'(Op % x) ® LA*Lp} f'Oy ~ Oy. The morphism
Y Oy

If A = (A',d) is a complex and n an integer, A[n] denotes the complex A[n]" =
(—

An+i,df4[n] _ l)ndf:—n.

413
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p2A : U — X is the canonical injection. Therefore LA*Lp% f'Oy ~
f'Oy/U. Now, using Proposition [l we obtain an isomorphism :

L
Nyjwxx[-n1 Q) f'0y/U ~ Oy
Y 0o

However Ny yxx[—n] is an invertible sheaf whose inverse is wy y.
Y

Therefore we get an isomorphism

[0y/U =~ wyy[n].

Let f : X — Y be a proper and smooth morphism of noethe-
rian schemes with dim(X/Y) = n. We have an isomorphism f'Oy ~
wy/y[n]. Hence the morphism Sf : Rf.f'Oy — Oy which defines the
duality in Theorem[Ilinduces and is uniquely determined by a morphism
denoted once again by

f : Rnf*a)x/y — Oy.
f

It remains to describe this latter morphism. Using the base change the-
orem (see Remark (1) at the end) one sees at once that it is enough to
describe it when Y is the spectrum of a noetherian complete local ring

A. Let Z 5 X be a closed subscheme of X, finite over Y and defined lo-
cally by an Ox-sequence. Let g : Z — Y be the composed morphism fi.
The canonical isomorphism of composition of twisted inverse images
i'(wxy[n]) = Exty) (0z,wxyy) =~ g'Oy composed with the integral
§ . T(Z, g'Oy) — A determines a morphism called the residue map :

Resz : Ext"(X; Oz, wy)y) — A.
Furthermore the canonical morphism
Ext"(X; Oz, wx/y) % H'(X, wx/y)

414
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is embedded into a commutative diagram:

Ext"(X; Oz, wX/Y)

i Resy
mgz

§
Hn(X, wX/Y) !

O

Proposition 2. For any closed subscheme Z of X finite and étale over
Y = spec(A), which intersects non-trivially all the connected compo-
nents of X, the morphism my is surjective.

Proof. Decomposing X into its connected components, we may assume
that X is connected. Using the Stein factorisation of f and the fact that
Y is the spectrum of a complete local ring, we see that the closed fiber
is also connected. By Nakayama’s lemma and the base change property
of the n-th direct image, we are reduced to proving the corresponding
statement when Y = spec(k) where £ is a field. By the duality theorem
for f, the map m  can be interpreted as the canonical map

['(Z,02)" - T(X,0x)*
which is the dual of the restriction map
p:T(X,0x) - T(Z,0y).

(Here, * means the dual over k). However I'(X, Ox) is a field (actually a
separable finite extension of k), and therefore p is injective.

Since there is always a subscheme Z of X fulfilling the hypotheses
of Proposition 2] this proposition says in other words that any integral
can be computed by residues.

The residue map Resz : Ext"(X; Oz, wy/y) — A however, is com-
pletely described by the residue symbol ([[1]], I11. 9.). Choosing f1, ..., 1,
an Oyx-sequence of parameters which generate the ideal of Z locally
around a closed point zp € Z and w a differential form of degree n on

415
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X defined in a neighbourhood U of zg, the Koszul complex built over
t1,...,t, defines an element

w
[ — ] € Ext"(X; OZ,a)X/y),

and every element of Ext"(X; Oz, wx/y) can be obtained as a sum of
such elements. Applying the residue map we get an element

w
Resz[ oot ] €A

} With the aid of Theo-
ls---sin

rems [[land 2] it can be shown that this residue symbol has the following
properties.

which we denote simply by Res;, [ ;

(RO) The residue symbol is A-linear in w.

(R1) If 5; = Scijt; then Res, [ . v } — Res,, [dgfff‘fgg;v].
»vn

PR

(R2) The formation of the residue symbol commutes with any base
change.

(R3) If the morphism g : Z — Y is an isomorphism at zy then

dt oA dt
ReSZO[tkII/\ tkn/\ "]Zlifklz...anzl,
120

= 0 otherwise.

(R4) Ifw e IT'(U, Etiwx/y), then Res,, [ ; @ , } =0.
ls---siln

It is not difficult to show that there exists only one residue symbol
which possesses the properties (RO) to (R4) [2]. a

416
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3 Proof of Theorem 2. we keep the notations of Theorem
First we have to make explicit the canonical morphism

& — g

There are apparently two ways to define such a morphism.

First Definition. The functor Rg : D.(Y') — D,.(Y) is right adjoint
to the functor g*. We have therefore adjunction morphisms denoted
by ®, : id — Rg.g*, ¥, : g*Rg« — id. Since g is flat, we have
a base change isomorphism for the total direct image o : g*Rf, —
Rf!¢"™. Taking the right adjoint of both sides we get an isomorphism 7 :
Rg. [ b, f'Rg.. We can define a canonical morphism by composing
the following morphisms :

| *orog* 7!
G iR gt LS Ry e T gt
Second Definition. By Theorem [I the functor f' is right adjoint to
the functor Rf,. Therefore we have adjunction morphisms denoted by
cotry : id — f 'Rf, and § IE Rf.f' — id. We can define a canonical

morphism by composing the following morphisms :

| /! ! |
,*f! cotr g og'* f! froaof S g*ogf

SRS —=— [ REf —— 18"
Fortunately those definitions yield the same morphism denoted by
Cg . gl*f‘ N f/'g*
as a result from a general lemma on adjoint functors. The morphisms
¢, verify the usual cocycle property with respect to the composition of
base change. It follows at once that we have only to prove that ¢, is an

isomorphism in the two following cases : case (1) the morphism g is an
open immersion and case (2) the morphism g is affine.

417
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Case 1. The Morphism g is an open immersion.

We need the following lemma.

Lemma 2. Let X be a noetherian scheme, i : U — X an open immer-
sion, m a sheaf of ideals on X such that the support of Ox/m = X — U.
Then for any G € D;Q_(X ) and for any integer p, the canonical mor-
phisms

lim Ext” (X; m",G) — H? (U, G),
—
n
lim &xt’ (m",G) — RPi,i*G,
—
n
are isomorphisms.
Furthermore if F is a complex of sheaves which is bounded above
and which has coherent cohomology then the canonical morhisms

L
lim Ext” (X; F (X)) m", G) — Ext’(U; F/U,G/U)

n

are isomorphisms.

Proof. This is the “derived version” of [[I]] app. Prop. 4. |

To prove Theorem [2] in that case, we use the first definition of the
. . ! .
canonical morphism ¢, : g% f' — f"g*. Since two fo the three mor-
phisms defining ¢, are isomorphisms, it is enough to prove that the mor-
phism
1% 1
g'" frod
g f —— ¢  ['Raug”,

is an isomorphism, i.e. to prove that for any G € D;FC(Y ) and any open
subset V in X’ the morphism

flo®: f'G — f'Rgxg"G
induces isomorphisms :

w: HP(V, f'G) = HP(V, f'Rg.g*G).

418
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Let m be a sheaf of ideals on Y such that supp(Oy/m) = Y — Y" and 1
a sheaf of ideals on X such that supp(Ox/I) = X — V. The canonical
morphism G — Rg.g*G factors through

G — R A om(m",G) — Rg.g*G."
We have therefore a commutative diagram

lim Ext” (X; I", f'G) —— lim lim Ext” (X; I", f'R 7 om(m",G))

r r n
iv
lim Ext” (X; I", f'Rg.g*G)
.
HP(V, f'G) H?(V, f'Rg+g*G)

Since the verticle maps are isomorphisms by Lemma[2] it is enough to 403
show that u and v are isomorphisms. For r fixed however, the map

Vot lim Bxt? (X; I, f'R A om(m",G)) Ext’ (X, I", f'Rg+g*G)

n

is isomorphic, by Theorem[I] to the map

lim Ext”(Y; Rfil", R A om(m", G)) — Ext’(Y;Rfil', Rg.g*G),

n
which is in turn isomorphic to the map

L
lim Ext”(Y; Rf.I” Qm",G) — Ext”(Y;Rf.I"/Y',G/Y').
n
Since f is proper, the complex R f, 1" has coherent cohomology. There-
fore by Lemma 2 this latter map is bijective. Hence v is an isomor-
phism.

"R 2 om is the total derived functor of the functor .7#om : the sheaf of homomor-
phisms.
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For r and n fixed, the map
Ext’(X;I", f'G) — Ext’(X;I", f'R A om(m", G))
is isomorphic, by Theorem[T] to the map
Ext’(Y;RfI",G) — Ext’(Y;RfI",R 7 om(m",G)),

which is in turn isomorphic to the map

L
Ext”(Y;Rf:I",G) — Ext’(Y;Rfil" (X)m", G).

The projection formula, yields an isomorphism

L L
RfI"RQm" — Rf(I" QLf*m").

Therefore, once again applying Theorem [Il the map u, - is isomorphic
to the map

L
Ext?(X;I", f'G) — Ext’(X; I" Q) Lf*m", f'G),
induced by the canonical morphism Lf*m" — Ox. Going up to the
limit on r, we obtain by Lemma 2] the map

HP(V, f'G) — Ext’(V,Lf*m")V, f'V).

Since V is contained in X', the complex Lf*m"/V is canonically iso-
morphic to Ox/V and therefore this latter map is bijective. Hence u is
an isomorphism. This concludes the proof of Theorem[2]in Case 1.

Case 2. The morphism g is affine.
First we need two propositions.

Proposition 3 (Local form of Theorem [I). Ler X L Ybea proper
morphism where Y is noetherian of finite Krull dimension. For any F €
Dy.(X) and any G € D.(Y) the composed morphism

RER A om(F, £'G) Y5 R #om(RfuFRff'G) —2s R A om(Rf,F,G)

420
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is an isomorphism. (The morphism [Rf] is obtained by sheafifying the
functorial morphism)

RHom(F, f'G) — RHom(Rf+F,Rf.. f'G).

Proof. This is a formal consequence of Theorem [I] and the projection
formula. O

Proposition 4. Let g : Y — Y be a flat morphism where Y is a noethe-
rian, M € D; (Y) a complex bounded above with coherent cohomology,
N € D*(Y) a complex of sheaves which is bounded below. The canoni-
cal morphism

g*R A om(M,N) — R #om(g*M,g*N)

is an isomorphism.

Proof. See [1]], I1. 5.8. O

We now prove Theorem [2]in the second case. We proceed in three
steps.
Step A. Let F be a sheaf on X (not necessarily quasi-coherent). For
any G € D/.(Y) denote by
I,(F,G) : Rf.R #om(g"*F,g"* f'G) — RfLR #om(¢*F, f"' ¢*G)
the morphism in D(X’) induced by c,. Then ,(F,G) is an iso-
morphism whenever F is coherent.

Proof. We have a commutative diagram

L (FG)

Rf.R #om(g" ¢ f'G) Rf.R #om(g"F, f'g*G)

[Rfx] [Rf:]

R #om(Rf.g"™*" Rflg ’* f G) LR Aom(Rf.g"F.Rf.f'g*G)

~
~

=~ ‘e kL
- S

R #om(Rf.g'*F,g*G)

421
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where u is the only morphism which makes the diagram commutative.
By Proposition [404] we know that the composed vertical morphism on
the right is an isomorphism. Hence it is enough to prove that the com-
posed morphism

Rf. #om(g*, ¢* F'G) [*>]R AHom(Rf.g'""F,Rf.g* f'G)

lﬂ *)
R #om(Rf.g"*F,g*G)
is an isomorphism.

Using the second definition of cg, it is easily checked that the mor-
phism y is induced by the composed morphism

RfLS*F'G ZL g*Rff'G o, g*G.

Using this description of the morphism y, the Proposition [ for g and g’
and the base change isomorphism o : g*Rf, — Rf.g'", it can be seen
that the morphism (*) above is isomorphic to the morphlsm

g*o[Rfx]
_—

$*Rf R #om(F, f'G) g*R A om(Rf.F,Rf.f'G)

g¥o

—Sf> g*R A om(Rf.F,G),
which is, by Proposition 404l an isomorphism. O
Step B. For any open set V in X, the morphism

1,(Oy,G) : RfiR s om(g' Oy, g* f'G)
— Rf.R ﬁom(g’*Ov, f!g"‘G)T

is an isomorphism.

"The sheaf Oy is the characteristic sheaf of the open set V: the sheaf equal to Oy on
V extended by zero outside V.
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Proof. Let m be a sheaf of ideals on X such that supp(Ox/m) = X — V.
We are going to approximate the sheaf Oy by the pro-object m”, r € N.
Since g’ is flat, g*m is a sheaf of ideals on X such that supp(Ox: /g’ *m) =
X' — ¢ ~'(V). By Lemma[ we know that for any ¢ € Z, the canonical
morphisms

lim Ext?(¢"“m", ¢"* f'G) — Ext’(§"" Ov.¢"" ['G)
r
lim Ext?(¢"“m", f'¢*G) — Ext!(¢"* Oy, f'¢*G)
r
are isomorphisms. Furthermore the space X’ is noetherian; thus the
functor Rf, commutes with directed limits. Hence the canonical mor-
phisms

lim R? f, Ext/(g""n’, f"'¢*G) — R” fLExt’(g"* Oy, f'¢*G)

r

lim R f, Ext?(g*m", g f'G) — R? fL Ext!(¢'" Oy, &' f'G)
r

are isomorphisms. Therefore the hypercohomology spectral sequences
show that for any n € Z, the canonical morphisms

lim #"Rf.R #om(g"*m", f'g*G) — A"Rf.R # om(g* Oy, ["'¢*G)
p

lim #"Rf\R A om(g" " m", g* f'G) — A"Rf;R #'om(g" Oy, & f'G)
r

are isomorphisms. Since for any r the morphism [, (m”, G) is an isomor-

phism (Step A), the morphism /,(Oy, G) is also an isomorphism. ]

Step C. Since g is an affine morphism, the scheme X’ can be covered
by affine open subspaces which are inverse images by g’ of affine
open subspaces of X. Therefore, to show that ¢, is an isomor-
phism, it is enough to show that for any affine open set V in X and
any n € Z, the maps induced by ¢, :

Hn(g,_l(V),g,*f!G) _)Hn(g/—l(v)’fl!g*G) (**)

423
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are isomorphisms. Denote by i : g~!(Oy) — X’ the open immer-
sion. For any complex of sheaves M on X’ (bounded below) we
have canonical isomorphism

R #om(g"™ (Oy), M) ~ Ri,i*M.
Applying Rf, we get an isomorphism
RfIR #om(g'*(Oy), M) = RfLRi.i*M,

and applying the functor RT'(Y, ), the derived functor of the
functor global section on Y, we get an isomorphism

RT(Y',Rf.R s om(g"™ (Oy), M)) = RU(Y', Rf.Risi*M).
The composition of direct image functors yields an isomorphism
RU(Y',Rf.Ri.i*M) = RU(g''(V), M);

thus we have an isomorphism
RU(Y',Rf.R #om(g"* (0y),M)) = RT(g'~" (V), M).

Therefore applying RI'(Y’, ) to both sides of /,(Oy, G), we ob-
tain an isomorphism induced by ¢, :

RU(g7'(V), 8" 'G) = RU (g (V), f'g"G),

and taking the n-th cohomology of both complexes we obtain the
morphisms (**) which are hence isomorphisms. This concludes
the proof of Theorem 21

408 Remarks. (1) For the sake of simplicity we have not stated Theo-
rem 2] completely. It should be completed by a description of the
behaviour of the integration map under base change.

(2) One can prove the base change theorem (Theorem ) when g is a
morphism of finite flat amplitude under an hypothesis of cohomo-
logical transversality, namely: for any couple of pomts y € Y and
x € X suchthat g(y') = f(x) and for any n > OTorf (Oy,0;4) =
0.
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(3) In the context of Etale cohomology, one can prove a base change
theorem for the twisted inverse image by the same method when
g is a smooth morphism, the main point being to have a propo-
sition analogous to Proposition @] which in the case of g smooth
is a consequence of the base change theorem under smooth mor-
phisms for direct images.
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ZETA-FUNCTIONS AND MELLIN TRANSFORMS

By André Weil

CLassIcALLY, the concept of Mellin transform serves to relate Dirich-
let series with automorphic functions. Recent developments indicate
that this seemingly special device lends itself to broad generalizations,
which promise to be of great importance for number-theory and group-
theory. My purpose in this lecture is to discuss a typical example, arising
from a specific number-theoretical problem.

By an A-field, I understand either an algebraic number-field or a
function-field of dimension 1 over a finite filed of constants. Such fields,
also sometimes called “global fields”, are those for which one can build
up a classfield theory and the theory of L-functions; these topics are
treated in my book Basic Number Theory ([3l]; henceforth quoted as
BNT), and the notations in that book will be used freely here. In partic-
ular, if k is an A-field, its adele ring and its idele group will be denoted
by ka and by k; , respectively; I shall write |z|, instead of |z|4, for the
module of an idele z.

Write 9t for the free group generated by the finite places of k; this
will be written multiplicatively; it may be identified in an obvious man-
ner with the group /(k) of the fractional ideals of k, if k is an algebraic
number-field, and with the group D(k) of the divisors of k, if k is a
function-field (except that D(k) is written additively). For each finite
place v of k, write p, for the corresponding generator of Mi; then we
define a morphism  of k; onto 9t by assigning, to each idele z = (z,),

the element p(z) = Hp?,(v) of M, where n(v) = ord(z,) and the prod-
uct is taken over all the finite places of k. If m = u(z), we write
|m| = II|z,|,, the product being taken over the same places; thus we
have |m| = N(m)~! if k is an algebraic number-field, : denoting the
norm of an ideal in the usual sense, and |m| = g~ 92" if k is a function-
field, g being the number of elements of the field of constants of k (i.e.,

of the largest finite field in k). We say that m = Hp’vl(v) is integral if
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n(v) = 0 for all v, and we write M for the set (or semigroup) of all
such elements of M; clearly |m| < 1if misin M, and |m| < 1 if at the
same time m # 1.

By a Dirichlet series belonging to k, we will understand any formal
series L, with complex-valued coefficients, of the form

L(s) = Ze(m)|m]* (1)

where the sum is taken over all integral elements m of M, i.e. over all
m e Ny Such series make up a ring (addition and multiplication being
defined formally in the obvious manner); the invertible ones, in that ring,
are those for which the constant term ¢(1) is not 0. Set-theoretically, one
may identify this ring with the set of all mappings m — c¢(m) of M into
the field C of complex numbers; it will always be understood that such a
mapping, when it arises in connexion with a Dirichlet series, is extended
to m by putting ¢(m) = 0 whenever m is not integral. The series (1) is
absolutely convergent in some half-plane Re(s) > o if and only if there
is @ € R such that ¢(m) = O(|m|™%); then it determines a holomorphic
function in that half-plane; this will be so for all the Dirichlet series to
be considered here. However, the knowledge of that function does not
determine the coefficients ¢(m) uniquely, except when k = Q, so that
it does not determine the Dirichlet series (1) in the sense in which we
use the word here. A case of particular importance is that in which the
function given by (D) in its half-plane of absolute convergence can be
continued analytically, as a holomorphic or as a meromorphic function,
throughout the whole s-plane; then the latter function is also usually
denoted by L(s).

Let v be a finite place of k, and let p, be as above. We will say that
the series L given by (D) is eulerian at v if it can be written in the form

(L+crlpl” + - + el Py ™) 7" - Ze(m)[m]*,

where the sum in the last factor is taken over all the elements m of Mt
which are disjoint from p, (i.e. which belong to the subgroup of I
generated by the generators of 9t other than p,). The first factor in the

410

same product is then called the eulerian factor of L at v. The above 411

427



428 J.-L. Verdier

condition can also be expressed by saying that there is a polynomial
P(T) = 1 +¢T + -+ + ¢, 7™ such that, if we expand P(T)~! in a
o0

power-series Y ch", we have, whenever m is in 9t and disjoint from
0

py, c(mpl) = c(m)c| forall i > 0. We say that L is eulerian if it is so at
all finite places of k.

Let w be any character or “quasicharacter” of the ideal group k,
trivial on k. It is well known that one can associate with it can eulerian
Dirichlet series

L(s,w) = Y om)m) = [ [(1 - w(m)n/) ", (2)
v

known as the L-series attached to the “Grossencharakter” defined by
w; its functional equation, which is due to Hecke, is as follows. For
each infinite place w of k, write the quasicharacter w,, induced by w
on k,; in the form x — x~|x|*w, with A = O or 1, if k, = R, and
7 — 7477 8(z2)*w, with inf (A,B) = 0, if k, = C. Write G|(s) =
12T (s/2), Ga(s) = (27)'7°T'(s), G, = G or G, according as w is
real or imaginary, and put

A(s,0) = L(s.0) [ [Guls + su).

where the product is taken over the infinite places of k. Define the con-
stant k = k(w) and the idele b as in Proposition 14, Chapter VII-7, of
BNT (page 132); we recall that, if d is a “differental idele” (cf. BNT,
page 113) attached to the “basic character” of k4 used in the construc-
tion of k(w), and if f(w) = (/) is an idele such that f, is 1 at all infinite
places and all places where w is unramified, and otherwise has an order
equal to that of the conductor of w, then we can take b = f(w)d. That
being so, the functional equation is

A(s,w) = k(w) - 0(f(@)d)| f(@)d]" A1 = s,07"). (3)

Let now L be again the Dirichlet series defined by (I); with it, we
associate the family of Dirichlet series L, given by

Lu(s) = ) c(m)w(m)m]’ )
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for all choices of the quasicharacter w of k /k*, w(m) being as in @).
Some recent work of mine (c.f. [2]) and some related unpublished work 412
by Langlands and by J acquelﬁ has shown that the knowledge of the func-
tional equation, not only for L, but also at the same time for “sufficiently
many” of the series L, provides us with valuable information about L
and its possible relationship to automorphic functions of certain types.
In particular, this is so whenever L is the zeta-function of an elliptic
curve E over k, provided E is such that the functional equations for the
series L, can effectively be computed. Unfortunately there are not as
many such curves as one could wish; as “experimental material”, I have
been able to use only the following: (a) in characteristic 0, all the curves
E with complex multiplication; their zeta-functions have been obtained
by Deuring; (b) also in characteristic 0, some curves, uniformized by
suitable types of automorphic functions, which can be treated by the
methods of Eichler and Shimura; a typical example is the curve belong-
ing to the congruence subgroup I'h(11) of the modular group, whose
equation, due to Frickdd, is ¥2 = 1 — 20X + 56X2 — 44X (Tate has
observed that it is isogenous to the curve Y> — Y = X — X?); (c) in any
characteristic p > 3, any curve E of the form wY? = X> +aX? +bX + ¢
where Y? = X? + aX? + bX + c is the equation of an elliptic curve E
over the field of constants ko of k, and w is in k* and not in (k*)%k;. All
these examples exhibit some common features, which can hardly fail to
be significant and will now be described.

For the definition of the zeta-function L(s) of the elliptic curve E
over k, the reader is referred to [2l]; there it is given only for k = Q,
but in such terms that its extension to the general case is immediate
and requires no comment. It is eulerian. Also the conductor of E is

"That work is still in progress. No attempt will be made here to describe its scope,
but the reader should know that I have freely drawn upon it; my indebtedness will
soon, I hope, be made apparent by their publication. In particular, my definition of the
Mellin transform when £ is not totally real is based on Langlands’ more general “local
functional equation” for GL(2, C), even though it is also implicit in some earlier work
of Maass (c.f. [I], pages 79-80).

*C.f. F. Klein und R. Fricke, Theorie der elliptischen Modulfunktionen, Bd. 1I,
Leipzig 1892, page 436.
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to be defined as explained in [2]]; it is an integral element a of IM; we
will write @ = (a,) for an idele such that a = u(a) and that a, =
1 whenever v is not one of the finite places occurring in a. For the
examples quoted above, the zeta-functions are as follows: (a) if £ has
complex multiplication, and &’ is the field generated over k by any one
of the complex multiplcations of E, L(s) is an L-series over k', with
a “Grossencharakter”, if K # k, and the product of two such series if
k' = k; (b) for Fricke’s curve belonging to I'g(11), Eichler has shown
that the zeta-function is the Mellin transform of the cusp-form belonging
to that same group; the curve’s conductor is 11; (c) in the last example,
let y be the character belonging to the quadratic extension k(wl/ 2) of k,
and let g%, ¢® be the roots of the zeta-function of the curve Eq over ko;
then the zeta-function of E is L(s — @, x)L(s — 3, x).

In all these examples, one finds that the functional equation for L,
has a simple form whenever the conductor f = u(f(w)) of w is disjoint
from the conductor a of the given curve E, and that it is then as follows.
For each infinite place w of k, define s,, A, B by means of w, as ex-
plained above in describing the functional equation (3) for L(s, w). Put
Gy (s) = Ga(s + s, — A) if wis real; put 6,,(s) = Ga(s + s,,)? if wis
imaginary and A = B = 0, and ®,,(s) = Ga(s + s) - Ga(s + sy — 1)
if w is imaginary and A + B > 0. Put A,(s) = L,(s) - [16,,(s), the
product being taken over all the infinite places of k. Call R the number
of such places where A = 0 (if the place is real) or A = B = 0 (if it is
imaginary). Then :

Ao(s) = £(=1)fk(w)*w(af (W)’ d)|af(w)d’[*" Au-1(2 = 5), ()

where the sign + is independent of w, and notations are as in (3).

For k = Q, it has been shown in [2] that L must then be the Mellin
transform of a modular form belonging to the congruence subgroup
[o(a) of the modular group. Our purpose is now to indicate that similar
results hold true in general.

Once for all, we choose a “basic” character y of k4, trivial on k
and not on k4, and a “differential idele” d = (d,) attached to y; we
may choose ¢ so that d,, = 1 for every infinite place w of k (c.f. BNT,
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414  Chapter VIII-4, Proposition 12, p. 156; this determines ¢ uniquely if &
is of characteristic 0); we will assume that it has been so chosen.

We write G for GL(2), so that Gy is GL(2,k); as usual, we write
then G,, G4 for GL(2,k,), GL(2,ks). We identify the center of G with
the “multiplicative group” GL(1), hence the centers of G, G,, G4 with
k*, ky*, ky , respectively, by the isomorphism z — z- 15. All functions to
be considered on any one of the groups G,, G4 will be understood to be
constant on cosets modulo the center, so that they are actually functions
on the corresponding projective groups. It is nevertheless preferable to
operate in GL(2), since our results can easily be extended to functions
with the property f(gz) = f(g)w(z), where w is a given character of the
center, and these useful generalizations can best be expressed in terms
of GL(2). By an automorphic function, we will always understand a
continuous function on G4, left-invariant under Gy, (and, as stated above,
invariant under the center k;f of G,4), with values of C or in a vector-
space of finite dimension over C; this general concept will be further
restricted as the need may arise.

Xy
0 1

For a matrix of the form , we write (x,y); we write B for the

group of such matrices (and By, B,,, B4 for the corresponding subgroups
of G, Gy, G4). The group B - G, with G,, = GL(1), consists of

the matrices (g )Z) >, and G/(B - G,,) may be identified in an obvious

manner with the projective line D. In particular, G4/(Ba - k) is the
“adelized projective line” Dy it is compact, and its “rational points” (i.e.
the “rational projective line” Dy) are everywhere dense in it. It amounts
to the same to say that Gy - B4 - k; is dense in G4. Consequently, an
automorphic function on G4 is uniquely determined by its values on B4.
Let @ be such a function; call F the function induced on B4 by ®@; F is
left-invariant under By, and in particular under (1,7) for each n € k, so
that, for each x € k', the function y — F(x,y) on ks can be expanded
in Fourier series on k4 /k. Using the basic character , and making use
of the fact that F is also left-invariant under (£,0) for all ¢ € k*, one 415
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finds at once that this Fourier series may be written as

F(x,y) = folx) + Y filéx)u(éy), 6)

ek

where fy, fi are the functions on k: respectively given by

folx) = f Fley)dy. fi(x) = fF(ac,y)w(—y)dy.

ka/k ka/k

We have fy(éx) = fo(x) for all £ € k*; we will say that @ is B-cuspidal
if fo =0.

Conversely, when such a Fourier series is given, the function F de-
fined by it on B4 is left-invariant under By and may therefore be ex-
tended to a function of G - By - k:, left-invariant under Gy (and, as is al-
ways assumed, invariant under k: ), and the question arises whether this
can be extended by continuity to G4. In order to give a partial answer
to this question, we must first narrow down the kind of automorphic
function which we wish to consider.

We first choose an element a of i, which will play the role of a
conductor, and, as before, an idele a = (a,) such that a = u(a) and that
a, = 1 whenever v does not occur in a. Also, write d = (d,) for the
element (d, 0) of By, d being the differental idele chosen above. At each
finite place v of k, the group GL(2, r,) = M;(r,)* is a maximal compact

. . X . .
subgroup of G,, consisting of the matrices <Z ); > , with coefficients x,

y, z, t in the maximal compact subring r, of k,, such that |xt — yz|, =
1 (i.e. that xt — yz is in r,); then d;l - My(r,)™ - d, is also such a

—1
.. . x d
subgroup of G,, consisting of the matrices ( v Y , Where x, v,

dZ
z, t are as before. We will write &, for the subéroup of the latter group,
consisting of the matrices of that form with z € a,r,; this is a compact
open subgroup of G,, equal to M;(r,)* at all the finite places which do
not occur in u(ad). On the other hand, we take for &,, the orthogonal
group O(2) in 2 variables if w is real, and the unitary group U(2) if
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w is imaginary. Then the product & = [IR,, taken over all the places
of k, defines a compact subgroup & of Gy; it is open in G4 if k is of
characteristic p > 1, but not otherwise. We have G, = B, - k,* - &, for
all places v of k, except those occurring in a; consequently, By - k: -8R
is open in Gy4.

We also introduce an element a = (a,) of G4, which we define by
0

v

putting a, = d, -

Clearly Ka = aR.

The automorphic functions ® which we wish to consider are to be
right-invariant under &, for every finite place v of k; thus, if k is of
characteristic p > 1, they are right-invariant under &, hence locally
constant. Clearly, if ®@ has that property, the same is true of the function
@' given by @'(g) = ®(ga). If k is of characteristic p > 1, we take our
functions @ to be complex-valued. If k is a number-field, our purposes
require that they take their values in suitable vector-spaces, that they
transform according to given representations of the groups &,, at the
infinite places w of k, and that, at those places, they satisfy additional
conditions to be described now.

It is well-known that, if £, = R (resp. C), the “Riemannian sym-
metric space” G,,/k,;s &,, may be identified with the hyperbolic space of
dimension 2 (resp. 3), i.e. with the Poincaré half-plane (resp. half-
space). This can be done as follows. Let B} be the subgroup of B,,
consisting of the matrices b = (p,y) with p € R} (ie. pe R, p > 0)
and y € k,,. Every element g of G,, can be writeen as g = bzt with
be B, z€ky,teK,;here b = (p,y), and zt, are uniquely determined
by g. We identify G,,/k,; &, with the Poincaré half-plane (resp. half-
space) H,, = Ri x k,, by taking, as the canonical mapping of G,, onto
G,/k; &, the mapping ¢,, of G,, onto H,, given by ¢,,(g) = (p,y) for
g = bzt, b = (p,y) as above. The invariant Riemannian metric in H,, is
the one given by ds®> = p~2(dp* + dydy). On H,,, consider the differen-
tial forms which are left-invariant under B}, ; a basis for these consists of
the forms a; = p~!(dp + idy), ay = p~'(dp — idy) if k,, = R, and of
a) = pldy, ay = p~ldp, a3 = p~'dyif k, = C. Writing E/, for the
vector-space M 1(C) resp. M3 1(C) of column-vectors (with 2 resp. 3

_01) -d, for v finite, and a,, = 1, for w infinite.
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rows) over C, we will denote by a,, the vector-valued differential form
on H,,, with values in E/,, whose components are @, @, resp. a1, @z,
3. One can then describe the action of k;; &, on these forms by writing

@y (¢w (Zfb)) =M, (fa’w (b) >

where M, is a representation of K, in the space E:V; for k,, = R, for
instance, this is given by

g cosf sing)) _ o210 0 s 1oy (01
)JEW<(_sin9 cos 6 0 2 , M, 0 1 o)

A basis for the left-invariant differential forms on G,, which are 0 on
k,s &, is then given by the components of the vector-valued form

Bu(g) = My(D) ' (du(g))

where  is given, as above, by g = bzt.

Now write E,, for the space of row-vectors M;»(C) resp. M;3(C);
we regard this as the dual space to E/, the bilinear form e - ¢’ being
defined by matrix multiplication for e € E,,, ¢’ € E!,. Then, if & is an
E,,-valued function on G, & - 8, is a complex-valued differential form
on G,,; it is the inverse image under ¢,, of a differential form on H,,
if and only if h(gzt) = h(g)M,(t) for all g € G, z € ks, T € K,;
when that is so, & is uniquely determined by its restriction (p,y) —
h(p,y) to B;;. We will say that A, or its restriction to B}, is harmonic
if h - B, is the inverse image under ¢,, of a harmonic differential form
on the Riemannian space H,,, or, what amounts to the same, if 4 has the
property just stated and if i(p,y) - @, is harmonic on H,,. For k, =
R, this is so if and only if the two components of the vector-valued
function p~'h(p,y) on H,, are respectively holomorphic for the complex
structures defined on H,, by the complex coordinates p +iy. We will say
that £ is regularly harmonic if it is harmonic and if 4(p,y) = O(p") for
some N when p — +o0, uniformly in y on every compact subset of
ky. If h is harmonic, so is g — h(gog) for every gy € G,,, since the
Riemannian structure of H,, is invariant under G,, and since the form 3,,
is left-invariant on G,,. If £ is regularly harmonic, so is g — h(bpg) for
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every by € B} Itis easily seen that there is, up to a constant factor, only
one regularly harmonic function h,, such that

h,((1,y)g) = vw(¥)hy(g)

for all y € k,,, g € G,,; this given by

h, (p,y) = ¥ (y)hy(p),
hu(p) = p- (€2%,0) if k, — R,
h,(p) = p* - (Ki(4np), —2iKo(4np), K1 (4np)) if k, = C,

where Ky, K; are the classical Hankel functionsH. For any x € k,;, we
write h,,(x) instead of h,,((x,0)).

It is essential to note that h,, satisfies a “local functional equation”,
which, following Langlands, we can formulate as follows. Let w be a
quasicharacter of k,;; as before, we write it in the form x — x~4|x|*
with A = O or 1, if k,, = R, and z — z 7" %(z2)* with inf(A, B) = 0,
if k, = C. For k, = R, put 4,(w) = Go(1 + s — A); for k,, = C,
put G, (w) = Ga(s + 1)2if A = B =0, and %,,(w) = G2(5)Ga(s + 1)
otherwise. Write j for the matrix j = ( 0 1) and put, for g € G,

(8, w) = f h, (2. 0)g)w(2)d )
ky

where d* z is a Haar measure on k,, ; this is convergent for Re(s) large.
Then the functional equation is

gW(w>_IIW(g’ w) = (_1)ng(w_])_IIW(j_lg7 w_l) (8)

withp = 1ifk, = R,orifk, = Cand A =B =0,andp = A + Bif
k, = Cand A + B > 0. By (8), we mean that both sides, for given A, B,
g, can be continued analytically, as holomorphic functions of s, over the
whole s-plane, and are then equal. This can of course be verified by a

*Cf. G. N. Watson, A treatise on the theory of Bessel function, 2nd. ed., Cambridge
1952, page 78.
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straightforward calculation for k,, = R. A similar calculation for k,, =
C might not be quite so easy. Both cases, however, are included in more
general results of Langlands; moreover, a simple proof for (§) itself in
the case k,, = C, communicated to me by Jacquet, is now available. It
will be noticed that the gamma factors in () are essentially the same as
those occurring in (3.

Now we write ks, ky, Gy Koo, Hoo, etc., for the products Ik,
Ik, 11G,,, 1IK,,, I1H,,, etc., taken over the infinite places of k. We
write E, Ego for the tensor-products ®FE,,, ®E£V, taken over the same
places; these may be regarded as dual to each other. Then S, = ®B,,
is a left-invariant differential form on G, with values in E/; its degree
is equal to the number r of infinite places of k; if & is any function on
G, with values in Eq, h - By is then a complex-values differential form
of degree r on Go,. We will say that & is harmonic if h - By, is the
inverse image of a harmonic differential form on Hy,; writing p = (p,,),
y = (yw) for elements of (R7)" and ke, so that (p,y) is an element
of Hy,, we will say that the harmonic function 4 is regularly harmonic
if there is N such that h(p,y) = O(pY) for each w when p,, — +o0,
uniformly over compact sets with respect to all variables except p,,. Up
to a constant factor, the only regularly harmonic function h., such that

ho ((1,y)8) = oo () (8)

forall y € ky, g € Go is given by h(g) = ®h,,(gy) for g = (gu).

We will say that a continuous function ® on G4, with values in
E 4, is a harmonic automorphic function with the conductor a, or, more
briefly, that it is (A, a)-automorphic if it is left-invariant under Gy, invari-
antunder k; , right-invariant under &, for every finite place v of k, and if,
for every go € G4, the function on G, given for g € G, by g — ®(gog)
is harmonic; if k is not of characteristic 0, the latter condition is empty,
and we take E,, = C. The function @ given by ®'(g) = ®(ga) is then
also (h, g)-automorphic. For such a function ®, we shall now consider
more closely the Fourier series defined by (6). As @ is harmonic on G,
and right-invariant under &, for every finite v, the same is true of the
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functions

Do (g) = J D((1,y)g)dy, ®1(g) = J O((1,y)g)y(—y)dy

ka/k ka/k

whose restrictions to By are Fo(x,y) = fo(x), Fi(x,y) = fi(x)y(y),
where f, fi are as in (@). In particular, for every finite v, F is right-
invariant under the group B, N &,, hence under all matrices (u,0) with
u € ry’, and all matrices (1,d, 1Z) with z € r,; in view of the definition of
the idele d = (d,), the latter fact means that f; (x) = O unless x, € r, for
all finite v, i.e. unless the element m = pu(x) of Mt is integral; the former
fact means that fj (x) depends only upon m and upon the components x,,
of x at the infinite places w of k. Putting x,, = (x,,), we can therefore
write f1(x) = fi(m, xo), and this is O unless m is in M. For similar
reasons, we can write fo(x) = fo(m, xs).

If k is of characteristic p > 1, this can be written fj(x) = fj(m),
fo(x) = fo(m). As fi(m) is O unless m is in M, only finitely many
terms of the Fourier series (6) can be # 0 for each (x,y); they are all
0, except possibly fy(x), if |x| > 1, since this implies |£x| > 1 for all
& € k. On the other hand, if k is of characteristic 0, the convergence of
the Fourier series follows from the fact that @, being harmonic, must be
analytic in g5, = (gw)-

Now we add three more conditions for ®:

(I) @ should be B-cuspidal, i.e. fy should be 0.

(II) If k is of characteristic 0, @ should be regularly harmonic on
G, when the coordinates g, at the finite places are kept con-
stant. Then the same is true of @ ; in view of what we have found
above, this implies that fj(m, xo) is a constant scalar multiple of
h, (xo) for every m, so that we can write

Ji(m, xo0) = e(M)hos (xo0),

where c¢(m) is a complex-valued function on M, equal to 0 outside
M. In the case of characteristic p > 1, we write c(m) = fj(m).
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(III) We assume that ¢(m) = O(|m|~%) for some «; (I) and (II) being
assumed, this implies that F(x,y) = O(]x|~17®) for |x| < 1,
uniformly in y. Conversely, if F(x,y) = O(|x|7?) for |x| < 1,
uniformly in y, for some S, we have c¢(m) = O(|m|=#).

Clearly (III) amounts to saying that the Dirichlet series (1) with the
coefficients c¢(m) is absolutely convergent in some half-plane. This may
be regarded as the Mellin transform of ®. It is more appropriate for our
purposes, however, to use that name for the series

Z(w) = ) c(m)w(m), ©)

where w is a quasicharacter of k; /k*, and w(m) is as in @)). For s € C,
we write w; for the quasicharacter wy(z) = |z|*, and, for every qua-
sicharacter w, we define o = o(w) by |w(z)| = |z|7, ie. |w| = ws
(where | | in the left-hand side is the ordinary absolute value |7| = (ﬁ)%
for t € C). Then our condition (IIT) implies that (@) is absolutely conver-
gent for o(w) > 1+ a. If we replace w by w - w; in @), @) becomes the
same as the series (@); in other words, the knowledge of the function Z
given by @) on the set of all the quasi-characters of k /k* is equivalent
to that of all the functions given by ). As before, we define Z(w) by
analytic continuation in the s-plane, whenever possible, when it is not
absolutely convergent.

Conversely, let the coefficients ¢(m) be given for m € M ; assume
(WD), and put ¢(m) = 0 outside M. Let Z be defined by (@); at the
same time, define fi on k; by putting fi(x) = c(m) with m = u(x)
if k is of characteristic p > 1, and fj(x) = c(m)hy(xs) otherwise,
with xo, = (xy,); put fo(x) = 0, and define F(x,y) by the Fourier series
(6), whose convergence follows at once from (IIT) and the definition of
h,, if k is of characteristic 0, and is obvious otherwise. As we have
said, the question arises now whether F' can be extended to a continuous
function ® on G4, left-invariant under G (and invariant under k: ); if so,
we may then ask whether this is an (%, a)-automorphic function, which
clearly must then satisfy (I) and (III) and is easily shown to satisfy (II).
In that case we say that ® and the series Z given by (Q)) are the Mellin
transforms of each other.
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We are now able to state our main results.

Theorem 1. Let ® be an (h, a)-automorphic function on Gu; let @' be
the (h, a)-automorphic function given by ®'(g) = ®(ga). Assume that
® and @' satisfy (1), (I), (D). Call Z the series Q) derived from ® as
explained above, and Z' the series similarly derived from ®'. Then, for
all the quasicharacters w whose conductor is disjoint from a, we have

Z(w)%G,(w) = (—1)Ri(w)?w(af(w)*d*)Z (0~ )Y, (w™"). (10)

Moreover, if Z is eulerian at any finite place v of k, not occurring in q,
7' is also eulerian there, and they have the same eulerian factor at v,
which is of the form

(1 . C‘pv|s + |pv|l+ZS)fl (11)

with ¢ = c(py).

In (I0), the two products are taken over the infinite places w of k,
®,, being as in @); r is the number of such places; x(w) and f(w) are
as in (@) and (3), and R as in (@). Moreover, by (I0), we mean that, if
w - wy 1s substituted for w, both sides can be continued analytically as
holomorphic functions of s in the whole s-plane, bounded in every strip
o < Re(s) < o/, and that they are equal; (I0) and similar formulas
should also be understood in that same sense in what follows.

It is worth notinéﬂ that, for Z to be eulerian at v in Theorem[1] it is
necessary and sufficient that @ should be an eigenfunction of the “Hecke
operator” T, which maps every function ® on G4 onto the function 7', ®
given by

(1,0)(¢) = [ o(et- (r.0)at
K

where df is a Haar measure in &, and 7 is a prime element of k,. More
precisely, take df so that the measure of K, is 1; then, if 7,® = A®, one
finds, by taking ¢ = (x,y) in the above formula and expressing ®(x, y)
by (@), that Z has the eulerian factor (IT) at v, with ¢ = (1 + |p,|)2. We

*I owe this observation to Jacquet.
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also note that here 7', generates the Hecke algebra for G,, so that @ is
then an eigenfunction for all the operators in that algebra.

Theorem 2. Let a series Z be given by @), and let Z' be a similar
series; assume that both satisfy (I11). Let s be a finite set of finite places
of k, containing all the places which occur in a. Assume that Z, 7'
are eulerian at every finite place of k outside s, with the same eulerian
factor of the form (I0)); also, assume (IQ), in the sense explained above,
for all the quasicharacters w whose conductor is disjoint from s. Then
there is an (h, a)-automorphic function ® on G, satisfying (I), (I1), (IIT),
such that Z and Z' are the Mellin transforms of ®, and of the function
D'(g) = ®(ga), respectively.

There is no doubt that the assumptions in Theorem 2lare much more
stringent than they need be. For k = Q, it has been found in [2] that
the eulerian property is not required at all; in the general case, it might
perhaps be enough to postulate it at some suitable finite set of places.
For k = Q, the functional equation has to be assumed only for a rather
restricted set of characters (those mentioned in [2]], Satz 2), or even for a
finite set of characters, depending upon a, when a is given (since Hecke’s
group I'o(A) is finitely generated). It seems quite possible that some
such results may be true in general. One will also observe that, for
k = Q, Theorems [l and 2] correspond merely to the case € = 1 of the
results obtained in [2]]; there is no difficulty in extending them so as to
cover the case where € is arbitrary; then, if they apply to two series Z,
7', and to the conductor a, they also apply to any pair Z;, Z; given by
Zi(w) = Z(yw), Zj(w) = Z'(x'w), where y is any quasicharacter
whose conductor f(y) is disjoint from a; the conductor for the latter pair
is a; = af(y)?. Leaving those topics aside, we shall not sketch briefly
the proof the Theorems Il and

Consider first the question raised by Theorem 2l Starting from the
series Z, we construct a function F on B4 by means of (@) as explained
above; we construct F’ similarly, starting from Z’. For these to be the
restrictions to B4 of two (h, a)-automorphic functions @, @’ related to
each other by @'(g) = ®(ga), it is obviously necessary that one should
have F(b) = F'(b') My (), with My, = @M,,, whenever b = jb'tza
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with j = (% () € G, T = (1) € & z € k. By using the fact that G
is the union of By - k™ and of By jBy - k*, one shows that this condition
is sufficient. Clearly, it is not affected if one restricts b, b’ to a subset
B of B4 containing a full set of representatives of the right cosets in B4
modulo By N }. For B, we choose the set consisting of the elements
(xfd, xe) with x € kx, f = (f,) € ky, e = (ey) € ks, with f and
e restricted as follows. For each infinite place w, we take f,, > 0 and
f2 + eye, = 1. For each finite place v, we take f,, e, in r,, with f, # 0
and sup(|f,|y, |ev]y) = 1. Then we call f = u(f) the conductor of the
element b = (xfd,xe) of B. Take two such elements b = (xfd, xe),
b = (Xf'd,xX'e), such that b = jb'tza with t € &, z € k; it is easily
seen that they must have the same conductor f, and that this is disjoint
from a; moreover, when x, f, e are given, one may choose x/, f/, ¢/, f,
z so that f/ = f, that ¢, f, 7 are uniquely determined in terms of f and
e, and that X = ax~!. Therefore the condition to be fulfilled can be
written as

F(xfd,xe) = F'(ax ' fd,ax 'e" )My (1), (12)

with ¢’ uniquely determined in terms of f, e, and t,, in terms of f, €.
Actually, one finds that it is enough, for ® and @’ to exist as required,
that this should be so when f is disjoint, not merely from a, but from
any fixed set s of places, containing a, provided it is finite, or at least
provided its complement is “not too small” in a suitable sense. We must
now seek to express (I2)) in terms of the original series Z, Z'.

In order to do this, we multiply (I2)) with an arbitrary quasi-character
w, and write formally the integrals of both sides over k; /k*. This, taken
literally, is meaningless, since it leads to divergent integrals; leaving this
aspect aside for the moment, we note first that, if we replace F in the
left-hand side by the Fourier series which defines it, that side may be
formally rewritten as

S e(m) Jhw(xww(xe Fla Yol d ey (13)

where d* x is the Haar measure in k; , and the integral, in the term corre-
sponding to m, is taken over the subset of k: determined by pu(x) = m;
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this is a coset of the kernel of y, i.e. of the open subgroup k5 x IIr)
of k:. These integrals are easily calculated (by means of Proposition
14, Chapter VII-7, of BNT, page 132) in terms of the product J =
I17,,((1, ey), wy), where the I, are as defined in ()); they converge for
o (w) large enough. One sees at once that they are 0 for all m unless the
conductor f(w) of w divides f = u(f). If f(w) = f, one finds that (I3)
is no other than J - Z(w), up to a simple scalar factor. A similar formal
calculation for the right-hand side of (I2)) transforms it into the product
of a scalar factor, of an integral similar to J, and of Z'(w™'); comparing
both sides and taking (8)) into account, one gets the functional equation
(I0), for which we will now write E(w). If we do not assume f(w) = f,
but merely f = f(w)f; with f; € M, the same procedure leads to a
similar equation E1(w) connecting two Dirichlet series Zi(w), Z](w)
whose coefficients depend only upon f; and the coefficients of Z and of
7', respectively.

If k is of characteristic p > 1, there is no difficulty in replacing the
above formal argument by a correct proof. The same can be achieved
for characteristic 0 by a straightforward application of Hecke’s lemma
(c.f. [2]], page 149). The conclusion in both cases is that the validity
of the equations E;(w) for all divisors f; of { and all quasicharacters
w with the conductor ﬁl_l is necessary and sufficient for (I2) to hold
for all e and all x, when f is given. This proves Theorem [ except for
the last part, which one obtains easily by comparing the equations E(w)
and Ej(w) for f; = p, when the eulerian property is postulated for Z
at v. On the other hand, we see now, in view of what was said above,
that, when Z and Z’ are given, ® and @’ exist as required provided the
functional equations E(w), E (w) are satisfied whenever f(w) and f are
both disjoint from the given set s. If one assumes that Z, Z’ are eulerian
at each one of the places occurring in f;, with an eulerian factor of the
form (), one finds that Z; (w), Z{ (w) differ from Z(w), Z'(w) only by
an “elementary” factor and that E(w) is a consequence of E(w). This
proves Theorem[2]

Examples for Dirichlet series satisfying the conditions in Theorem 2]
are given, as we have seen, by the zeta-functions of elliptic curves (tak-
ing Z(w) = L,(1), Z'(w) = +L,(1), where L(s) is the zeta-function)
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in the cases (a), (b), (c) where these can be effectively computed; other
similar examples, not arising from elliptic curves, can easily be con-
structed, as Hecke L-functions over quadratic extensions of k, or prod-
ucts of two such functions over k. Jacquet has pointed out that, when
Z is a product of two Hecke L-functions, the automorphic function @ is
an Eisenstein series; this is the case in example (c), and in (a) when k
contains the complex multiplications of the curve E; it cannot happen
(according to [2]], Satz 2) when k = Q.

If k is a number-field with r infinite places, and if the zeta-function
of an elliptic curve E over k satisfies the assumptions in Theorem 2] that
theorem associates with it the differential form @ - 8, of degree r; since
it is locally constant with respect to the coordinates at the finite places, it
may be regarded as a harmonic differential form of degree r on the union
of a certain finite number of copies (depending on the class-number of k)
of the Riemannian symmetric space Ho, belonging to G,. For k = Q,
some examples suggest that the periods of that form may be no other
than those of the differential form of the first kind belonging to E. In
the general case, one can at least hope to discover a relation between
the periods of @ - 8., and those of the differential form of the first kind
on E and on its conjugates over Q. When £ is of characteristic p > 1,
however, © is a scalar complex-valued function on the discrete space
Gi\Ga/Sk>, and it seems hard even to imagine a connexion between
this and the curve E, closer than the one given by the definitoin of @ in
terms of Z.
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