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INTERNATIONAL COLLOQUIUM ON ALGEBRAIC

GEOMETRY

Bombay, 16-23 January 1968

REPORT

An International Colloquium on Algebraic Geometry was held at

the Tata Institute of Fundamental Research, Bombay on 16-23 January,

1968. The Colloquium was a closed meeting of experts and others seri-

ously interested in Algebraic Geometry. It was attended by twenty-six

members and thirty-two other participants, from France, West Germany,

India, Japan, the Netherlands, the Soviet Union, the United Kingdom

and the United States.

The Colloquium was jointly sponsored, and financially supported,

by the International Mathematical Union, the Sir Dorabji Tata Trust and

the Tata Institute of Fundamental Research. An Organizing Committee

consisting of Professor K. G. Ramanathan (Chairman), Professor M. S.

Narasimhan, Professor C. S. Seshadri, Professor C. P. Ramanujam, Pro-

fessor M. F. Atiyah and Professor A. Grothendieck was in charge of the

scientific programme. Professors Atiyah and Grothendieck represented

the International Mathematical Union on the Organizing Committee.

The purpose of the Colloquium was to discuss recent developments in

Algebraic Geometry.

The following twenty mathematicians accepted invitations to ad-

dress the Colloquium: S. S. Abhyankar, M. Artin, B. J. Birch, A. Borel,

J. W. S. Cassels, B. M. Dwork, P. A. Griffiths, A Grothendieck, F. Hirze-

bruch, J.-I. Igusa, Yu. I. Manin, T. Matsusaka, D. Mumford, M. Nagata,

M. S. Narasimhan, S. Ramanan, C. S. Seshadri, T. A. Springer, J. L.

Verdier and A. Weil. Professor H. Hironaka, who was unable to attend

the Colloquium, sent in a paper.
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Report v

The Colloquium met in closed sessions. There were nineteen lec-

tures in all, each lasting fifty minutes, followed by discussions. Informal

lectures and discussions continued during the week, outside the official

programme.

The social programme included a tea on 15 January, a dinner on

16 January, a programme of classical Indian dances on 17 January, a

dinner at the Juhu Hotel on 20 January, an excursion to Elephanta on

the morning of 22 January and a farewell dinner the same evening.
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RESOLUTION OF SINGULARITIES OF

ALGEBRAIC SURFACES

By Shreeram Shankar Abhyankar

1

1 Introduction. The theorem of resolution of singularities of alge-

braic surfaces asserts the following :

Surface Resolution. Given a projective algebraic irreducible sur-

face Y over a field k, there exists a projective algebraic irreducible non-

singular surface Y 1 over k together with a birational map of Y 1 onto Y

(without fundamental points on Y 1).

For the case when k is the field of complex numbers, after several

geometric proofs by the Italians (see Chapter I of [15]), the first rig-

orous proof of Surface Resolution was given by Walker [14]. For the

case when k is a field of zero characteristic, Surface Resolution was

proved by Zariski ([16],[17]); and for the case when k is a perfect field

of nonzero characteristic, it was proved by Abhyankar ([2],[3],[4]).

A stronger version of Surface Resolution is the following :

Embedded Surface Resolution. Let X be a projective algebraic ir-

reducible nonsingular three-dimensional variety over a field k, and let

Y be an algebraic surface embedded in X. Then there exists a finite se-

quence X Ñ X1 Ñ X2 Ñ . . . Ñ Xt Ñ X1 of monoidal transformations,

with irreducible nonsingular centers, such that the total transform of Y

in X1 has only normal crossings and the proper transform of Y in X1 is

nonsingular.

For the case when k is of zero characteristic and Y is irreducible, the

part of Embedded Surfaces Resolution concerning the proper transform

of Y was proposed by Levi [13] and proved by Zariski [18]. Again for

the case when k is of zero characteristic, Hironaka [12] proved Embed-

ded Resolution for algebraic varieties of any dimension. For the case

when k is a perfect field of nonzero characteristic, Embedded Surface

Resolution was proved by Abhyankar ([7],[9],[10],[11]).
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2 S. S. Abhyankar

Then in January 1967, in a seminar at Purdue University, I gave2

a proof of Embedded Surface Resolution (and hence a fortiori also of

Surface Resolution) for an arbitrary field k, i.e. without assuming k to

the perfect. The details of this proof will be published elsewhere in

due course of time. This new proof is actually only a modification of

my older proofs cited above. One difference between them is this. In

the older proofs I passed to the albegraic closure of k, did resolution

there, and then pulled it down to the level of k. In case k is imperfect,

the pulling down causes difficulties. In the new modified proof I work

directly over k. In this connection, a certain lemma about polynomials

in one indeterminate (with coefficients in some field) plays a significant

role.

In order that my lecture should not get reduced to talking only in

terms of generalities, I would like to show you, concretely, the proof of

something. The said lemma being quite simple, I shall now state and

prove it.

2 The lemma. Let k1 be a field and let q be a positive integer. As-

sume that q is a power of the characteristic exponent of k1; recall that,

by definition : (the characteristic exponent of k1) = (the characteristic of

k1) if k1 is of nonzero characteristic, and (the characteristic exponent of

k1) = 1 if k1 is of zero characteristic. Let A be the ring of all polynomials

in an indeterminate T with coefficients in k1. As usual, by Aq we denote

the set thq : h P Au. Note that then Aq is a subring of A; this is the only

property of q which we are going to use. For any h P A, by deg h we

shall denote the degree of h in T ; we take deg0 “ ´8. Let f P A and

let d “ deg f . Assume that f R k, i.e. d ą 0. Let r : A Ñ A{p f Aq be

the canonical epimorphism. For any nonnegative integer e let

Wpq, d, eq “ re{pdqqsq ` rmaxtq ´ pq{dq, pe{dq ´ re{pdqqsqus

where the square brackets denote the integral part, i.e. for any real num-

ber a, by ras we denote the greatest integer which is ď a.

The Lemma. Given any g P A with g R Aq, let e “ deg g. Then we

can express g in the form

2



Resolution of Singularities of Algebraic Surfaces 3

g “ g1 ` g˚ f u

where g1 P Aq, g˚ P A with g˚ R f A, and u is a nonnegative integer 3

such that

u ď Wpq, d, eq

and: either u ı 0pqq or rpg˚q R prpAqqq.

Before proving the lemma we shall make some preliminary remarks.

Remark 1. The assumption that g P A and g R Aq is never satisfied

if q “ 1. Thus the lemma has significance only when k1 is of nonzero

characteristic and q is a positive power of the characteristic of k1. The

lemma could conceivably be generalized by replacing Aq by some other

subset of A.

Remark 2. For any integers q, d, e with q ą 0, d ą 0, e ě 0, we clearly

have Wpq, d, eq ě 0.

Remark 3. The bound Wpq, d, eq for u can be expressed in various other

forms. Namely, we claim that for any integers q, d, e with q ą 0, d ą 0,

e ě 0, we have

Wpq, d, eq “ W1pq, d, eq “ W2pq, d, eq “ W3pq, d, eq

where

W1pq, d, eq “ rre{ds{qsq ` rmaxtq ´ pq{dq, re{ds ´ rre{ds{qsqus,

W2pq, d, eq “ rre{ds{qsq ` maxtrq ´ pq{dqs, re{ds ´ rre{ds{qsqu,

W3pq, d, eq “ maxtre{ds, rre{ds{qsq ` rq ´ pq{dqsu.

To see this, first note that by the division algorithm we have

e “ re{dsd ` j with 0 ď j ď d ´ 1

and

re{ds “ rre{ds{qsq ` j1 with 0 ď j1 ď q ´ 1;

upon substituting the second equation in the first equation we get

e “ rre{ds{qsdq ` pd j1 ` jq and 0 ď d j1 ` j ď dq ´ 1

3



4 S. S. Abhyankar

and hence

rre{ds{qs “ re{pdqqs.

For any two real numbers a and b we clearly have4

rmaxta, bus “ maxtras, rbsu,

and hence in view of the last displayed equation we see that

Wpq, d, eq “ W2pq, d, eq “ W1pq, d, eq.

For any real numbers a, b, c we clearly have

a ` maxtb, cu “ maxta ` b, a ` cu,

and hence we see that

W2pq, d, eq “ W3pq, d, eq.

Thus our claim is proved. Clearly re{ds ď W3pq, d, eq; since Wpq, d, eq “
W3pq, d, eq, we thus get the following

Remark 4. For any integers q, d, e with q ą 0, d ą 0, e ě 0, we have

re{ds ď Wpq, d, eq.

Remark 5. Again let q, d, e be any integers with q ą 0, d ą 0, e ě 0.

Concerning Wpq, d, eq we note the following.

If d “ 1 then clearly Wpq, d, eq “ e.

If d ą 1 and e ď q then : re{pdqqs “ 0 and maxtq´pq{dq, e{du ă q,

and hence Wpq, d, eq ď q ´ 1.

If d ą 1 and e ą q then :

rre{ds{qsq ` rq ´ pq{dqs ď pe{dq ` q ´ pq{dq

“ pe{dq ` pq{dqpd ´ 1q

ă pe{dq ` pe{dqpd ´ 1q

“ e

and hence

rre{ds{qsq ` rq ´ pq{dqs ď e ´ 1;

4



Resolution of Singularities of Algebraic Surfaces 5

also re{ds ď e ´ 1, and hence W3pq, d, eq ď e ´ 1 where W3 is as

in Remark 3; since Wpq, d, eq “ W3pq, d, eq by Remark 3, we get that

Wpq, d, eq ď e ´ 1.

Thus : if d “ 1 then Wpq, d, eq “ e; if d ą 1 and e ď q then

Wpq, d, eq ď q ´ 1; if d ą 1 and e ą q then Wpq, d, eq ď e ´ 1.

In particular : either Wpq, d, eq{q ď e{q or Wpq, d, eq{q ă 1; if 5

d ą 1 then either Wpq, d, eq{q ă e{q or Wpq, d, eq{q ă 1.

Thus the lemma has the following

Corollary. The same statement as that of the lemma, except that we

replace the inequality u ď Wpq, d, eq by the following weaker estimates:

either u{q ď e{q or u{q ă 1; if d ą 1 then either u{q ă e{q or u{q ă 1.

For applications, this corollary is rather significant.

Remark 6. For a moment suppose that rpgq P prpAqqq. Then rpgq “ h1q

for some h1 P rpAq. Now there exists a unique h˚ P A such that deg h˚ ď
d ´ 1 and rph˚q “ h1. Let h “ h˚q. Then h P Aq, deg h ď dq ´ q, and

g ´ h P f A. Since g R Aq and h P Aq, we must have g ´ h R Aq; hence

in particular g ´ h ‰ 0. Since 0 ‰ g ´ h P f A, there exists g1 P A

and a positive integer v such that g1 R f A and g ´ h “ g1 f v. Since

g1 f v “ g ´ h R Aq we get that: either v ı 0pqq or g1 R Aq. Now

g1 f v “ g ´ h, deg f “ d, deg g “ e, and deg h ď dq ´ q; therefore upon

letting e1 “ deg g1 we have

dv ` e1 “ degpg1 f vq “ degpg ´ hq

"
“ e if e ą dq ´ q

ď dq ´ q if e ď dq ´ q.

Thus we have proved the following

Remark 7. If rpgq P prpAqqq then g “ h ` g1 f v where h P Aq, g1 P A

with g1 R f A, v is a positive integer, and letting e1 “ deg g1 we have

dv ` e1

"
“ e if e ą dq ´ q

ď dq ´ q if e ď dq ´ q

and: either v ı 0pqq or g1 R Aq.

Proof of the Lemma. We shall make induction on re{pdqqs. First con-

sider the case when re{pdqqs “ 0. If rpgq R prpAqqq then, in view of

5



6 S. S. Abhyankar

Remark 2, it suffices to take g1 “ 0, g˚ “ g, u “ 0. If rpgq P prpAqqq

then let the notation be as in Remark 7; since re{pdqqs “ 0 and by Re-

mark 7 we have dv ď maxtdq ´ q, eu, we see that v ď Wpq, d, eq and6

v ă q; since 0 ă v ă q, we see that v ı 0pqq; therefore it suffices to

take g1 “ h, g˚ “ g1, u “ v.

Now let re{pdqqs ą 0 and assume that the assertion is true for all

values of re{pdqqs smaller than the given one. If rpgq R prpAqqq then,

in view of Remark 2, it suffices to take g1 “ 0, g˚ “ g, u “ 0. So

now suppose that rpgq P prpAqqq and let the notation be as in Remark 7.

Since re{pdqqs ą 0, by Remark 7 we have

dv ` e1 “ e. (*)

Therefore v ď re{ds and hence if v ı 0pqq then, in view of Remark 4, it

suffices to take g1 “ h, g˚ “ g1, u “ v. So now also suppose that

v ” 0pqq. (**)

Then by Remark 7 we must have g1 R Aq; since v ą 0, by (*) and (**)

we see that re1{pdqqs ă re{pdqqs; therefore by the induction hypothesis

we can express g1 in the form

g1 “ g1
1 ` g˚ f u1

where g1
1

P Aq, g˚ P A with g˚ R f A, and u1 is a nonnegative integer

such that u1 ď Wpq, d, e1q and either u1 ı 0pqq or rpg˚q R prpAqqq. Let

u “ u1 ` v. Then u is a nonnegative integer, and in view of (**) we see

that u ” 0pqq if and only if u1 ” 0pqq; consequently: either u ı 0pqq or

rpg˚q R prpAqqq. Let g1 “ h ` g1
1

f v; since h and g1
1

are in Aq, by (**) we

get that g1 P Aq. Clearly

g “ g1 ` g˚ f u.

By (*) and (**) we get that

e ” e1mod dq and pe ´ e1q{pdqq “ v{q,

6



Resolution of Singularities of Algebraic Surfaces 7

and hence

re{pdqqs “ re1{pdqqs ` pv{qq

and

pe{pdqqq ´ re{pdqqs “ pe1{pdqqq ´ re1{pdqqs;

therefore

Wpq, d, eq “ Wpq, d, e1q ` v;

since u “ u1 ` v and u1 ď Wpq, d, e1q, we conclude that u ď Wpq, d, eq. 7

3 Use of the lemma. To give a slight indication of how the lemma

is used, let R and R˚ be two-dimensional regular local rings such that R˚

is a quadratic transform of R. Let M and M˚ be the maximal ideals in R

and R˚ respectively. Let k1 “ R{M and let J be a coefficient set of R, i.e.

J is a subset of R which gets mapped one-to-one onto k1 by the canonical

epimorphism R Ñ R{M. We can take a basis px, yq of M such that

MR˚ “ xR˚. Then y{x P R˚. Let s : Rry{xs Ñ Rry{xs{pxRry{xsq be

the canonical epimorphism and let T “ spy{xq. Then spRq is naturally

isomorphic to k1 and, upon identifying spRq with k1 and letting A “
k1rT s, we have that T is transcendental over k1, spRry{xsq “ A, and

there exists a unique nonconstant monic irreducible polynomial

f “ T d ` f1T d´1 ` ¨ ¨ ¨ ` fd with fi P k1

such that spRry{xs X M˚q “ f A. Take f 1
i

P J with sp f 1
i
q “ fi, and let

y˚ “ py{xqd ` f 1
1py{xqd´1 ` ¨ ¨ ¨ ` f 1

d.

Now R˚ is the quotient ring of Rry{xs with respect to the maximal ideal

Rry{xs X M˚ in Rry{xs; consequently px, y˚q is a basis of M˚, and, upon

letting s˚ : R˚ Ñ R˚{M˚ be the canonical epimorphism and identifying

s˚pRq with k1, we have that R˚{M˚ “ k1ps˚py{xqq, s˚py{xq is algebraic

over k1, and f is the minimal monic polynomial of s˚py{xq over k1.

Given any element G in R we can expand G as a formal power se-

ries Hpx, yq in px, yq with coefficients in J; since G P R˚, we can also

expand G as a formal power series H˚px, y˚q in px, y˚q with coefficients

7



8 S. S. Abhyankar

in a suitable coefficient set J˚ of R˚. In our older proofs we needed to

show that if H satisfies certain structural conditions then H˚ satisfies

certain other structural conditions (for instance see (2.5) of [4], (1.5) of

[5], and §7 of [11]); there we were dealing with the case when R{M is

algebraically closed (and hence with the case when d “ 1, the equation

y˚ “ py{xq ` f 1
1

expressing the quadratic transformation is linear in y{x,

R˚{M˚ “ R{M, and one may take J˚ “ J). The lemma enables us8

to do the same sort of thing in the general case, i.e. when R{M is not

necessarily algebraically closed and we may have d ą 1.

In passing, it may be remarked that if R is of nonzero characteristic

and R{M is imperfect then, in general, it is not possible to extend a coef-

ficient field of the completion of R to a coefficient field of the completion

of R˚.

4 Another aspect of the new proof. Another difference be-

tween the new modified proof and the older proofs is that the new mod-

ified proof gives a unified treatment for zero characteristic and nonzero

characteristic; this is done by letting the characteristic exponent play

the role previously played by the characteristic. To illustrate this very

briefly, consider a hypersurface given by FpZq “ 0 where FpZq is a

nonconstant monic polynomial in an indeterminate Z with coefficients

in a regular local ring R, i.e.

FpZq “ Zm `
mÿ

i“1

FiZ
m´i with Fi P R.

Let M be the maximal ideal in R and suppose that Fi P Mi for all i.

Now the hypersurface given by FpZq “ 0 has a point of multiplicity m

at the “origin”, and one wants to show that, by a suitable sequence of

monoidal transformations, the multiplicity can be decreased.

In the previous proofs of this, dealing with zero characteristic (for

instance see [16], [18], [12], and (5.5) to (5.8) of [10]), F1 played a

dominant role. In our older proofs, dealing with nonzero characteristic

(for instance see [9] and [11]), the procedure was to reduce the problem

8



Resolution of Singularities of Algebraic Surfaces 9

to the case when m is a power of the characteristic and then to do that

case by letting Fm play the dominant role.

In the new modified proof we directly do the general case by letting

Fq play the dominant role where q is the greatest positive integer such

that q is a power of the characteristic exponent of R{M and q divides

m. Note that on the one hand, if R{M is of zero characteristic (or, more

generally, if m is not divisible by the characteristic of R{M) then q “ 1;

and on the other hand, if R{M is of nonzero characteristic and m is a 9

power of the characteristic of R{M then q “ m.

5 More general surfaces. Previously, in ([1], [5], [6], [7], [8]),

I had proved Surface Resolution also in the arithmetical case, i.e. for

“surfaces” defined over the ring of integers; in fact what I had proved

there was slightly more general, namely, Surface Resolution for “sur-

faces” defined over any pseudogeometric Dedekind domain k satisfying

the condition that k{P is perfect for every maximal ideal P in k. In view

of the new modified proof spoken of in §1, this last condition can now

be dropped. The final result which we end up with can be stated us-

ing the language of models (alternatively, one could use the language of

schemes), and is thus:

Surface Resolution Over Excellent Rings. Let k be an excellent

(in the sense of Grothendieck, see p1.2q of [10]) noetherian integral do-

main. Let K be a function field over k such that dimk K “ 2; (by defini-

tion, dimk K “ the Krull dimension of k ` the transcendence degree of

K over k). Let Y be any projective model of K over k. Then there exists

a projective nonsingular model Y 1 of K over k such that Y 1 dominates Y.

In ([7], [9], [10], [11]) I had proved Embedded Surface Resolution

for models over any excellent noetherian integral domain k such that for

every maximal ideal P in k we have that k{P has the same characteristic

as k, and k{P is perfect. In view of the new modified proof spoken of in

§1 the condition that k{P be perfect can now be dropped. What we end

up with can be stated thus:

Embedded Surface Resolution Over Equicharacteristic Excellent

Rings. Let k be an excellent noetherian integral domain such that for

9



10 S. S. Abhyankar

every maximal ideal P in k we have that k{P has the same characteristic

as k. Let K be a function field over k such that dimk K “ 3. Let X be a

projective nonsingular model of K over k, and let Y be a surface in X.

Then there exists a finite sequence X Ñ X1 Ñ X2 Ñ . . . Ñ Xt Ñ X1 of

monoidal transformations, with irreducible nonsingular centers, such

that the total transform of Y in X1 has only normal crossings and the

proper transform of Y in X1 is nonsingular.

References10

[1] S. S. Abhyankar : On the valuations centered in a local domain,

Amer. J. Math. 78 (1956), 321-348.

[2] S. S. Abhyankar : Local uniformization on algebraic surfaces over

ground fields of characteristic p ‰ 0, Annals of Math. 63 (1956),

491-526. Corrections: Annals of Math. 78 (1963), 202-203.

[3] S. S. Abhyankar : On the field of definition of a nonsingular

birational transform of an algebraic surface, Annals of Math. 65

(1957), 268-281.

[4] S. S. Abhyankar : Uniformization in p-cyclic extensions of al-

gebraic surfaces over ground fields of characteristic p, Math. An-

nalen, 153 (1964), 81-96.

[5] S. S. Abhyankar : Reduction to multiplicity less than p in a p-

cyclic extension of a two dimensional regular local ring (p “
characteristic of the residue field), Math. Annalen, 154 (1964), 28-

55.

[6] S. S. Abhyankar : Uniformization of Jungian local domains, Math.

Annalen, 159 (1965), 1-43. Correction : Math. Annalen, 160

(1965), 319-320.

[7] S. S. Abhyankar : Uniformization in p-cyclic extensions of a

two dimensional regular local domain of residue field characteris-
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THE IMPLICIT FUNCTION THEOREM IN

ALGEBRAIC GEOMETRY

By M. Artin*

Several years ago, Matsusaka introduced the concept of Q-variety in 13

order to study equivalence relations on algebraic varieties. Q-varieties

are essentially quotients of algebraic varieties by algebraic equivalence

relations. The theory of these structures is developed in Matsusaka [24].

In this paper, we discuss a special case of Matsusaka’s notion in the

context of arbitrary schemes. We call the structure scheme for the etale

topology, or algebraic space. One obtains an algebraic space from affine

schemes via gluing by etale algebraic functions, i.e. via an etale equiv-

alence relation. Thus the concept is similar in spirit to that of Nash

manifold [29], [5]. It is close to the classical concept of variety, and

gives a naturally geometric object. In particular, an algebraic space over

the field of complex numbers has an underlying analytic structure (1.6).

We have tried to choose the notion most nearly like that of scheme

with which one can work freely without projectivity assumptions. The

assertion that a given object is an algebraic space will thus contain a lot

of information. Consequently, the definition given is rather restrictive,

and interesting structures such as Mumford’s moduli topology [26] have

been excluded (for the moment, let us say), as being not scheme-like

enough.

Our point of view is that a construction problem should be solved

first in the context of algebraic spaces. In the best cases, one can deduce

a posteriori that the solution is actually a scheme. We give some crite-

ria for this in Section 3, but the question of whether a given algebraic

space is a scheme may sometimes be very delicate. Thus a construc-

tion as algebraic space simply ignores a difficult and interesting side of

the problem. On the other hand, it cannot be said that a construction as

scheme solves such a problem completely either. For one wants to prove 14

*Sloan foundation fellow.
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14 M. Artin

that the result is projective, say, and where possible to give a description

via explicit equations; and projectivity can presumably be shown as eas-

ily for an algebraic space as for a scheme (cf. (3.4) in this connection).

The question of what constitutes a solution is thus largely a matter of

fashion.

We give here an outline of a theory of algebraic spaces, of which

details will be published elsewhere. The foundations of this theory, very

briefly indicated in Sections 1, 2, are being developed jointly with D.

Knutson.† Section 4 contains a fundamental result on approximation of

formal sections locally for the etale topology, with some applications.

In Section 5, we give the basic existence theorem (5.2) for algebraic

spaces. This theorem allows one to apply deformation theory methods

directly to global modular problems, in the context of algebraic spaces.

Various applications are given in Section 6.

In Sections 4–6, we assume that the schemes considered are locally

of finite type over a field. The techniques are actually available to treat

the case of schemes of finite type over an excellent discrete valuation

ring, so that the case that the base is Spec Z should be included. How-

ever, all details have not been written out in that case.

1 Schemes for the etale topology. We assume throughout

that the base scheme S is noetherian.

Let

F : pS -schemesq0 Ñ pSetsq (1.1)

be a (contravariant) functor. When X “ Spec A is an affine S -scheme,

we will often write FpAq for FpXq. Recall that F is said to be a sheaf

for the etale topology if the following condition holds:

1.2 Let Ui Ñ Vpi P Iq be etale maps of S -schemes such that the union

of their images in V . Then the canonical sequence of maps

FpVq Ñ
ź

i

FpUiq Ñ

ź

i, j

FpUiˆ
V

U jq

is exact.15

†Cf. D. Knutson: Algebraic spaces, Thesis, M.I.T. 1968 (to appear).
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The Implicit Function Theorem in Algebraic Geometry 15

We assume the reader familiar with the basic properties of this no-

tion (cf. [6] I, II, [7] IV).

A morphism f : U Ñ F (i.e. an element f P FpUq) of an S -scheme

to a functor F (1.1) is said to be representable by etale surjective maps if

for every map V Ñ F, where V is an S -scheme, the fibred product Uˆ
F

V

(considered as a contravariant functor) is representable by a scheme, and

if the projection map Uˆ
F

V Ñ V is an etale surjective map.

Definition 1.3. An S -scheme for the etale topology, or an algebraic

space over S , locally of finite type, if a functor

X : pS -schemesq0 Ñ pSetsq

satisfying the following conditions :

(1) X is a sheaf for the etale topology on (S -schemes).

(2) X is locally representable : There exists an S -scheme U locally

of finite type, and a map U Ñ X which is representable by etale

surjective maps.

It is important not to confuse this notion of algebraic space S with

that of scheme over S whose structure map to S is etale. There is

scarcely any connection between the two. Thus any ordinary S -scheme

locally of finite type is an algebraic space over S .

We will consider only algebraic spaces which are locally of finite

type over a base, and so we drop that last phrase.

Most algebraic spaces X we consider will satisfy in addition some

separation condition :

Separation Conditions 1.4. With the notation of (1.3), consider the

functor Uˆ
X

U. This functor is representable, by (1.3) [2]. The algebraic

space X is said to be

(i) separated if Uˆ
X

U is represented by a closed subscheme of Uˆ
S

U;

(ii) locally separated, if Uˆ
X

U is represented by a locally closed sub- 16

scheme of Uˆ
S

U;

15



16 M. Artin

(iii) locally quasi-separated, if the map Uˆ
X

U Ñ Uˆ
S

U is of finite

type.

It has of course to be shown that these notions are independent of U.

Although the general case, and the case that (iii) holds, are of consid-

erable interest, we will be concerned here primarily with cases (i) and

(ii).

Note that Uˆ
X

U “ R is the graph of an etale equivalence relation

on U (meaning that the projection maps are etale). It follows from gen-

eral sheaf-theoretic considerations [6, II.4.3] that in fact X is the quo-

tient U{R as sheaf for the etale topology on the category (S -schemes).

Conversely, any etale equivalence relation defines an algebraic space

X “ U{R. Thus we may view an algebraic space as given by an at-

las consisting of its chart U (which may be taken to be a sum of affine

schemes) and its gluing data R Ñ U, an etale equivalence relation. The

necessary verifications for this are contained in the following theorem,

which is proved by means of Grothendieck’s descent theory [14, VIII].

Theorem 1.5. Let U be an S -scheme locally of finite type and let R Ñ U

be an etale equivalence relation. Let X “ U{R be the quotient as sheaf

for the etale topology. Then the map U Ñ X is represented by etale

surjective maps. Moreover, for any maps V Ñ X, W Ñ X, where V, W

are schemes, the fibred product Vˆ
X

W is representable.

One can of course re-define other types of structure, such as that

of analytic space by introducing atlases involving etale equivalence re-

lations R Ñ U. However, it is a simple exercise to check that in the

separated and locally separated cases, i.e. those in which R is immersed

in U ˆU, this notion of analytic space is not more general than the usual

one, so that every separated analytic etale space is an ordinary analytic

space. Thus we obtain the following observation, which is important for

an intuitive grasp of the notion of algebraic space.

Corollary 1.6. Suppose S “ Spec C, where C is the field of complex17

numbers. Then every (locally) separated algebraic space X over S has

an underlying structure of analytic space.

16
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Examples 1.7. (i) If G is a finite group operating freely on an S -scheme

U locally of finite type, then the resulting equivalence relation

R “ G ˆ U Ñ U is obviously etale, hence U{R has the structure

of an algebraic space. Thus one can take for instance the example

of Hironaka [16] of a nonsingular 3-dimensional variety with a

free operation of Z{2 whose quotient is not a variety.

(ii) Let S “ Spec Rrxs, U “ Spec Crxs. Then Uˆ
S

U « U y U, where

say the first U is the diagonal. Now put V “ Spec Crx, x´1s. Then

R “ U y V Ñ U y U is an etale equivalence relation on U. The

quotient X is locally separated. It is isomorphic to S outside the

origin x “ 0. Above the origin, X has two geometric points which

are conjugate over R. Here R and C denote the fields of real and

complex numbers respectively.

(iii) Let S “ Spec k, where k is a field of characteristic not 2, U “
Spec krxs, and let R “ ∆ y ΓÑ U ˆ U, where ∆ is the diagonal,

and where Γ is the complement of the origin in the anti-diagonal

Γ “ tpx,´xq|x ‰ 0u.

Then X “ U{R is locally quasi-separated, but not locally sepa-

rated.

Proposition 1.8. Let

X

��❄
❄❄

❄❄
❄❄

❄ Z

��⑧⑧
⑧⑧
⑧⑧
⑧⑧

Y

be a diagram of algebraic spaces over S . Then the fibred product Xˆ
Y

Z

is again an algebraic space.

2 Elementary notions. Definition 2.1. A property P of schemes

is said to be local for the etale topology if

(i) U 1 Ñ U an etale map and U P P, implies U 1 P P; 18

17
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(ii) U 1 Ñ U etale and surjective and U 1 P P, implies U P P.

A property P of morphisms f : U Ñ V of schemes is said to be local for

the etale topology if

(i) V 1 Ñ V etale and f P P, implies f ˆ
V

V 1 P P;

(ii) let φ : U 1 Ñ U be etale and surjective. Then f P P if and only if

fφ P P.

Clearly, any property of S -schemes which is local for the etale topol-

ogy, carries over to the context of algebraic spaces. One just requires

that the property considered hold for the scheme U of (1.3). Examples

of this are reduced, geometrically unibranch, normal, nonsingular, etc...

Similarly, any property of morphisms of schemes which is local for

the etale topology carries over to the case of algebraic spaces. Thus the

notions of locally quasi-finite, unramified, flat, etale, surjective, etc...

are defined. In particular, an algebraic space X comes with a natural

etale topology [1], whose objects are etale maps X1 Ñ X with X1 an

algebraic space, and whose covering families are surjective families. In

this language, the map U Ñ X of (1.3) is an etale covering of X by a

scheme.

We extend the notion of structure sheaf OX to algebraic spaces with

the above topology, in the obvious way. For an etale morphism U Ñ X

where U is a scheme, we put

ΓpU,OXq “ ΓpU,OUq

where the term on the right hand side is understood to have its usual

meaning. Then this definition is extended to all etale maps X1 Ñ X so

as to give a sheaf for the etale topology (applying ([6] VII.2.c)).

Definition 2.2. A morphism f : Y Ñ X of algebraic spaces over S is

called an immersion (resp. open immersion, resp. closed immersion) if

for any map U Ñ X where U is a scheme, the product f ˆ
X

U : Yˆ
X

U Ñ

U is an immersion (resp......).

18
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Using descent theory ([14] VIII), one shows that it is enough to 19

check this for a single etale covering U Ñ X of X by a scheme. The

notions of open and of closed subspaces of X are defined in the obvious

way, as equivalence classes of immersions. Thus X has, in addition to

its etale topology above, also a Zariski topology whose objects are the

open subspaces.

Definition 2.3. A point x of an algebraic space X is an isomorphism

class of S -monomorphisms φ : Spec K Ñ X, where K is a field.

The map φ is said to be isomorphic to φ1 : Spec K1 Ñ X if there

is a map ǫ : Spec K1 Ñ Spec K such that φ1 “ φǫ. The map ǫ is then

necessarily a uniquely determined isomorphism. We refer to the field

K, unique up to unique isomorphism, as the residue field of x, denoted

as usual by kpxq. It is easily seen that this definition is equivalent to the

usual one when X is an ordinary scheme.

Theorem 2.4. Let x P X be a point. There is an etale map X1 Ñ X

with X1 a scheme, and a point x1 P X1 mapping to x P X, such that the

induced map on the residue fields kpxq Ñ kpx1q is an isomorphism.

Thus every x P X admits an etale neighborhood pX1, x1q (without

residue field extension !) which is a scheme. The category of all such

etale neighborhoods is easily seen to the filtering.

Definition 2.5. The local ring of X at a point x (for the etale topology)

is defined to be

OX,x “ limÝÑ
pX1,x1q

ΓpX1,OXq

where pX1, x1q runs over the category of etale neighborhoods of x.

This ring is henselian ([8] IV4.18). If X is a scheme, it is the henseli-

zation of the local ring of X at x for the Zariski topology. However, if

we define a local ring for the Zariski topology of an algebraic space in

the obvious way, the ring OX,x will not in general be its henselizaton.

19
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A quasi-coherent sheaf F on X is a sheaf of OX-modules on the20

etale topology of X which induces a quasi-coherent sheaf in the usual

sense on each scheme X1 etale over X. The notion of proper map of al-

gebraic spaces is defined exactly as with ordinary schemes. One has

to develop the cohomology theory of quasi-coherent sheaves and to

prove the analogues in this context of Serre’s finiteness theorems and of

Grothendieck’s existence theorem for proper maps ([8] III1.3.2.1, 4.1.5,

5.1.4). However, the details of this theory are still in the process of being

worked out, and so we will not go into them here‡.

3 Some cases in which an algebraic space is a scheme.
The question of whether or not a given algebraic space X over S is a

scheme is often very delicate. In this section we list a few basic cases

in which the answer is affirmative, but we want to emphasize that these

cases are all more or less elementary, and that we have not tried to make

the list complete. Some very delicate cases have been treated (cf. [25],

[30]), and a lot remains to be done.

One has in complete generality the following.

Theorem 3.1. Let X be a locally quasi-separated algebraic space over

S . Then there is a dense Zariski-open subset X1 Ă X which is a scheme.

Theorem 3.2. Let X0 Ă X be a closed subspace defined by a nilpotent

ideal in OX . Then X0 a scheme implies that X is one. In particular, X is

a scheme if Xred is one.

Using descent theory ([14] VIII), one proves

Theorem 3.3. Let f : X Ñ Y be a morphism of algebraic spaces. If f

is separated and locally quasi-finite, and if Y is a scheme, then X is a

scheme.

Corollary 3.4. An algebraic space X which is quasi-projective (resp.

quasi-affine) over a scheme Y is a scheme.

Via (3.1), (3.2), and Weil’s method [34] of construction of a group21

from birational data, we have

‡Cf. Knutson, op. cit.
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Theorem 3.5. Let S “ Spec A, where A is an artin ring, and let X be a

group scheme over S for the etale topology. Then X is a scheme.

4 Approximation of formal sections. In this section we as-

sume that the base scheme S is of finite type over a filed k. We con-

sider primarily some questions which are local for the etale topology,

for which there is no difference between schemes and algebraic spaces.

Let X be an algebraic space or a scheme locally of finite type, and

let s P S be a point. By formal section f of X{S at s we mean an

S -morphism

f : pS Ñ X

where pS “ Spec pOS ,s. By local section (for the etale topology) of X{S

at s we mean a triple

pS 1, s1, f q

where pS 1, s1q is an etale neighborhood of s in S and where

f : S 1 Ñ X

is an S -morphism. A local section induces a formal section since pOS ,s «
pOS 1,s1 . Finally, we introduce the schemes

S n “ SpecOS ,s{m
n`1, m “ maxpOS ,sq.

They map to pS . We will say that two (local or formal) sections are

congruent modulo mn`1 if the composed maps

S n Ñ X

are equal.

The basic result is the following. It answers in a special case the

question raised in [3].

Theorem 4.1. With the above notation, let f be a formal section of X{S

at s. Then there exists a local section f (for the etale topology) such that

f ” f pmod mn`1q.

21



22 M. Artin

It can be sharpened as follows. 22

Theorem 4.2. Suppose X{S of finite type. Let n be an integer. There

exists an integer N ě n such that for every S -morphism

f 1 : S N Ñ X

there is a local section f such that

f ” f 1pmod mn`1q.

We remark that (4.2) has been previously proved by Greenberg [10]

and Raynaud in the case that S is the spectrum of an arbitrary excel-

lent discrete valuation ring, and we conjecture that in fact the following

holds.

Conjecture 4.3. Theorems (4.1), (4.2) can be extended to the case of an

arbitrary excellent scheme S .

Theorem 4.1 allows one to approximate any algebraic structure given

over pS by a structure over S locally for the etale topology, provided

the algebraic structure can be described by solutions of finitely many

equations. This condition is usually conveniently expressed in terms

of a functor locally of finite presentation. We recall that (following

Grothendieck) a functor F (1.1) is said to be locally of finite presenta-

tion if for every filtering inverse system of affine S -schemes tSpec Biu,

we have

FplimÝÑ Biq “ limÝÑ FpBiq. (4.4)

From (4.1) follows

Theorem 4.5. Suppose that the functor F (1.1) is locally of finite pre-

sentation. Let n be an integer. Then for every z P FpS 1q, there exists

an etale neighborhood pS 1, s1q of s in S and an element z1 P FpS 1q such

that

z ” z1 pmod mn`1q,

i.e. such that the elements of FpS nq induced by z, z1 are equal.

22
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There are many applications of the above results, of which we will

list a few here, without attempting to give the assertions in their greatest

generality. For a more complete discussion, see [4].

Theorem 4.6. Let X1, X2 be schemes of finite type over k, and let 23

xi P Xi be closed points. Suppose pX1, pX2 are k-isomorphic, where
pXi “ Spec pOXi,xi

. Then X1, X2 are locally isomorphic for the etale

topology, i.e. there are etale neighborhoods pX1
i
, x1

i
q of xi in Xi which

are isomorphic.

One obtains the following result, a conjecture of Grauert which was

previously proved in various special cases ([31], [17], [2]), by applying

results of Hironaka and Rossi [18], [15].

Theorem 4.7. Let A be a complete noetherian local k-algebra with

residue field k whose spectrum is formally smooth except at the closed

point. Then A is algebraic, i.e. is the completion of a local ring of an

algebraic scheme over k.

A simple proof of the base change theorem for π1 ([6] XII) results

from (4.5) and Grothendieck’s theory of specialization of the fundamen-

tal group.

Theorem 4.8. Let f : X Ñ Y be a proper morphism of finite presenta-

tion, where Y is the spectrum of an equicharacteristic hensel ring. Let

X0 be the closed fibre of X{Y. Then

π1pX0q « π1pXq.

5 Algebrization of formal moduli. Let S “ Spec k, where

k is a field, and let F (1.1) be a functor. Let

z0 P Fpk1q

be an element, where k1 is a finite field extension of k. An infinitesimal

deformation of z0 is a pair pA, zq with z P FpAq, where

23
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5.1

(i) A is a finite local k-algebra with residue field k1;

(ii) the element z induces z0 by functorality.

We say that F is pro-representable at z0 if the functor Fz0
assigning

to each algebra A (5.1)(i) the set of infinitesimal deformations pA, zq is

pro-representable [11], and we will consider only the case that F is pro-

represented by a noetherian complete local k-algebra A, (with residue

field k1). If in addition there is an element z P Fz0
pAq which is universal

with respect to infinitesimal deformations, then we say that F is effec-24

tively pro-representable at z0. We recall that this is an extra condition;

the pro-representability involves only a compatible system of elements

zn P FpA{mn`1q. However, one can often apply Grothendieck’s ex-

istence theorem ([8] III1.5.1.4) to deduce effective pro-representability

from pro-representability. We will say that F is effectively pro-represen-

table if F is pro-representable on the category of finite k-algebras, and if

each local component A (cf. [11]) admits a universal element z P FpAq.

The following is the main result of the section. It allows one to con-

struct local modular varieties in certain cases, which reminds one of the

theorem of Kuranishi [20] for analytic varieties. (However, Kuranishi’s

theorem is non-algebraic in an essential way.)

Theorem 5.2. (Algebrization of formal moduli) With the above nota-

tion, suppose that F is locally of finite presentation and that F is ef-

fectively pro-representable at z0 P Fpk1q, by a pair pA, zq where A is

a complete noetherian local ring. Then there is an S -scheme X of fi-

nite type, a closed point x P X, a k-isomorphism kpxq « k1, and an

element z P FpXq inducing z0 P Fpk1q, such that the triple pX, x, zq
pro-represents F at z0.

One obtains from (5.2) in particular a canonical isomorphism

A « pOX,x.

In practice, it usually happens that the element pz P FpAq induced from

z via this isomorphism is z, but a slight extra condition is needed to

24
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guarantee this. For, the universal element z P FpAq may not be uniquely

determined. An example is furnished by two lines with an “infinite order

contact”.

Example 5.3.

By this we mean the ind-object X obtained as the limit 25

X1 Ñ X2 Ñ . . . Ñ Xn Ñ . . .

where Xn is the locus in the plane of

ypy ´ xnq “ 0

and the map Xn Ñ Xn`1 sends

px, yq ÞÑ px, xyq.

We take X as ind-object on the category of affine S -schemes. Thus by

definition

HompZ, Xq “ limÝÑ
i

HompZ, Xiq (5.4)

for any affine S -scheme Z. For arbitrary Z, a map Z Ñ X is given by a

compatible set of maps on an affine open covering.

However, if such examples are avoided, then pX, x, zq is essentially

unique.

Theorem 5.5. (Uniqueness). With the notation of (5.2), suppose that in

addition the universal element z P FpAq is uniquely determined. Then

the triple pX, x, zq is unique up to unique local isomorphism, for the etale

topology, at x.

25
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Suppose for the moment that the functor F considered in (5.2) is rep-

resented by an algebraic space over S , and that the map z0 : Spec k1 Ñ F

is a monomorphism, so that z0 represents a point, (denote it also by z0)

of F (2.3). Then it is easily seen that the map

z : X Ñ F

of (5.2) is etale (Section 2) at the point x P X. Thus if we replace X by

a suitable Zariski open neighborhood of x, we obtain an etale neighbor-

hood of z0 in F.

Now, taking into account the definition (1.3), the representability of

F by an algebraic space will follow from the existence of a covering by

etale neighborhoods. Thus it is intuitively clear that one will be able

to derive criteria of representability in the category of algebraic spaces

from (5.2), with effective pro-representability as a starting point. The26

following is such a criterion. It is proved in a rather formal way from

(5.2).

Theorem 5.6. Let F be a functor (1.1), with S “ Spec k. Then F is

represented by a separated (respectively locally separated) algebraic

space if and only if the following conditions hold.

[0] F is a sheaf for the etale topology.

[1] F is locally of finite presentation.

[2] F is effectively pro-representable by complete noetherian local

rings.

[3] Let X be an S -scheme of finite type, and z1, z2 P FpXq. Then the

kernel of the pair of maps

zi : X Ñ F

is represented by a closed subscheme (resp. a subscheme) of X.

[4] Let R be a k-geometric discrete valuation ring with field of frac-

tions K, and let AK be a finite local K-algebra with residue field

26
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K. Suppose given elements z1 P FpRq, z2 P FpAKq which induce

the same element of FpKq. Then there is a finite R-algebra A, an

augmentation A Ñ R, an isomorphism AK « K bR A, and an

element z P FpAq which induces z1, z2.

[5] Let X be a scheme of finite type over k and let z P FpXq. The

condition that the map z : X Ñ F be etale is an open condition

on X.

Here a map X Ñ F is called etale at x P X if for every map Y Ñ F

there is an open neighborhood U of x in X such that the product Uˆ
F

Y

is represented by a scheme etale over Y .

Except for [4], the conditions are modifications of familiar ones used

in previous results of Murre [27] and Grothendieck [28]. Note that con-

dition [0] is just the natural one which assures that F extend to a functor

on the category of etale schemes.

The result should be taken primarily as a guide, which can be mod-

ified in many ways. This is especially true of conditions [2]-[5]. They

can be rewritten in terms of standard deformation theory. Thus for in- 27

stance condition [2] can be revised by writing out the conditions of pro-

representability of Schlessinger [32] and Levelt [21], and condition [3]

can be rewritten by applying conditions [0]-[5] to the kernel functor in

question. Condition [4] is usually quite easy to verify by deformation

theory. The condition which is most difficult to verify as it stands is

conditions [5], but this too can be interpreted by infinitesimal methods.

In fact, condition [5] can sometimes be dispensed with completely. One

has

Theorem 5.7. Let F be a functor on S -schemes satisfying [0]-[4] of

(5.2). Suppose that the complete local-rings A of condition [2] are all

geometrically unibranch and free of embedded components (e.g. nor-

mal). Then [5] holds as well, i.e. F is representable by an algebraic

space.

Here are some examples which illustrate the various conditions of

(5.6) and the relations between them. To begin with, all conditions but

[3] hold in example (5.3).
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Example 5.8. The ind-object X (cf. (5.4)) obtained by introducing more

and more double points into a line:

Neither condition [3] nor [5] hold.

Example 5.9. The ind-object X (cf. (5.4)) obtained as union

of more and more lines through the origin in the plane.28

All conditions hold except that in condition [2] the functor is not

effectively pro-representable at the origin. Its formal moduli there exist

however; they are those of the plane.

Example 5.10. The ind-object X (cf. (5.4)) obtained by adding more

and more lines crossing a given line at distinct points.
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All conditions but [5] hold.

Example 5.11. The object X is the union of the two schemes X1 “
Spec krx, ysr1{xs and X2 “ Spec krx, ys{pyq (the x-axis) in the px, yq-

plane.

It is viewed as the following sub-object of the px, yq-plane : A map

f : Z Ñ Spec krx, ys represents a map to X if there is an open covering

Z “ Z1 Y Z2 of Z such that the restriction of f to Zi factors through Xi.

In this example, all conditions but [4] hold.

29

6 Applications. Our first application is to Hilbert schemes. We

refer to [12] for the definitions and elementary properties. Recall that

Grothendieck [12] has proved the existence and (quasi)-projectivity of

Hilbert schemes Hilb X{S , Quot F{X{S , etc..., when X is (quasi)-pro-

jective over S . Moreover, Douady [9] showed their existence as analytic

spaces when X Ñ S is a morphism of analytic spaces. Now if X is not

projective over S , one can not expect Hilb X{S to be a scheme, in gen-

eral. For, consider the example of Hironaka [16] of a nonsingular variety
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X over a field and admitting a fixed point free action of Z{2 whose quo-

tient Y is not a scheme (though it has a structure of algebraic space).

Clearly Y is the sub-object of Hilb X{S which parametrizes the pairs of

points identified by the action, whence Hilb X{S is not a scheme, by

(3.4). Thus it is natural to consider the problem in the context of etale

algebraic spaces.

Theorem 6.1. Let f : X Ñ S be a morphism locally of finite type of

noetherian schemes over a field k. Let F be a coherent sheaf on X. Then

Quot F{X{S is represented by a locally separated algebraic space over

S . It is separated if f is. In particular, Hilb X{S is represented by such

an algebraic space.

Assuming that the cohomology theory for algebraic spaces goes through

as predicted, one will be able to replace f above by a morphism of

algebraic spaces over S , and will thus obtain an assertion purely in that

category§.

Next, we consider the case of relative Picard schemes (cf. [13] for

definitions) for proper maps f : X Ñ S . An example of Mumford ([13]

VI) shows that Pic X{S is in general not a scheme if the geometric fibres

of f are reducible. The following result is proved from (5.6) using the

general techniques of [13]. The fact that condition [3] of (5.6) holds for

Pic X{S had been proved previously by Raynaud [30].

Theorem 6.2. Let f : X Ñ S be a proper map of noetherian schemes

over a field k. Suppose f cohomologically flat in dimension zero, i.e.

that f˚OX commutes with base change. Then Pic X{S is represented by30

a locally separated algebraic space over S .

Again, f can conjecturally be replaced by a morphism of algebraic

spaces. When S “ Spec k, we obtain from (3.5) the following theo-

rem of Murre and Grothendieck [27].

Theorem 6.3. Let f : X Ñ S be a proper map of schemes, where

S “ Spec k. Then Pic X{S is represented by a scheme.

This proof is completely abstract, and is strikingly simple even in

the case that X is projective, when one can give a “classical” proof using

§These results are now available, cf. Knutson, op. cit.

30



The Implicit Function Theorem in Algebraic Geometry 31

Hilbert schemes. The verification can be reduced to a minimum using

the following result. It is the theorem of Murre ([27], cf. also [23]).

However, in Murre’s formulation there is a condition of existence of a

“module” for a map of a curve to the group, which is difficult to verify.

Here we can just drop that condition completely, and we can remove the

hypothesis that the groups be abelian.

Theorem 6.4. Let F be a contravariant functor from (S -schemes) to

(groups), where S “ Spec k. Then F is represented by a scheme locally

of finite type over k if and only if

[0] F is a sheaf for the etale topology.

[1] F is locally of finite presentation.

[2] F is effectively pro-representable by a sum of complete noetherian

local rings.

[3] Let X be an S -scheme of finite type, and z1, z2 P FpXq.

Then the kernel of the pair of maps

zi : X Ñ F

is represented by a subscheme of X.

As a final application, one obtains the criterion of representability of

unramified functors of Grothendieck [28] in the case that the base S is

of finite type over a field. Here again, one can conclude a posteriori that

the algebraic space is actually a scheme, by (3.3). Since the statement 31

[28] is rather technical, we will not repeat it here.

7 Passage to quotient. The following result shows that the defi-

nition of algebraic space could not be generalized in an essential way by

allowing flat equivalence relations. The theorem was proved indepen-

dently by Raynaud [30] and me. It shows the strong similarity between

algebraic spaces and Q-varieties [24]. However Mumford has pointed

out to us that there is a beautiful example due to Holmann ([19] p.342)

of a Q-variety which admits no underlying analytic structure.
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Theorem 7.1. Let U be an S -scheme of finite type and let i : R Ñ Uˆ
S

U

be a flat equivalence relation. (By this we mean that i is a monomor-

phism, R is a categorical equivalence relation, and the projection maps

R Ñ U are flat.) Let X be the quotient U{R as sheaf for the fppf topol-

ogy (cf. [7] IV). Then X is represented by an algebraic space over S .

It is separated (resp. locally separated) if i : R Ñ Uˆ
S

U is a closed

immersion (resp. an immersion). Moreover, X is a universal geometric

quotient (cf. [25]).

One wants of course to have more general results on quotients by

pre-equivalence relations and by actions of algebraic groups. In the an-

alytic case, there questions have been treated in detail by Holmann [19]

and it seems likely that many of his results have algebraic analogues.

Some algebraic results have already been obtained by Seshadri [33].

The following is an immediate corollary of (7.1).

Corollary 7.2. Let f : Y 1 Ñ Y be a faithfully flat morphism of algebraic

spaces over S . Then any descent data for an algebraic space X1 over Y 1

with respect to f is effective.

Note that because of our definitions, the map f is locally of finite type.

We have not proved the result for flat extensions of the base S 1 Ñ S

which are not of finite type, although in the case that S is of finite type

over a field, a proof might be based on (5.6).

Another application is to groups in the category of algebraic spaces.32

Corollary 7.3. (i) Let H Ñ G be a morphism of algebraic spaces of

groups over S , which is a monomorphism. Assume H flat over S .

Then the cokernel G{H as fppf-sheaf is represented by an alge-

braic space.

(ii) Let A, B be algebraic spaces of abelian groups flat over S , and let E

be an extension of B by A, as fppf-sheaves. Then E is represented

by an algebraic space.

It follows for instance from (i) that one can define groups Extq on

the category of algebraic spaces of abelian groups flat over S , via the
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definition given in MacLane ([22] p. 367), taking as distinguished exact

sequences the sequences

0 Ñ A
i

ÝÑ E Ñ B Ñ 0

which are exact as f pp f -sheaves, i.e. such that i is a monomorphism

and B “ E{A. When the base S is not a field, very little is known about

these Extq.
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formelle des modules, Séminaire Bourbaki 12 (1959-60), No. 195

(mimeographed notes).

[12] A. Grothendieck : Technique de descente et théorèmes d’existence
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DIOPHANTINE ANALYSIS AND MODULAR

FUNCTIONS

By B. J. Birch

1. In 1952, Heegner published a paper [5] in which he discussed certain 35

curves parametrised by modular functions. By evaluating the modular

functions at certain points, he showed that these curves had points whose

coordinates were integers of certain class-fields. Unfortunately, the style

of his proofs was unconvincing, so his paper has been discounted; none

the less, his main assertions appear correct and interesting.

In particular, if E is an elliptic curve over the rationals Q, para-

metrised by modular functions, there are well-known conjectures (see

Appendix) about the group EQ of rational points of E. At the expense

of being rather special, we can be very explicit; take E in Weierstrass

form

E : y2 “ x3 ` Ax ` B, A, B integers;

and write EK for the group of points of E with coordinates in a field

K. If K is a number field, EK is finitely generated; write gpEKq for

the number of independent generators of infinite order. Let D be an

integer, and Ep´Dq the curve ´ Dy2 “ x3 ` Ax ` B; then gpEQp
‘

´Dqq “

gpEQq ` gpE
p´Dq
Q

q. The conjectures assert that, for fixed A, B, the parity

of gpEQp
‘

´Dqq and so of gpE
p´Dq
Q

q depend on the sign of D and the

congruence class of D modulo a power of 6p4A3 ` 27B2q. Heegner’s

paper seems at present the only hope of approaching such conjectures -

at any rate, it provides infinitely many cases for which they are true.

I will give two illustrations of Heegner’s argument. The best known

assertion in his paper is the enumeration of the complex quadratic fields

of class number 1: the complex quadratic field of discriminant D has

class number 1 if and only if D “ 3, 4, 7, 8, 11, 19, 43, 67, 163. Subse-

quently, the first accepted proof of this has been given by Stark [7], and

Baker [1] has given another approach. I will give a proof, essentially 36
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the same as Heegner’s; on the way, I will re-prove and extend classi-

cal results of Weber [9] on ‘class invariants’. Afterwards, I will exhibit

a family of curves related to H{Γ0p17q, each of which have infinitely

many rational points.

The theory of complex multiplication can of course be built up al-

gebraically [3]. Though I will be using function theory, because it is

traditional and probably easier, all the constructions are basically alge-

braic; in particular, we have an algebraic solution of the class number 1

problem.

2. From now on, p will always be a prime p ” 3p4q, p ą 3. jpzq is the

modular function, defined for z in the open upper half plane H, invariant

by the modular group Γp1q, and mapping i, ρ, i8 to 1728, 0, 8; note that

jp 1
2

` itq is real and negative for real t ą
‘

3{2. ΓpNq is the subgroup

of Γp1q consisting of maps z Ñ
az ` b

cz ` d
with

`
a b
c d

˘
”
`

1 0
0 1

˘
pNq.

If ω is quadratic over Q, then Aω2 ` Bω ` C “ 0, with A, B, C

integers without common factor; define Dpωq “ |B2 ´ 4AC|. Call D

a field discriminant if D is the absolute value of the discriminant of a

complex quadratic field; so either D ” 3p4q and D is square free, or
1
4
D ” 1, 2p4q and 1

4
D is square free.

I quote the standard theorems about the value of a modular function

f pωq at a complex quadratic value ω. For proofs of Theorems 1 and 2,

see [3].

Theorem 1. If Dpωq is a filed discriminant, then jpωq is an algebraic

integer and generates the class field K1 of Qpωq over Qpωq.

Theorem 2. If Dpωq “ M2D1 with M integral and D1 a field discrim-

inant, then jpωq generates the ring class field KM modulo M of Qpωq
over Qpωq.

Theorem 3 (Söhngen [6]). Suppose that f pzq is invariant by ΓpNq, and

the Fourier expansions of f at every cusp of H{ΓpNq have coefficients37

in QpN
‘

1q. If Dpωq “ M2D1 as above, then f pωq P K1
MN

, the ray class

field modulo MN of Qpωq.
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Corollary. Qpω, f pωqq is an abelian extension of Qpωq.

Now we set ω “ 1
2
p1 `

‘
´ pq, where p is still a prime ” 3p4q, so

Dpωq “ p. Then K1 “ Qpω, jpωqq is the class filed of Qpωq, and jpωq
is a negative real algebraic integer.

We know that rK1 : Qpωqs is odd. The KM{Qpωq norms of integral

ideals of KM prime to M are precisely the principal ideals pαq where α

is an integer of Qpωq congruent modulo M to a rational integer prime to

M. Accordingly, we see easily that

rK2 : K1s “

$
&
%

1 for p ” 7p8q

3 for p ” 3p8q,

and rK3 : K1s “

$
&
%

2 for p ” 2p3q

4 for p ” 1p3q.

Further, K1
2

“ K2 and K1
3

“ K3.

All this is very classical, see [9], [6] or [3].

3. Now let us look at some particular functions.

Example 1 (Wiber [9] §125). There is a function γpzq invariant by Γp3q
with γ3pzq “ jpzq and γpzq real for Repzq “ 1

2
. By Theorem 3, γpωq P

K3; but rK3 : K1s is a power of 2, and obviously rK1pγpωqq : K1s is odd;

so

γpωq P K1. (1)

Example 2. There is a function σpzq invariant by Γp48q related to jpzq
by

pσ24pzq ´ 16q3 “ σ24pzq jpzq. (2)

If j is real and negative, pU ´ 16q3 “ U j has a unique real root which is

positive; if z “ 1
2

` it with t ą 1
2

‘
3, then σpzq is the unique positive real

root of (2). σ24pzq is invariant by Γp2q, and in fact σ24pωq generates K2

over K1. So far, all is well known and in [9], though the normalisation

is different.
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Now we restrict p ” 3p8q, so that rK2 : K1s “ 3, σ24pωq is cu- 38

bic over K1. By Theorem 3, σpωq is abelian over K1, and by (2) and

Theorem 1, σpωq is an algebraic integer.

I assert that

σ12pωq P K2. (3)

For σ12 is quadratic over K2, and abelian of degree 6 over K1, so

σ12 P K2paq with a2 P K1. Suppose σ12 R K2. Then σ24 P K2, so

σ12 “ ab with b P K2. So σ24 “ a2b2. So 212 “ NK2{K1
pσ24q “

pNK2{K1
bq2a6; so a “ ˘26pa2Nbq´1 P K1. So σ12 P K2, as required.

Also, NK2{K1
pσ12q ą 0, so NK2{K1

pσ12q “ 26.

Repeat the argument :

σ6pωq P K2. (4)

Repeat it again :
‘

2σ3pωq P K2.

This is an old conjecture of Weber (see [9] §127); however, for our

applications we will use no more than (4), which was already proved by

Weber.

Using our first example, we have σ8pωq “ pσ24pωq ´ 16q{γpωq P
K2, so by (4)

σ2pωq P K2 for p ” 3p8q. (5)

Example 3 ([9] §134). There is a function gpzq invariant by Γp2q with

g2 “ j ´ 1728; gp 1
2

` itq must be pure imaginary when t is real, we may

take it to have positive imaginary part.

gpωq P K2, but K2 is an odd extension of K1, so gpωq P K1 and

‘
p´pqgpωq P K1 X R. (6)

4. Heegner applies these examples to enumerate the complex quadratic

fields with class number 1, and to exhibit infinite families of elliptic

curves with non-trivial rational points. In this paragraph, we will restrict

p ” 3p8q; this is enough for the class number 1 problem, as the other

cases are easy.
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For the moment, suppose Qp
‘

´ pq has class number 1, so

K1 “ Qp
‘

´ pq. (7)

Write V “ σ2pωq. Then V satisfies a cubic equation over K1, say 39

V3 ´ αV2 ` βV ´ 2 “ 0; (8)

since V is a real algebraic integer, α, β are real algebraic integers in K1;

so α, β are rational integers.

Since the roots of (8) are three of the roots of V12 ´ γV4 ´ 16 “ 0,

the left hand side of (8) divides pV12 ´ γV4 ´ 16q, so there must be a

relation between α and β; it turns out to be

β2 ´ 4βα2 ` 2α4 ´ 2α “ 0.

So we have reduced (7) to the problem of solving the Diophantine equa-

tion pβ ´ 2α2q2 “ 2αp1 ` α3q in integers. This is easy, see [5]; the

complete solution is

α = 0 1 1 ´ 1 2 2

β = 0 0 4 2 2 14

corresponding to p = 3 11 67 19 43 163.

This is a complete enumeration of complex quadratic fields Qp
‘

´ pq
with class number 1 and p ” 3p8q.

Now we exhibit some curves with points. By (2),

j ´ 1728 “ pσ24 ´ 64qpσ24 ` 8q2σ´24,

so

σ24 ´ 64 “

ˆ
σ12g

σ24 ` 8

˙2

.

By (4) and (6), we deduce that

´ pu2 “ v4 ´ 64 (9)
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is soluble in K2 X R. But rK2 X R : Qs is odd; so the curve (9) has an

odd divisor defined over Q : it clearly has a divisor of order 2; so (9) is

soluble in Q. But (9) is a non-trivial 2-covering of the elliptic curve

Y2 “ XpX2 ` p2q (10)

which accordingly has infinitely many rational points. (These points

have rather large coordinates - indeed, they account for several gaps in

the tables of [2]).

A similar argument works, with appropriate modifications, when40

p ” 7p8q; see [5]. We have thus confirmed the main conjecture of

[2], for the particular curves (10) with p a prime congruent to 3 modulo

4; for that conjecture predicts that the group of rational points of (10)

should have structure Z2 ˆ Z.

5. Finally we give another example, using a different method. We con-

sider the subgroup Γ0p17q of Γp1q consisting of maps z Ñ
az ` b

cz ` d
with

ad ´ bc “ 1, c ” 0p17q; w17 is the map z Ñ ´
1

17z
, and Γ˚

0
is the

group generated by Γ0p17q and w17. Then H{Γ0p17q has genus 1, with

function field generated over Q by jpωq, jp17ωq; w17 is an involution

on H{Γ0p17q, and H{Γ˚
0

has genus zero. Suppose H{Γ˚
0

is uniformised

by τpzq. Then τpzq P Qp jpzq. jp17zq, jpzq ` jp17zqq, and if we specialise

z Ñ ω, τpωq P Qp jpωq, jp17ωqq. [A priori, there may be finitely many

exceptions, corresponding to specialisations which make both the nu-

merator and the denominator vanish.] Now write kpzq “ jpzq ´ jp17zq,

then k is invariant by Γ0 but not Γ˚
0
, k2 is invariant by Γ˚

0
, and H{Γ0p17q

has equation k2 “ Gpτq, with GpXq P QpXq. By a suitable bira-

tional transformation (making a bilinear transformation on τ, and re-

placing k by σ f pτq with f pXq P QpXq) we may obtain Fricke’s equation

σ2 “ τ4 ´ 6τ3 ´ 27τ2 ´ 28τ ´ 16; see [4].

As usual, write EQp
‘

´Dq for the group of points of the elliptic curve

E : Y2 “ GpXq which have coordinates in Qp
‘

´ Dq; the conjectures

predict that EQp
‘

´Dq should have an odd number of generators of infi-

nite order, and so be infinite, if D is a positive integer congruent to 3

modulo 4 which is a quadratic residue modulo 17.
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Suppose then that p is prime, p ” 3p4q,
´

p

17

¯
“ `1. Then we can

find ω with ∆pωq “ p, 17ω “ 1{ω; for, take ω as a root of 17Aω2 `
Bω ` A “ 0 where B2 ´ 68A2 “ ´p. But now jp17ωq “ jp1{ωq “

jp´ωq “ jpωq, and jpωq P K1 the class field of Qp
‘

´ pq. Hence jpωq ¨
jp17ωq, jpωq ` jp17ωq and so τpωq are real, and kpωq “ jpωq ´ jp17ωq
is pure imaginary. We deduce that

‘
p´pqkpωq, τpωq P K1 X R,

an extension of Q of odd degree. As in the previous paragraph, ´pY2 “ 41

GpXq has a point in K1 X R and so in Q, and this implies that EQp
‘

´pq

is infinite (except possibly in finitely many cases).

Appendix. The so-called Birch-Swinnerton-Dyer conjectures were offi-

cially stated in [2]; since then, they have been extended and generalised

in various ways, and nowadays the standard account is [8]. However,

the particular case we are quoting is not made quite explicit; though it

was remarked by Shimura some years ago.

We suppose that E : y2 “ x3 ` Ax ` B is a ‘good’ elliptic curve with

conductor N. This means (for motivation, see Weil [10]), inter alia, that

E is parametrised by functions on H{Γ0pNq, and corresponds to a differ-

ential f pzqdz “ Σane2πinzdz on H{Γ0pNq; the essential part of the zeta

function of E is LEpsq “ Σann´s “ p2πqspΓpsqq´1
ş8

0
f pizqzs´1dz; and

E has a good reduction modulo p precisely when p does not divide N, so

N divides a power of 6p4A3`27B2q. The involutionωN : z Ñ ´1{Nz of

H{Γ0pNq will take f pzqdz to ˘ f pzqdz; so LEpsq has a functional equa-

tion ΛEpsq “ ǫN1´sΛEp2 ´ sq, where ΛEpsq “ Γpsqp2πq´sLEpsq and

ǫ2 “ 1. Let χpnq be a real character with conductor M, with pM,Nq “
1, and LEps, χq “ Σanχpnqn´s; then LEps, χq has functional equation

ΓEps, χq “ ǫχp´NqN1´sΛEp2 ´ s, χq, where ΛEps, χq “ pM{2πqsΓpsq.

ΛEp2 ´ s, χq. So LEps, χq has a zero at s “ 1 of odd or even order

according to the sign of χp´Nq.

Say D ą 0, D ” 3p4q, χpnq “
´

n

D

¯
; then LEps, χq is the essen-

tial part of the zeta function of Ep´Dq : ´Dy2 “ x3 ` Ax ` B. The

main conjecture of [2] asserts that LEps, χq should have a zero of order
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44 B. J. Birch

gpE
p´Dq
Q

q at s “ 1; so the parity of gpE
p´Dq
Q

q should be determined by

the Legendre symbol

ˆ
´N

D

˙
.

Finally, we remark that if U is a point of EQp
‘

´Dq and U its conju-

gate over Q, then U ` U P EQ and U ´ U is a point of EQp
‘

´Dq with42

x real and y pure imaginary, so U ´ U gives a point of E
p´Dq
Q

. Hence

gpEQp
‘

´Dqq “ gpEQq ` gpE
p´Dq
Q

q, and so forth.

Added in proof. Since this talk was given, I have heard that Deuring, and

Stark, too, have independently decided that Heegner was right after all.

Deuring’s paper was published in Inventiones Mathematicae 5 (1968);

Stark’s has yet to appear.
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ON THE AUTOMORPHISMS OF CERTAIN

SUBGROUPS OF SEMI-SIMPLE LIE GROUPS

By Armand Borel

Let L be a group. We denote by EpLq the quotient group Aut L{ Int L43

of the group Aut L of automorphisms of L by the group Int L of inner au-

tomorphisms Int a : x Ñ a.x.a´1pa, x P Lq of L. Our first aim is to show

that EpLq is finite if L is arithmetic, S -arithmetic (see 3.2) or uniform in

a semi-simple Lie group (with some exceptions, see Theorem 1.5, Theo-

rem 3.6 and Theorem 5.2 for the precise statements). A slight variant of

the proof also shows that in these cases L is not isomorphic to a proper

subgroup of finite index. As a consequence, a Riemannian symmet-

ric space with negative curvature, and no flat component, has infinitely

many non-homeomorphic compact Clifford-Klein forms, Theorem 6.2.

Further information on EpLq is obtained when L is an S -arithmetic

group of a semi-simple k-group G (with some conditions on G and S ).

If L contains the center of Gk, and G is simply connected, then EpLq
is essentially generated by four kinds of automorphisms: exterior auto-

morphisms of G, automorphisms deduced from certain automorphisms

of k, automorphisms of the form x Ñ f pxq ¨ x where f is a suitable

homomorphism of L into the center of Gk, and automorphisms induced

by the normalizer NpLq of L in G (see Lemma 1.8, Remark in 1.9). In

the case where G is split and L is the group of opS q-points of G for its

canonical integral structure, there results are made more precise (Theo-

rem 2.2, Theorem 4.3), and NpLq{L is put into relation with the S -ideal

class group of k and S -units (see Lemma 2.3, Lemma 4.5; these results

overlap with those of Allan [1], [2]). As an illustration, we discuss Aut L

for some classical groups (Examples 2.6, 4.6). The results are related to

those of O’Meara [24] if G “ SLn, and of Hua-Reiner [12], [13] and

Reiner [27] if G “ SLn, Sp2n, and k “ Q, Qpiq.
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On the Automorphisms of Certain Subgroups... 47

The finiteness of EpLq follows here rather directly from rigidity the- 44

orems [25], [26], [32], [33]. The connection between the two is estab-

lished by Lemma 1.1.

Notation. In this paper, all algebraic groups are linear, and we follow

in general the notations and conventions of [9]. In particular, we make

no notational distinction between an algebraic group G over a field k

and its set of points in an algebraic closure k of the field of definition

(usually C here). The Lie algebra of a real Lie group or of an algebraic

group is denoted by the corresponding German letter.

If L is a group and V a L-module, then H1pL,Vq is the 1st cohomol-

ogy group of L with coefficients in V . In particular, if L is a subgroup of

the Lie group G, then H1pL, gq is the 1st cohomology group of L with

coefficients in the Lie algebra g of G, on which L operates by the adjoint

representation.

A closed subgroup L of a topological group G is uniform if G{L is

compact.

1 Uniform or arithmetic subgroups. Lemma 1.1. Let G

be an algebraic group over R, L a finitely generated subgroup of GR

and N the normalizer of L in GR. Assume that H1pL, gq “ 0. Then the

group of automorphisms of L induced by elements of N has finite index

in Aut L.

Let L0 be a group isomorphic to L and ι an isomorphism of L0 onto

L. For M “ GR, G, let RpL0, Mq be the set of homomorphisms of L0

into M. Let pxiqp1 ď i ď qq be a generating set of elements of L. Then

RpL0, Mq may be identified with a subset of Mq, namely, the set of m-

uples pyiq which satisfy a set of defining relations for L0 in the xi, x´1
i

.

In particular RpL0,Gq is an affine algebraic set over R, whose set of real

points is RpL0,GRq. The group M operates on RpL0, Mq, by composition

with inner automorphisms, and G is an algebraic transformation group

of RpL0,Gq, with action defined over R.

To α P Aut L, let us associate the element jpαq “ α ˝ ι of RpL0,Gq. 45

The map j is then a bijection of Aut L onto the set IpL0, Lq Ă RpL0,GRq
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48 A. Borel

of isomorphisms of L0 onto L. If a, b P IpL0, Lq, then b P GRpaq if and

only if there exists n P N such that b “ pInt nq ˝ a. Our assertion is

therefore equivalent to: “IpL0, Lq is contained in finitely many orbits of

GR,” which we now prove.

Let b P IpL0, Lq. Since

H1pbpL0q, gq “ H1pL, gq “ H1pL, gRq b C,

we also have H1pbpL0q, gq “ 0. By the lemma of [33], it follows that

the orbit Gpbq contains a Zariski-open subset of RpL0,Gq. Since the

latter is the union of finitely many irreducible components, this shows

that IpL0, Lq is contained in finitely many orbits of G. But an orbit of G

containing a real point can be identified to a homogeneous space G{H

where H is an algebraic subgroup of G, defined over R. Therefore its

set of real points is the union of finitely many orbits of GR([8], §6.4),

whence our contention.

Remark 1.2. (i) The lemma and its proof remain valid if R and C are

replaced by a locally compact field of characteristic zero K and

an algebraically closed extension of K.

(ii) The group SLp2,Zq has a subgroup of finite index L isomorphic

to the free group on m generators, where m ě 2 (and in fact

may be taken arbitrarily large). The group EpLq has the group

GLpm,Zq “ AutpL{pL, Lqq as a quotient, hence is infinite. On

the other hand, L has finite index in its normalizer in SLp2,Cq,

as is easily checked (and follows from Proposition 3.3(d)). Thus,

1.1 implies that H1pL, gq ‰ 0, as is well known. Similarly, tak-

ing (i) into account, we see that the free uniform subgroups of

PSLp2,Qpq constructed by Ihara [15] have non-zero first coho-

mology group with coefficients in g.

Lemma 1.3. Let G be an algebraic group over R, L a finitely generated

discrete subgroup of GR such that GR{L has finite invariant measure.

Assume that H1pL1, gq “ 0 for all subgroups of finite index L1 of L. Then

L is not isomorphic to a proper subgroup of finite index.
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Define L0, M, ι, RpL0, Mq and the action of M on RpL0, Mq as in the46

proof of Lemma 1.1. Let C be the set of monomorphisms of L0 onto

subgroups of finite index of L. Then, j : α ÞÑ α ˝ ι is a bijection of

C onto a subset J of RpL0,GRq, and the argument of Lemma 1.1 shows

that J is contained in the union of finitely many orbits of GR. Fix a Haar

measure on GR, and hence on all quotients of GR by discrete subgroups.

The total measure mpGR{L1q is finite for every subgroup of finite index

of L, since mpGR{Lq is finite. If b, c P C, and b “ Int g ˝ c, pg P GRq,

then mpGR{bpLqq “ mpGR{cpLqq. Consequently, mpGR{L1q takes only

finitely many values, as L1 runs through the subgroups of finite index of

L, isomorphic to L. But, if there is one such group L1 ‰ L, then there is

one of arbitrary high index in L, a contradiction.

Lemma 1.4. Let L be a finitely generated group, M a normal subgroup

of finite index, whose center is finitely generated, N a characteristic

finite subgroup of L.

(a) If EpMq is finite, then EpLq is finite.

(b) If EpL{Nq is finite, then EpLq is finite.

(a) It is well known and elementary that a finitely generated group

contains only finitely many subgroups of a given finite index (see

e.g. [11]). Therefore, the group AutpL, Mq of automorphisms of

L leaving M stable has finite index in AutpLq. Since L{M is finite,

the subgroup Q of elements of AutpL, Mq inducing the identity on

L{M has also finite index. Let r : Q Ñ Aut M be the restriction

map. Our assumption implies that r´1pInt Mq has finite index in

Q, hence that Int L. ker r is a subgroup of finite index of Q. Int L.

It suffices therefore to show that ker r X Int L has finite index in

ker r. Let b P ker r. Write

bpxq “ ux ¨ xpx P Lq.

Then ux P M and routine checking shows: the map u : x ÞÑ ux is

a 1-cocycle on L, with coefficients in the center C of M, which is

constant on the cosets mod M, and may consequently be viewed
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50 A. Borel

as a 1-cocycle of L{M with coefficients in C; furthermore, two

cocycles thus associated to elements b, c P Q are cohomologous

if and only if there exists n P C such that b “ Int n ˝ c, and any47

such cocycle is associated to an automorphism. Therefore

ker r{ IntL C – H1pL{M,Cq.

By assumption, L{M is finite, and C is finitely generated. Hence

the right hand side is finite, which implies our assertion.

(b) The group N being characteristic, we have a natural homomor-

phism π : Aut L Ñ Aut L{N. The finiteness of EpL{Nq implies

that Int L. ker π has finite index in Aut L. Moreover ker π consists

of automorphisms of the form x ÞÑ x ¨ vx, px P L, vx P Nq, and is

finite, since N is finite and L is finitely generated.

Theorem 1.5. Let G be a semi-simple Lie group, with finitely many

connected components, whose identity component G0 has a finite center,

and L a discrete subgroup of G. Then EpLq is finite if one of the two

following conditions is fulfilled:

(a) G{L is compact, G0 has no non-compact three-dimensional fac-

tor;

(b) Autpgb Cq may be identified with an algebraic group G1 over Q,

such that the image L1 of L X G in G1 by the natural projection

is an arithmetic subgroup of G1, and G1
R

has no factor locally

isomorphic to SLp2,Rq on which the projection of L1 is discrete.

(a) Let A be the greatest compact normal subgroup of G0 and π :

G0 Ñ G0{A the canonical projection. Since the center of G0 is

finite, it is contained in A, and G0{A is the direct product of non-

compact simple groups with center reduced to teu. The group

πpL X G0q is discrete and uniform in G0{A. By density [4], its

center is contained in the center of G0{A, hence is reduced to teu.

Consequently, the center of L X G0 is contained in A X L, hence
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is finite. We may then apply Lemma 1.4(a), which reduces us to

the case where G is connected. Moreover, by [4], any finite nor-

mal subgroup of πpLq is central in G{A, hence reduced to teu.

Therefore A X L is the greatest finite normal subgroup of L, and is

characteristic. By Lemma 1.4(b), it suffices to show that EpπpLqq
is finite. We are thus reduced to the case where G has no center, 48

and is a direct product of non-compact simple groups of dimen-

sion ą 3. In particular, G is of finite index in the group of real

points of an algebraic group defined over R, namely Autpgb Cq.

By a theorem of Weil [33], H1pL, gq “ 0, hence by Lemma 1.1, it

is enough to show that L has finite index in its normalizer NpLq.

By [4], NpLq is discrete. Since G{L is fibered by NpLq{L, and is

compact, NpLq{L is finite.

(b) Let A be the greatest normal Q-subgroup of G10, whose group of

real points is compact, and let π be the composition of the natural

homomorphisms

G0 Ñ AdgÑ pG10qR{AR.

G1{A is a Q-group without center, which is a product of Q-simple

groups, each of which has dimension ą 3 and a non-compact

group of real points. πpLq is arithmetic in G1{A([6], Theorem 6)

and L X ker π is finite. By Zariski-density ([6], Theorem 1), any

finite normal subgroup of πpLq is central in G1{A, hence reduced

to teu. Thus L X ker π is the greatest finite normal subgroup of

L, and is characteristic. Also the center of πpL X G0q is central in

AdG1, hence reduced to teu, and the center of L X G0 is compact,

and therefore finite. By Lemma 1.4, we are thus reduced to the

case where G, G1 are connected, A “ teu, and L is arithmetic in

G1. Let G1, . . . ,Gq be the simple Q-factors of G1. The group L is

commensurable with the product of the intersections Li “ L XGi,

which are arithmetic ([7], 6.3). If Gi X L is uniform in GiR, then

H1pLi, gRq “ 0 by [33]. If not, then rkQGi ě 1, and H1pLi, giq “
0 by theorems of Raghunathan [25], [26]. Consequently, H1pL X
G1, g1

R
q “ 0. Moreover, L X G1 is of finite index in its normalizer
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N. In fact, N is closed, belongs to G1
Q

([6], Theorem 2), hence

to G1
R

, and N{pL X G1q is compact since G1
R

{pL X G1q has finite

invariant measure [7]. The conclusion now follows from Lemma

1.1 and Lemma 1.4.

Lemma 1.6. Let L be a finitely generated group, N a normal subgroup

of finite index. Assume L is isomorphic to a proper subgroup of finite

index. Then N has a subgroup of finite index which is isomorphic to a

proper subgroup of finite index.

The assumption implies the existence of a strictly decreasing se-49

quence pLiqpi “ 1, 2, . . .q of subgroups of finite index of L and of iso-

morphisms fi : L
„
ÝÑ Lipi “ 1, 2, . . .q. Let a be the index of N in L.

Then Li X N has index ď a in Li, hence Mi “ f ´1
i

pLi X Nq has index

ď a. Passing to a subsequence if necessary, we may assume that Mi is

independent of i. Then, Li X N is isomorphic to a proper subgroup of

finite index.

Proposition 1.7. Let G and L be as in Theorem 1.5. Assume one of

the conditions (a), (b) of Theorem 1.5 to be fulfilled. Then L is not

isomorphic to a proper subgroup of finite index.

By use of Lemma 1.6, the proof is first reduced to the case where G

is connected. Let π be as in the proof of (a) or (b) in Theorem 1.5. Then

LXker π is the greatest finite normal subgroup of L. Similarly L1 Xker π

is the greatest finite normal subgroup of L1, if L1 has finite index in L.

Therefore, if L1 is isomorphic to L, the groups ker π X L and ker π X L1

are equal, and are mapped onto each other by any isomorphism of L

onto L1; hence πpLq – πpL1q, and πpLq ‰ πpL1q if L ‰ L1. We are

thus reduced to the case where the group A of (a) or (b) in Lemma 1.4

is “ teu. Moreover, in case (b), it suffices to consider L X G1 in view

of Lemma 1.6. Our assertion then follows from the rigidity theorems of

Weil and Raghunathan and from Lemma 1.3.

We shall need the following consequence of a theorem of Raghu-

nathan:

Lemma 1.8. Let G, G1 be connected semi-simple Q-groups, which are

almost simple over Q. Let L be a subgroup of GQ containing an arith-
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metic subgroup L0 of G, and s an isomorphism of L onto a subgroup of

G1
Q

which maps L0 onto a Zariski-dense subgroup of G1. Assume that

rkQpGq ě 2.

(i) G and G1 are isogeneous over Q.

(ii) If G is simply connected, or G1 is centerless, there exists a Q-

isogeny s1 of G onto G1, and a homomorphism g of L into the

center of G1
Q

such that spxq “ s1pxq ¨ gpxqpx P Lq.

Let pG be the universal covering group of G, π : rG Ñ G the canonical 50

projection and rL “ π´1pLq X GQ. The group rL0 “ π´1pL0q X rL is

arithmetic, as follows e.g. from ([7], §6.11); in particular, πprL0q has

finite index in L0, and L1
0

“ s ˝ πprL0q is Zariski-dense in G1.

We identify G1 with a Q-subgroup of GLpn,Cq, for some n. The

map r “ s ˝ π may be viewed as a linear representation of rL into

GLpn,Qq. By Theorem 1 of [25], there exists a normal subgroup rN of
rL0, Zariski-dense in rG, and a morphism t : rG Ñ GLpn,Cq which coin-

cides with r on rN. Let C be the Zariski-closure of tprNq. It is an algebraic

subgroup contained in tp rGq X G1. Since tprNq is normal in L1
0
, and L1

0
is

Zariski-dense, the group C is normal in G1. However, ([9], §6.21(ii)), the

group G1 is isogeneous to a group Rk{QH, where k is a number field, H

an absolutely simple k-group, and Rk{Q denotes restriction of the scalars

([31], Chap. I). Consequently, an infinite subgroup of G1
Q

is not con-

tained in a proper direct factor of G1, whence C “ G1 “ tp rGq. If f is a

regular function defined over Q on G1, then f ˝ t is a regular function on
rG, which takes rational values on the dense set rN. It follows immedi-

ately that f ˝ t is defined over Q, hence t is defined over Q. Its kernel is

a proper normal Q-subgroup of G1, hence is finite, and t is a Q-isogeny.

This implies (i).

If G1 is centerless, then Zp rGq belongs to the kernel of t. Thus, if G

is simply connected, or G1 centerless, t defines a Q-isogeny s1 of G onto

G1, which coincides with s on the Zariski-dense subgroup N “ πprNq.

The group spNq is then Zariski-dense in G1. Let x P L, y P N. Then

x ¨ y ¨ x´1 P N, hence spxq ¨ s1pxq´1 centralizes spNq, and therefore also
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G1. Consequently, spxq ¨ S 1pxq´1 belongs to G1
Q

X ZpG1q, and f : x ÞÑ

spxq ¨ s1pxq´1, and s1 fulfil our conditions.

Theorem 1.9. Let G and L be as in Lemma 1.8. Assume G to be cen-

terless and L to be equal to its normalizer in GQ. Then EpLq may be

identified with a subgroup of pAut GqQ{pInt GqQ.

If G is centerless, and M is a Zariski-dense subgroup of GQ, then the

normalizer of M in G belongs to GQ. This follows from Theorem 2 in51

[6] if M is arithmetic, but the proof yields this more general statement,

as well as Proposition 3.3(b) below. In view of this, Theorem 1.9 is a

consequence of Lemma 1.8,

Remark. It is no great loss in generality to assume that L contains the

center of GQ, and this assumption will in fact be fulfilled in the cases to

be considered below. In this case, Aut L is generated by three kinds of

automorphisms: (a) exterior automorphisms of G leaving L stable, (b)

automorphisms x ÞÑ f pxq ¨ x, where f is a homomorphism of L into its

center, (c) automorphisms of the form x ÞÑ y ¨ x ¨ y´1, where y belongs

to the normalizer of L in G.

Using some information on these three items, we shall in the fol-

lowing paragraph give a more precise description of Aut L, when G is a

split group.

2 Arithmetic subgroups of split groups over Q. In this

paragraph G is a connected semi-simple and almost simple Q-group,

which is split, of Q-rank ě 2; L is the group of integral points of G for

the canonical Z-structure associated to a splitting of G[10], [18], and

NpLq the normalizer of L in GC.

2.1 The group L is equal to its normalizer in GQ, and also to its nor-

malizer in G if G has no center. To see this, we first notice that L has

finite index in its normalizer in G. In fact, since the image of L in Int G

is arithmetic ([7], §6.11), it suffices to show that if G is centerless, any

arithmetic subgroup of G is of finite index in its normalizer, which fol-

lows from the end argument of Theorem 1.5(b). Our assertion is then
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a consequence of ([6], Theorem 7). Another proof will be given below

(Theorem 4.3).

Theorem 2.2. If G is centerless, then Aut L is a split extension of

EpGq “ Aut G{ Int G by L. If G is simply connected, then Aut L is a

split extension of EpGq by the subgroup A of automorphisms of the form

x ÞÑ f pxq ¨ y ¨ x ¨ y´1 where y P NpLq and f is a homomorphism of L

into its center.

If G is centerless or simply connected, the standard construction

of automorphisms of G leaving stable the splitting of G yields a sub-

group E1pGq of pAut GqQ, isomorphic to EpGq under the canonical pro- 52

jection, and leaving the Z-structure of G invariant. Thus EpGq may

be identified with a subgroup of Aut L. If G is centerless, the theorem

follows then from Theorem 1.9, and 2.1. Let now G be simple con-

nected. Let s P Aut L. By Lemma 1.8, we can find s1 P pAut GqQ

and f P HompL,ZpGqQq such that spxq “ f pxq ¨ s1pxqpx P Lq. How-

ever, L contains ZpGqQ by 2.1. Therefore, f maps L into ZpGq X L.

But ZpGq X L is equal to the center of L, since L is Zariski-dense in G,

whence our assertion.

If G has a non-trivial center the image of NpLq in Aut L is in gen-

eral different from Int L. The quotient NpLq{L has been studied in var-

ious cases, including those of Examples 2.6(1), (2), notably by Maass,

Ramanathan, Allan (see [1], where references to earlier work are also

given). We shall discuss it here and in §4 from a somewhat different

point of view. In the following statement, the group G1 “ Int G is en-

dowed with the Z-structure associated to the splitting defined by the

given splitting of G.

Lemma 2.3. Let π : G Ñ G1 “ Int G be the canonical projection, T the

maximal torus given by the splitting of G, and T 1 “ πpT q. Then

πpNpLqq “ G1
Z, (1)

πpNpLqq{ Int L – T 1
Z{πpTZq – ZpLq. (2)

55



56 A. Borel

The group L is the normalizer in GQ of a Chevalley lattice gZ in g

as follows from 2.17 in [16]. Moreover, a Chevalley lattice is spanned

by the logarithms of the unipotent elements in L. Consequently NpLq is

the normalizer in G of gZ. From this (1) follows.

Let B be the maximal solvable subgroup of G corresponding to the

positive roots in the given splitting of G and U its unipotent radical.

Then B “ T ¨ U (semi-direct). Let x P NpLq. Since Int x preserves the

Q-structure of G, the group x ¨ B ¨ x´1 is a maximal connected solvable

subgroup defined over Q, hence ([9], §4.13) there exists z P GQ such

that z ¨ B ¨ z´1 “ x ¨ B ¨ x´1. But we have GQ “ L ¨ BQ([6], Lemma 1).

Since B is equal to its normalizer, it follows that NpLq “ L ¨ pNpLqX Bq.

Let now x P NpLq X B. Write x “ t ¨ vpt P T, v P Uq. We have πpxq P L

(see 2.1). But, with respect to a suitable basis of a Chevalley lattice in53

gQ, πptq is diagonal, and πpuq upper triangular, unipotent, therefore πptq,

πpuq P L. However [10], π defines a Z-isomorphism of U onto πpUq,

hence u P L, which shows that

NpLq “ L ¨ pNpLq X T q. (3)

The kernel of π is contained in T , therefore (1) implies that NpLq X T

is the full inverse image of T 1
Z

, which yields the first equality of (2).

The groups TZ and T 1
Z

consist of the elements of order 2 of T and T 1

respectively and are both isomorphic to pZ{2Zql, where l is the rank of

G. Consequently T 1
Z

{πpTZq is isomorphic to the kernel of π : TZ Ñ T 1
Z

,

i.e. to ZpLq, which ends the proof of (2).

The determination of Aut L{ Int L is thus to a large extent reduced to

that of the center ZpLq of L, and of the quotient of L by its commutator

subgroup pL, Lq. We now make some remarks on these two groups.

2.4 The center ZpLq of L is of order two if G is simply connected of

type An (n odd), Bn, Cnpn ě 1q, Dnpn ě 3, n oddq, E7, of type (2.2) if

G “ Spin 4m (m positive integer), of order one in the other cases.

In fact the Z-structure on G may be defined by means of an admissi-

ble lattice in the representation space of a faithful representation defined

over Q. If we assume G Ă GLpn,Cq and Zn to be an admissible lat-
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tice, then ZpLq is represented by diagonal matrices with integral coeffi-

cients, which shows first that ZpLq is an elementary abelian 2-group. All

almost simple simply connected groups have faithful irreducible repre-

sentations, except for the type D2m. Thus, except in that case, ZpLq is

of order 2 (resp. 1) if ZpGq has even (resp. odd) order, whence our con-

tention. The case of D2m is settled by considering the sum of the two

half-spinor representations.

2.5 It is well known that SLpn,Zq is equal to its commutator subgroup

if n ě 3 (see [3] e.g.). Also the commutator subgroup of Spp2n,Zq is

equal to Spp2n,Zq if n ě 3, has index two if n “ 2 [3], [28]. More 54

generally, if the congruence subgroup theorem holds, which is the case

if rkG ě 2 and G is simply connected, according to [22], then L{pL, Lq
is the product of the corresponding local groups G0p

{pG0p
,G0p

q. Serre

has pointed out to me that, using this, one can show that L “ pL, Lq if

G has rank ě 3, and is simply connected. Another more direct proof

was mentioned to me by R. Steinberg, who also showed that L{pL, Lq
is of order two if G “ G2. He uses known commutation rules among

unipotent elements of L, and the fact that they generate L.

Examples 2.6. (1) G “ SLpn,Cq, L “ SLpn,Zq, pn ě 3q. In this

case, EpGq is of order two, generated by the automorphism σ :

x ÞÑ t x´1. By Lemma 2.3 and 2.4, Int L has index one (resp.

two) in the image of NpLq if n is odd (resp. even). Furthermore,

it is easily seen, and will follow from Lemma 4.5, that, in the

even dimensional case, the non-interior automorphisms defined

by NpLq are of the form x ÞÑ y¨x¨y´1py P GLpn,Zq, det y “ ´1q.

Thus, taking 2.5 into account, we see that Aut L is generated by

Int L, σ, and, for n even, by one further automorphism induced

by an element of GLpn,Zq of determinant ´ 1. This is closely

related to results of Hua-Reiner [12], [13].

(2) G “ Spp2n,Cq, L “ Spp2n,Zq, pn ě 2q. Here, EpGq is reduced

to the identity. Thus, by the above, Int L has index two in Aut L

if n ě 3, index four if n “ 2. The non-trivial element of NpLq{L
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is represented by an automorphism of the form x ÞÑ y ¨ x ¨ y´1

where y is an element of GLp2n,Zq which transforms the bilinear

form underlying the definition of Spp2n,Cq into its opposite (see

Examples 4.6). For n “ 2, one has to add the automorphism

x Ñ χpxq ¨ x, where χ is the non-trivial character of L. This result

is due to Reiner [27].

(3) G is simply connected, of type D2m. Then we have a composition

series

Aut L Ą A Ą Int L,

where Aut L{A is of order two, and A{ Int L has order two if m is

odd, is of type (2.2) if m is even. This follows from (2.2), (2.3),

(2.4), (2.5). The other simple groups of rank ě 3 are discussed

similarly.
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3 S -arithmetic groups over number fields.

3.1 Throughout the rest of this paper, k is an algebraic number field

of finite degree over Q, o its ring of integers, V the set of primes of

k, V8 the set of infinite primes of k, S a finite subset of V containing

V8, and opS q the subring of x P k which are integral outside S . We let

Ipk, S q be the S -ideal class group of k, i.e. the quotient of the group of

fractional opS q-ideals by the group of principal opS q-ideals. We follow

the notation of [5]. In particular kv is the completion of k at v P S ,

ov the ring of integers of kv. If G is a k-group, then G0 is its identity

component, and

Gv “ Gkv
pv P S q,GS “

ź

vPS

Gv,G8 “
ź

vPV8

Gv.

Moreover G1 “ Rk{QG is the group obtained from G by restriction of

the groundfiled from k to Q([31], Chap. I), and we let µ denote the

canonical isomorphism of Gk onto G1
Q

.

If A is an abelian group, and q a positive integer, we let qA and Apqq

denote the kernel and the image of the homomorphism x ÞÑ xq.
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3.2 Let G be a k-group. A subgroup L of Gk is S -arithmetic if there is

a faithful k-morphism r : G Ñ GLn such that rpLq is commensurable

with rpGqopS q.

If S 1 is a finite set of primes of Q, including 8, and S is the set of

primes dividing some element of S 1, then v : Gk
„
ÝÑ G1

Q
induces a bijec-

tion between S -arithmetic subgroups of G and S 1-arithmetic subgroups

of G1. This follows directly from the remarks made in ([5], §1).

In the following proposition, we collect some obvious generaliza-

tions of known facts.

Proposition 3.3. Let G be a semi-simple k-group, L a S -arithmetic

subgroup of G, N the greatest normal k-subgroup of G0 such that N8 is

compact, and π : G Ñ G{N the natural projection.

(a) If N is finite and G is connected, L is Zariski-dense in G.

(b) If G is connected, the commensurability group CpLq of L in G is

equal to π´1ppG{Nqkq.

(c) If σ : G Ñ H is a surjective k-morphism, σpLq is S -arithmetic in 56

H.

(d) If N is finite, L has finite index in its normalizer in G.

(a) follows from ([6], Theorem 3), and from the fact that L contains

an arithmetic subgroup of G.

(b) We recall that CpLq is the group of elements x P G such that

x ¨ L ¨ x´1 is commensurable with L. The proof of (b) is the same

as that the Theorem 2 in [6]. In fact, this argument shows that if

G is centerless, then CpMq Ă Gk whenever M is a subgroup of

Gk Zariski-dense in G.

(c) If σ is an isomorphism, the argument is the same as that of ([7],

§6.3). If σ is an isogeny, this has been proved in ([5], §8.12).

From there, the extension to the general case proceeds exactly in

the same way as in the case S “ V8([6], Theorem 6).
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(d) We may assume G to be connected and N “ teu. Then by (c),

NpLq Ă Gk. We view Gk and L as diagonally embedded in GS .

Then L is discrete in GS .

This group L has a finite system of generators [17], say pxiq1ďiďq.

Since L is discrete, there exists a neighbourhood U of e in GS such that

if x P NpLq X U, then x centralizes the xi’s, hence L. The latter being

Zariski-dense in G, this implies that the component xv of x in Gvpv P S q
is central in Gv, whence xv “ e, which shows that NpLq is discrete in

GS . But GS {L has finite invariant volume ([5], §5.6) and is fibered by

NpLq{L, hence NpLq{L is finite.

Proposition 3.4. Let G be a semi-simple k-group, L a subgroup of Gk

which is Zariski-dense, and is equal to its normalizer in Gk, and NpLq
the normalizer of L in G. Then NpLq{L is a commutative group whose

exponent divides the order m of the center ZpGq of G.

We show first that if x P NpLq, then xm P L. In view of the as-

sumption, it suffices to prove that xm P Gk. Let π : G Ñ G{ZpGq be

the canonical projection. The fiber Fx “ π´1pπpxqq of x consists of the

elements x ¨ zip1 ď i ď mq, where zi runs through ZpGq, and belongs to

NpLq. By the remark made in Proposition 3.3(b), πpxq is rational over57

k, hence Fx is defined over k, and its points are permuted by the Galois

group of k over k. Since the zi’s are central, the product of the xzi is

equal to xm ¨ z1 . . . zm and is rational over k. Similarly the product of the

zi’s is rational over k, whence our assertion.

It is possible to embed ZpGq as a k-subgroup in a k-torus T 1 whose

first Galois cohomology group is zero (see Ono, Annals of Math. (2),

82 (1965), p. 96). Let H “ pG ˆ T 1q{ZpGq where ZpGq is embedded

diagonally in G ˆ T 1. Then G{ZpGq may be identified with H{T 1. Let

x P NpLq. We have already seen that πpxq is rational over k. But, since

T 1 has trivial first Galois-cohomology group, the map Hk Ñ pH{T 1qk

is surjective. There exists therefore d P T 1 such that d ¨ x P Hk. Thus,

if x, y P NpLq, we can find two elements x1, y1 P Hk, which normalize

L, whose commutator px1, y1q is equal to px, yq. But, obviously, G “
pH,Hq, therefore px, yq P NpLqk hence px, yq P L, and pNpLq,NpLqq Ă
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L. This argument also proves that

NpLq “ G X pNHpLqk ¨ T 1q, (1)

where NHpLq is the normalizer of L in H, and NHpLqk “ NHpLq X Hk.

For the sake of reference, we state as a lemma a remark made by

Ihara in ([14], p. 269).

Lemma 3.5. Let A be a group, B a subgroup, and V a A-module. As-

sume that for any a P A, there is no non-zero element of V fixed under

a ¨ B ¨ a´1 X B. Then the restriction map r : H1pA,Vq Ñ H1pB,Vq is

injective.

It suffices to show that if z is a 1-cocycle of A which is zero on B,

then z is zero. Let a P A, b P B be such that a ¨ b ¨ a´1 “ b1 P B. We

have then

zpa ¨ bq “ zpaq “ zpb1 ¨ aq “ b1 ¨ zpaq,

which shows that zpaq is fixed under a ¨ B ¨ a´1 X B, hence is zero.

Theorem 3.6. Let G be a semi-simple k-group and L a S -arithmetic

subgroup. Then EpLq is finite if one of the following conditions is ful-

filled :

(a) G has no normal k-subgroup N such that N8 has a non-compact

factor of type SLp2,Rq, or also of type SLp2,Cq if GS {L is not

compact;

(b) G is of type SL2 over k, and S has at least two elements. 58

By Lemma 1.4(b), we may assume G to be connected. Let N be the

greatest normal k-subgroup of G such that N8 is compact and π : G Ñ
G{N the natural projection.

(a) Arguing as in Lemma 1.4, we see that it suffices to show that

EpπpLqq is finite, which reduces us to the case where G is a direct

product of simple k-groups Gi. The group Li “ Gi X L is S -

arithmetic in Gi and the product of the Li is normal of finite index

in L. By Lemma 1.4, we may therefore assume L to be the product
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of its intersection with the Gi’s. The group L has finite index in

its normalizer (Proposition 3.3) and is finitely generated [17], so

that, in order to deduce our assertion from Lemma 1.1, applied

to L and G8, it suffices to show that H1pL, g8q “ 0. Since this

group is isomorphic to the product of the groups H1pLi, gi8q, we

may assume G to be simple over k. Let L0 “ L X Go.

The group L0 is arithmetic, and therefore so is x ¨ L0 ¨ x´1 X
L0 “ L0,xpx P Lq. Consequently, L0,x is Zariski-dense in G ([6],

Theorem 1), and has no non-zero fixed vector in g8. By Lemma

3.5, the restriction map : H1pL, g8q Ñ H1pL0, g8q is injective.

But H1pL0, g8q “ 0: if rkk G ě 1, this follows from [25], [26].

Let now rkk G “ 0. Then G8{L0 is compact ([4], §11.6). In view

of 3.2, we may further assume G to be almost absolutely simple

over k. Let J be the set of v P V8 such that Gv is not compact

and H the subgroup of G generated by the Gv’s pv P Jq. Then, by

Weil’s theorem ([32], [33]),

H1pΓ0, hq “ 0. (1)

But we have

H1pΓ0, gvq “ H1pΓ0,
vgkq bvpkq kv, pv P V8q (2)

H1pΓ0, gq “
ź

vPV8

H1pΓ0, gvq, (3)

H1pΓ0, hq “
ź

vPJ

H1pΓ0, gvq, (4)

whence H1pΓ0, g8q “ 0.

(b) N is finite, and therefore, L has finite index in its normalizer59

(Proposition 3.3). Again, there remains to show that H1pL, g8q “
0. Let SL2 Ñ G be the covering map, and L1 the inverse image of

L in SLp2, kq. The homomorphism H1pL, g8q Ñ H1pL1, g8q is

injective, hence we may assume G “ SL2. But then the vanishing

of H1 follows from [29].
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Remark. It is also true that in both cases of Theorem 3.6, the group L

is not isomorphic to a proper subgroup of finite index. This is seen by

modifying the proof of Theorem 3.6, in the same way as Proposition 1.7

was obtained from Theorem 1.5.

If G is almost simple over k, of k-rank ě 2, then we may apply The-

orem 1.9 to G1. Thus, in that case, we see that, if L contains ZpGqk, the

determination of Aut L is essentially reduced to that of the normalizer

of L in G, of the homomorphisms of L into its center, and of the exterior

automorphisms of G1 leaving stable. We shall use this in §4 to get more

explicit information when G is a split group. Here, we mention another

consequence of Theorem 1.9.

Proposition 3.7. Let G be an almost absolutely simple k-group, of k-

rank ě 2, k1 a number field, and G1 an almost absolutely simple k1-

group. Let L be an arithmetic subgroup of Gk, and s an isomorphism

of L onto an arithmetic subgroup of G1. Then there is an isomorphism

φ of k1 onto k and the k-group φG1 obtained from G1 by change of the

groundfield φ is k-isogeneous to G.

Let H “ Rk{QG, H1 “ Rk1{QG1, and M, M1 the images of L and

L1 “ spLq under the canonical isomorphisms Gk
„
ÝÑ HQ and G1

k1

„
ÝÑ H1

Q
.

Then s may be viewed as an isomorphism of M onto M1. The group

M1 is infinite, hence H1
R

is not compact, and M1 is Zariski-dense in H1

([6], Theorem 1). By Lemma 1.8, H and H1 are Q-isogeneous. There

exists therefore an isomorphism α of hQ onto h1
Q

. But the commuting

algebra of ad hQ (resp. ad h1
Q

) in the ring of linear transformations of

hQ (resp. h1
Q

) into itself is isomorphic to k (resp. k1). Hence α induces

an isomorphism φ : k1 „
ÝÑ k. Let g2

k
“ φgk1 be the Lie algebra over k

obtained from g1 by the change of ground-field φ. Then, it is clear from 60

the definition of φ that α “ Rk{Qβ, where β is a k-isomorphism of g

onto g2. This isomorphism is then the differential of a k-isogeny of the

universal covering of G onto the k-group φG1.

3.8 We need some relations between pAut Gqk and pAut G1qQ. For sim-

plicity, we establish them in the context of Lie algebras, and assume G
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to be almost simple over k. The Lie algebra g1
Q

is just gk, viewed as a

Lie algebra over Q. Since gk is absolutely simple, the commuting alge-

bra of ad g1
Q

in glpg1
Q

q may be identified to k. Let a P Aut g1
Q

. Then a

defines an automorphism of glpg1
Q

q leaving ad g1
Q

stable, and therefore

an automorphism βpaq of k. If β is the identity, this means that a is a

k-linear map of g1
Q

, hence comes from an automorphism of gk. We have

therefore an exact sequence

1 Ñ Aut gk Ñ Aut g1Q Ñ Aut k. (1)

Let k0 be the fixed field of Aut k in k. Assume that gk “ g0 bk0
k,

where g0 is a Lie algebra over k0. Then, for s P Aut k, sgk “ gk,

and s, acting by conjugation with respect to g0, defines a s-linear au-

tomorphism of gk, and therefore an automorphism a of Aut gQ such that

βpaq “ s. Thus, in this case, the sequence

1 Ñ Aut gk Ñ Aut g1Q Ñ Aut k Ñ 1 (2)

is exact and split. Translated into group terms, this yields the following

lemma:

Lemma 3.9. Let G be absolutely almost simple over k. Then we have

an exact sequence

1 Ñ pAut Gqk Ñ pAut G1qQ Ñ Aut k. (1)

Let k0 be the fixed field of Aut k and assume that G is obtained by exten-

sion of the field of definition from a k0-group G0. Then the sequence

1 Ñ pAut Gqk Ñ pAut G1qQ Ñ Aut k Ñ 1 (2)

is exact and split. On Gk, identified with G0,k, the group Aut k acts by

conjugation.

Strictly speaking, the sequences (3.8) (1), (2) give Lemma 3.9 (1),61

(2) if G is centerless or simply connected (the only cases of interest be-

low). But in the general case, we may argue in the same way as above,

replacing Aut gk and Aut g1
Q

by the images of pAut Gqk and pAut G1qQ
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in those groups. The proof can also be carried out directly in G and G1,

using the structure of Rk{QG, and is then valid of Q, k and Aut k are re-

placed by a field K, a finite separable extension K1 of K, and AutpK1{Kq.

Remark. The above lemma was obtained with the help of Serre, who

has also given examples where G has no k0-form and (2) is not exact.

4 Split groups over number fields. In this paragraph, G is

a connected almost simple k-split group. G is viewed as obtained by

extension of the groundfield from a Q-split group G0, endowed with the

Z-structure associated to a splitting over Q. G is then endowed with

an o-structure associated to its given splitting, and GB is well defined

for any o-algebra B. We shall be interested mainly in the canonical S -

arithmetic subgroup GopS q.

Lemma 4.1. Let G be split over k, almost simple over k, and L “ GopS q.

(i) L is equal to its normalizer in Gk. The image in G{ZpGq of the

normalizer NpLq of L in G is equal to pG{ZpGqqopS q. In particular,

L “ NpLq if G is centerless.

(ii) The group NpLq{L is a finite commutative group whose exponent

divides the order m of ZpGq.

(i) Let Γ be a Chevalley lattice in g0,Q. Then ([16], 2.17) shows that

GopS q is the stabilizer of opS q. Γ in Gk, operating on g by the

adjoint representation. The lattice Γ is spanned by the logarithms

of the unipotent elements in G0,Z, hence opS q. Γ is spanned by

the logarithms of unipotent elements in GopS q. It is then clear

that if x P G normalizes GopS q, then Adx normalizes opS q ¨ Γ. If

moreover x P Gk, then x P GopS q, which proves the first assertion.

Together with Proposition 3.3, this proves (i).

(ii) The group NpLq{L is finite by Proposition 3.3. The other asser- 62

tions of (ii) follow from (i) and Proposition 3.4.
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Lemma 4.2. Let G “ SL2, PSL2 and L a S -arithmetic subgroup of

G. Assume that S has at least two elements. Let s be an automorphism

of L. There exists an automorphism s1 of G1, defined over Q, and a

homomorphism f of L into ZpG1qQ such that spxq “ f pxq ¨ s1pxqpx P Lq.

Let rG “ SL2, π : rG Ñ G the natural homomorphism and rL “
π´1pLq X Gk. Then rL is S -arithmetic in rG. The map s ˝ π defines a

homomorphism of rL into G1
Q

. It follows from [29] that there exists a

Q-morphism t : Rk{Q
rG Ñ G1, which coincides with s ˝ π on a normal

subgroup of finite index of rL. The end of the argument is then the same

as in Lemma 1.8.

Theorem 4.3. Let Autpk, S q be the subgroup of Aut k leaving S stable.

Assume either rkk G ě 2 or rkk G “ 1 and Card S ě 2. Let L “ GopS q.

(i) If G is centerless, Aut L is generated by EpGq, the group Autpk, S q
acting by conjugation, and Int L.

(ii) If G is simply connected, Aut L is generated by EpGq, Autpk, S q,

and automorphisms of the form x ÞÑ f pxq ¨ y ¨ x ¨ y´1 where f is a

homomorphism of L into its center, and y belongs to the normal-

izer of L in G.

By Lemma 4.1, L contains ZpGqk. Let s P Aut L. By Lemma 1.8

and Lemma 4.2 we may write spxq “ f pxq ¨ s1pxq where s1 is a Q-

automorphism of G1 and f a homomorphism of L into ZpG1qQ – ZpGqk,

hence of L into its center.

The group G comes by extension of the groundfield from a split Q-

group G0. Therefore Lemma 3.9 obtains. After having modified s by

a field automorphism J, we may consequently assume s1 to belong to

pAut Gqk. In both cases (i), (ii) pAut Gqk is a split extension of EpGq
by pInt Gqk; moreover, the representative E1pGq of EpGq alluded to in

Theorem 2.2 leaves L stable. Thus, after having multiplied s1 by an63

element of EpGq, we may assume s1 P pInt Gqk, hence s1 “ Int y, py P
NpLqq.
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4.4 Let G have a non-trivial center. We assume that the underlying

Q-split group G0 may be (and is) identified with a Q-subgroup of GLn

by means of an irreducible representation all of whose weights are ex-

tremal, i.e. form one orbit under the Weyl group, in such a way that Zn

is an admissible lattice, in the sence of [10]. (This assumption is ful-

filled in all cases, except for the one of the spinor group in a number of

variables multiple of four.)

Let D be the group of scalar multiples of the identity in GLn, and

H “ D ¨ G. The group H is the identity component of the normalizer of

G in GLn. The group D is a one-dimensional split torus. In particular,

its first Galois cohomology group is zero. We have G X D “ ZpGq, and

G Ă SLn, therefore the order m of ZpGq divides n, and Proposition 3.4

(i) yeilds

NpLq “ G X NHpLqk ¨ D. (1)

Lemma 4.5. We keep the assumptions of 4.4. Let m be the order of

ZpGq. Let A and B be the images of NpLq and HopS q in Aut L.

(i) The enveloping algebra M of L over opS q is Mpn, opS qq.

(ii) A{B is isomorphic to a subgroup of

mIpk, S q and B to opS q˚{opS q˚pmq.

(i) In view of the definition of admissible lattices [10], the maxi-

mal k-split torus T of the given splitting G may be assumed to

be diagonal and the opS q-lattice Γ0 “ opS qn is the direct sum

of its intersections with the eigenspaces of T . Out assumption

on the weights implies further that these eigenspaces are one-

dimensional, permuted transitively by the normalizer NpT q of T .

Given a prime ideal v P V “ V8, we denote by Fv the residue

field o{v and by Fv an algebraic closure of Fv. By [10], reduc-

tion mod v of G, (endowed with its canonical o-structure), yields

a Fv-subgroup Gpvq of GLpn, Fvq which is connected, almost sim-

ple, has the same Dynkin diagram as G, and is simply connected

if G is. The reduction mod v also defines an isomorphism of the 64
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character group X˚pT q of T onto the character group X˚pTpvqq
of the reduction mod v of T , which induces a bijection of the

weights of the identity representation of G onto those of the iden-

tity representation of Gpvq. Thus the eigenspaces of Tpvq are one-

dimensional, and permuted transitively by the normalizer of Tpvq.

Consequently, the identity representation of Gpvq is irreducible.

The given splitting of G defines one of the universal covering rG
of G, hence an o-structure on rG. The reduction mod v rGpvq of

G is the universal covering group of Gpvq and the identity repre-

sentation may be viewed as a irreducible representation of rGpvq,

say fpvq. But fpvq has only extremal weights, therefore is a fun-

damental representation. It follows then from results of Stein-

berg ([30]; 1.3, 7.4) that the representation fpvq of the finite group

rGpvq,Fv
is absolutely irreducible. Now, since reduction mod v is

good, rGpvq,Fv
is the reduction of rGov . Moreover, rG being split and

simply connected, strong approximation is valid in rG, hence rGo
is dense in rGov , which implies that reduction mod v maps rGo onto
rGpvq,Fv

. But the canonical projection of rG onto G maps rGo into rGo.
Consequently, the image of Go in Gpvq by reduction is a subgroup

which contains fpvqp rGpvq,Fv
q, hence is irreducible. Therefore

M b Fv “ Mpn, Fvq, pv P V ´ S q.

This shows that the index of M in Mpn, opS qq is prime to all ele-

ments in V ´ S , whence (i).

(ii) By 4.4 (1), the image of NpLq in Aut L is the same as that of N1 “
NHpLqk. Let x P N1 and Γ “ x ¨Γ0 be the transform under x of the

standard lattice Γ0 “ opS qn. This is a opS q-lattice stable under L

hence, by (i), also stable under GLpn, opS qq. For v P V ´ S , the

local lattice ov ¨Γ in kn
v is then stable under GLpn, ovq. There exists

therefore a power vapvqpapvq P Zq of v such that ov ¨ Γ “ vapvq ¨ onv .

We have then also ov ¨ pdet xq “ vn¨apvq. In view of the relation65

between a lattice and its localizations, we have then Γ “ a ¨ Γ0

with a “ Πvapvq, and moreover an ¨ opS q “ opS q ¨ pdet xq. By
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assigning to x the image of a ¨ opS q in Ipk, S q, we define therefore

a map α of N1 into nIpk, S q, which is obviously a homomorphism.

If d P D, then αpd ¨ xq “ αpxq, whence a homomorphism of A

into nIpk, S q, to be denoted also by α. Clearly, HopS q Ă kerα.

Conversely, assume that x P kerα. Then x ¨ Γ0 is homothetic to

Γ0, and there exists d P k˚ such that d ¨ x leaves Γ0 stable. But

then d ¨ x P HopS q, so that the image of x in Aut L belongs to B.

Thus, A{B is isomorphic to a subgroup of nIpk, S q. But NpLq{L is

of exponent m by Lemma 4.1, and m divides n, therefore α maps

A{B into a subgroup of mIpk, S q.

Let σ : H Ñ H{G be the canonical projection. Its restriction to

D is the projection D Ñ D{ZpGq, and H{G “ D{ZpGq. If an element

x P HopS q defines an inner automorphism of L, then x P DopS q ¨ L, and

σpxq P σpDopS qq. Since elements of DopS q define trivial automorphisms

of L, we see that

B{ Int L – σpHopS qq{σpDopS qq. (1)

Identify D{ZpGq to GL1. Then σpHopS qq is an S -arithmetic subgroup

of GL1 hence a subgroup of finite index of opS q˚. The group ZpGq is

cyclic of order m, therefore the projection D “ GL1 Ñ D1 is either

x ÞÑ xm or x ÞÑ x´m, hence σpDopS qq – opS q˚pmq, so that B{ Int L

may be identified to a subgroup of opS q˚{opS q˚pmq. Thus (1) yields

an injective homomorphism τ : B{ Int L Ñ opS ˚q{opS q˚pmq. There

remains to show that τ is surjective.

Let π : H Ñ H{D “ G{ZpGq “ Int G be the canonical projection,

T the maximal torus given by the splitting of G and T 1 “ πpT q. We have

already remarked that x P HopS q defines an inner automorphism of L if

and only if x P DopS q ¨ L, so B{ Int L – πpHopS qq{πpLq. By Lemma 4.1,

πpNpLqq – pG{ZpGqqopS q. On the other hand, since T D is split, D is a

direct factor over k; this implies immediately that π : pT DqopS q Ñ T 1
opS q

is surjective, hence πpHopS qqXT 1 “ T 1
opS q

. We have πpDopS q ¨Lq “ πpLq,

and consequently, since ker π X G Ă T ,

πpDopS q ¨ Lq X T 1 “ πpL X T qπ “ pTopS qq;
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hence B{ Int L contains a subgroup isomorphic to T 1
opS q

{πpTopS qq. How-66

ever, the kernel of π : T Ñ T 1 is a cyclic group of order m. It is then

elementary that we can write T “ T1 ˆ T2, over k, with T1 containing

ZpGq of dimension one. This implies

T 1
opS q{πpTopS qq – πpT1qopS q{πpT1,opS qq “ opS q˚{opS q˚pmq;

this shows that the order of B{ Int L exceeds that of opS q˚{opS q˚pmq.

Therefore T is surjective.

Examples 4.6. (1) G “ SLn ¨ H “ GLn, pn ě 3q. The group L “
SLpn, opS qq is equal to its derived group [3], Corollary 4.3. By

Lemma 4.1 Aut L is generated by Autpk, S q, acting by conjugation

on the coefficients, by the automorphism x ÞÑ t x´1, and by the

image A in Aut L of NpLq.

If a is an opS q-ideal, then a ¨ Γ0 is isomorphic to an ‘ opS qn´1

by standard facts on lattices. Therefore, if an is principal, then

a ¨ Γ0 is isomorphic to Γ0 and there exists g P GLpn, kq such that

g ¨ Γ0 “ a ¨ Γ0. But the stabilizer of Γ0 in G is the same as that

of a ¨ Γ0, hence g P NHpLqk, which shows that, in this case, the

monomorphism A{B Ñ nIpk, S q is an isomorphism. We have

therefore a composition series

Aut L Ą A1 Ą A Ą B Ą Int L,

whose successive quotients are isomorphic to Autpk, S q, Z{2Z,

nIpk, S q and opS q˚{opS q˚pnq.

This result is contained in [24], where Aut SLpn,Qq is determined

for any commutative integral domain Q, except for the fact that

the structure of the subgroup corresponding to A{ Int L is not dis-

cussed there. For opS q “ o, it is related to those of [19] if k has

class number one, and of [20] if k “ Qpiq.

(2) G “ SL2, card S ě 2. The above discussion of A{ Int L is still

valid, (without restriction on S , in fact). Furthermore, the contra-

gredient mapping x ÞÑ t x´1 is an inner automorphism for n “ 2.
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However, in general, L is not equal to its commutator subgroup,

and L{pL, Lq has a non-trivial 2-primary component. Therefore

there may be non-trivial automorphisms of the form x Ñ f pxq ¨ x

where f is a character of order two of L. Clearly, such a homo- 67

morphism of L into itself is bijective if and only if χp´1q “ 1.

It follows from Lemma 4.2 that Aut L is generated by automor-

phisms of the previous type, field automorphisms, and elements

of A.

We note that this conclusion does not hold true without some re-

striction on k, S . For instance, there is one further automorphism

if k “ Qpiq, opS q “ Zpiq, (see [20], and also [21] for a further

discussion of the case n “ 2).

(3) G “ Sp2n, L “ Spp2n, opS qq. The commutator subgroup of L is

equal to L if n ě 3, and has index a power of two if n “ 2

([3], Remark to 12.5). The group G has no outer automorphisms,

therefore, if n ě 3, Theorem 4.3, and Lemma 4.5 show that we

have a composition series

Aut L Ą A Ą B Ą Int L,

with

Aut L{A – Autpk, S q, B{ Int L – opS q˚{opS q˚p2q,

and A{B isomorphic to a subgroup of 2Ipk, S q. We claim that in

fact

A{B – 2Ipk, S q.

We write the elements of GL2n as 2 ˆ 2 matrices whose entries

are n ˆ n matrices. Sp2n is the group of elements in GL2n leaving

J “
`

0 1
´1 0

˘
invariant, and its normalizer H in GL2n is the group

of similitudes of J. Let a be an opS q-ideal such that a2 is principal.

As remarked above, there exists x P GLp2, kq such that x¨opS q2 “
a ¨ opS q2. Let y be the element of GLp2n, kq which acts via x on

the space spanned by the i-th and pn`iq-th canonical basis vectors
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pi “ 1, . . . , nq. Then y P Hk, and y ¨ opS q2n “ a ¨ opS q2n. Thus,

y is an element of NHpLqk which is mapped onto the image of a

in 2Ipk, S q by the homomorphism α : A{B Ñ 2Ipk, S q of Lemma

4.5. Hence, α is also surjective.

If n “ 2, Aut L is obtained by combining automorphisms of the

above types with those of the form x ÞÑ f pxq ¨ x, where f is a

homomorphism of L into ˘1 whose kernel contains ´1.

Remark 4.7. It was noticed in Lemma 4.1 that L is equal to its nor-68

malizer in Gk. Since L has finite index in its normalizer in G, (Propo-

sition 3.3 (d)), this means that L is not a proper normal subgroup of an

arithmetic subgroup of G. More generally, we claim that L is maximal

among arithmetic subgroups, i.e. that no subgroup M of Gk contains L

as a proper subgroup of finite index. This was proved by Matsumoto

[23] when S “ V8, and his proof extends immediately to the present

case. In fact, the argument in the proof of Theorem 1 of [23] shows that

if L has finite index in M Ă Gk, then the closure of M in Gvpv P V, v R S q
is contained in Gov , whence M Ă L.

5 Uniform subgroups in GS . In §1, we proved the finiteness

of EpLq for subgroups which are either uniform or arithmetic. In §3

the arithmetic case was extended to S -arithmetic groups. Now a S -

arithmetic group may be viewed as a discrete subgroup of GS , which

is irreducible in the sense that its intersection with any proper partial

product of the Gv’s pv P S q reduces to the identity. We wish to point out

here that there is also a generalization to GS of the uniform subgroup

case. We assume that S ‰ V8. Such groups have been considered by

Ihara [14] for G “ SL2, and Lemma 5.1 is an easy extension of results

of his.

Lemma 5.1. Let G be a connected semi-simple, almost simple k-group,

L a uniform irreducible subgroup of GS , and L1 its projection on G8.

(i) L is finitely generated.

(ii) If rank G ě 2 and G8 has no compact or three-dimensional factor

or k “ Q, G “ SL2, then H1pL1, g8q “ 0.
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(i) Let S 1 “ S ´ V8, GS 1 “
ś

vPS , Gv, and K “ G8 ˆ
ś

vPS 1 G0v.

The latter is an open subgroup of GS . The orbits of K in GS {L

are open, hence closed, hence compact. Therefore L0 “ L X K is

uniform in K. Since K is the product of G8 by a compact group,

the projection L1
0

of L0 in G8 is a discrete uniform subgroup of

G8. But G8 is a real Lie group with a finite number of connected

components. Therefore the standard topological argument shows 69

that L0 is finitely generated. Let L2 be the projection of L on GS 1 .

Since L is uniform in GS , there exists a compact subset C of GS 1

such that GS “ L2 ¨ C. On the other hand, it follows from ([9],

13.4) that GS 1 has a compact set of generators, say D. Then the

standard Schreier-Reidemeister procedure to find generators for a

subgroup shows that L is generated by LXpG8 ˆ D ¨C ¨ D´1q and

consequently by L0 and finitely many elements. (This argument

is quite similar to the one used by Kneser [17] to prove the finite

generation of GS .)

(ii) We first notice that the restriction map

r : H1pL1, g8q Ñ H1pL1
0, g8q

is injective. The argument is the same as one of Ihara’s ([14],

p.269) in the case G “ SL2 : if x P GS , then x ¨ K ¨ x´1 is

commensurable with K, hence, if x P L, the group L0,x “ x ¨ L0 ¨
x´1XL0 has finite index in L0. In particular, L1

0,x
is uniform in G8,

hence, by density [4], has no fixed vector ‰ 0 in g8. This implies

by Lemma 3.5 that ker r “ 0. If rkpGq ě 2, then H1pL1
0
, g8q “ 0

by [32] and [33], whence our assertion in this case. If G “ SL2,

k “ Q, the vanishing of H1pL1, g8q has been proved by Ihara,

loc. cit. (it is stated there only in the case where S consists of 8
and one prime, but the proof is a fortiori valid in the more general

case).

Theorem 5.2. Let G and L be as in Lemma 5.1 (ii). Then EpLq is finite,

and L is not isomorphic to a proper subgroup of finite index.

73



74 A. Borel

Identify L to its projection L1 in G8. Then the theorem follows from

Lemma 1.1 and Lemma 1.3 in the same way as in the case S “ V8.

APPENDIX

6 On compact Clifford-Klein forms of symmetric
spaces with negative curvature.

6.1 Let M be a simply connected and connected Riemannian symmet-

ric space of negative curvature, without flat component. A Clifford-

Klein form of M is the quotient M{L of M by a properly discontinuous

group of isometries acting freely, endowed with the metric induced from

the given metric on M. In an earlier paper (Topology 2 (1963), 111-122),

it was proved that M always has at least one compact Clifford-Klein70

form. In answer to a question of H. Hopf, we point out here that M

always has infinitely many different compact forms. More precisely:

Theorem 6.2. Let M be as in 6.1. Then M has infinitely many compact

Clifford-Klein forms with non-isomorphic fundamental groups.

M is the direct product of irreducible symmetric spaces. We may

therefore assume M to be irreducible. Then M “ G{K, where G is a

connected simple non-compact Lie group, with center reduced to teu,

and K is a maximal compact subgroup of G. Moreover, G is the iden-

tity component of the group of isometries of M. Let L be a discrete

uniform subgroup of G, without elements of finite order ‰ e. Then L

operates freely, in a properly discontinuous manner, on M, and M{L is

compact. Moreover, by a known result of Selberg (see e.g. loc. cit.,

Theorem B), L has subgroups of arbitrary high finite index. Since M is

homeomorphic to euclidean space, L is isomorphic to the fundamental

group of M{L; it suffices therefore to show that L is not isomorphic to

any proper subgroup L1 of finite index. If dim G “ 3, then M is the

upper half-plane, and this is well known. It follows for instance from

the relations

χpM{L1q “ rL : L1s ¨ χpM{Lq ‰ 0, (1)
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where rL : L1s is the index of L1 in L, and χpXq denotes the Euler-

Poincaré-characteristic of the space X. If dim G ą 3, our assertion is

a consequence of Proposition 1.7. If χpM{Lq ‰ 0, which is the case if

and only if G and K have the same rank, one can of course also use (1).
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ON “ABSTRACT” HOMOMORPHISMS OF SIMPLE

ALGEBRAIC GROUPS

By A. Borel and J. Tits

This Note describes some results pertaining chiefly to homomor-75

phisms of groups of rational points of semi-simple algebraic groups,

and gives an application to a conjecture of Steinberg’s [9] on irreducible

projective representations. Some proofs are sketched. Full details will

be given elsewhere.

Notation. The notation and conventions of [1] are used. In particular,

all algebraic groups are affine, k is a commutative field, k an algebraic

closure of k, p its characteristic, and G is a k-group. In this Note, G is

moreover assumed to be connected. k1 also denotes a commutative field.

Let φ : k Ñ k1 be a (non-zero) homomorphism. We let φG be the

k1-groups Gb
k

k1 obtained from G by the change of basis φ, and φ0 be the

canonical homomorphism Gk Ñ φGk1 associated to φ.

If p ‰ 0, then Fri denotes the pi-th power homomorphism λ ´ λpi

of a field of characteristic ppi “ 0, 1, 2, . . .q. If p “ 0, Fri is the identity.

A connected semi-simple k-group H is adjoint if it is isomorphic to

its image under the adjoint representation, almost simple (resp. simple)

over k if it has no proper normal k-subgroup of strictly positive dimen-

sion (resp. ‰ teu).

1 Homomorphisms.

1.1 Let G be semi-simple. G` will denote the subgroup of Gk gener-

ated by the groups Uk, where U runs through the unipotent radicals of

the parabolic k-subgroups of G. The group G` is normal in Gk; it is

‰ teu if and only if rkkpGq ą 0. If, moreover, G is almost simple over

k, then G` is Zariski-dense in G, and the quotient of G` by its center is
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simple except in finitely many cases where k has two or thee elements

[10]. If f : G Ñ H is a central k-isogeny, then f pG`q “ H`. The

group G` is equal to Gk if k “ k, or if G is k-split and simple con-

nected; it is conjectured to be equal to Gk if G is simply connected and 76

rkkpGq ą 0[10]. It is always equal to its commutator subgroup.

Theorem 1.2. Assume k to be infinite, and G to be almost absolutely

simple, of strictly positive k-rank. Let H be a subgroup of Gk containing

G`. Let k1 be a commutative field, G1 a connected almost absolutely

simple k1-group, and α : H Ñ G1
k1 a homomorphism whose kernel does

not contain G`, and whose image contains G1`. Assume finally that

either G is simply connected or G1 is adjoint. Then there exists an iso-

morphism φ : k
„
ÝÑ k1, ak1-isogeny β : φG Ñ G1, and a homomorphism

γ of H into the center of G1
k1 such that αpxq “ βpφ0pxqq ¨ γpxqpx P Hq.

Moreover, β is central, except possibly in the cases : p “ 3, G, G1 split

of type G2; p “ 2, G, G1 split of type F4; p “ 2, G, G1 split of type Bn,

Cn, where β may be special.

(The special isogenies are those discussed in [3, Exp. 21-24].) In

the following corollary, G and G1 need not satisfy the last assumption of

the theorem.

Corollary 1.3. Assume Gk is isomorphic to G1
k1 . Then k is isomorphic

to k1, and G, G1 are of the same isogeny class.

Let G and G
1
be the adjoint groups of G and G1. The assumption im-

plies the existence of an isomorphism α : G
` „

ÝÑ G1
`

. By the theorem

there is an isomorphism φ of k onto k1 and an isogeny µ of φG onto G1,

whence our assertion.

Remarks 1.4. (i) It may be that the homomorphism γ in (1.2) is al-

ways trivial. It is obviously so if G1 is adjoint, or if H is equal

to its commutator subgroup. Since G` is equal to its commuta-

tor group, this condition will be fulfilled if G is simply connected

and the conjecture Gk “ G` of [10] is true, thus in particular if G

splits over k. Moreover, in that case the assumption G` Ă kerα

would be superfluous.
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(ii) The theorem has been known in many special cases, starting with

the determination of the automorphism group of the projective

linear group [7]. We refer to Dieudonné’s survey [4] for the auto-

morphisms of the classical groups. For split groups over infinite

fields, see also [6].

(iii) Assume k “ k1, G “ G1, G adjoint, and k not to have any automor-77

phism ‰ id. Theorem 1.2 implies then that every automorphism

of Gk is the restriction of an automorphism of G, which is then

necessarily defined over k. In particular, if k is the field of real

numbers R, every automorphism of Gk is continuous in the ordi-

nary topology, as was proved first by Freudenthal [5].

(iv) The assumption rkk G ą 0 is essential for our proof, but it seems

rather likely that similar results are valid for anisotropic groups.

This is the case for many classical groups [4]. Also, Freuden-

thal’s proof is valid for compact groups. In fact, the continuity of

any abstract-group automorphism of a compact semi-simple Lie

group had been proved earlier, independently, by E. Cartan [2]

and van der Waerden [11]. We note also that van der Waerden’s

proof remains valid in the p-adic case.

(v) The group Aut Gk has also been studied when k is finite. See [4] for

the classical groups, and [8] for the general case.

Theorem 1.5. Assume k to be infinite, and G to be almost simple, split

over k. Let G1 be a semi-simple split k1-group, G1
i
p1 ď i ď sq the

almost simple normal subgroups of G1, and α : Gk Ñ G1
k1 a homomor-

phism whose image is Zariski-dense. If Gk “ G`, then G1 is connected.

Assume G1 to be connected and either G simply connected or G1 ad-

joint. Then there exist homomorphisms φi : k Ñ k1 and k1-isogenies

βi : φiG Ñ G1
i
p1 ď i ď sq, which are either central or special, such that

αpxq “
ź

i

pβi ˝ φi,0qpxq, px P Gkq.
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Moreover, Fra ˝ φi ‰ Frb ˝ φ j if p “ 0 and i ‰ j, or if p ‰ 0 and

pa, iq ‰ pb, jqp1 ď i, j ď s; a, b “ 0, 1, 2, . . .q.

The proof of Theorem 1.5 goes more or less along the same lines as

that of Theorem 1.2. In fact, it seems not unlikely that Theorem 1.5 can

be generalized so as to contain Theorem 1.2. We hope to come back to

this question on another occasion.

Example 1.6. The following example, which admits obvious general- 78

izations, shows that the assumption of semi-simplicity made on G1 in

Theorem 1.5 cannot be dropped.

Let G “ SL2, and N be the additive group of 2 ˆ 2 matrices over

k, of trace zero. Let d be a non-trivial derivation of k. Extend it to

a derivation of Nk by letting it operate on the coefficients, and define

h : Gk Ñ Nk by hpgq “ g´1 ¨ dg. Let G1 “ G ¨ N be the semi-direct

product of G and N, where G acts on N by the adjoint representation.

Then g Ñ pg, hpgqq is easily checked to be a homomorphism of Gk into

G1
k

with dense image; clearly, it defines an “abstract” Levi section of G1
k
.

2 Projective representations.

2.1 Assume p ‰ 0. For G semi-simple, let R or RpGq be the set

of plpl “ rank Gq irreducible projective representations whose highest

weight is a linear combination of the fundamental highest weights with

coefficients between 0 and p ´ 1. The following theorem, in a slightly

different formulation, was conjectured by R. Steinberg [9], for k “ k.

We show below how it follows from Theorem 1.5 and [9], (Theorem

1.1).

Theorem 2.2. Assume k to be infinite, p ‰ 0, and G k-split, simple,

adjoint. Let π : G` Ñ PGLpn, kq be an irreducible (not necessarily

rational) projective representation of G`. Then there exist distinct ho-

momorphisms φ j : k Ñ k, and elements π j P Rpφ jGqp1 ď j ď tq, such

that π :
ś

j

π j ˝ φ j,0.

81



82 A. Borel and J. Tits

Proof. Let G1 be the Zariski-closure of πpGkq in PGLn. It is also an ir-

reducible projective linear group, hence its center and also its centralizer

in PGLn, or in the Lie algebra of PGLn, are reduced to teu. Thus G1 is

semi-simple, and its identity component is adjoint. Moreover, by The-

orem 1.5, G1 is connected. By Theorem 1.1 of [9], there exist elements

πa P RpG1q, p1 ď a ď qq such that the identity representation of G1 is

equal to
ś
a

πa ˝ pFraq. Let G1
i
p1 ď i ď sq be the simple factors of G1.

The tensor product defines a bijection of RpG1
1
qˆ¨ ¨ ¨ˆRpG1

sq onto

RpG1q. We may therefore write

πa “
ź

1ďiďs

πa,i, pπai P RpG1
iq; 1 ď a ď qq.

Let now φi : k Ñ k and βi : φiG Ñ Gi be as in Theorem 1.5 (with79

k “ k1). We have then

π “
ź

a,i

πa,i ˝ pFraq0 ˝ βi ˝ φi,0. (1)

But pFraq0 ˝ βi “ βa,i ˝ pFraq0, where βa,i is the transform of βi under

Fra. Let φa,i “ Fra ˝ φi. Since G, Gi are adjoint, the morphisms βa,i are

either isomorphisms or special isogenies. Therefore, taking ([9], §11)

into account, we see that

π1
a,i “ πa,i ˝ βa,i P Rpφa,ipGqq, p1 ď i ď s; 1 ď a ď qq,

and (1) yields

π “
ź

a,i

π1
a,i ˝ pφa,iq0, (2)

which proves the theorem, in view of the fact that the φa,i are distinct by

Theorem 1.5. �

3 Sketch of the proof of Theorem 1.2. In this paragraph,

k is infinite and G is semi-simple, of strictly positive k-rank.

The two following propositions are the starting point of the proofs

of Theorem 1.2 and Theorem 1.5.
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Proposition 3.1. Let G1 be a k1-group, and α : G` Ñ G1
k1 a non-trivial

homomorphism. Let P be a minimal parabolic k-subgroup of G and U

its unipotent radical. Then αpUkq is a unipotent subgroup contained in

the identity component of G1 and αpG`q Ă G10. The field k1 is also of

characteristic p.

Let S be a maximal k-split torus of P. It is easily seen that S ` “
S X G` is dense in S . It follows then from [1, §11.1] that any sub-

group of finite index of S ` ¨ Uk contains elements s P S ` such that

ps,Ukq “ Uk. From this we deduce first that Uk is contained in any

normal subgroup of finite index of S ` ¨ Uk, and then, that it is also con-

tained in the commutator subgroup of any such subgroup. It follows that

αpUkq is contained in the derived group of the identity component of the 80

Zariski closure of αpS ` ¨Ukq. The latter being solvable, this implies that

αpUkq is unipotent.

Let p1 “ char. k1. If p ‰ 0, then Uk is a p-group. Its image is a

p-group and is ‰ teu since α is non-trivial, and G` is generated by the

conjugates of Uk; hence p “ p1. If p “ 0 and p1 ‰ 0, then kerαXUk has

finite index in U, whence easily a contradiction with the main theorem

of [10].

Proposition 3.2. Let G1 be a connected semi-simple k1-group. Let P, S ,

U be as above, P´ the parabolic k-subgroup opposed to P and contain-

ing Z pS q, and U´ “ RupP´q. Let H be a subgroup of Gk containing

G` and α : H Ñ G1
k1 be a homomorphism with dense image. Then the

Zariski-closures Q, Q´ of αpP X Hq and αpP´ X Hq are two opposed

parabolic k1-subgroups, and Q X Q´, RupQq, RupQ´q are the Zariski-

closures of αpZpS q X Hq, αpUkq and αpU´
k

q respectively.

Let M, V , V´ be the Zariski-closures of αpZ pS q X Hq, αpUkq and

αpU´
k

q respectively. The groups V , V´ are unipotent, by Proposition

3.1. The group G is the union of finitely many left translates of U´ ¨ P.

Since αpHq is dense, this implies that V´ ¨ M ¨ V contains a non-empty

open subset of G1. Let T be a maximal torus of M and Y , Y´ be two

maximal unipotent subgroups of M0 normalized by T such that Y´ ¨T ¨Y
is open in M0 (see [1], §2.3, Remarque). Then V´ ¨ Y´ and Y ¨ V are

unipotent subgroups of G1 normalized by T and V´ ¨ Y´ ¨ T ¨ Y ¨ V
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contains a non-empty open set of G1. Consequently ([1], §2.3), T is

a maximal torus of G1, and V´ ¨ Y´, Y ¨ V are two opposed maximal

unipotent subgroups. This shows that Q, Q´ are parabolic subgroups,

M is reductive, connected, and V “ RupQq, (resp. V´ “ RupQ´q). The

groups Q, Q´ are obviously k1-closed. Arguing as in Proposition 3.1,

we may find s P S X H such that ps,Ukq “ Uk, ps,U´
k

q “ U´
k

. It

follows then from ([1], §11.1) that Z pαpsqq0 “ M. Hence M is defined

over k1([1], §10.3). By Grothendieck’s theorem ([1], §2.14), it contains

a maximal torus defined over k1. Hence ([1], §3.13), Q, Q´, V , V´ are

defined over k1.

3.3 We now sketch the proof of Theorem 1.2, assuming for simplic-

ity that G, G1 are adjoint and H “ Gk. Then α is injective. Propo-

sition 3.2, applied to α and α´1, shows that Q, Q´ are two opposed81

minimal parabolic k1-subgroups of G1. Consequently, α induces an iso-

morphism of N pS q{Z pS q onto N pMq{M, i.e. of kWpGq “ kW onto

k1W 1 “ k1WpG1q. For a P kΦpGq, let Ua “ Upaq{Up2aq, where we put

Up2aq “ teu if 2a R kΦ. It may be shown that Up2aq is the center of

Upaq. The groups U´
paq

may be characterized as minimal among the in-

tersections U X wpPqpw P kWq not reduced to teu. It then follows that

α induces a bijection α˚ : kΦpGq Ñ k1ΦpG1q preserving the angles, and

isomorphisms Ua,k
„
ÝÑ Vα˚paq,k1 . The group Ua (resp. Vα˚paq) may be

endowed canonically with a vector space structure such that S (resp. a

maximal k1-split torus S 1 of M) acts on it by dilatations. The next step

is to show that α : Ua,k
„
ÝÑ Vα˚paq,k1 induces a bijection φa between the

algebras of dilatations. Let La be the subgroup of G generated by Upaq

and Up´aq. The assumption that G is almost absolutely simple is equiv-

alent to the existence of one element a P kΦ such that the intersection

Xa of La with the center C of Z pS q is one-dimensional, hence such that

X0
a Ă S . This is the main tool used in showing that αpS kq Ă S 1

k1 , hence

that α maps dilatations by elements of pk˚q2 into dilatations. If p ‰ 2,

this suffices to yield the existence of φa : k
„
ÝÑ k1. In characteristic two,

some further argument, based on properties of groups of rank one, is

needed. It is clear that φa “ φb if b P kWpaq. Using further some facts
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about commutators, it is then easily proved that φa “ φbpa, b P kΦq if

α˚ preserves the lengths. If not, we show that we are in one of the ex-

ceptional cases listed in the theorem, and we reduce it to the preceding

one by use of a special isogeny. Write then φ instead of φa. Replac-

ing G by φG, we may assume k “ k1, φ “ id. It is then shown that

α : Uk
„
ÝÑ Vk is the restriction of a k-isomorphism of varieties. On

the other hand, since G1 is adjoint, Z pS 1q is isomorphic to its image in

GLpbq under the adjoint representation, where b is the sum of Lie alge-

bras of the Va1pa1 P kΦpG1qq. This implies readily that the restriction of

α to U´
k

¨ Pk is the restriction of a k-isomorphism of varieties of U´ ¨ P

onto V´ ¨ Q. The conclusion then follows readily from the fact that G is

a finite union of translates x ¨ U´ ¨ Ppx P Gkq.
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RATIONAL POINTS ON CURVES OF HIGHER

GENUS

By J. W. S. Cassels

The old conjecture of Mordell [3] that a curve of genus greater than 83

1 defined over the rationals has at most one rational point still defies

attack. Recently Dem’janenko [2] has given a quite general theorem

which enables one to prove the existence of only finitely many rational

points in a wide variety of cases. In this lecture I show how his theorem

is an immediate consequence of the basic properties of heights of points

on curves. The details will be published in the Mordell issue of the

Journal of the London Mathematical Society [1].
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A DEFORMATION THEORY FOR SINGULAR

HYPERSURFACES

By B. Dwork

In previous articles [1], [2] we have given a theory for the zeta func-85

tion of non-singular hypersurfaces defined over a finite field. Here we

shall discuss the zeta function of the complement, V 1, in projective n-

space of the algebraic set

X1X2 . . . Xn`1 f pXq “ 0

defined over GFrqs, where f is homogeneous of degree d. Let f be

a lifting of f . We shall make no hypothesis that f be non-singular in

general position and shall study the variation of the zeta function of V

as f varies. This involves a generalization of the non-singular case and

we will review the situation for that case.

1 Notation. In the following the field of coefficients will be a suit-

ably chosen field of characteristic zero. The precise choice of field will

usually be clear from the context.

L˚ = all infinite sums of the form Σdw0“w1`¨¨¨`wn`1
AwX´w, wi ě 0,

@i;

L = all finite sums of the form ΣAwXw, the range of w being as

above;

K “ tξ˚ P L˚|D˚
i
ξ˚ “ 0, i “ 1, 2, . . . , n ` 1u;

D˚
i

“ γ´ ˝ pEi ` πX0Ei f q, Di “ Ei ` πX0Ei f ;

Ei “ Xi

B

BXi

;

πp´1 “ ´p;

γ´Xw “

#
Xw if each wi ď 0,

0 otherwise;
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A Deformation Theory for Singular Hyper-surfaces 89

ΦXw “ Xqw;

α˚ “ γ´ ˝ exptπX0 f pXq “ πX
q

0
f pXqqu ˝ φ 86

K8 “ tξ˚ P L˚|D˚v
i
ξ˚ “ 0, @i,@v large enoughu;

L˚
g = elements of L˚ with suitable growth conditions;

K8
g = elements of K8 with suitable growth conditions;

(suitable growth simply means that α˚ operates.)

R = resultant of p f , E1 f , . . . , En f q;

K = algebraic number field;

OK = ring of integers of K;

f P OKrX1, . . . , Xn`1s;

bpλq is a suitably chosen element of Okrλs.

For each prime p we assume an extension of p to K has been chosen

and that q is the cardinality of the residue class field.

2 Non-singular case. In this paragraph we suppose that f de-

fines a non-singular hypersurface in general position (hence R ‰ 0). In

this case dim K “ dn and if f is non-singular and in general position

(i.e. R ‰ 0) then all elements of K satisfy growth conditions

ord Aw “ ´0plog w0q. (1)

The zeta function of V 1 is given by the characteristic polynomial of

α˚|K. The Koszul complex of D˚
1
, D˚

2
, . . . ,D˚

n`1
acting on L˚ and L˚

g is

acyclic.

If fλ P O
K

rλ, Xs where λ “ pλp1q, . . . , λpµqq is a set of independent

parameters and if Rpλq is not identically zero then as above we may

define Kλ as a Kpλq space and any basis has the form

ξ˚
i,λ “ b´1ΣwG

piq
w pλqX´wpπRpλqq´w0 , i “ 1, 2, . . . , dn, (2)

with G
piq
w P O

K
rλs, i “ 1, . . . , dn and deg G

piq
w ď kw0 for suitable con-

stant k. For λ p-adically close to λ0 we have the map of Kλ0
onto Kλ

(with suitable extension of field of coefficients)

Tλ0,λ “ γ´ ˝ exp πX0p fλ0
´ fλq
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and we have the commutative diagram87

Kλ
q

0

T
λ

q
0
,λq

//

α˚
λ0

��

Kλq

α˚
λ

��
Kλ0 Tλ0 ,λ

// Kλ

where α˚
λ

is defined by modifying the formula for α˚, replacing f pXq
by fλpXq and f pXqq by fλqpXqq. The matrix Cλ of Tλ0,λ (relative to

the bases (2)) is the solution matrix of a system of linear differential

equations (with coefficients in Kpλq)

B

Bλptq
X “ XBptq, t “ 1, 2, . . . , µ, (3)

which is independent of p and λ0. The matrix of α˚
λ

relative to our basis

is holomorphic (as function of λ) in a region

W “ tλ|pRpλqq| ą 1 ´ ǫ, |λ| ă 1 ` ǫu (4)

for some ǫ ą 0. It follows from Krasner that for λ P W, |λ| “ 1, the

zeta function of V
1
λ is determined by (3) and the matrix of α˚

λ0
for one

specialization of λ0 in W. This has seemed remarkable and it is this

situation which we wish to extend to the singular case.

3 Explanation of equation (3) (Katz [5]). K is dual to

L{ΣDiL. Again let w be in Zn`2 such that dw0 “ w1 ` ¨ ¨ ¨ ` wn`1. Let

rL0
be the span of all Xw such that w0 ą 0 (but w1, . . . ,wn`1 may be

negative). It is shown by Katz that

Xw Ñ
pw0 ´ 1q!

p´πqw0´1

dpX1{Xn`1q

pX1{Xn`2q
^ . . . ^

dpXn{Xn`1q

pXn{Xn`1q

Xw

pX0 f qw
,

modulo exact n ´ 1 forms gives an isomorphism

rL0
Σ

n`1
i“1

Di
rL0 » HnpV 1q
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and if f is replaced by fλ then the endomorphismsσt “
B

Bλptq
`πX0

B fλ

Bλptq
88

on the left is transformed into differentaition of the nth de-Rham space

on the right with respect to λptqpt “ 1, 2, . . . , µq. This is valid without

restriction on f but if f is non-singular in general position then by com-

parison of dimensions, he showed that L1{ΣDiL is identified with the

factor space of HnpV 1q modulo an n`1 dimensional subspace consisting

of invariant classes. (L1 is the set of all elements of L with zero constant

term.) This identifies Equation (3) with the “dual” of the Fuchs-Picard

equation of HnpV 1q if we use the fact that (3) is equivalent to the fact

that σt ˝ Tλ0,λ annihilates Kλ0
.

4 Singular case [3]. Here we know finiteness of the Koszul com-

plex for L˚ and for K8 but not in general for L˚
g or for K8

g . However

K8 “ K8
g for almost all primes p and in this way the theory has been

developed only for a generic prime.

We mention that this restriction could be removed if we could show:

Conjecture. A linear differential operator in one variable with polyno-

mial coefficients operating on functions holomorphic in an “open” disk

has finite cokernel. (This is known in the complex case. In the p-adic

case it is known only for disks which are either small enough or large

enough. It is true without restriction if the coefficients are constants.

The conjecture is false for “closed” disks.)

In any case the zeta function of V
1

is given by the action of α˚ on

the factor spaces of the Koszul complex of K8
g . The first term, i.e. the

characteristic polynomial of α˚|Kg dominates the zeta function in that

up to a factor of power of q, the zeros and poles of the zeta function

occur in this factor. In the following we consider the variation of K (and

of the corresponding factor of the zeta function) as f varies.

If we again consider fλ P Krλ, Xs, (but now Rpλq may be identically

zero) then we may again construct Kλ; its dimension N over Kpλq is not 89

less than Nλ0
“ dimKpλ0q Kλ0

for each specialization, λ0, of λ.
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Theorem. Each basis tξ˚
i,λ

uN
i“1

of Kλ is of the form

ξ˚
i,λ “ bpλq´1ΣM

piq
w pλqX´w{pπGpλqqw0 (5)

where Gpλ0q “ 0 if and only if Nλ0
ă N. If Nλ0

“ N then the basis

may be chosen such that bpλ0q ‰ 0. For each pair pi,wq, M
piq
w is a

polynomial whose degree is bounded by a constant multiple of w0.

For almost all p

ord1
ppM

piq
w {pπGqw0q “ 0plog w0q (6)

where the left side refers to the p-adic ordinal extended to Kpλq in a

formal way (generic value on circumference of unit poly disk). We again

have the mapping Tλ0,λ of Kλ0
into Kλ for λ close enough to λ0 and if

Nλ0
“ N then the matrix of this mapping is again a solution matrix of

Equation (3). Also the matrix of α˚
λ

is holomorphic in a region of the

same type as before,

|Gpλq| ą 1 ´ ǫ, |λ| ă 1 ` ǫ,

for some ǫ ą 0 (this region may be empty for a finite set of p) and the

theory of Krasner may again be applied. This completes our statement

of results.

We now discuss equation (5). If fλ is generically singular, choose a

new family, fλ,Γ, which is generically non-singular and which coincides

with fλ when Γ “ 0. We have the mapping T pλ,Γq of Kλ into Kλ,Γ given

by γ´ ˝ exppπX0p fλ ´ fλ,Γqq and for ξ˚ in Kλ we may write

T pλ,Γqξ˚ “ Σ jX jξ
˚
j,λ,Γ (7)

where tξ˚
j,λ,Γ

udn

j“1
is a basis of Kλ,Γ given by (2). The left side of (6)

lies in KpλqrrΓ, X´1ss, X j lies in KpλqrrΓss and ξ˚ may be recovered by

setting Γ “ 0 (i.e. by determining the coefficient of Γ0 on the right side).

Our only information about the vector X “ p. . . , X j, . . .q is that it

satisfies a differential equation

BX

BΓ
“ XB (8)
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when B is rational in λ, Γ. If this equation has (for generic λ) a regular90

singular point at Γ “ 0 (which is not clear since the theorem of Griffiths

need not apply to V 1
λ,Γ

, even though fλ,Γ is generically non-singular) and

if further ΓB “ B0pλq ` ΓB1pλq ` ¨ ¨ ¨ then each formal power series

solution
8ř

s“0

AsΓ
s must have the form (for some h P Krλs, v P Z`)

As “ polynomial {

#
hpλqs

sź

t“v

detptI ´ B0q

+
.

Since B0 is a function of λ this leads to the possibility that the singular

locus (in λ) of the formal solution is an infinite union of varieties,

tdetptI ´ B0q “ 0u8
t“v,

and this would leave the same possibility for the singular locus of the

coefficients of ξ˚. We indicate two methods by which this difficulty

may be overcome.

Method 1. In the above analysis, the hypothesis of regularity of singu-

larity of (8) at Γ “ 0 was not essential but now we use this hypothesis

to conclude (with the aid of §3) that for fixed λ, the zeros of the poly-

nomial detptI ´ B0q (i.e. the roots of the indicial polynomial of (7)) are

related to the eigenvalues of the monodromy matrix for HnpV 1
λ,Γ

q for a

circuit about Γ “ 0. Since this matrix can be represented by a matrix

with integral coefficients which is continuous as function of λ for λ near

a generic point, the conclusion is that the polynomial detptI ´ B0q is

independent of λ. With this conclusion the method of the previous para-

graph easily leads to equation (5). However as noted a (probably not

serious) gap remains in this treatment since the question of regularity of

singularity of (7) is not settled.

Method 2. By means of Equations (6) and (7) together with crude esti-

mates for growth conditions of formal power series solutions of ordinary

differential equations we show for each prime p, a constant cp and an 91

element a0 of Krλs such that each ΣAwX´w in Kλ0
satisfies growth con-

ditions

ord Aw ě ´cpw0 ` 0p1q (9)
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provided

(i) λ0 lies in a certain Zariski open set defined over K,

(ii) |λ0| ď 1,

(iii) a0pλ0q is a unit,

(iv) p is not one of a certain finite set of primes.

Now let λ0 be algebraic over K, in the Zariski open set of (i) and

such that a0pλ0q ‰ 0. We may choose p such that conditions (ii), (iii),

(iv) are satisfied and then for λ1 close enough to λ0 the conditions (i)-

(iv) remain satisfied. We may put upon λ1 the further conditions that

ordpλ1 ´λ0q ą cp and that λ1 be of maximal transcendence degree over

K. We conclude that the dimension of Kλ1
(over Kpλ1q) is N, that the

elements of Kλ1
satisfy (9) and hence that Tλ1,λ0

is defined. We conclude

(since Tλ1,λ0
is injective) that the dimension of Kλ0

is N. From this we

conclude that

Nλ0
“ N

for all λ0 in a Zariski open set. This is the central point (which one

might expect to follow from general principles); from this and equations

(6) and (7) the remainder of the results may be deduced. The details are

explained in [4].
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SOME RESULTS ON ALGEBRAIC CYCLES ON

ALGEBRAIC MANIFOLDS

By Phillip A. Griffiths

93

0 Introduction. The basic problem we have in mind is the classi-

fication of the algebraic cycles on an algebraic manifold V . The first

invariant is the homology class rZs of a cycle Z on V; if Z has codimen-

sion q, then rZs P H2n´2qpV,Zqpn “ dim Vq. By analogy with divisors

(c.f. [18]), and following Weil [22], if rZs “ 0, then we want to asso-

ciate to Z a point φqpZq in a complex torus TqpVq naturally associated

with V . The classification question then becomes two problems :

(a) Find the image of φq (inversion theorem);

(b) Find the equivalence relation given by φq (Abel’s theorem).

We are unable to make substantial progress on either of these. On

the positive side, our results do cover the foundational aspects of the

problem and give some new methods for studying subvarieties of gen-

eral codimension. In particular, the issue is hopefully clarified to the

extent that we can make a guess as to what the answers to (a) and (b)

should be. This supposed solution is a consequence of the (rational)

Hodge conjecture; conversely, if we know (a) and (b) in suitable form,

then we can construct algebraic cycles.

We now give an outline of our results and methods.

For the study of q-codimensional cycles on V , Weil introduced cer-

tain complex tori JqpVq; as a real torus,

JqpVq “ H2q´1pV,Rq{H2q´1pV,Zq.

These tori are abelian varieties. We use the same real torus, but with

a different complex structure (c.f. §§1,2); these tori TqpVq vary holo-

morphically with V (the JqpVq don’t) and have the necessary functorial
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Some Results on Algebraic Cycles on Algebraic Manifolds 97

properties. In general, they are not abelian varieties, but have an r-

convex polarization [9]. However, the polarizing line bundle is positive

on the “essential part” of TqpVq. Also, T1pVq “ J1pVq (= Picard variety 94

of V) and TnpVq “ JnpVq (= Albanese variety of V).

Let Σq be the cycles of codimension q algebraically equivalent to

zero on V . There is defined a homomorphism φq : Σq Ñ TqpVq by

φqpZq “

„ :ş
Γ

ωα

:


/(periods), where Γ is a 2n ´ 2q ` 1 chain with BΓ “ Z

and ω1, . . . , ωm P H2n´2q`1pV,Cq are a basis for the holomorphic one-

forms on TqpVq. Using the torus TqpVq, this mapping is holomorhic

and depends only on the complex structure of V (c.f. §3); this latter

result follows from a somewhat interesting theorem on the cohomology

of Kähler manifolds given in the Appendix following §10. In §3, we also

give the infinitesimal calculation of φ; the transposed differential φ˚ is

essetially the Poincaré residue operator (c.f. (3.8)). For hypersurfaces

pq “ 1q, the Poincaré residue and geometric residue operators coincide,

and the (well-known) solutions to (a) and (b) follow easily.

In §4, we relate the functorial properties of the tori TqpVq to geo-

metric operations on cycles. The expected theorems turn up, but the

proofs require some effort. We use the calculus of differential forms

with singularities. In particular, the notion of a residue operator as-

sociated to an irreducible subvariety Z Ă V appears. Such a residue

operator is given by a C8 form ψ on V ´ Z such that: (1) ψ is of type

p2q ´ 1, 0q ` ¨ ¨ ¨ ` pq, q ´ 1q; (2) Bψ “ 0 and Bψ is a C8 pq, qq form on

V which gives the Poincaré dual DrZs P Hq,qpVq of rZs; and (3) for Γ a

2n ´ k chain on V meeting Z transversely and η a smooth 2q ´ k form

on V , we have the residue formula: lim
ǫÑ0

ş
Γ¨pBTǫq

ψ ^ η “
ş
Γ¨Z

η, where Tǫ

is the ǫ-neighborhood of Z in V . The construction of residue operators

is done using Hermitian differential geometry; the techniques involved

give a different method of approaching the theorem of Bott-Chern [4].

One use of the residue operators is the explicit construction, on the form

level, of the Gysin homomorphism i˚ : HkpZq Ñ H2q`kpVq where we

can keep close track of the complex structure (c.f. the Appendix to §4, 95

section (e)). This is useful in proving the functorial properties.
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In §5 we give one of our basic constructions. If rZs “ 0 in H2n´2q

pV,Zq, and if ψ is a residue operator for Z, we may assume that dψ “ 0.

Then ψ is the general codimensional analogue of a logarithmic integral

of the third kind ([17]). The trouble is that ψ has degree 2q ´ 1 and so

cannot directly be integrated on V to give a function. However, ψ can be

integrated on the set of algebraic cycles of dimension q ´ 1 on V . We

show then that Z defines a divisor DpZq on a suitable Chow variety asso-

ciated to V , and that ψ induces an integral of the third kind on this Chow

variety. The generalization of Abel’s theorem we give is then : DpZq is

linearly equivalent to zero if φqpZq “ 0 in TqpVq. As in the classical

case, the proof involves a bilinear relation between ψ and the holomor-

phic differentials on TqpVq. Also, as mentioned above, the “only if”

part of this statement (which is trivial when q “ 1) depends upon the

Hodge problem. Our conclusion from this, as regards problem (b) is:

The equivalence relation defined by φ should be linear equivalence on a

suitable Chow variety. In particular, we don’t see that this equivalence

should necessarily be rational equivalence on V .

In §6 we give our main result trying to determine the image of φ. To

explain this formula (given by (6.8) in §6) we let tEλu be a holomorphic

family of holomorphic vector bundles over V . We denote by ZqpEλq the

qth Chern class in the rational equivalence ring, so that tZqpEλqu gives

a family of codimension q cycles on V . Our formula gives a method for

calculating the infinitesimal variation of ZqpEλq in TqpVq; it involves

the curvature matrix Φ in Eλ and the Kodaira-Spencer class giving the

variation of Eλ.

The crux of this formula is that it relates the Poincaré and geometric

residues in higher codimension. The proof involves a somewhat delicate

computation using forms with singularities and the curvature in Eλ. In

§8 we give the argument for the highest Chern class of an ample bun-

dle. In §7 it is shown that we need only check the theorem for ample

bundles; however, in general the Chern classes, given by Schubert cy-

cles, will be singular, except of course for the highest one. So, to prove96

our formula in general we give in §9 an argument, which is basically

differential-geometric, but which requires that we examine the singular-

ities of ZqpEλq.
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The reason for proving such a formula is that the Chern classes

ZqpEλq generate the rational equivalence ring on V . So, if we could

effectively use the main result, we could settle problem (a). For exam-

ple, for line bundles pq “ 1q, the mapping in question is the identity;

this gives once more the structure theorems of the Picard variety. How-

ever, we are unable to make effective use of the formula, except in rather

trivial cases, so that our result has more of an intrinsic interest and illu-

minating proof than the applications we would like.

In the last part of §9 we give an integral-geometric argument, using

the transformation properties of the tori TqpVq and the relation of these

properties to cycles, of the main formula (6.8).

Finally, in §10 we attempt to put the problem in perspective. We

formulate possible answers to (a) and (b) and show how these would

follow if we knew the Hodge problem. The construction of algebraic

cycles, assuming the answer to (a) and (b), is based on a generalization

of the Poincaré normal functions (c.f. [19]) and will be given later.

To close this introduction, I would like to call attention to the paper

of David Lieberman [20] on the same subject and which contains several

of the results given below. Lieberman uses the Weil Jacobians [22] to

study intermediate cycles; however, his results are equally valid for the

complex tori we consider. His methods are somewhat different from

the ones used below; many of our arguments are computational whereas

Lieberman uses functorial properties of the Weil mapping and his proofs

have an algebro-geometric flavor.

More specifically, Lieberman proves the functorial properties of the

Weil mapping in somewhat more precise form than given below. Thus

his results include the functorial properties (4.2) (the hard one arising

from the Gysin map) and (4.14) (the easy one using restriction of co-

homology), as well as (4.12) which we only state conjecturally. From 97

the functorial properties and the fact that the Weil mapping is holomor-

phic for codimension one, Lieberman concludes the analyticity of this

mapping (given by (3.2)) in general. (It is interesting to contrast his

conceptual argument with the computational one given in [9].) In sum-

mary, Lieberman’s results include the important general properties of

the intermediate Jacobians given in §1-4 below. Also, the conjectured
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Abelian variety for which the inversion theorem ((a) above) holds was

found by Lieberman using his Poincaré divisor, and the proof of (10.4)

is due to Lieberman.

The reason for this overlap is because this manuscript was done in

Berkeley, independently but at a later time than Lieberman (most of his

results are in his M. I. T. thesis). By the time we talked in Princeton, this

paper was more or less in the present form and, because of the deadline

for these proceedings, could not be rewritten so as to avoid duplication.

Table of Contents

0. Introduction.

1. Complex Tori associated to Algbraic Manifolds.

2. Special Complex Tori.

(In these two sections, we give the basic properties of the

tori TqpVq.)

3. Algebraic Cycles and Complex Tori.

(We give the mapping φq : Σq Ñ TqpVq, show that it is

holomorphic, compute its differential, and examine some

special cases.)

4. Some Functorial Properties.

(The transformation properties of the tori TqpVq are related

to geometric operations on cycles. The residue operators

are used here, and they are constructed in the Appendix to

§4.)

5. Generalizations of the Theorems of Abel and Lefschetz.

(Here we show how the equivalence relation given by φq

relates to linear equivalence on Chow varieties attached to

V . The generalized bilinear relations are given also.)

6. Chern Classes and Complex Tori.

(We define the periods of a holomorphic vector bundle and

give the basic formula (6.8) for computing the infinitesimal

variation of these periods.)
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7. Properties of the Mapping ζ in (6.8).

(Here we discuss the formula (6.8) and prove it for q “
1. It is also shown that it suffices to verify it for ample

bundles.)

8. Proof of (6.4) for the Highest Chern Class.

(This is the basic integral-differential-geometric argument

relating the Poincaré and geometric residues via the Chern

forms.)

9. Proof of (6.8) for the General Chern Classes.

(Here we discuss the singularities of the Chern classes and

show how to extend Poincaré residues and the argument of

§8 to the general case.)

10. Concluding Remarks.

(We formulate what we feel are reasonable solutions to

problems (a) and (b) above, and discuss what is needed

to prove these.)

Appendix: A Theorem on the Cohomology of Algebraic Manifolds.

98

1 Complex Tori associated to Algebraic Manifolds.
Let V be an n-dimensional algebraic manifold and L Ñ V the positive

line bundle giving the polarization on V . The characteristic class ω P

H1,1pVq X H2pV,Zq may be locally written as ω “
i

2
tΣg

αβ
dzα ^ dzβu

where
ř
α,β

g
αβ

dzαdzβ gives a Kähler metric on V . 99

According to Hodge, the cohomology group HspV,Cq decomposes

as a sum:

HspV,Cq “
ÿ

p`q“s

Hp,qpVq,

where Hp,qpVq are the cohomology classes represented by differential

forms of type pp, qq. Under complex conjugation, Hp,qpVq “ Hq,ppVq.
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Consider now the cohomology group

H2n´2q`1pV,Cq “

2n´2q`1ÿ

r“0

H2n´2q`1´r,rpVq (1.1)

and choose a complex subspace S Ă H2n´2q`1pV,Cq such that

S X S “ 0 and S ` S “ H2n´2q`1pV,Cq; (1.2)

S “

2n´2q`1ÿ

r“0

S X H2n´2q`1´r,rpVq (1.3)

(i.e. S is compatible with the Hodge decomposition (1.1));

Hn´q`1,n´qpVq Ă S . (1.4)

Under these conditions we shall define a complex torus TqpS q such that

the space of holomorphic 1-forms on TqpS q is just S . There are three

equivalent definitions of TqpS q.

Definition 1. Choose a basis ω1, . . . , ωm for S and define the lattice

ΓpS q Ă Cm of all column vectors

πγ “

»
—–

ş
γ

ω1

...ş
γ

ωm

fi
ffifl

where γ P H2m´2q`1pV,Zq. To see that ΓpS q is in fact a lattice, we

observe tht rank pH2n´2q`1pV,Zqq “ 2m and so we must show :

If γ1, . . . , γk P H2n´2q`1pV,Zq are linearly independent over R, then

πγ1
, . . . , πγk

are also linearly independent over R. But if

kÿ

j“1

α j

ż

γ j

ωα “

ż

kř
j“1

α jγ j

ωα “ 0
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then also100 ż

kř
j“1

α jγ j

ωα “ 0, since α j “ α j.

This says that
kř

j“1

α jγ j is orthogonal to S ` S “ H2n´2q`1pV,Cq and so

kř
j“1

α jγ j “ 0.

If then TqpS q “ Cm{ΓpS q, then TqpS q is a complex torus associated

to S Ă H2n´2q`1pV,Cq.

Definition 2. Let H2n´2q`1pV,Cq “ H2n´2q`1pV,Cq˚ be the dual space

of H2n´2q`1pV,Cq so that 0 Ñ S Ñ H2n´2q`1pV,Cq dualizes to

0 Ð S ˚ Ð H2n´2q`1pV,Cq. (1.5)

Then H2n´2q`1pV,Zq Ă H2n´2q`1pV,Cq projects onto a lattice ΓpS q Ă
S ˚ and TqpS q “ S ˚{ΓpS q. (Proof that Definition 1 = Definition 2:

choosing a basis ω1, . . . , ωm for S makes S ˚ – Cm by lpωαq “ lα

where “

«
l1
...

lm

ff
. Then πγpωαq “

ş
γ

ωα “ xωα, γy so that ΓpS q is the

same lattice in both cases.)

Definition 3. Let D : H2n´2q`1pV,Cq Ñ H2q´1pV,Cq be the Poincaré

duality isomorphism and 0 Ð S ˚ Ð H2q´1pV,Cq the sequence corre-

sponding to (1.5), ΓpS q Ă S ˚ the lattice corresponding to ΓpS q. Then

TqpS q “ S ˚{ΓpS q.

Observe that if Hr,spVq Ă S , then Hn´r,n´spVq Ă S ˚ and vice-

versa. In particular, S is the dual space of S ˚ by:

xω, φy “

ż

V

ω ^ φ pω P S , φ P S ˚q. (1.6)

Thus S – H1,0pTqpS qq, the space of holomorphic 1-forms on TqpS q. 101
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2 Special Complex Tori. The choice of S Ă H2n´2q`1pV,Cq
depends on the properties we want TqpS q to have; the results on alge-

braic cycles will be essentially independent of S because of condition

(1.4).

Example 1. We let S “
n´qř
r“0

Hn´q`r`1,n´q´r and set TqpS q “ TqpVq.

These tori have been studied in [9], where it is proved that TqpVq varies

holomorphically with V .

The trouble with TqpVq is that it is not polarized in the usual sense;

however, for our purposes we can do almost as well as follows. Recall

[23] that there is defined on H2q´1pV,Cq a quadratic form Q with the

following properties:

paq Q is skew-symmetric and integral on

H2q´1pV,Zq Ă H2q´1pV,Cq;

pbq QpHr,spVq,Hr1,s1pVqq “ 0 if r ‰ r1, s ‰ s1;

pcq QpHr,spVq,Hr,spVqq is nonsingular; and

pdq iQpHq´1,qpVq, Hq´1,qpVqq ą 0.

,
///////.
///////-

(2.1)

It follows that QpS ˚, S ˚q “ 0 and that, choosing a basis ω1, . . . , ωm for

S , there is a complex line bundle L Ñ TqpS q whose characteristic class

ωpLq P H2pTqpS q,Zq X H1,1pTqpS qq is given by

ωpLq “
i

2π

#
mÿ

α,β“1

h
αβ
ωα ^ ωβ

+
,

where the matrix H “ ph
αβ

q “ tiQpeα, eβqu´1 and
ş
V

ωα ^ eβ “ δα
β
.

Diagonalizing H, we may write

ωpLq “
i

2π

#
mÿ

α“1

ǫαω
α ^ ωα

+
, (2.2)

where ǫα “ ˘1 and ǫα “ `1 if ωα P Hn´q`1,n´qpVq. Thus we may say

that :

There is a natural r-convex polarization [10] L Ñ TqpVq (2.3)
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(r = number of α such that ǫα “ ´1) and the characteristic class of L 102

is positive on the translates of Hq´1,qpVq.

Example 2. We let S “
ř
r

Hn´q`2r`1,n´q´2r and set JqpVq “ TqpS q.

This torus is Weil’s intermediate Jacobian [22] and from (2.1) we find :

There is a natural 0-convex polarization (= positive line bundle)

K Ñ JqpVq. (2.4)

Referring to (2.2), we let φα “ ωα if ǫα “ `1, φα “ ωα if ǫα “ ´1.

Then the φα give a basis for H1,0pJqpVqq and

ωpKq “
i

2π

#
mÿ

α“1

φα ^ φ
α

+
. (2.5)

We recall [23] that HspJqpVq,OpKµqq “ 0 for µ ą 0, s ą 0 and

that H0pJqpVq,OpKµqq has a basis θ0, . . . , θN given by theta functions

of weight µ.

Comparison of TqpVq and JqpVq. In [9] it is proved that there is a real

linear isomorphism ξ : TqpVq Ñ JqpVq such that

piq ξ˚φα “ ωα if ǫα “ `1 and ξ˚φα “ ωα if ǫα “ ´1;

piiq ξ˚pKq “ L; and

piiiq if Ωp “ ξ˚pθpq

#
ś

ǫα“´1

ωα

+
, then the Ωp give a basis of

HrpTqpVq,OpLµqq, and HspTqpVq,OpLµqq “ 0 for

µ ą 0, s ‰ r.

,
///////.
///////-

(2.6)

Some Special Cases. For q “ 1, T1pVq “ J1pVq “ H0,1pVq{H1pV,Zq
is the Picard variety of V [22]. For q “ n, TnpVq “ JnpVq “ Hn´1,npVq
{H2n´1pV,Zq is the Albanese variety [3] of V . For q “ 2, T2pVq “
H1,2pVq`H0,3pVq{H3pV,Zq and J2pVq “ H1,2pVq`H3,0pVq{H3pV,Zq;

this is the simplest case where TqpVq ‰ JqpVq.
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Some Isogeny Properties. We let S q Ă H2n´2q`1pV,Cq be the sub-

space corresponding to either TqpVq or JqpVq constructed above, and we

let S ˚
q Ă H2q´1pV,Cq be the dual space. Then we have

H2q´1pV,Cq // S ˚
q

// 0

H2q´1pV,Zq

OO

,
///.
///-

and TqpVq or JqpVq is given as S ˚
q {Γ˚

q where Γ˚
q is the projection of103

H2q´1pV,Zq on S ˚
q .

Suppose now that ψ P Hp,ppVq X H2ppV,Zq. Then, by cup-product,

we have induced :

S ˚
q

ψ // S ˚
p`q

Γ˚
q

ψ //

OO

Γ˚
p`q

OO

(2.7)

which gives ψ : TqpVq Ñ Tp`qpVq or ψ : JqpVq Ñ Jp`qpVq. We

want to give this mapping in terms of the coordinates given in the first

definition of paragraph 1.

Let ω1, . . . , ωm “ tωαu be a basis for S q Ă H2n´2q`1pV,Cq and

φ1, . . . , φk “ tφρu be a basis for S p`q Ă H2n´2p´2q`1pV,Cq. Then

ψ ^ φρ “
ř
α

mραω
α and

ż

γ

ψ ^ φρ “

ż

γ¨Dpψq

φρ, (2.8)

where Dpψq P H2n´2ppV,Zq and γ P H2n´2q`1pV,Zq. Now M “ pmραq
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is a k ˆ m matrix giving ψ : Cm Ñ Ck by ψ
´

:
λα

:

¯
“

˜
:

mř
α“1

mραλ
α

:

¸
and

ψ

˜
:ş

γ

ωα

¸
“

¨
˚̋

:

Σmρα

ş
γ

ωα

:

˛
‹‚“

¨
˚̋

:ş
γ

ψ ^ φρ

:

˛
‹‚“

¨
˚̋

:ş
γ¨Dpψq

φρ

:

˛
‹‚,

so that ψpΓqq Ă Γp`q. It follows that, in terms of the coordinates in

Definition 1, ψ is given by the matrix M.

Now suppose that ψ : H2q´1pV,Cq Ñ H2p`2q´1pV,Cq is an isomor- 104

phism. Then ψ : S ˚
q – S ˚

p`q and ψpΓ˚
q q is of finite index in Γ˚

p`q. Thus

ψ : TqpVq Ñ Tp`qpVq is an isogeny, as is also ψ : JqpVq Ñ Jp`qpVq.

Taking ψ “ ωn´2q`1, where ω is the polarizing class, and using [23],

page 75, we have :

ωn´2q`1 : TqpVq Ñ Tn´q`1pVq, and

ωn´2q`1 : JqpVq Ñ Jn´q`1pVq

+
(2.9)

are both isogenies for q ď

„
n ` 1

2


.

Finally, using [23], Chapter IV, we have :

For p ď n ´ 2q ` 1, the mappings

ωp : TqpVq Ñ Tp`qpVq, and

ωp : JqpVq Ñ Jp`qpVq

+
(2.10)

make TqpVq isogenous to a sub-torus of Tp`qpVq, and similarly for

JqpVq and Jp`qpVq.

Some Functionality Properties. Given a holomorphic mapping f :

V 1 Ñ V , there is induced a cohomology mapping f ˚ : H2q´1pV,Cq Ñ
H2q´1pV 1,Cq with f ˚pS ˚

q pVqq Ă S ˚
q pV 1q, f ˚pΓ˚

q pVqq Ă Γ˚
q pV 1q (using

the obvious notation).

This gives

f ˚ : TqpVq Ñ TqpV 1q, and

f ˚ : JqpVq Ñ JqpV 1q.

+
(2.11)
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On the other hand, if dim V “ n and dim V 1 “ n1, we set k “
n ´ n1 and from f˚ : H2n1´2q`1pV 1,Cq Ñ H2n´2pk`qq`1pV,Cq we find a

mapping

f˚ : TqpV 1q Ñ Tq`kpVq, and

f˚ : JqpV 1q Ñ Jq`kpVq.

+
(2.12)

Suppose now that f : V 1 Ñ V is an embedding so that V 1 is an

algebraic submanifold of V . Then V 1 defines a class rV 1s P H2n´2kpV,Zq105

and DrV 1s “ Ψ P H2kpV,Zq X Hk,kpVq. We assert that :

In (2.11) and (2.12), the composite mapping

f˚ f ˚ : TqpVq Ñ Tq`kpVq is just Ψ : TqpVq Ñ
Tq`kpVq as given by (2.7) (and similarly for JqpVq)

(2.13)

Proof. We have to show that the composite

H2q´1pV,Cq
f ˚

ÝÑ H2q´1pV 1,Cq
f ˚

ÝÑ H2q`2k´1pV,Cq (2.14)

is cup product with Ψ. In homology (2.14) dualizes to

H2q´1pV,Cq
f˚ÐÝ H2q´1pV 1,Cq

f ˚

ÐÝ H2q`2k´1pV,Cq (2.15)

where f ˚ is defined by

H2q`2k´1pV,Cq

D

��

f ˚

// H2q´1pV 1,Cq

H2n´2q´2k`1pV,Cq
f ˚

// H2n´2k´2q`1pV 1,Cq

D´1

OO

(2.16)

If we can show that f˚ f ˚pγq “ rV 1s ¨ γ for γ P H2q`2k´1pV,Cq, thenş
γ

f˚ f ˚φ “
ş

f˚ f ˚γ

φ “
ş

rV 1s¨γ

φ “
ş
γ

Ψ ^ φpφ P H2q´1pV,Cqq, and we are

done. So we must show that, in (2.15), f ˚ is intersection with V 1, and

this a standard result on the Gysin homomorphism (2.16) (c.f. (4.11) and

the accompanying Remark). �
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3 Algebraic Cycles and Complex Tori. Let V “ Vn be

an algebraic manifold, S Ă H2n´2q`1pV,Cq a subspace satisfying (1.2)-

(1.4), and TqpS q the resulting complex torus. We choose a suitable basis

ω1, . . . , ωm for S – H1,0pTqpS qq and let Σq = {set of algebraic cycles

Z Ă V which are of codimension q in V and are homologous to zero}.

Following Weil [22], we define

φq : Σq Ñ TqpS q (3.1)

as follows: if Z P Σq, then Z “ BC2n´2q`1 for some 2n ´ 2q ` 1 chain

C, and we set

φqpZq “

»
———–

...ş
C

ωα

...

fi
ffiffiffifl . (3.2)

Since C is determined up to cycles, φqpZq is determined up to vectors 106»
—–

...ş
γ

ωα

...

fi
ffifl pγ P H2n´2q`1pV,Zqq, and so φq is defined and depends on the

subspace of the closed C8 forms spanned by ω1, . . . , ωm; this restriction

will be removed in the Appendix to §3.

Now, while it should be the case that φq is holomorphic, we shall

be content with recalling from [9] a special result along these lines.

Consider on V an analytic family tZλuλP∆(∆ “ disc in λ-plane) of q-

codimensional algebraic subvarieties Zλ Ă V . Locally on V , tZλuλP∆ is

given by the vanishing of analytic functions

f1pz1, . . . , zn; λq, . . . , flpz1, . . . , zn; λq.

We define φ : ∆Ñ TqpS q by φpλq “ φqpZλ ´ Z0q. Using (1.4), we have

proved in [9] that

φ : ∆Ñ TqpS q is holomorphic and

φ˚tTλp∆qu Ă Hq´1,qpVq.

+
(3.3)
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We may rephrase (3.3) by saying that φ˚ : S q Ñ Tλp∆q˚ is deter-

mined by φ˚|Hn´q`1,n´qpVq (c.f. (1.4)).

Continuous Systems and The Infinitesimal Calculation of φq. Sup-

pose that the Zλ Ă V are all nonsingular and Z “ Z0. We let N Ñ Z be

the normal bundle of Z Ă V , so that we have the exact sheaf sequence

0 Ñ OZpN˚q Ñ Ω1
V|Z Ñ Ω1

Z Ñ 0. (3.4)

Since dim Z “ n ´ q, from (3.4) we have induced the Poincaré residue

operator

Ω
n´q`1

V|Z
Ñ Ω

n´q

Z
pN˚q Ñ 0 (3.5)

as follows : Let φ P Ω
n´q`1

V|Z
; τ1, . . . , τn´q be tangent vectors to Z; η a

normal vector to Z. Lift η to a tangent vector pη on V along Z. Then107

xφ, τ1 ^ . . .^ τn´q b ηy “ xφ, τ1 ^ . . .^ τn´q ^ pηy, where φ P Ωn´q`1

V|Z
.

From (3.5) and Ω
n´q`1

V
Ñ Ω

n´q`1

V|Z
, we have

Hn´qpV,Ω
n´q`1

V
q
ξ˚

ÝÑ Hn´qpZ,Ω
n´q

Z
pN˚qq. (3.6)

On the other hand, in [16] Kodaira has defined the infinitesimal dis-

placement mapping

ρ : T0p∆q Ñ H0pZ,OZpNqq. (3.7)

To calculate φ˚, we have shown in [9] that the following diagram com-

mutes:

Hn´q`1,n´qpVq “ Hn´qpV,Ω
n´q`1

V
q

ξ˚

��

φ˚

uu❧❧❧
❧❧❧

❧❧❧
❧❧❧

❧❧❧
❧❧❧

❧❧

T0p∆q˚

Hn´qpZ,Ω
n´q

Z
pN˚qq “ H0pZ,OZpNqq˚.

ρ˚

ii❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘

(3.8)

In other words, infinitesimally φ is eseentially given by by ξ˚ in (3.6).
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Some Special Cases.

(i) In case q “ n, Z is a finite set of points z1, . . . , zr (Z is a zero-

cycle) and (3.6) becomes:

H1,0pVq
ξ˚

ÝÑ
rÿ

j“1

Tz j
pVq˚ (3.9)

where ξ˚pωq “
rř

j“1

ωpz jq, ω P H1,0pVq being a holomorphic 1-

form on V . In particular, φ˚ is onto if ξ˚ is injective.

(ii) In case q “ 1, Z Ă V is a nonsingular hypersurface. Then

there is a holomorphic line bundle E Ñ V and a section σ P
H0pV,OVpEqq such that Z “ tz P V : σpzq “ 0u. From the exact

sheaf sequence 0 Ñ OV
σ
ÝÑ OVpEq Ñ OZpNq Ñ 0, we find

H0pZ,OZpNqq
ξ

ÝÑ H1pV,OVq, (3.10)

where we claim that ξ in (3.10) is (up to a constant) the dual of ξ˚

in (3.6) (using H0,1pVq “ Hn,n´1pVq˚).

Proof. We may choose a covering tUαu of V by polycylinders such 108

that Z X Uα is given by σα “ 0 where σα is a coordinate function if

Uα X Z ‰ H and σα ” 1 if Uα X Z “ H. Then σα{σβ “ fαβ where

t fαβu P H1pV,O˚
V

q and gives the transition functions of E Ñ V . Let

θ “ tθαu P H0pZ,OZpNqq and ω P Hn,n´1pVq. We want to show that,

for a suitable constant c, we have

ż

V

ξpθq ^ ω “ c

ż

Z

xθ, ξ˚ωy. (3.11)

If Z X Uα ‰ H, we may write ω “ ωα ^ dσα where ωα is a C8pn ´
1, n ´ 1q form in Uα such that ωα|Z X Uα is well-defined. In Uα X Uβ,

ω “ ωα ^ dσα “ ωα ^ dp fαβσβq “ ωασβ ^ d fαβ ` fαβωα ^ dσβ
so that ωα|Z X Uα X Uβ “ f ´1

αβ
ωβ|Z X Uα X Uβ. This means that
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112 P. A. Griffiths

tωα|Z X Uαu gives an pn ´ 1, n ´ 1q form on Z with values in N˚, and

so tθαωα|Z X Uαu gives a global C8pn ´ 1, n ´ 1q form on Z (since

θα “ fαβθβ on Z X Uα X Uβ). It is clear that xθ, ξ˚ωy|Z “ tθαωαu so

that the right hand side of (3.11) is
ż

Z

tθαωαu. (3.12)

On the other hand, choose a C8 section Θ “ tΘαu of E Ñ V with

Θ|Z “ θ. Then BΘ “ σξpθq where ξpθq is a C8p0, 1q form giving

a Dolbeault representative of ξpθq P H1pV,OVq in (3.10). Let Tǫ be

an ǫ-tube aroung Z and ψ “
Θ

σ
. Then the left hand side of (3.11) is

ş
V

ξpθq ^ ω “ lim
ǫÑ0

ş
V´Tǫ

ξpθq ^ ω “ ´ lim
ǫÑ0

ş
BTǫ

ψ ^ ω (since dpψ ^ ωq “

Bpψ^ωq “ ξpθq^ω). Locally ψ^ω “ Θαωα^
dσα

σα
so that lim

ǫÑ0

ş
BTǫ

ψ^

ω “ lim
ǫÑ0

ş
BTǫ

tΘαωαu ^
dσα

σα
“ 2πi

ş
Z

tΘαωα|Z X Uαu “ 2πi
ş
Z

tθαωαu,

which, by (3.12), proves (3.11). �

Appendix to §3 : Some Remarks on the Definition of φq. At the

beginning of Paragraph 3 where φq : Σq Ñ TqpS q was defined, it was

stated that φq depended on the vector space spanned by ω1, . . . , ωm and

not just on S . This is because, if we replace ωα by ωα ` dηα, thenş
C2n´2q`1

ωα ` dηα “
ş
C

ωα `
ş
Z

ηα (Stokes’ Theorem).

One way around this is to use the Kähler metric on V and choose109

ω1, . . . , ωm to be harmonic. This has the disadvantage that harmonic

forms are not generally preserved under holomorphic mappings. How-

ever, if we agree to use the torus TqpVqpS “
ř
r

Hn´q`1`r,n´q´rpVqq

constructed in Example 1 of §2, it is possible to given φq : Σq Ñ TqpVq
purely in terms of cohomology, and so remove this problem in defining

φq.

To do this, we shall use a theorem on the cohomology of algebraic

manifolds which is given in the Appendix below. Let then Ωq be the
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sheaf of holomorphic q-forms on V and Ω
q
c Ă Ωq the subsheaf of closed

forms. There is an exact sequence:

0 Ñ Ω
q
c Ñ Ωq d

ÝÑ Ω
q`1
c Ñ 0 (A3.1)

(Poincaré lemma), which gives in cohomology (c.f. (A.7)):

0 Ñ Hp´1pV,Ω
q`1
c q

δ
ÝÑ HppV,Ω

q
cq Ñ HppV,Ωqq Ñ 0. (A3.2)

From (A3.2), we see that there is a diagram (c.f.(A.16) in the Ap-

pendix):

HrpV,Cq “ HrpV,Cq

Hr´1pV,Ω1
cq

δ

OO

Ă HrpV,Cq

...

OO

...

Hr´qpV,Ω
q
cq

OO

Ă HrpV,Cq

...

δ

OO

...

H0pV,Ωr
cq

OO

Ă HrpV,Cq

0

OO

(A3.3)

Thus tHr´qpV,Ω
q
cqu gives a filtration tFr

qpVqu of HrpV,Cq; and 110

Fr
qpVq{Fr

q`1
pVq – Hr´qpV,Ωqq. It is also true that Fr

qpVq depends holo-

morphically on V [9].

To calculate Fr
qpVq using differential forms, we let As,r´s be the C8

forms of type ps, r ´ sq on V , Br,q “
ř
sěq

As,r´s, and B
r,q
c the d-closed
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forms in Br,q. Then dBr,q Ă B
r`1,q
c , and it is shown in the Appendix (c.f.

(A.18)) that

Fr
qpVq – B

r,q
c {dBr´1,q Ă HrpV,Cq. (A3.4)

We conclude then from (A3.4) that:

A class φ P Fr
qpVq Ă HrpV,Cq is represented by a closed C8

form φ “
ř
sěq

φs,r´spφs,r´s P As,r´s, defined up to forms

dη “
ř
sěq

dηs,r´1´s.

,
///.
///-

(A3.5)

In particular, look at

F
2n´2q`1

n´q`1
pVq –

ÿ

rě0

Hn´q`1`r,n´q´rpVq.

Aφ P B
2n´2q`1,n´q`1
c is defined up to

ÿ

sě0

dηn´q`1`s,n´q´1´s

and ż

Z

ηn´q`1`s,n´q´1´s “ 0

for an algebraic cycle Z of codimension q (Z is of type pn ´ q, n ´ qq).

Thus
ş

C2n´2q`1

φpBC “ Zq depends only on the class of

φ P F
2n´2q`1

n´q`1
pVq Ă H2n´2q`1pV,Cq.

This proves that:

For the torus TqpVq constructed in §3, the mapping

φq : Σq Ñ TqpVq depends only on the complex structure of V.

+

(A3.6)

For the general tori TqpS q we may prove the analogue of (A3.6) as

follows. First, we may make the forms ω1, . . . , ωm subject to Bωα “ 0,
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Bωα “ 0, because S “
ř
r

S X H2n´2q`1´r,rpVq and so ωα “ H pωαq `

dξα (H = harmonic part of ωα) and H pωαq “
ř
r

H pωα
n´q`1`r,n´q´r

q

with BH pωα
n´q`1`r,n´q´r

q “ 0 “ BH pωα
n´q`1`r,n´q´r

q. Thus we

may choose a basis ω1, . . . , ωm for S with Bωα “ 0 “ Bωα.

Second, let η be a C8 form on V with Bdη “ 0 “ Bdη. We claim 111

that dη “ BBξ for some ξ. Since dη “ Bη ` Bη, it will suffice to do

this for Bη. Now write η “ HBη` BB˚GBη` B˚BGBη, where HB is the

harmonic projector for lB “ BB˚ ` B˚B and GB is the corresponding

Green’s operator. Then Bη “ BB˚BGBη. On the other hand, since BB “

0, Bη “ HBpBηq ` BB˚GBBη. But HB “ HB and GB “ GB so that

Bη “ BBpB
˚
GBηq as desired.

Finally, let ω P S satisfy Bω “ 0 “ Bω and change ω to ω ` dη

with Bpω ` dηq “ 0 “ Bpω ` dηq. Then ω ` dη “ ω ` BBξ for some

ξ. We claim that
ş
C

ω “
ş
C

ω` BBξ, where C is a 2n ´ 2q ` 1 chain with

BC “ Z. If ξ “
ř
r

ξn´q`r,n´q´1´r, then

ż

C

BBξ “

ż

C

dpBξq “

ż

Z

pBξqn´q,n´q “

ż

Z

Bξn´q,n´q´1 “ 0

since Z Ă V is a complex submanifold. This proves that:

If, in the definition of φq : Σq Ñ TqpVq in (3.1), we make

the ωα subject to Bωα “ 0 “ Bωα, then φq is well-defined

and depends only on the complex structure of V .

,
.
- (A3.7)

This is the procedure followed by Weil [22].

Remark. A(3.8). Let D “ BB; then D : A
p,q
c Ñ A

p`1,q`1
c and D2 “ 0.

If Hr
D

pVq are the cohomology groups constructed from D “ BB and

Hr
d
pVq the deRham groups, there is a natural mapping:

Hr
DpVq

α
ÝÑ Hr

dpVq. (A3.9)
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4 Some Functorial Properties. (a) Let Wn´k Ă Vn be an

algebraic submanifold of codimension k. We shall assume for the mo-

ment that there is a holomorphic vector bundle E Ñ V , with fibre Cs,

and holomorphic sections σ1, . . . , σs´k`1 of E such that W is given by

σ1 ^ . . . ^ σs´k`1 “ 0. Thus, the homology class carried by W is

the k-th Chern class of E Ñ V (c.f. [5]). Following (2.11) there is a

mapping

TqpVq
i˚
ÝÑ TqpWq (4.1)

induced from H2q´1pV,Cq Ñ H2q´1pW,Cq. We want to interpret this112

mapping geometrically.

For this, let tZλuλP∆ be a continuous system as in paragraph 3. As-

sume that each intersection Yλ “ Zλ ¨ W is transverse so that tYλuλPD

gives a continuous system of W. Letting φqpVqpλq “ φqpZλ ´ Z0q P
TqpVq and φqpWqpλq “ φqpYλ ´ Y0q P TqpWq, we would like to show

that the following diagram commutes:

TqpVq

i˚

��

∆

φqpVq
88rrrrrrrrrrr

φqpWq

&&▲▲
▲▲▲

▲▲▲
▲▲▲

TqpWq

(4.2)

This would interpret (4.1)geometrically as “intersection with W”.

Proof. Let S V “
ř

rě0

Hn´q`1`r,n´q´rpVq Ă H2n´2q`1pV,Cq be the

space of holomorphic 1-forms on TqpVq and ω1, . . . , ωm a basis for

S V . If Cλ is a 2n ´ 2q ` 1 chain on V with BCλ “ Zλ ´ Z0 then

φqpVqpλq “

„ :ş
Cλ

ωα

:


. Similarly, let S W Ă H2n´2q´2k`1pW,Cq be the

holomorphic 1-forms on TqpWq and φ1, . . . , φr a basis for S W . Letting

Dλ “ Cλ ¨ W, BDλ “ Yλ ´ Y0 and φqpWqpλq “

„ :ş
Dλ

φρ

:


.
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Actually, in line with the Appendix to §3, we should use the isomor-

phisms F
2n´2q`1

n´q`1
pVq – S V , F

2n´2k´2q`1

n´k´q`1
pWq – S W (c.f. (A3.5)), and

choose ω1, . . . , ωm and φ1, . . . , φr as bases of

F
2n´2q`1

n´q`1
pVq and F

2n´2k´2q`1

n´k´q`1
pWq

respectively. We assume this is done.

We now need to give i˚ : Cm Ñ Cr explicitly using the above

bases. Let e1, . . . , em P S ˚
V

Ă H2q´1pV,Cq be dual to ω1, . . . , ωm and

f1, . . . , fr P S ˚
W

Ă H2q´1pW,Cq dual to φ1, . . . , φr. Then
ş
V

ωα^eβ “ δα
β
,

ş
W

φρ ^ fσ “ δ
ρ

0
. Now i˚peαq “

rř
ρ“1

mρα fρ for some r ˆ m matrix M, and 113

i˚ : TqpVq Ñ TqpWq is given by M : Cm Ñ Cr (c.f. just below (2.7)).

To calculate M

„ :ş
γ

ωα

:


, we let

i˚ : H2n´2k´2q`1pW,Cq Ñ H2n´2q`1pV,Cq

be the Gysin homomorphism defined by:

H2n´2k´2q`1pW,Cq
i˚ // H2n´2q`1pV,Cq

H2q´1pW,Cq

DW

OO

i˚ // H2q´1pV,Cq.

DV

OO
(4.3)

Then, i˚pφpq “
mř
α“1

mpαω
α, and M

„ :ş
γ

ωα

:


“

«
mř
α“1

mρα

ş
γ

ωα

ff
“

„ :ş
γ

i˚pφρq

:


“

„ :ş
W¨γ

φρ

:


(c.f. (2.16)) where γ P H2n´2q`1pV,Zq is a cycle

on V . This gives the equation

M

»
—–

:ş
γ

ωα

:

fi
ffifl “

»
—–

:ş
γ

i˚φ
ρ

:

fi
ffifl “

»
—–

:ş
W¨γ

φρ

:

fi
ffifl , (4.4)
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for γ P H2n´2q`1pV,Zq. To prove (4.2), we must prove (4.4) for the

chain Cλ with BCλ “ Zλ ´ Z0; this is because, in (4.2),

i˚φqpVqpλq “ M

»
—–

:ş
Cλ

ωα

:

fi
ffifl and φqpWqpλq “

»
—–

:ş
W¨Cλ

φρ

:

fi
ffifl .

Thus, to prove the formula (4.2), we must show :

The Gysin homomorphism

i˚ : H2n´2k´2q`1pW,Cq Ñ H2n´2q`1pV,Cq (4.5)

(given in (4.3)) has the properties :114

i˚ : F
2n´2q´2k`1

n´q´k`1
pWq Ñ F

2n´2q`1

n´q`1
pVq; (4.6)

and ż

C

i˚φ “

ż

W¨C

φ, (4.7)

where C is a 2n ´ 2q ` 1 chain on V with BC “ Z, Z being an algebraic

cycle on V meeting W transversely.

This is where we use the bundle E Ñ V . Namely, it will be proved

in the Appendix to §4 below that there is a C8pk, k ´ 1q form ψ defined

on V ´ W having the properties :

Bψ “ 0 and Bψ “ Ψ is a C8 form on V which represents the

Poincaré dual DpWq P Hk,kpV,Cq X H2kpV,Zq; (4.8)

to give i˚ in (4.6), we let φ P B
2n´2k´2q`1,n´k´q`1
c pWq represent a

class in F
2n´2k´2q`1

n´k´q`1
pWq and choose pφ P B2n´2k´2q`1,n´k´q`1pVq with

pφ|W “ φ. Then dpψ ^ φq is a current on V and

i˚pφq “ dpψ ^ pφq; and (4.9)

lim
ǫÑ0

ż

c¨BTǫ

ψ ^ η “

ż

C¨W

η, (4.10)

where Tǫ is the ǫ-tube around W and η P B2n´2k´2q`1,n´k´q`1pVq. �
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Remark. The composite

F
2n´2k´2q`1

n´k´q`1
pVq

i˚
ÝÑ F

2n´2k´2q`1

n´k´q`1
pWq

i˚ÝÑ F
2n´2q`1

n´q`1
pVq (4.11)

is given by i˚i˚η “ dpψ ^ ηq “ Ψ ^ ηpη P B
2n´2k´2q`1,n´k´q`1
c pVqq;

this should be compared with (2.16) above.

Proof of (4.6) and (4.7) from (4.8)–(4.10). Since i˚pφq “ dpψ^pφq and

ψ ^ pφ P B2n´2q,n´q`1, i˚pφq P B
2n´2q`1,n´q`1
c pVq which proves (4.6)

(c.f. (e) in the Appendix to Paragraph 4).

To prove (4.7), we will have
ż

C

i˚φ “ lim
eÑ0

ż

C´C¨Tǫ

i˚pφq “ pby Stokes’ theoremq

ż

BpC´C¨Tǫq

ψ ^ pφ.

But BpC´C ¨Tǫq “ pZ´Z ¨Tǫq´C ¨BTǫ and so
ş
C

i˚φ “ ´ lim
ǫÑ0

ş
C¨BTǫ

ψ^pφ 115

(since
ş

Z´Z¨Tǫ

ψ ^ pφ “ 0) “
ş

C¨W

φ by (4.10).

Remark 4.12. Actually (4.2) will hold in the following generality. Let

V , V 1 be algebraic manifolds and f : V 1 Ñ V a holomorphic mapping.

Let ΣqpVq be the algebraic cycles Z Ă V of codimension q which are ho-

mologous to zero and similarly for ΣqpV 1q. Then there is a commutative

diagram :

ΣqpVq{S.E.R.

f ˚

��

φqpVq
// TqpVq

F˚

��
ΣqpV 1q{S.E.R.

φqpV 1q
// TqpV 1q

where S.E.R. = suitable equivalence relation (including rational equiva-

lence), and where f ˚pZq “ f ´1pZq “ tz1 P V 1 : f pzq P Vu in case Z is

transverse to f pV 1q.

(b) Keeping the notation and assumptions of (4a) above, following

(2.12) we have:

i˚ : TqpWq Ñ Tq`kpVq, (4.13)
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120 P. A. Griffiths

and we want also these maps geometrically. For this, let tYλuλP∆ be

a continuous system of subvarieties Yλ Ă W of codimension q. Then

Yλ Ă V has codimension k ` q and so we may set

φq`kpVqpλq “ φqpYλ´Y0q P Tq`kpVq, φqpWqpλq “ φqpYλ´Y0q P TqpWq.

We assert that the following diagram commutes:

TqpWq

i˚

��

∆

φqpWq
88qqqqqqqqqqqq

φq`kpVq &&▼▼
▼▼▼

▼▼▼
▼▼▼

▼

Tq`kpVq

(4.14)

This interprets i˚ in (4.13) as “inclusion of cycles lying on W into V”.116

Proof. As in the proof of (4.2), we choose bases ω1, . . . , ωm for S V Ă
H2n´2k´2q`1pV,Cq and φ1, . . . , φr for S W Ă H2n´2k´2q`1pW,Cq. Then

φqpWqpλq “

»
—–

:ş
Cλ

φρ

:

fi
ffifl and φq`kpVqpλq “

»
—–

:ş
Cλ

ωα

:

fi
ffifl

where BCλ “ Yλ ´ Y0.

We now need i˚ explicitly. Let e1, . . . , em be a dual basis in S ˚
V

Ă
H2q`2k´1pV,Cq to ω1, . . . , ωm and f1, . . . , fr in S ˚

W
Ă H2q´1pW,Cq be a

dual basis to φ1, . . . , φr. Then i˚ in (4.14) is induced by the Gysin homo-

morphism (4.6) i˚ : H2q´1pW,Cq Ñ H2q`2k´1pV,Cq. Write i˚p fρq “ř
α“1

mαρeα so that M “ pmαρq is an m ˆ r matrix M : Cr Ñ Cm which

gives i˚TqpWq Ñ Tq`kpVq.

Now MφqpWqpλq “

«
:

rř
ρ“1

mαρ

ş
C

φρ

:

ff
so that, to prove (4.14), we

ż

γ

ωα “
rÿ

ρ“1

mαρ

ż

γ

φρ (4.15)

120



Some Results on Algebraic Cycles on Algebraic Manifolds 121

for γ a suitable 2n ´ 2k ´ 2q ` 1 chain on W. Since

i˚ : H2n´2k´2q`1pV,Cq Ñ H2n´2k´2q`1pW,Cq

satisfies
ş
W

i˚pωq ^ φ “
ş
V

ω ^ i˚φ, we have i˚ωα “
rř

ρ“1

mαρφ
ρ in

H2n´2k´2q`1pW,Cq. On the other hand, since i˚ satisfies i˚tFr
qpVqu Ă

Fr
qpWq, we have, as forms

i˚ωα “
rÿ

ρ“1

mαρφ
ρ ` dµαpµα P B2n´2k´2q`1,n´k´q`1pWqq

so that
ş

Cλ

ωα “
rř

ρ“1

mαρ

ş
Cλ

φρ as needed. �

Remark. To prove (4.14) for JqpWq and Jq`kpVq, we use that i˚B “ Bi˚ 117

and i˚B “ Bi˚ on the form level, so that i˚ωα “
rř

ρ“1

mαρφ
ρ ` BBξα and

then, as before, ż

Cλ

ωα “
rÿ

ρ“1

mαρ

ż

Cλ

φρ.

(c) We now combine (a) and (b) above. Thus let W Ă V be a

submanifold of codimension k and tZλuλP∆ be a continuous system of

codimension q on V such that Zλ ¨ W “ Yλ is a proper intersection.

Then tZλuλP∆ defines φq : ∆Ñ TqpVq and tYλuλP∆ defines φq`k : ∆Ñ
Tq`kpVq. Combining (4.2) and (4.14), we find that the following is a

commutative diagram:

TqpVq

i˚

��
∆

φqpWq
//

φq`kpVq
&&▲▲

▲▲▲
▲▲▲

▲▲▲
▲

φqpVq
88rrrrrrrrrrrr
TqpWq

i˚

��
Tq`kpVq

(4.16)

121



122 P. A. Griffiths

Combining (2.13) with (4.16), we have the following commutative dia-

gram:

TqpVq

Ψ

��

∆

φq

88qqqqqqqqqqqq

φq`k &&▼▼
▼▼▼

▼▼▼
▼▼▼

▼

Tq`kpVq

(4.17)

whereΨ P Hk,kpVqXH2kpV,Zq is the Poincaré dual of W P H2n´2kpV,Zq
(c.f. (2.7)).

Remark. Actually, we see that (4.17) holds for all algebraic cycles

Wn´k Ă Vn, provided we assume a foundational point concerning the

suitable equivalence relation (= S.E.R.) in Remark 4.12. Let ΣqpVq be

the algebraic cycles of codimension q which are homologous to zero,118

and assume that S.E.R. has the property that, for any Wn´k Ă Vn, the

mapping ΣqpVq{S.E.R.
W
ÝÑ Σq`kpVq{S.E.R. is defined and WpZq “ W ¨

Z if the intersection is proper pZ P ΣqpVqq. Then we have that: The

following diagram commutes:

ΣqpVq{S.E.R.

W

��

φq // TqpVq

Ψ

��

pΨ “ DpWqq.

Σq`kpVq{S.E.R.
φq`k // Tq`kpVq

(4.18)

Proof. The proof of (4.17) will show that (4.18) commutes when W is

a Chern class of an ample bundle [11]. However, by [12] the Chern

classes of ample bundles generate the rational equivalence ring on V ,

so that (4.18) holds in general. �
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Appendix to Paragraph 4. Let E Ñ V be a holomorphic vector bundle

with fibre Ck, andσ1, . . . , σk´q`1 holomorphic cross-sections of E Ñ V

such that the subvariety W “ tσ1 ^ . . . ^ σk´q`1 “ 0u is a generally

singular subvariety Wn´q Ă Vn of codimension q. (Note the shift in

indices from §4.) Then the homology class W P H2n´2kpV,Zq is the

Poincaré dual of the qth Chern class cq P H2qpV,Zq (c.f. [11]). We shall

prove: There exists a differential form ψ on V such that

ψ is of type pq, q ´ 1q, is C8 in V ´ W, and Bψ “ 0; (A4.1)

Bψ “ dψ is C8 on V and represents cq (via deRham); (A4.2)

ψ has a pole of order 2q ´ 1 along W and, if ω is any closed

2n ´ 2q form on V,

ż

V

ca ^ ω “ lim
ǫÑ0

ż

BTǫ

ψ ^ ω where Tǫ Ă V is

the ǫ-tubular neighbourhood around W. (A4.3)

Proof. For a k ˆ k matrix A, define PqpAq by:

det

ˆ
i

2π
A ` tI

˙
“

kÿ

q“0

PqpAqtk´q. (A4.4)

Let PqpA1, . . . , Aqq be the invariant, symmetric multilinear form ob- 119

tained by polarizing PqpAq (for example,

PkpA1, . . . , Akq “ 1{k!
ÿ

π1,...,πk

detpA1
π1
, . . . , Ak

πk
q

where Aαπα is the αth column of Aπα ; cf. (6.5) below). Choose an Hermi-

tian metric in E Ñ V and let Θ P A1,1pV,HompE,Eqq be the curvature

of the metric connection. Then (c.f. [11]):

cq P H2qpV,Cq is represented by the differential form

PqpΘq “ PqpΘ, . . . ,Θq. (A4.5)

�
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124 P. A. Griffiths

What we want to do is to construct ψ, depending on σ1, . . . , σk´q`1

and the metric, such that (A4.1)–(A4.3) are satisfied. The proof pro-

ceeds in four steps.

(a) Some Formulae in Local Hermitian Geometry. Suppose that Y

is a complex manifold (Y will be V ´W in applications) and that E Ñ Y

is a holomorphic vector bundle such that we have an exact sequence :

0 Ñ S Ñ E Ñ Q Ñ 0 (A4.6)

(in applications, S will be the trivial sub-bundle generated by σ1, . . . ,

σk´q`1). We assume that there is an Hermitian metric in E and let

D be the metric connection [11]. Let e1, . . . , ek be a unitary frame for

E such that e1, . . . , es is a frame for S. Then Deρ “
kř

σ“1

θαρeσ where

θσρ ` θ
ρ

σ “ 0. By the formula DSeα “
sř

β“1

θ
β
αeβpα “ 1, . . . , sq, there is

defined a connection DS in S, and we claim that DS is the connection

for the induced metric in S (c.f. [11], §1.d).

Proof. Choose a holomorphic section epzq of S such that ep0q “ eαp0q
(this is over a small coordinate neighborhood on Y). Then D2e “ 0

since D2 “ B. Thus, writing epzq “
sř

α“1

ξαeα, 0 “ D2e “
sř

α“1

Bξαeα `

sř
α,β“1

ξαθ
β2

α eβ `
kř

µ“s`1

sř
α“1

ξαθ
µ2

α eµ. At z “ 0, this gives
sř

β“1

pBξβp0q `

θ
β2

α qeβ `
kř

µ“s`1

θ
µ2

α eµ “ 0. Thus θ
µ2

α “ 0 and, since pD2 ´ D2
S
qeα “

ř
µ“s`1

θ
µ2

α eµ, D2
S

“ B. By uniqueness, DS is the connection of the in-120

duced metric in S. �

Remark. (A4.7) Suppose that S has a global holomorphic frame

σ1, . . . , σs. Write σα “
sř

β“1

ξ
β
αeβ. From 0 “ Bσα “ D2σα “

sř
β“1

pBξβα`
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sř
γ“1

ξ
γ
αθ

β2

γ qeβ, we get Bξ ` θ2
S
ξ “ 0 or θ2

S
“ ´Bξξ´1. This gives

θS “ tξ
´1

Bξ ´ Bξξ´1. (A4.8)

Now write θ “
´
θ1

1
θ1

2

θ2
1
θ2

2

¯
where θ1

1
“ pθα

β
q, θ2

1
“ pθµαq, etc. Then

θ22

1
“ 0 “ θ11

2
(since θ2

1
` tθ

1

2 “ 0). Let φ “
´

0 ´θ1
2

´θ2
1

0

¯
and pθ “ θ`φ “

´
θ1

1
0

0 θ2
2

¯
. Then θ and pθ give connections D and pD in E with curvatures

Θ and pΘ. Setting θt “ θ ` tφ, we have a homotopy from θ to pθ with
•

θt “ φ

ˆ
•

θt “
Bθt

Bt

˙
.

Now let PpAq be an invariant polynomial of degree q (c.f. §6 below)

and PpA1, . . . , Aqq the corresponding invariant, symmetric, multilinear

from (c.f. (6.5) for an example). Thus PpAq “ PpA, . . . , Alooomooon
q

q. Set

Qt “ 2

qÿ

j“1

Ppθt, . . . , φ
1
j, . . . ,Θtq, (A4.9)

and define Ψ1 by:

Ψ1 “

1ż

0

Qtdt. (A4.10)

What we want to prove is (c.f. [11], §4):

Ψ1 is a C8 form of type pq, q ´ 1q on Y satisfying

BΨ1 “ 0, BΨ1 “ PpΘq ´ PppΘq.

+
(A4.11)

Proof. It will suffice to show that

BQt “ 0, and (A4.12)

•

PpΘtq “ BQt. (A4.13)
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126 P. A. Griffiths

By the Cartan structure equation, Θt “ dθt ` θt ^ θt “ dpθ` tφq ` 121

pθ ` tφq ^ pθ ` tφq “ dθ` θ ^ θ` tpdφ` φ^ θ` θ ^ φq ` t2φ^ φ “
Θ` tDφ ` t2φ ^ φ. Now

φ^φ “

ˆ
θ1

2
θ2

1
0

0 θ2
1
θ1

2

˙
and Dφ “

ˆ
0 ´Θ1

2

´Θ2
1

02

˙
`2

ˆ
´θ1

2
θ2

1
0

0 θ2
1
θ1

2

˙
.

This gives

Θt “ Θ` t

ˆ
0 ´Θ1

2

´Θ2
1

0

˙
` pt2 ´ 2tq

ˆ
θ1

2
θ2

1
0

0 θ2
1
θ1

2

˙
; (A4.14)

D1φ1 “ 0; and (A4.15)

D2φ1 “

ˆ
0 0

´Θ2
1

0

˙
`

ˆ
´θ1

2
θ2

1
0

0 ´θ2
1
θ1

2

˙
(A4.16)

It follows that Θt is of type p1, 1q and so Qt is of type pq, q ´ 1q, as is

Ψ1.

By symmetry, to prove (A4.12) it will suffice to have

BPpΘt, . . . ,Θt, φ
1q “ 0.

Let Dt “ D1
t `D2

t be the connection corresponding to θt. Then D1
tΘt “ 0

(Bianchi identity) and BPpΘt, . . . ,Θt, φ
1q “ ΣPpΘt, . . . ,D

1
tΘt, . . . ,Θt, φ

1q
`PpΘt, . . . ,Θt,D

1
tφ

1q “ PpΘt, . . . ,Θt,D
1
tφ

1q. But D1
tφ

1 “ D1φ1`trφ, φ1s1

“ 0 ` trφ1, φ1s “ 0 by (A4.15). This proves (A4.12).

We now calculate

BPpΘt, . . . , φ
1, . . . ,Θtq “ ΣPp.,D2

t Θt, . . . , φ
1, . . . ,Θtq`

`PpΘt, . . . ,D
2
t φ

1, . . . ,Θtq ` ΣPpΘt, . . . , φ
1, . . . ,D2

t Θt, .q

“ PpΘT , . . . ,D
2
t φ

1, . . . ,Θtq

(since D2
t ΘT “ 0 by Bianchi). Then we have D2

t φ
1 “ D2φ1 ` trφ, φ1s2 “

pby (A4.16)q

ˆ
0 0

´Θ2
1

0

˙
` pt ´ 1q

ˆ
θ1

2
θ2

1
0

0 θ2
1
θ1

2

˙
. But, by (A4.14),
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•

Θt “

ˆ
0 ´Θ1

2

´Θ2
1

0

˙
` 2pt ´ 1q

ˆ
θ1

2
θ2

1
0

0 θ2
1
θ1

2

˙
,

so that

2D2
t φ

1 ´
•

ΘT “

ˆ
0 Θ1

2

´Θ2
1

0

˙
“ rπ,Θs, (A4.17)

where π “
`

1 0
0 0

˘
. Using (A4.17), BQt ´

•

PpΘtq “ Σt2PpΘt, . . . ,D
2
t φ

1,

. . . ,Θtq ´ PpΘt, . . . ,
•

Θt, . . . ,Θtqu “ ΣPpΘt, . . . , rπ,Θts, . . . ,Θtq “ 0.

This proves (A4.13) and completes the proof of (A4.11). �

Return now to the form Qt defined by (A4.9). Since ΘT “ Θ ` 122

tDφ ` t2φ ^ φ, we see that Qt is a polynomial in the differential forms

Θ
ρ
σ, θ

µ
α, θαµp1 ď ρ, σ ď k; 1 ď α ď s; s ` 1 ď µ ď kq. Write Qt ” 0plq

to symbolize that each term in Qt contains no more than l ´ t terms

involving the θ
µ
α and θαµ . We claim that

Qt ” 0p2q ´ 1q. (A4.18)

Proof. The term of highest order (i.e. containing the most θ
µ
α and θαµ ) in

Qt is pt2{2qq´1ΣPprφ, φs, . . . , φ1, . . . , rφ, φsq. Now, by invariance,

Pprφ, φs, . . . , φ1, . . . , rφ, φsq “ ´Ppφ, rφ, φs, . . . , rφ, φ1s, . . . , rφ, φsq

“ ´
1

2
Ppφ, rφ, φs, . . . , rφ, φsq

since rφ, rφ, φss “ 0 and rφ, φ1s “ 1
2
rφ, φs. But, by invariance again,

Ppφ, rφ, φs, . . . , rφ, φsq “ 0. Since all other terms in Qt are of order

2q ´ 2 or less, we obtain (A4.18).

It follows from (A4.10) that

Ψ1 ” 0p2q ´ 1q. (A4.19)

(b) Some further formulae in Hermitian geometry. Retaining the

situation (A4.6), we have from (A4.11) and (A4.19) that:

PpΘq ´ PppΘq “ BΨ1 where BΨ1 “ 0,Ψ1 ” 0p2q ´ 1q. (A4.20)
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Now suppose that S has fibre dimension k ´ q ` 1 and that:

S has a global holomorphic frame σ1, . . . , σk´q`1. (A4.21)

Let L1 Ă S be line bundle generated by σ1 and S1 “ S{L1. Then

σ2 gives a non-vanishing section of S1 and so generates a line bundle

L2 Ă S1. Continuing, we get a diagram:

0 ÝÑ L1 ÝÑ S ÝÑ S1 ÝÑ 0

0 ÝÑ L2 ÝÑ S1 ÝÑ S2 ÝÑ 0
...

0 ÝÑ Lk´q ÝÑ Sk´q´1 ÝÑ Sk´q ÝÑ 0

0 ÝÑ Lk´q`1 ÝÑ Sk´q ÝÑ 0

,
/////.
/////-

(A4.22)

All the bundles in (A4.22) have metrics induced from S; as a C8 bundle,123

S – L1 ‘ ¨ ¨ ¨ ‘ Lk´q`1 (this is actually true as holomorphic bundles,

but the splitting will not be this orthonormal one).

Now suppose that we use unitary frames pe1, . . . , ek´q`1q for S where

eα is a unit vector in Lα. If θS “ pθα
β
q is the metric connection in S, then

θαα gives the connection of the induced metric in Lα (c.f. (a) above).

This in turn gives a connection

γS “

»
—–
γ1

1
0

. . .

0 γ
k´q`1

k´q`1

fi
ffifl pγαα “ θααq with curvature

ΓS “

»
—–
Γ1

1
0

. . .

0 Γ
k´q`1

k´q`1

fi
ffifl

in S. Now the connection pθ “ θS ‘ θQ in E has curvature pΘ “
”
ΘS 0
0 ΘQ

ı
.

We let Γ “
”
ΓS 0
0 ΘQ

ı
be the curvature of the connection

”
γS 0
0 θQ

ı
in E.

Then the same argument as used in (a) to prove (A4.20), when iterated,

gives

PppΘq ´ PpΓq “ BΨ2 where BΨ2 “ 0 and Ψ2 ” 0p2qq. (A4.23)
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The congruence Ψ2 ” 0p2qq is trivial in this case since degΨ2 “
2q ´ 1. Adding (A4.20) and (A4.23) gives:

PpΘq ´ PpΓq “ BpΨ1 ` Ψ2q. (A4.24)

The polynomial PpAq is of degree q, and we assume now that:

PpAq “ 0 if A “

ˆ
0 0

0 A1

˙
where A1 is a pq ´ 1q ˆ pq ´ 1q matrix.

(A4.25)

�

We claim then that

PpΓq “ BΨ3 where BΨ3 “ 0 and Ψ3 ” 0p2qq. (A4.26)

Proof. Each line bundle Lα has a holomorphic section σα “ |σα|eα.

From 0 “ Bσα “ B|σα|eα ` |σα|θα
2

α eα, we find θα
2

α “ ´B log |σα| and

θαα “ pB ´ Bq log |σα|, and (A4.27)

Γαα “ 2BB log |σα|. (A4.28)

Now 124

PpΓq “ P pΓS ` ΘQ, . . . ,ΓS ` ΘQqloooooooooooooomoooooooooooooon
q

“
ÿ

r`s“q
rą0

ˆ
q

r

˙
Pp ΓSloomoon

r

; ΘQloomoon
s

q

(since PpΘQ, . . . ,ΘQlooooomooooon
q

q “ 0 by (A4.25)). Let

ξ “ 2

»
————–

θ11

1
. . . 0 0

0 θ
k´q`11

k´q`1

0 θ
µ
ν

fi
ffiffiffiffifl
.
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Then D1
γξ “ 0 where γ is the connection

»
———–

θ1
1

. . . 0

θ
k´q`1

k´q`1

0 θ
µ
ν

fi
ffiffiffifl

in L1 ‘ ¨ ¨ ¨ ‘ Lk´q`1ΘQ. Also D2
γξ “

`
ΓS 0
0 0

˘
. Set

Ψ3 “
ÿ

r`s“q
rą0

ˆ
q

r

˙
Ppξ, ΓSloomoon

r´1

; ΘQloomoon
s

q. (A4.29)

Then BΨ3 “ 0 since D1
γξ “ 0 “ D1

γΓS “ D1
γΘQ, and

BΨ3 “
ÿ

r`s“q
rą0

ˆ
q

r

˙
Pp ΓSloomoon

r

; ΘQloomoon
s

q “ PpΓq

since D2
γξ “ ΓS, D2

γΓS “ 0 “ D2
γΘQ. This shows that Ψ3 defined by

(A4.29) satisfies (A4.26).

Combining (A4.24) and (A4.26) gives:

PpΘq “ BΨ where Ψ “ Ψ1 `Ψ2 `Ψ3, BΨ “ 0,Ψ ” 0p2qq. (A4.30)

LetΨ be given as just above by (A4.30);Ψ is a form of type pq, q´1q
on Y . Suppose we refine the congruence symbol ” so that η ” 0plq

means that η contains at most l “ 1 terms involving θ11

1
, θ

k´2`q

1
, . . . , θk

1
,

θ1
k´q`2

, . . . , θ1
k
. Then, for some constant c,

Ψ ” cθ11

1 θ
k´2`q

1
. . . θk

1θ
1
k´q`2 . . . θ

1
kp2q ´ 1q. (A4.31)

We want to calculate c when PpAq “ PqpAq corresponds to the qth Chern

class (c.f. (A4.4)). By (A4.19), Ψ1 ” 0p2q ´ 1q and an inspection of

(A4.9) shows that Ψ2 ” 0p2q ´ 1q. Thus Ψ ” Ψ3p2q ´ 1q.
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To calculate ΓS, we have Γαα “ dθαα “ dθαα `
kř

ρ“1

θαρ ^ θ
ρ
α ´

kř
ρ“1

θαρ ^

θ
ρ
α “ Θαα ´

kř
ρ“1

θαρ ^ θ
ρ
α. Thus Γαα ” 0p0q for α ą 1 and

Γ1
1 ” ´

kÿ

µ“k´q`2

θ1
µ ^ θ

µ

1
p0q.

It follows that Pqpξ, ΓSloomoon
r´1

ΘQloomoon
s

q ” 0p2q ´ 1q if r ´ 1 ą 0, and so 125

Ψ3 ” Pqpξ, ΘQloomoon
q´1

qp2q ´ 1q.

Now, by the definition of

Pq, Pqpξ, ΘQloomoon
q´1

q “ pi{2πqqp1{qqθ11

1 detpΘQq.

But pΘQqµν “ Θµν`
k´q`1ř
α“1

θ
µ
α^θαν , so that pΘQqµν ” θ

µ

1
^θ1

νp0q. Combining

these relations gives Ψ3 ” pi{2πqqp1{qqθ11

1
detpθµ

1
θ1
νqp2q ´ 1q or

Ψ3 ”

ˆ
1

2πi

˙q

p´1qqpq´1q{2θ11

1 θ
k´q`2

1
. . . θk

1θ
1
k´q`2 . . . θ

1
kp2q ´ 1q.

(A4.32)

Combining (A4.30) and (A4.32) gives

PqpΘq “ BΨ where Bψ “ 0 (A4.33)

and

Ψ ” ´Γpqqθ11

1
θ

k´q`2

1
. . . θk

1
θ1

k´q`2
. . . θ1

k
p2q ´ 1q

pΓpqq “ p1{2πiqp´1qqpq´1q{2q.

+
(A4.34)

�
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(c) Reduction to a local problem. Return now to the notation and

assumptions at the beginning of the Appendix to §4. Taking into account

(A4.6), (A4.21), (A4.30), and letting Y “ V ´ W, we have constructed

a pq, q ´ 1q form ψ on V ´ W such that Bψ “ 0, Bψ “ PqpΘq “ cq, and

such that ψ ” 0p2qq. This proves (A4.1), (A4.2), and, in the following

section, we will interpret ψ ” 0p2qq to mean that ψ has a pole of order

2q ´ 1 along W.

Let ω be a closed 2n ´ 2q form on V and Tǫ the ǫ-tube around W.

Then
ş
V

cq ^ ω “ lim
ǫÑ0

ş
V´Tǫ

cq ^ ω “ lim
ǫÑ0

´
ş

BTǫ

ψ^ ω since dpψ^ ωq “

PqpΘq ^ ω. This proves (A4.3).

For the purposes of the proof of (4.2), we need a stronger version of

(A4.3); namely, we need that

lim
ǫÑ0

´

ż

C¨BTǫ

ψ ^ η “

ż

C¨W

η, (A4.35)

where η P B2n´2k´2q`1,n´k´q`1pVq and C is the 2n ´ 2q ` 1 chain126

on V used in the proof of (4.2). In other words, we need to show that

integration with respect to ψ is a residue operator along W. Because

both sides of (A4.35) are linear in η, we may assume that η has support

in a coordinate neighborhood. Also, because ψ will have a pole only

of order 2q ´ 1 along W, it will be seen that both sides of (A4.35) will

remain unchanged if we take out of Wn´q an algebraic hypersurface

Hn´q´1 which is in general position with respect to C. Thus, to prove

(A4.35), we may assume that:

η has support in a coordinate neighborhood on V

where σ2 ^ . . . ^ σk´q`2 ‰ 0, σ1 ‰ 0.

ff
(A4.36)

This is a local question which will be resolved in the next section.

We note in passing that (4.9) follows from (4.10) when C is a cycle

on V , so that (4.2) will be completely proved when (A4.35) is proved in

the local form (A4.35) above.
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(d) Completion of the proof. Over Cn consider the trivial bundle

E “ Cn ˆ Ck in which we have a Hermitian metric phρσpzqq (z “

«
z1

...
zn

ff

are coordinates in Cn; 1 ď ρ, σ ď k). We suppose that there are

holomorphic sections σ2, . . . , σk´q`1 generating the sub-bundle S1 “
Cn ˆ tOq ˆ Ck´qu of E, and let σ1 be a holomorphic section of the

form σ1pzq “

»
———–

z1

...
zq

0
...
0

fi
ffiffiffifl. Then the locus σ1 ^ . . . ^ σk´q`1 “ 0 is

given by z1 “ . . . “ zq “ 0, so that we have the local situation

of (A4.6) (S is generated by S1 and σ1 on Cn ´ Cn´q), (A4.21) and

(A4.36). We consider unitary frames e1, . . . , ek for E where e1 “
σ1

|σ1|
,

and e2, . . . , ek´q`1 is a frame for S1. Thus e1, . . . , ek´q`1 is a frame for

S|Cn ´ Cn´q.

Write De1 “
kř

ρ“1

θ
ρ

1
eρ (θ

ρ

1
is of type p1, 0q for ρ ą 1) and set Ω “ 127

´Γpqqθ11

1
θ

k´q`2

1
. . . θk

1
θ1

k´q`2
. . . θ1

k
. If η is a compactly supported 2n ´

2q form on Cn, we want to show:
ż

Cn´q

η “ ´ lim
ǫÑ0

ż

BTǫ

Ω^ η, (A4.37)

where Tǫ is an ǫ-ball around Cn´q Ă Cn. Having done this, we will, by

almost exactly the same argument, prove (A4.35).

Using the metric connection, we write Deρ “
kř

σ“1

θσρ eσ. Then the

1-forms θ
ρ
α are smooth on Cn for ρ ‰ 1, σ ‰ 1. If we can show that the

θ
ρ

1
have a first order pole along Cn´q Ă Cn, then it will follow that Ω

has a pole of order 2q ´ 1 along Cn´q and that our congruence symbol

“”” (c.f. just above (A4.31)) refers to the order of pole along Cn´q. We

consider each vector eρ “

»
–

e1
ρpzq

...
ek
ρpzq

fi
fl as a vector field fρ “

kř
σ“1

eσρ pzq
B

Bzσ
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on Cn and, letting fa “
B

Bza
pa “ k ` 1, . . . , nq, we have a tangent vector

frame f1, . . . , fn on Cn such that f2, . . . , fk´q`1, fk`1, . . . , fn are tangent

to Cn´q Ă Cn along Cn´q. Let ω1, . . . , ωn be the co-frame of p1, 0q

forms; then if z “
nř

j“1

z j B

Bz j
, dz “

nř
j“1

f jω
j. But z “ σ1 `

k´q`2ř
α“2

λαeα `

nř
a“k`1

za fa, so that dz “ D1σ1

k´q`2ř
α“2

pBλαeα ` λαD1eσq `
nř

a“k`1

faω
a.

This gives:

ω1 “ 2|σ1|θ11

1
;

ωµ “ |σ1|θµ
1

`
k´q`1ř
α“2

λαθ
µ
α pµ “ k ´ q ` 2, . . . , kq;

ωα “ Bλα `
k´q`1ř
β“2

λβθ
α1

β
pα “ 2, . . . , k ´ q ` 1q; and

ωa “ dza pa “ k ` 1, . . . , nq.

,
////////.
////////-
(A4.38)

It follows that θ1
1
, θ

µ

1
have a first order pole along Cn´q and that128

Ω ”

ˆ
i

2

˙q

p´1qqpq´1q{2 1

|σ1|2q´1
ω1ωk´q`2 . . . ωkωk´q`2 . . . ωkp2q´1q.

(A4.39)

The situation is now this: On Cn, let f1, . . . , fn be a tangent frame

such that fq`1, . . . , fn is a frame for tQq ˆ Cn´qu Ă Cn (thus f1, . . . , fq
is a normal frame for Cn´q Ă Cn). Let ω1, . . . , ωn be the dual co-frame

and η be a compactly supported 2n ´ 2q form. Then we need

´ lim
ǫÑ0

ż

BT ǫ

η ^ Λ “

ż

Cn´q

η (A4.40)

where Λ “

ˆ
i

2

˙q

p´1qqpq´1q{2 1

|σ|2q´1
ω1ω2 . . . ωqω1 . . . ωq, Tǫ is the
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ǫ-tube around Cn´q Ă Cn, and σ “

»
———–

z1

...
zq

0
...
0

fi
ffiffiffifl, f1 “

σ

|σ|
.

If now the metric in the tangent frame is the flat Euclidean one and

Tǫ the normal neighborhood of radius ǫ, then Λ is minus the volume

element on the normal sphere of radius ǫ. Writing η “ pηp0, zq `
| f1|pηqωq`1 ^ . . . ^ ωn ^ ωq`1 ^ . . . ^ ωn ` η1 where

η1 ” 0pω1, . . . , ωq, ω1, . . . , ωqq,

it follows that

´ lim
ǫÑ0

ż

BTǫ

η ^ Λ “

ż

Cn´q

ηp0, zqωq`1 . . . ωnωq`1 . . . ωn “

ż

Cn´q

η.

On the other hand, if pTǫ is another ǫ-tube aroung Cn´q, by Stokes’ the-

orem

|

ż

BTǫ

η ^ Λ´

ż

BpTǫ

η ^ Λ| ď |

ż

TǫYpTǫ

dpη ^ Λq|.

Since η is smooth and dΛ has a pole of order ď 2q ´ 1 along Cn´q (in

fact, we may assume dΛ “ 0), lim
ǫÑ0

|
ş

TǫYpTǫ
dpη^Λq| “ 0. Thus, the limit

on the left hand side of (A4.40) is independent of the Tǫ (as should be

the case).

Now z “
qř

α“1

λα fαpzq `
mř

µ“q`1

λµ fµpzq, and we set zη “
qř

α“1

λα fα; 129

then the left hand side of (A4.40) is ´ lim
ǫÑ0|zη|“ǫ

η ^ Λ. But zη “ |zη| f1,

and by iterating the integral, we have

´ lim
ǫÑ0

ż

Tǫ

η ^ Λ “

ż

Cn´q

$
’’’’&
’’’’%

´ lim
ǫÑ0

ż

|zη|“ǫ
z´zη“ constant

η ^ Λ

,
////.
////-

“
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ż

Cn´q

ηp0, zq

$
’’’’&
’’’’%

´ lim
ǫÑ0

ż

|zη|“ǫ
z´zη“ constant

Λ

,
////.
////-
ωq`1 . . . ωnωq`1 . . . ωn “

ż

Cn´q

η.

To prove (A4.35), we refer to the proof of (4.2) (c.f. the proof of

(3.3) in [9]) and see that we may assume that C is a (real) manifold with

boundary BC “ Z. In this case the argument is substantially the same as

that just given.

(e) Concluding Remarks on Residues, Currents, and the Gysin

Homomorphism. Let V be an algebraic manifold and W Ă V an irre-

ducible subvariety which is the qth Chern class of an ample bundle E Ñ
V . Given an Hermitian metric in E, the differential form PqpΘq (Θ =

curvature form in E) represents the Poincaré dual DpWq P H2n´2qpV,Zq
of W P H2n´2qpV,Zq. The differential form ψ (having properties (4.8)-

(4.10) which we constructed is a residue operator for W; that is to say:

ψ is a C8pq, q ´ 1q form on V ´ W

which has a pole of order 2q ´ 1 along W;
(A4.41)

Bψ “ 0 and dψ “ Bψ “ PqpΘq is the Poincaré dual of W; (A4.42)

and for any 2n ´ k chain Γ meeting W transversely and any smooth

2n ´ 2q ´ k form η,

lim
ǫÑ0

´

ż

Γ¨BTǫ

ψ ^ η “

ż

Γ¨W

η pResidue formulaq. (A4.43)

This formalism is perhaps best understood in the language of cur-

rents [14]. Let then CmpVq be the currents of degree m on V; by defini-

tion, θ P CmpVq is a linear form on A2n´mpVq (the C8 forms of degree130

2n´m) which is continuous in the distribution topology (c.f. Serre [21]).

The derivative dθ P Cm`1pVq is defined by

xdθ, λy “ xθ, dλy for all λ P A2n´m´1pVq. (A4.44)
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Of course we may define Bθ, Bθ, and speak of currents of type pr, sq, etc.

If ZmpVq Ă CmpVq are the closed currents pdθ “ 0q, then we may set

H mpVq “ ZmpVq{dCm´1pVq (cohomology computed from currents),

and it is known that (c.f. [14])

HmpVq – H
mpVq. (A4.45)

Now PqpΘq gives a current in Cq,qpVq by xPqpΘq, λy “
ş
V

PqpΘq ^

λpλ P A2n´2qpVqq. By Stokes’ theorem, dPqpΘq in the sense of currents

is the same as the usual exterior derivative. Thus dPqpΘq “ 0 and

PqpΘq P Hq,qpVq.

Also, W gives a current in Cq,qpVq by xW, λy “
ş
W

λpλ P A2n´2qpVqq.

By Stokes’ theorem again, dW “ 0 (if W were a manifold with bound-

ary, then dW would be just BW).

Now ψ gives a current in Cq,q´1pVq by xψ, λy “
ş
W

ψ ^ λ (this is

because ψ has a pole of order 2q ´ 1). To compute dψ P Cq,qpVq, we

have, for any λ P A2n´2qpVq,

ż

V

ψ ^ dλ “ lim
ǫÑ0

ż

V´Tǫ

ψ ^ dλ “ lim
ǫÑ0

$
&
%

ż

V´Tǫ

´dpψ ^ λq ` dψ ^ λ

,
.
-

“ lim
ǫÑ0

ż

V´Tǫ

dpψ ^ λq ` lim
ǫÑ0

ż

V´Tǫ

PqpΘq ^ λ “ ´

ż

W

λ `

ż

V

PqpΘq ^ λ,

which says that, in the sense of currents,

dψ “ PqpΘq ´ W. (A4.45)

Thus, among other things, the residue operator ψ expresses the fact

that, in the cohomology group H q,qpVq, PqpΘq “ W (which proves

also that PqpΘq “ DpWq). The point in the above calculation is that

dψ in the sense of currents is not just the exterior derivative of ψ; the

singularities force us to be careful in Stokes’ theorem, so that we get

(A4.45).
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Suppose that W is non-singular and consider the Gysin homomor- 131

phism HkpWq Ñ Hk`2qpVq. Given a smooth form φ P AkpWq which is

closed, we choose pφ P AkpVq with pφ|W “ φ. Then the differential form

i˚pφq “ dpψ^ pφq “ PqpΘq ^ pφ´ψ^ dpφ will have only a pole of order

2q´2 along W (since dpφ|W “ 0, the term of highest order in ψ involves

only normal differentials along W, as does dpφ), and so i˚pφq is a current

in Ck`2qpVq. We claim that, in the sense of currents, di˚pφq “ 0.

Proof.
ş
V

dpψ ^ pφq ^ dλ “ lim
ǫÑ0

ş
V´Tǫ

dpψ ^ pφq ^ dλ “ ´ lim
ǫÑ0

ş
BTǫ

dpψ ^

pφq ^ λ “ lim
ǫÑ0

ş
BTǫ

ψ ^ dpφλ

(since dψ ^ pφ “ PqpΘq ^ pφ is smooth). But ψ ^ dpφ has a pole of

order 2q ´ 2 along W so that lim
ǫÑ0

ş
BTǫ

ψ ^ dpφ ^ λ “ 0).

Thus i˚pφq is a closed current and so defines a class in H k`2qpVq –
Hk`2qpVq; because of the residue formula (A4.43), i˚pφq is the Gysin

homomorphism on φ P HkpVq.

Of course, if we are interested only in the de Rham groups HkpWq,

we may choose pφ so that dpφ “ 0 in Tǫ for small ǫ (since W is a C8

retraction of Tǫ). Then dpψ^pφq is smooth and currents are unnecessary.

However, if we want to keep track of the complex structure, we must

use currents because W is generally not a holomorphic retraction of Tǫ .

Thus, if φ P Fk
l
pWq (so that φ “ φk,0 ` ¨ ¨ ¨ ` φl,k´l), we may choose

pφ P Fk
l
pVq with pφ|W “ φ, but we cannot assume that dpφ “ 0 in TP. The

point then is that, if we let F k
l

pWq and F
k`2q

l`q
pVq be the cohomology

groups computed from the Hodge filtration using currents, then we have

F
k`2q

l`q
pVq – F

k`2q

l`q
pVq; (A4.46)

and the Gysin homomorphism i˚ : HkpWq Ñ Hk`2qpVq satisfies i˚ :

Fk
l
pWq Ñ F

k`2q

l`q
pVq and is given, as explained above, by

i˚ppφq “ dpψ ^ φq P F
k`2q

l`q
pVq. (A4.47)
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In other words, by using residues and currents, we have proved that 132

the Gysin homomorphism is compatible with the complex structure and

can be computed using the residue form. �

5 Generalizations of the Theorems of Abel and Lef-
schetz. Let V “ Vn be an algebraic manifold and Z “ Zn´q an ef-

fective algebraic cycle of codimension q; thus Z “
lř

α“1

nαZα where Zα

is irreducible and nα ą 0. We denote by Φ “ ΦpZq an irreducible

component containing Z of the Chow variety [13] of effective cycles Z

on V which are algebraically equivalent to Z. If Z P Φ, then Z ´ Z is

homologous to zero and so, as in §3, we may define φq : Φ Ñ TqpVq.

Letting AlbpΦq be the Albanese variety of Φ, we in fact have a diagram

of mappings :

AlbpΦq

αΦ

��

Φ

δΦ
55❥❥❥❥❥❥❥❥❥❥❥❥

φq
))❚❚❚

❚❚❚❚
❚❚❚❚

❚

TqpΦ,Vq.

(5.1)

Here TqpΦ,Vq is the torus generated by φqpΦq and δΦ is the usual map-

ping of an irreducible variety to its Albanese. Thus, if ψ1, . . . , φm are

a basis for the holomorphic 1-forms on Φ, then δΦpZq “

»
—–

...şZ

Z
φρ

...

fi
ffifl,

where
şZ

Z
φρ means that we take a path on Φ from Z to Z and inte-

grate ψρ. We may assume that ψ1 “ φ˚
q pω1q, . . . , ψk “ φ˚

q pωkq where

ω1, . . . , ωk give a basis for the holomorphic 1-forms on TqpΦ,Vq pωα P

Hn´q`1,n´qpVqq, and then αΦδΦpZq “ αΦ

»
–

şZ

Z ψ
1

...şZ

Z ψ
m

fi
fl “

»
–

şZ

Z ω
1

...şZ

Z ω
k

fi
fl, where

şZ

Z ω
α means

ş
Γ
ωα if Γ is a 2n ´ 2q ` 1 chain on V with BΓ “ Z ´ Z.
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Let now W “ Wq´1 be a sufficiently general irreducible subvariety

of dimension q ´ 1 (codimension n ´ q ` 1) and Σ “ ΣpWq an irre-

ducible component of the Chow variety of W. Each Z P Φ defines a

divisor DpZq on Σ by letting DpZq “ tall W P Σ such that W meets Zu.133

Thus, if Z “
lř

α“1

nαZα, DpZq “
lř

α“1

nαDpZαq. Letting “”” denote lin-

ear equivalence of divisors, we will prove as a generalization of Abel’s

theorem that:

DpZq is algebraically equivalent to DpZq,

even if we only assume that Z is homologous to Z;
(5.2)

and

DpZq ” DpZq if φqpZq “ 0 in TqpΦ,Vq. (5.3)

Example 1. Suppose that Z is a divisor on V; thenΦ is a projective fibre

space over (part of) PicpVq (= Picard variety of V) and the fibre through

Z P Φ is the complete linear system |Z|. Now W is a point on V and

Σ “ V , and DpZq “ Z as divisor on Σ. In this case, (5.3) is just the

classical Abel’s theorem for divisors [17]; (5.2) is the statement (well

known, of course) that homology implies algebraic equivalence. The

converse to (5.3), which reads :

φqpZq “ 0 if DpZq ” DpZq, (5.4)

is the trivial part of Abel’s theorem in this case.

Remark. We may give (5.3) as a functorial statement as follows. The

mapping Φ Ñ DivpΣq (given by Z Ñ DpZq) induces Φ Ñ PicpΣq.

From this we get AlbpΦq Ñ AlbpPicpΣqq “ PicpΣq, which combines

with (5.1) to give

AlbpΦq

αΦ

��

ξΦ // PicpΣq

TqpΦ,Vq

ζΦ

t
t

t
t

t
(5.5)

Then (5.3) is equivalent to saying that ξΦ factors in (5.5).
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Proof. For z0 P AlbpΦq, there exists a zero-cycle Z1 ` ¨ ¨ ¨ ` ZN on

Φ such that z0 “ δΦpZ1 ` ¨ ¨ ¨ ` ZNq. Let Z “ Z1 ` ¨ ¨ ¨ ` ZN be

the corresponding subvariety of V . Then αΦpZq “ φqpZ ´ NZq and,

assuming (5.3), if φqpZ ´ NZq “ 0, then ξΦpZq “ 0 in PicpΣq. Thus, if

(5.3) holds, kerαΦ Ą ker ξΦ and so ξΦ factors in (5.5). �

Example 2. Let Z “ point on V so that Φ “ V , AlbpΠq “ AlbpVq. 134

Choose W to be a very ample divisor on V; then Σ is a projective fibre

bundle over PicpVq with |W| as fibre through W (c.f. [18]). Now DpZq
consists of all divisors W P Σ which pass through Z. In this case, (5.3)

reads:

Albanese equivalence of points on V implies linear

equivalence of divisors on Σ.
(5.6)

Remark. There is a reciprocity between Φ and Σ; each W P Σ defines

a divisor DpWq on Φ so that we have AlbpΣq
ξΣÝÑ PicpΦq. Then (5.5)

dualizes to give :

AlbpΣq
ξΣ //

αΣ

��

PicpΦq

Tn´q`1pΣ,Vq

ζΣ

qqqqqq
(5.7)

For example, suppose that dim V “ 2m ` 1 and q “ m ` 1. We may

take W “ Z, Σ “ Φ, and then (5.5) and (5.7) coincide to give :

AlbpΦq
ξΦ //

αΦ

��

PicpΦq

TqpΦ,Vq

ζΦ

s
s

s
s

s
(5.8)

Given Z, Φ as above, there is a mapping

HrpΦ,Zq
τ

ÝÑ H2n´2q`rpV,Zq (5.9)
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as follows. Given an r-cycle Γ on Φ, τpΓq is the cycle traced out by the

varieties Zγ for γ P Γ. Suppose that Φ is nonsingular. Then the adjoint

τ˚ : H2n´2q`rpVq Ñ HrpΦq is given as follows. On Φ ˆ V , there is a

cycle T with prV T ¨ tZ ˆ Vu “ ZpZ P Φq. We then have T

π

��

rω // V

Φ
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and :

τ˚ “ π˚rω˚ : H2n´2q`rpVq Ñ HrpΦq (5.10)

(here π˚ is integration over the fibre). Since Φ is nonsingular DpWq
(= divisor on Φ) gives a class in H1,1pΦq. In fact, we will show, as a

generalization of the Lefschetz theorem [19], that

τ˚ : Hn´q`s,n´q`tpVq Ñ Hs,tpΦq; (5.11)

and, if ω P Hn´q`1,n´q`1pVq is the dual of W P Hq´1,q´1pVq X H2q´2

pV,Zq, then :

The dual of DpWq is τ˚ω P H1,1pΦq. (5.12)

In other words, an integral cohomology class ω of type pn ´ q `
1, n ´ q ` 1q on V defines a divisor on Φ.

Remark. In (5.11), we have

τ˚ : Hn´q`1,n´qpVq Ñ H1,0pΦq; (5.13)

this τ˚ is just φ˚
q : H1,0pTqpVqq Ñ H1,0pAlbpΦqq where φq is given by

(5.1).

Remark 5.14. The gist of (5.2), (5.3) and (5.11), (5.12) may be summa-

rized by saying: The cohomology of type pp, pq gives algebraic cycles,

and the equivalence relation defined by the tori TqpVq implies rational

equivalence, both on suitable Chow varieties attached to the original al-

gebraic manifold V .

The problem of dropping back down to V still remains of course.
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(a) A generalization of interals of the 3rd kind to higher codi-

mension. We want to prove (5.2) and (5.3) above. Since changing Z or Z

by rational equivalence will change DpZq or DpZq by linear equivalence

and will not alter φqpZq, and since we may add to Z and Z a common

cycle, we will assume that Z “
lř

α“1

nαZα, Z “
kř

ρ“1

mρZρ where the Zα,

Zρ are Chern classes of ample bundles (c.f. §4 above) and that all inter- 136

sections are transversal. To simplify notation then, we write Y “ Z ´ Z

and Y “
lř

j“1

n jY j where the Y j are nonsingular Chern classes which

meet transversely. We also set |Y| “
lŤ

j“1

Y j, V ´ Y “ V ´ |Y|.

A residue operator for Y (c.f. Appendix to §4, section (e) above) is

given by a C8 differential form ψ on V ´ Y such that :

(i) ψ is of degree 2q ´ 1 and ψ “ ψ2q´1,0 ` ¨ ¨ ¨ ` ψq,q´1 (ψs,t is the

part of ψ of type ps, tq);

(ii) Bψ “ 0 and Bψ “ Φ where Φ is a C8pq, qq form on V giving the

Poincaré dual of Y P H2n´2qpV,Zq;

(iii) ψ ´ ψq,q´1 is C8 on V and ψ has a pole of order 2q ´ 1 along Y;

and

(iv) for any k ` 2q chain Γ on V which meets Y transversely and

smooth k-form ω on V
ż

Γ¨Y

ω “ ´ lim
ǫÑ0

ż

Γ¨BTǫ

ψ ^ ωpResidue formulaq (5.15)

where Tǫ is an ǫ-tube around Y .

From (A4.1)-(A4.3) and (A4.35), we see that a residue operator ψ j

for each Y j exists. Then ψ “
lř

j“1

n jψ j is a residue operator for Y (the

formula (5.15) has to be interpreted suitably).

If Y “ 0 in H2n´2qpV,Zq, then we may assume that Bψ “ 0. (5.16)
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Proof. Bψ “ Φ is a C8 form and Φ “ 0 in H
q,q

B
pVq. Then Φ “ Bη

where η “ B
˚
GBΦ and Bη “ 0 since BB

˚
“ ´B

˚
B, BGB “ GBB,

BΦ “ 0. Since η is of type pq, q ´ 1q, we may take ψ´ η as our residue

operator. �

Remark 5.17. If Y is a divisor which is zero in H2n´2pV,Zq, then ψ is

a holomorphic differential on V ´ Y having Y as its logarithmic residue

locus (c.f. [18]).

Remark 5.18. Let Y be homologous to zero and ψ be a residue operator137

for Y with dψ “ 0 (c.f. (5.16)). Then ψ gives a class in H2q´1pV ´ Yq,

and ψ is determined up to H2q´1,0pVq ` ¨ ¨ ¨ ` Hq,q´1pVq. We claim that

H2q´1pV ´ Yq is generated by H2q´1pVq and the ψ j.

Proof. Let δ j be a normal sphere to Y j at some simple point not on any

of the other Yk’s. We map Zplq “ Z ‘ ¨ ¨ ¨ ‘loooomoooon
l

Z into H2q´1pV ´ Yq by

pα1, . . . , αlq Ñ
lř

j“1

α jδ j. Since
ş
δ j
ψ j “ `1, we must show that the

sequence

Zplq Ñ H2q´1pV ´ Yq
i˚ÝÑ H2q´1pVq Ñ 0 (5.19)

is exact. By dimension, H2q´1pV ´ Yq maps onto H2q´1pVq. If σ P
H2q´1pV ´ Yq is an integral cycle which bounds in V , then σ “ δγ

for some 2q-chain γ where γ meets Y transversely in nonsingular points

pρ P Y . If pρ P Y jpρq, then clearly σ „
ř
ρ

δ jpρq so that Zplq generates the

kernel of i˚ in (5.19).

Consider now our subvariety W “ Wq´1 with Chow variety Σ. We

may assume that W lies in V ´ Y and, for W P Σ, W lying in V ´ Y ,

we may write W ´ W “ BΓ where Γ is a 2q ´ 1 chain not meeting Y .

Clearly Γ is determined up to H2q´1pV ´ Yq. We will show :

There exists an integral of the 3rd kind θ on Σ whose logarithmic

residue locus is DpYq, provided that Y “ 0 in H2n´2qpV,Zq.

(5.20)

�
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Proof. Let ψ be a residue operator for Y with dψ “ 0. Define a 1-form

θ on Σ´ DpYq by :

θ “ d

$
&
%

Wż

W

ψ

,
.
- “ d

$
&
%

ż

Γ

ψ

,
.
- . (5.21)

This makes sense since dψ “ 0. We claim that

θ is holomorphic on Σ´ DpYq.

�

Proof. Let Σ˚ “ Σ ´ DpYq and T ˚ Ă Σ˚ ˆ V the graph of the corre-

spondence pW, zqpz P Wq (i.e. W P Σ˚ is a subvariety of V and z P V

lies on W). Then we have

T ˚ rω //

π

��

V.

Σ

Now rω˚ : Ar,spVq Ñ Ar,spT ˚qpAr,sp˚q “ C8 forms of type pr, sq 138

on˚); since rω is holomorphic, rω˚B “ Brω˚. On the other hand, the

integration over the fibre π˚ : Ar`q´1,s`q´1pT ˚q Ñ Ar,spΣ˚q is defined

and is determined by the equation :

ż

Σ˚

π˚φ ^ η “

ż

T ˚

φ ^ π˚η, (5.22)

where η is a compactly supported form on T ˚. Since
ş
Σ˚

Bπ˚φ ^ η “

p´1qr`s
ş

T ˚

φ ^ π˚Bη “
ş

T ˚

Bφ ^ π˚η “
ş
Σ˚

π˚pBφq ^ η for all η, Bπ˚ “

π˚B. Let τ˚ : Ar`q´1,s`q´1pVq Ñ Ar,spΣ˚q be the composite π˚rω˚.

Then Bτ˚ “ τ˚B (this proves (5.11)).
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Now let ψ P Aq,q´1pV ´ Yq be a residue operator for Y . Then by the

definition (5.21), θ “ τ˚ψ P A1,0pΣ˚q and dθ “ τ˚dψ “ 0. This proves

that θ is holomorphic on Σ˚.

Now Y “
ř
j“1

n jY j where the Y j are subvarieties of codimension q

on V . We have that DpYq “
lř

j“1

n jDpY jq and ψ “
ř
j“1

n jψ j. We will

prove that ψ has a pole of order one on Y j with logarithmic residue n j

there. �

Proof. We give the argument when Y is irreducible and q “ n. From

this it will be clear how the general case goes.

Let ∆ be the unit disc in the complex t-plane and tWtutP∆ a holo-

morphic curve on Σ meeting DpYq simply at the point t “ 0. Then

W0 meets Y simply at a point z0 P V . We may choose local coor-

dinates z1, . . . , zn on V such that z0 “ Y is the origin. Now ψ “
1

|z|2n´1

"
nř

α“1

ψαdz1 . . . dzndz1 . . . dpzα . . . dzn

*
where |z|2 “

nř
α“1

|zα|2 and139

ψα is smooth. We may assume that Wt is given by z1 “ t, and, to prove

that θ has a pole of order one at t “ 0, it will suffice to show thatť
∆

|θ ^ dt| is finite. It is clear, however, that
ť
∆

|θ ^ dt| will be finite if

ş
|zα|ă1

|ψ ^ dz1| is finite. But

|ψ ^ dz1| ď c

#
|dz1 . . . dzn dz1 . . . dzn|

|z|2n´1

+
pc “ constantq,

so that
ş

|zα|ă1

|ψ ^ dz1| is finite.

We now want to show that
ş

|t|“1

θ “ `1 (i.e. θ has logarithmic

residue `1 on DpYq). Let δ “
Ť

|t|“1

Wt. Then
ş

|t|“1

θ “
ş
δ

ψ. If Tǫ “
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tz : |z| ă ǫu, then setting Γ “

#
Ť

|t|ď1

Wt

+
´ Tǫ , BΓ “ δ ` BTǫ . Thus

ş
δ

ψ “ ´
ş

BTǫ

ψ “ `1 as required. �

Remark. Let Y Ă V be as above but without assuming that Y “ 0

in H2n´2qpV,Zq. Let ψ be a residue operator for Y and θ “ τ˚pψq “
rω˚π

˚ψ. The above argument generalizes to prove :

θ “ τ˚pψq is a residue operator for DpYq. (5.23)

We have now proved (5.20), and with it have proved (5.2), since

DpYq will be algebraically equivalent to zero on Σ because of the exis-

tence of an integral of the 3rd kind associated to DpYq.

Proof of (5.12). Let Y Ă V be as above and interchange the roles

of Y and W in the statement of (5.12). Let ω P Hq,qpVq be the dual

of Y P H2n´2qpV,Zq and let ψ be a residue operator for Y . Then (c.f.

(5.23) above) τ˚ψ “ θ is a residue operator for DpYq Ă Σ, and so (c.f.

Appendix to §4, section (e)) Bθ is the dual of DpYq P H2N´2pΣ,ZqpN “
dimΣq. But Bθ “ τ˚Bψ “ τ˚ω, and so (5.12) is proved. ˝

(b) Reciprocity Relations in Higher Codimension. Let Y “ Z ´ Z

be as in beginning of §5, section (a) above. We assume that Y “ 0 in

H2n´2qpV,Zq so that DpYq is algebraically equivalent to zero on Σ “
ΣpWq. Let ψ be a residue operator for Y and θ “ τ˚ψ be defined by 140

(5.21). Then (c.f. (5.20)) θ is an integral of the 3rd kind on Σ whose

logarithmic residue locus in DpYq.

Now ψ is determined up to S “ H2p´1,0pVq ` ¨ ¨ ¨ ` Hp,p´1pVq.

Since τ˚pHp`r,p´1´rpVqq “ 0 for r ą 0, θ is determined up to τ˚pS q
where only τ˚pHp,p´1pVqq Ă H1,0pΣq (c.f. (5.11)) counts. Let us prove

now :

DpYq ” 0 on Σ if, and only, if, there exists ω P H1,0pΣq
such that

ş
δ
θ ` ω ” 0p1q for all δ P H1pΣ´ DpYq,Zq.

(5.24)
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Proof. Ifω exists satisfying
ş
δ
θ`ω ” 0p1q for all δ P H1pΣ´DpYq,Zq,

then we may set :

f pWq “ exp

¨
˝

Wż

W

θ ` ω

˛
‚, pexp ξ “ e2πiξq. (5.25)

This f pWq is a single-valued meromorphic function and, by (5.20),

p f q “ DpYq.

Conversely, assume that DpYq “ p f q. Then θ ´
1

2πi

d f

f
“ ´ω

will be a holomorphic 1-form in H1,0pΣq, and for δ P H1pΣ´ DpYq,Zq,
ş
γ

θ ` ω “
1

2πi

ş
γ

d f

f
“

1

2πi

ş
γ

d log f ” 0p1q. This proves (5.24).

Suppose we can prove :

There exists η P S such that
ş
Γ
ψ ` η ” 0p1q for all

Γ P H2q´1pV ´ Y,Zq if and only if, φqpYq “ 0 in TqpΦ,Vq Ă TqpVq.
(5.26)

�

Then we can prove the Abel’s theorem (5.3) as follows.

Proof. If φqpYq “ 0 in TqpΦ,Vq, then by (5.26) we may find η P S such

that
ş
Γ
ψ`η ” 0p1q for all Γ P H2q´1pV ´Y,Zq. Setω “ τ˚η P H1,0pΣq.

Then, for δ P H1pΣ´ DpYq,Zq,
ş
δ
θ`ω “

ş
δ
τ˚pψ`ηq “

ş
τpδq ψ`η ”

0p1q, where τ is given by (5.9). Using (5.24), we have proved (5.2). �

Remark 5.27. The converse to Abel’s theorem (5.2), which reads :

φqpYq “ 0 in TqpYq if DpYq ” 0 in Σ, (5.28)

will be true, up to isogeny, if we have :141

The mapping τ˚ : Hq,q´1pVq Ñ H1,0pΣq is into. (5.29)

148



Some Results on Algebraic Cycles on Algebraic Manifolds 149

Proof. Referring to (5.5), we see that τ˚ is

pζΦq˚ : T0pTqpΦ,Vqq Ñ T0pPicpΣqq,

so that ζΦ is an isogeny of TqpΦ,Vq onto an abelian subvariety of PicpΣq.

�

Proof of (5.26). Let Γ1, . . . ,Γ2m be a set of free generators of H2q´1

pV,Zq (mod torsion). We may assume that Γρ lies in H2q´1pV ´ Y,Zq,

since
ş
δ
ψ ” 0p1q for all δ in H2q´1pV ´ Y,Zq which are zero in H2q´1

pV,Zq (c.f. (5.19)). Choose a basis η1, . . . , ηm for S and set πα :

$
’&
’%

...ş
Γρ

ηα

...

,
/.
/-

.

Then πα P C2m and we let S be the subspace generated by π1, . . . , πm.

The lattice generated by integral vectors

#
k1

...
k2m

+
projects onto a lattice

in C2m{S, and the resulting torus is TqpVq.

Proof. We may identify C2m with H2q´1pV,Cq “ H2q´1pV,Cq˚; S is

the subspace H2q´1,0pVq ` ¨ ¨ ¨ ` Hq,q´1pVq, and the integral vectors are

just H2q´1pV,Zq. Thus the torus above is Hq´1,qpVq`¨ ¨ ¨`H0,2q´1pVq{

H2q´1pV,Zq. Let πpψq “

$
’&
’%

...ş
Γρ

ψ

...

,
/.
/-

; πpψq projects onto a point πpψq P

TqpVq, and we see that:

The congruence
ş
Γ
ψ ` η ” 0p1q pΓ P H2q´1pV ´ Y,Zqq can

be solved for some η P S if, and only if, πpψq “ 0 in TqpVq.
(5.30)

Thus, to prove (5.26), we need to prove the following reciprocity

relation:

πpψq “ φqpYq in TqpVq. (5.31)
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Let eρ P H2n´2q`1pV,Zq be the harmonic form dual to Γρ P H2q´1142

pV,Zq. We claim that, if we can find η P S such that we have

ż

Γρ

ψ ´

ż

C

eρ “ pΓρ,Cq `

ż

Γρ

ηpρ “ 1, . . . , 2mq, (5.32)

then (5.31) holds. �

Proof. By normalizing ψ, we may assume that η “ 0 in (5.32). Let

e˚
ρ P H2q´1pVq be the harmonic form defined by

ş
Ve
ρ^e˚

σ “ δ
ρ
σ. Choose

a harmonic basis ω1, . . . , ωm for H2n´2q`1,0 ` ¨ ¨ ¨ ` Hn´q`1,n´q and

let φ1, . . . , φm be a dual basis for Hq´1,q ` ¨ ¨ ¨ ` H0,2q´1. Then ωα “
2mř
ρ“1

µραeρ and e˚
ρ “

mř
α“1

pµραφ
α`µραφ

α
q. It follows that πpψq is given by

the column vector

$
’’&
’’%

...
2mř
ρ“1

µρα
ş
Γρ

ψ

...

,
//.
//-

. From (5.32), we have
2mř
ρ“1

µρα
ş
Γρ

ψ ´

ş
C

2mř
ρ“1

µραeρ “
2mř
ρ“1

µραpΓρ ¨ Cq, which says that

$
’’’’&
’’’’%

...
2mř
ρ“1

µρα
ş
Γρ

ψ

...

,
////.
////-

´

$
’’’&
’’’%

...ş
C

ωα

...

,
///.
///-

“
2mÿ

ρ“1

pΓρ ¨ Cq

$
’&
’%

µρ1

...

µρm

,
/.
/-
,

which lies in the lattice defining TqpVq. Thus πpψq “ φqpYq in TqpVq.

Q.E.D. �

Thus we must prove (5.32), which is a generalization of the bilinear

relations involving integrals of the third kind on a curve (c.f. [24]). We

observe that, because of the term involving η, (5.32) is independent of

which residue operator we choose. We shall use the method of Kodaira

[17] to find one such ψ; in this, we follow the notations of [17].
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Let then γ2n´2qpz, ξq on VˆV be the double Green’s form associated

to the 2n´2q forms on V and the Kähler metric. This is the unique form

satisfying
143

(a) ∆zγ
2n´2qpz, ξq “

lř
j“1

θ jpzq ^ θ jpξq,

where the θ j are a basis for the harmonic 2n ´ 2q forms;

(b) γ2n´2qpz, ξq is smooth for z ‰ ξ and has on the diagonal z “ ξ the

singularity of a fundamental solution of the Laplace equation;

(c) γ2n´2qpz, ξq “ γ2n´2qpξ, zq and is orthogonal to all harmonic 2n´
2q forms (i.e.

ş
V
γ2n´2qpz, ξq ^˚ θ

jpξq “ 0 for all z and j “
1, . . . , l);

(d) δzγ
2n´2qpz, ξq “ dξγ

2n´2q´1pz, ξq,

and ˚z ˚ξ γ
2n´2qpz, ξq “ γ2qpz, ξq.

Define now a 2n ´ 2q form φ by the formula :

φpzq “

ż

ξPY

γ2n´2qpz, ξqdξ. (5.33)

Then φ is smooth in V ´ Y and, by (b) above, can be shown to have a

pole or order 2q ´ 2 along Y . We let

ψ “ ˚ dφ. (5.34)

Then ψ is a real 2q ´ 1 form. Since Y is an algebraic cycle, φ will have

type pn ´ q, n ´ qq and so ψ “ ψ1 `ψ2 where ψ1 has type pq, q ´ 1q and

ψ2 “ ψ
1
. We will show that 2ψ1 is a residue operator for Y and satisfies

(5.32).

We recall from [17], the formula :

ż

Γρ

ψ ´

ż

C

eρ “ pΓρ ¨ Cq, (5.35)
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which clearly will be used to give (5.32).

First, ψ has singularities only on Y and dψ “ d ˚ dφ “ ´˚δdφ “ 0

(c.f. Theorem 4 in [17]), and δψ “ δ ˚ dφ “ ˘ ˚ d2φ “ 0, so that ψ

is harmonic in V ´ Y . Thus ψ1 and ψ2 are harmonic in V ´ Y .

Let J be the operator on forms induced by the complex structure.

Then J˚ “ ˚J and Jφ “ φ (since JTξpYq “ TξpYq). Thus ψ “ ˚dJφ “
˚JJ´1dJφ “ J ˚ pLδ ´ δLqφ “ ´J´1 ˚ δLφ since δφ “ 0. This gives

that Jψ “ ´d ˚ Lφ, so that, using Jψ “ ipψ1 ´ ψ1q, we find :

2ψ1 “ ψ ´ Jψ “ ψ ` dp˚ Lφq. (5.36)

Now 2ψ1 is a form of type pq, q ´ 1q satisfying Bψ1 “ 0 “ Bψ1 and144

combining (5.35) and (5.36),

ż

Γρ

2ψ1 ´

ż

C

eρ “ pΓρ ¨ Cq. (5.37)

Finally, the same argument as used in [17], pp. 121-123, shows that

2ψ1 has a pole of order 2q ´ 1 along Y and gives a residue operator for

Y . This completes the proof of (5.32) and hence of (5.3).

6 Chern Classes and Complex Tori. Let V be an algebraic

manifold and E8 Ñ V a C8 vector bundle with fibre Ck. We let ΣpE8q
be the set of complex structures on E8 Ñ V (i.e. the set of holomorphic

bundles E Ñ V with E –
C8

E8). For such a holomorphic bundle E Ñ

VpE P ΣpE8qq, the Chern cycles ZqpEqpq “ 1, . . . , kq (c.f. [11], [12],

[13]) are virtual subvarieties of codimension q, defined up to retional

equivalence. Fixing E0 P ΣpE8q, ZqpEq ´ ZqpE0q P Σq and we define

φq : ΣpE8q Ñ TqpS q, (6.1)

by φqpEq “ φqpZqpEq ´ ZqpE0qqpE P ΣpE8qq. We may think of φqpEq
as giving the periods of the holomorphic bundle E. In addition to asking

for the image φqpΣpE8qq Ă TqpS q, we may also ask to what extent do

the periods of tEu P ΣpE8q give the moduli of E ? By putting things
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into the context of deformation theory, we shall infinitesimalize these

questions.

Let then tEγuλP∆ be a family of holomorphic bundles over V (∆ =

disc in λ-plane). Relative to a suitable covering tUαu of V , we may give

this family by holomorphic transition functions gαβpλq : Uα X Uβ Ñ
GLpkq which satisfy the cocycle rule :

gαβpλqgβγpλq “ gαγpλq in Uα X Uβ X Uγ. (6.2)

We recall that Kodaira and Spencer [15] have defined the infinitesimal

deformation mapping :

δ : Tλp∆q Ñ H1pV,OpHompEλ,Eλqqq. (6.3)

Explicitly, δ

ˆ
δ

δλ

˙
is given by the C̃ech cocycle ξαβ “

•

gαβpλqgαβpλq´1 145

p
•

gαβ “ Bgαβ{Bλq; the cocycle rule here follows by differentiating (6.2).

Now define φq : ∆Ñ TqpS q by φqpλq “ φqpEλq (E0 being the base

point). Recall (c.f. (3.3)) that pφqq˚ : pT0p∆qq Ă Hq´1,qpVq, so that we

have a diagram pφ˚ “ pφqq˚q :

H1pV,OpHompE,Eqqq

ζ

✤
✤
✤
✤
✤
✤
✤

T0p∆q

δ

66♠♠♠♠♠♠♠♠♠♠♠♠♠

φ˚ ((◗◗
◗◗◗

◗◗◗
◗◗◗

◗

HqpV,Ωq´1q

(6.4)

What we want is ζ : H1pV,OpHompE,Eqqq Ñ HqpV,Ωq´1q which will

always complete (6.4) to a commutative diagram.

We have a formula for ζ (c.f. (6.8)) which we shall give after some

preliminary explanation.

First we consider symmetric, multilinear, invariant forms

PpA1, . . . , Aqq
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where the Aα are k ˆ k matrices. Invariance means that

PpgA1g´1, . . . , gAqg´1q “ PpA1, . . . , Aqqpg P GLpkqq.

Such a symmetric, invariant form gives an invariant polynomial PpAq “
PpA, . . . , Aq. Conversely, an invariant polynomial gives, by polariza-

tion, a symmetric invariant form. For example, if PpAq “ detpAq, then

PpA1, . . . , Akq “
1

k!

ÿ

π“pπ1,...,πkq

detpA1
π1
. . . Ak

πk
q, (6.5)

where π “ pπ1, . . . , πkq is a permutation of p1, . . . , kq and Aαπα is the αth

column of Aπα .

The invariant polynomials form a graded ring I˚ “
ř

qě0

Iq, which is

discussed in [11], §4(b). In particular, I˚ is generated by P0, P1, . . . , Pk

where Pq P Iq is defined by

det

ˆ
iA

2π
` λI

˙
“

kÿ

q“0

PqpAqλk´q. (6.6)

Let now P P Ir be an invariant polynomial. If146

Aα P Apα,qαpV,HompE,Eqq

(= space of C8, HompE,Eq-valued, ppα, qαq forms on V), then

PpA1, . . . , Arq P Ap,qpVq

˜
p “

rÿ

α“1

pα, q “
rÿ

α“1

qα

¸

is a global form and BPpA1, . . . , Aqq “
rř

α“1

˘Pp. . . , BAα, . . .q. We con-

clude that P gives a mapping on cohomology :

P : Hq1pV,Ωp1pHompE,Eqqq b ¨ ¨ ¨ b Hqr pV,Ωpr pHompE,Eqqq

Ñ HqpV,Ωpq. (6.7)
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Secondly, E Ñ V defines a cohomology class

Θ P H1pV,Ω1pHompE,EqqqpΘ is the curvature in E; c.f. [1]q,

which is constructed as follows: Let θ “ tθαu be a connection of type

p1, 0q for E Ñ V Thus θα is a k ˆ k-matrix-valued p1, 0q form in Uα

with θα ´ gαβθβg
´1
αβ

“ g´1
αβ

dgαβ in Uα X Uβ. Letting Θα “ Bθα, Θα “

gαβΘβg
´1
αβ

in Uα X Uβ and so defines Θ P H1pV,Ω1pHompE,Eqqq (Θ is

the p1, 1q component of the curvature of θ).

Our formula is that, if we set

ζpηq “ qPqpΘ, . . . ,Θlooomooon
q´1

, ηq pη P H1pV,OpHompE,Eqqqq, (6.8)

then (6.4) will be commutative. Note that, according to (6.7), ζpηq P
HqpV,Ωq´1q, so that the formula makes sense.

We shall give two proofs of the fact that ζ defined by (6.8) gives

the infinitesimal variation in the periods of E. The first will be by ex-

plicit computation relating the Chern polynomials PqpΘ, . . . ,Θlooomooon
q´1

; ηq to

the Poincaré residue operator alogn ZqpEq; both the Chern polynomials

and Poincaré residues will be related to geometric residues in a manner

somewhat similar to §4 (especially the Appendix there). After prelimi-

naries in §7, this first proof (which we give completely only for the top

Chern class) will be carried out in §8. The general argument is compli-

cated by the singularities of the Chern classes.

The second proof is based on the transformation formulae developed 147

in §4; it uses an integral-geometric argument and requires that the family

of bundles be globally parametrized.

Some Examples. Let E Ñ V be a holomorphic vector bundle and

θ P H0pV,Θq a holomorphic vector field. Then θ exponentiates to a one-

parameter group f pλq : V Ñ V of holomorphic automorphisms, and we

may set Eλ “ f pλq˚E (i.e., pEλqz “ E f pλq,z). Let ω “ PqpΘ, . . . ,Θq
be a pq, qq form representing the qth Chern class; we claim that the in-

finitesimal variation in the periods of E is given by

xθ, ωy P Hq,q´1pVq. (6.9)
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Proof. Since xθ, ωy “ xθ, PqpΘ, . . . ,Θqy

“ ΣPqpΘ, . . . , xθ,Θy, . . . ,Θq “ qPqpΘ, . . . ,Θlooomooon
q´1

; xθ,Θyq,

using (6.8) it will suffice to show that xθ,Θy P H1pV,HompE,Eqq is the

infinitesimal deformation class for the family tEλu “ t f pλq˚Eu.

Let P Ñ V be the principal bundle of E Ñ V and 0 Ñ HompE,Eq
Ñ TpPq{G Ñ TpVq Ñ 0 the Atiyah sequence [1]. The cohomology

sequence goes H0pV,OpTpPq{Gqq Ñ H0pV,Θq
δ

ÝÑ H1pV,HompE,Eqq,

and in [8] it is proved that δpθq “ xθ,Θy and is the Kodaira-Spencer

class for the family tEλu. (This is easy to see directly;

Θ P H1pV,HompTpVq,HompE,Eqqq

is the obstruction to splitting the Atiyah sequence holomorphically, and

the coboundary δ is contraction with Θ. But δpθq is the obstruction to

lifting θ to a bundle automorphism of E, and so gives the infinitesimal

variation of f pλq˚E). �

Remark. The formula (6.9) is easy to use on abelian varieties (ω and

θ have constant coefficients) but, in the absence of knowledge about the

algebraic cycles on V , fails to yield much new.

Example 2. Suppose that tEλuλP∆ is a family of flat bundles (i.e. having

constant transition funcitons). Then, by (6.8), we see that:

The periods φqpEλq are constant for q ą 1. (6.10)

Remark. This should be the case because Eλ is given by a repersenta-148

tion ρλ : π1pVq Ñ GLpkq. If we choose a general curve C Ă V , then

π1pCq maps onto π1pVq, and so tEλu is given by ρλ : π1pCq Ñ GLpkq.

Thus Eλ is determined by Eλ|C, and here the period φ1pEλq is only one

which is non-zero (recall that we have 0 Ñ T1pVq Ñ T1pCq).

Example 3. From (6.8), it might seem possible that the periods of Eλ

are constant if all of the Chern classes of Tλ are topologically zero and
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det Eλ “ L is constant. This is not the case. Let C be an elliptic curve

and V “ P1 ˆ C. Take the bundle H Ñ P1 degree 1 and let Jλ Ñ C

be a family of bundles of degree zero parametrized by C. Set Eλ “
pH b Jλq ‘ pH b Jλq˚. Then det Eλ “ 1, c2pEλq “ ´c1pHq2 “ 0. If

θ P H0,1pCq is the tangent to tJλu Ñ C, then the tangent η to tEλu isˆ
θ 0

0 ´θ

˙
, and, if Θ is the curvature in H, then the curvature in Eλ is

ΘE “

ˆ
Θ 0

0 ´Θ

˙
. Then P2pΘE; ηq “ ´pΘθq ‰ 0 in H1,2pVq.

Example 4. Perhaps the easiest construction of PicpVq (c.f. [18]) is by

using a very positive line bundle L Ñ V , and so we may wonder what

the effect of making vector bundles very positive is. For this, we let

AqpVq “ φqpΣqpVqq Ă TqpVq (AqpVq is the part cut out by algebraic cy-

cles algebraically equivalent to zero); AqpVq is an abelian subvariety of

TqpVq which is the range of the Weil mapping. Let Φp be the algebraic

cycles, modulo rational equivalence, of codimension p. Then we have

(c.f. §4)

Φp b AqpVq Ñ Ap`qpVq (6.11)

(obtained by intersection of cycles). We set IrpVq “
ř

p`q“r
pą0

Φp b AqpVq

(this is the stuff of codimension r obtained by intersection with cycles

of higher dimension) and let

NrpVq “ ArpVq{IrpVq (6.12)

(here NrpVq stands for the new cycles not coming by operations in lower

codimension). Then (c.f. §7 below):

Let tEλu be a family of bundles and L Ñ V any line bundle. Then 149

φrpEλq “ φrpEλ b Lq in NrpVq. (6.13)

In other words, as expected, the essential part of the problem is n’t

changed by making the Eλ very positive.

Example 5. Here is a point we don’t quite understand. Let tEλu be a

family of bundles on V “ Vnpn ě 4q and let S Ă V be a very positive
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two-dimension subvariety. Then Eλ Ñ V is uniquely determined by

Eλ Ñ S (c.f. [8]). From this it might be expected that, if the periods

φ1pEλq and φ2pEλq are constant, then all of the periods φqpEλq are con-

stant. However, let A be an abelian variety and tJλuλPH1pA,0q a family of

topologically trivial line bundles parametrized by λ P H1pA,Oq. We let

L1, L2, L3 be fixed line bundles with characteristic classes ω1, ω2, ω3

and set

Eλ “ pJλ1
L1q ‘ pJλ2

L2q ‘ pJλ3
L3q.

Then the tangent η to the family tEλu is η “

„
λ1 0 0
0 λ2 0
0 0 λ3


and the cur-

vature Θ “

„
ω1 0 0
0 ω2 0
0 0 ω3


. Then P1pΘ; ηq = Trace η “ λ1 ` λ2 ` λ3.

Setting λ3 “ ´λ1 ´ λ2 we have P1pΘ; ηq “ 0. Now P2pΘ; ηq “
λ1ω2`λ2ω1`λ1ω3`λ3ω1`λ2ω3`λ3ω2 “ λ1pω3´ω1q`λ2pω3´ω2q,

and P3pΘ; ηq “ λ1ω2ω3 ` λ2ω1ω3 ` λ3ω1ω2 “ λ1ω2pω3 ´ ω1q `
λ2ω1pω3 ´ω2q. Clearly we can have P2pΘ; ηq “ 0, P3pΘ; ηq “ λ1pω3 ´
ω1qpω2 ´ ω1q ‰ 0.

Example 6. Examples such as Example 5 above show that the periods

fail quite badly in determining the bundle. In fact, it is clear that, if

KpVq is the Grothendieck ring constructed from locally free sheaves

([12]), the best we can hope for is that the periods determine the image

of the bundle in KpVq.

Let us prove this for curves:

If V is an algebraic curve and E Ñ V a holomorphic vector bundle,

then the image of E in KpVq is determined by the periods of E.

(6.14)

Proof. Let Ik be the trivial bundle of rank k; we have to show that E “150

det E b Ik in KpVq (where k is the fibre dimension of E). The assertion

is trivially true for k “ 1; we assume it for k ´ 1. Since the structure

group of E may be reduced to the triangular group [2], in KpVq we see

that E “ L1 b ¨ ¨ ¨ ‘ Lk where the Lα are line bundles. We choose

a very positive line bundle H and sections ϑα P H0pV,OpH b L˚
αqq
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which have no common zeroes (since k ą 1). Then the mapping f Ñ
p fϑ1, . . . , fϑkqp f P Oq gives an exact bundle sequence 0 Ñ H Ñ L1 ‘
¨ ¨ ¨ ‘ Lk Ñ Q Ñ 0 where Q has rank k ´ 1 and det Q “ H˚ det E. By

induction, Q “ H˚ det Eb Ik´1 in KpVq, and so E “ det Eb Ik in KpVq
as required. �

7 Properties of the Mapping ζ in (6.8). (a) Behavior un-

der direct sums. Let tEλu, tFµu be families of holomorphic bundles

over V . What we claim is:

If (6.4) holds for each of the families

tEλu and tFµu,then it holds for tEλ ‘ Fµu.
(7.1)

Proof. By linearity, we may suppose that the tFµu is a constant family;

thus all Fµ “ F. Letting E “ E0, the Kodaira-Spencer class δpB{Bλq
for tEλ ‘ Fu lies then in H1pV,OpHompE,Eqqq Ă H1pV,OpHompE ‘
F,E ‘ Fqqq. If θE is a p1, 0q connection in E and θF a p1, 0q connection

in F, then θE‘F “ θE ‘ θF

ˆ
“

ˆ
θE 0

0 θF

˙˙
is a p1, 0q connection in

E ‘ F and ΘE‘F “ ΘF ‘ ΘF. From

det

ˆ
i

2π
ΘE‘F ` λI

˙
“ det

ˆ
i

2π
ΘE ` λI

˙
det

ˆ
i

2π
ΘF ` λI

˙
,

we get that

PqpΘE‘Fq “
ÿ

r`s“q

PrpΘEqPspΘFq. (7.2)

Now (7.2) is the duality theorem; in the rational equivalence ring, we

have

ZqpE ‘ Fq “
ÿ

r`s“q

ZrpEq ¨ ZspFq. (7.3)

Then 151

φqpEλ ‘ Fq “ φqpZqpEλ ‘ Fq ´ ZqpE ‘ Fqq

“ φq

˜ ÿ

r`s“q

tZrpEλq ¨ ZspFq ´ ZrpEq ¨ ZspFqu

¸
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“ φq

˜ ÿ

r`s“q

rZrpEλq ´ ZrpEqs ¨ ZspFq

¸

“
ÿ

r`s“q

φqprZrpEλq ´ ZrpEqs ¨ ZspFqq

“ pby (4.18)
ÿ

r`s“q

ΨspFqφrpZrpEλq ´ ZrpEqq

where ΨspFq “ PspΘFq P Hs,spVq X H2spV,Zq is the Poincaré dual to

ZspFq and ΨspFq : TrpVq Ñ Tr`spVq is the mapping given by (2.7). It

folows that:

 
φqpEλ ‘ Fq

(
˚

“
ÿ

s`r“q

PspΘFq tφrpEλqu˚ . (7.4)

Assuming (6.4) for the family tEλu, the right hand side of (7.4) isř
r`s“q´1

rPr`1p ΘEloomoon
r

; ηqPspΘFq. Since we want this to equal

qPqpΘE ‘ ΘFlooomooon
q´1

; η ‘ 0q,

to prove (7.1) we must prove the algebraic identity:

qPqpA ‘ Bloomoon
q´1

; ξ ‘ 0q “
ÿ

r`s“q´1

rPr`1p Aloomoon
r

; ξqPspBq, (7.5)

where A, B, ξ are matrices.

Expanding PqpA ‘ B; ξ ‘ 0q gives

qPqpA ‘ Bloomoon
q´1

; ξ ‘ 0q “ Σq

ˆ
q ´ 1

r

˙
Pqp A ‘ 0loomoon

r

; ξ ‘ 0; 0 ‘ Bloomoon
s

q

ps “ q ´ r ´ 1q. Thus, to prove (7.5), we need to show:

rPr`1p Aloomoon
r

; ξqPspBq “ q

ˆ
q ´ 1

r

˙
Pqp A ‘ 0loomoon

r

; ξ ‘ 0; 0 ‘ Bloomoon
s

q. (7.6)
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Clearly the only question is the numerical factors; for these may take

A, B, ξ to be diagonal. Now in general if A1, . . . , At are diagonal matri-

ces, say Aα “

«
A1
α 0

...
0 Ak

α

ff
, then PtpA1, . . . , Atq “

1

t!

ř
π

A
π1

1
. . . Aπt

t where 152

the summation is over all subsets π “ pπ1, . . . , πtq of p1, . . . , kq. Thus

q
`

q´1
r

˘
Pqp A ‘ 0loomoon

r

; ξ ‘ 0; 0 ‘ Bloomoon
s

q

“
1

pq ´ 1q!

ˆ
q ´ 1

r

˙ÿ

π

Aπ1 . . . Aπr ξ
πr`1 Bπr`2 . . . Bπq

“

˜
1

r!

ÿ

π

Aπ1 . . . Aπrξπr`1

¸˜
1

s!

ÿ

r

Bτ1 . . . Bτs

¸

“ rPrp Aloomoon
r

; ξqPspBq.

This proves (7.6). �

(b) Behavior under tensor products. With the notations and as-

sumptions of 7(a) above, we want to prove :

If (6.4) holds for each of the families tEλu and tFµu,

then (6.4) holds for Eλ ‘ Fµ.
(7.7)

Proof. As in the proof of (7.1), we assume that all Fµ “ F, E0 “ E, and

then δ
`

B
Bλ

˘
“ η‘ 1 in H1pV,OpHompE,Eqqq b H0pV,OpHompF,Fqqq Ă

H1pV,OpHompE b F,E b Fqqq where η P H1pV,OpHompE,Eqqq is

δ

ˆ
B

Bλ

˙
for the family tEλu. Also, to simplify the algebra, we assume

that F is a line bundle and set ω “
i

2π
ΘFp“ c1pFqq.

Now θEbF “ θE b 1 ` 1 b θF is a p1, 0q connection in E b F with

curvature ΘEbF “ ΘE b 1 ` 1 b ΘF. We claim that

PqpΘEbFq “
ÿ

r`s“q

ˆ
k ´ r

s

˙
ωsPspΘEq. (7.8)

�
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Proof. PqpAb1`1bBq “
ř

r`s“q

`
q
r

˘
Pqp A b 1loomoon

r

, 1 b Bloomoon
s

q. Assuming that

A is a k ˆ k matrix and B “ pbq is 1 ˆ 1, we have PqpA b 1, 1 b Bq “
Σcq,rPrpAqbsps “ q ´ rq and we need to determine the cq,r. Letting153

A “

«
A1 0
...

0 Ak

ff
, PqpA b 1, 1 b Bq “

1

q!

ř
π

Aπ1 . . . Aπr bπr`1 . . . bπq “

ps!q
1

q!

`
k´r

s

˘ř
π

Aπ1 . . . Aπr bs, so that PqpA b 1 ` 1 b Bq “
ř

r`s“q
π

`
q
r

˘pq ´ rq!

q!

`
k´r

s

˘
Aπ1 . . . Aπr bs “

ř
r`s“q

`
k´r

s

˘
PrpAqbs. This proves (7.8).

In the rational equivalence ring, we have

ZqpEλ b Fq “
ÿ

r`s“q

ˆ
k ´ r

s

˙
Z1pFqsZrpEλq. (7.9)

As in proof of (7.4) from (7.3), we have

tφqpEλ b Fqu˚ “
ÿ

r`s“q

ˆ
k ´ r

s

˙
ωstφrpEλqu˚. (7.10)

Using that (6.4) holds for tEλu, the right hand side of (7.10) becomesř
r`s“q´1

`
k´r´1

s

˘
ωsrPr`1p ΘEloomoon

r

; ηq; to prove (7.7) we must prove the

algebraic identity :

qPqpA b 1 ` 1 b Blooooooomooooooon
q´1

; ηb 1q “
ÿ

r`s“q´1

ˆ
k ´ r ´ 1

s

˙
bsrPr`1p Aloomoon

r

; ηq.

(7.11)

�

Proof of (7.11). qPqpA b 1 ` 1 b B; η b 1q “

“
ÿ

r`s“q´1
π

q

ˆ
q ´ 1

r

˙
Prp A b 1loomoon

r

; η b 1; 1 b Bloomoon
s

q “
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“
ÿ

r`s“q´1
π

q

q!

ˆ
q ´ 1

r

˙
Aπ1 . . . Aπrηπr`1bπr`2 . . . bπq “

“
ÿ

r`s“q´1
π

1

pq ´ 1q!

ˆ
q ´ 1

r

˙
¨

ˆ
k ´ r ´ 1

s

˙
pq ´ r ´ 1q!

bsAπ1 . . . Aπrηπr`1 “

“
ÿ

r`s“q´1
π

ˆ
k ´ r ´ 1

s

˙
¨

1

r!
Aπ1 . . . Aπrηπr`1bs “

“
ÿ

r`s“q´1

ˆ
k ´ r ´ 1

s

˙
bsrPr`1p Aloomoon

r

; ηq.

(c) Ample Bundles. If E Ñ V is a holomorphic bundle, we let ΓpEq 154

be the trivial bundle V ˆ H0pV,OpEqq. Then we say that E is generated

by its sections if we have :

0 Ñ F Ñ ΓpEq Ñ E Ñ 0. (7.12)

Now σ P Fz is a section σ of E with σpzq “ 0; sending σ Ñ dσpzq P
Ez b T˚

z pVq gives

F
d
ÝÑ E b T˚pVq. (7.13)

In [11], E was said to be ample if (7.12) holds and if d is onto in (7.13).

In this case, to describe the Chern cycles ZqpEq, we choose k general

sections σ1, . . . , σk of E Ñ V . Then ZqpEq Ă V is given by σ1 ^ . . . ^
σk´q`1 “ 0. (Note that Z1pEq is given by σ1 ^ . . .^σk “ 0 and ZkpEq
by σ1 “ 0.) The cycles ZqpEq are irreducible subvarieties defined up to

rational equivalence.

If now E Ñ V is a general holomorphic bundle, we can choose an

ample line bundle L Ñ V such that E b L is ample ([11]). Suppose we

know (6.4) for ample bundles. Then (6.4) holds for EbL and L. On the

other hand, if (6.4) is true for a bundle, then it is also true for the dual
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bundle. Since E “ pE b Lq b L˚, using (7.6) we conclude:

If (6.4) if true for ample bundles, then it is

true for all holomorphic vector bundles.
(7.14)

Let then tEλu be a family of ample holomorphic vector bundles and

Zλ “ ZqpEλq. We may form a continuous system (c.f. §3); we let Z “ Z0

and N Ñ Z be the normal bundle and φ : ∆Ñ TqpVq the mapping (3.1)

on Zλ ´ Z0. Then, combining (6.4) with the dual diagram to (3.8), we

have :

T0p∆q
δ //

φ˚

&&▼▼
▼▼▼

▼▼▼
▼▼▼

▼▼▼
▼▼▼

▼

ρ

��

H1pV,OpHompE,Eqqq

ζ

��
H0pZ,OpNqq

ξ // Hq´1,qpVq

(7.15)

Actually this diagram is not quite accurate; Eλ determines ZqpEλq only155

up to rational equivalence, and we shall see below that there is a sub-

space LqpEq Ă H0pZ,OpNqq such that we have :

T0p∆q

ρ

��

δ // H1pV,OpHompE,Eqqq

ζ

��
H0pZ,OpNqq{LqpEq

ξ // Hq´1,qpVq

(7.16)

Now in §9 below, we shall, under the assumption H1pV,OpEqq “ 0,

construct

θ : H1pV,OpHompE,Eqqq Ñ H0pZ,OpNqq{LqpEq (7.17)

such that

T0p∆q
δ //

ρ

""❋
❋❋

❋❋
❋❋

❋❋
❋❋

H1pV,OpHompE,Eqqq

θ

ww♣♣♣
♣♣♣

♣♣♣
♣♣♣

♣♣♣
♣

H0pZ,OpNqq{LqpEq
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commutes. Putting this in (7.16), we have :

In order to prove (6.4), it will suffice to

assume that E Ñ V is ample, H1pV,OpEqq “ 0,

and then prove that the following diagram commutes.

(7.18)

H1pV,OpHompE,Eqqq
ζ

((❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘

θ

��

Hq´1,qpVq

H0pZ,OpNqq{LqpEq

ξ
66❧❧❧❧❧❧❧❧❧❧❧❧❧

(7.19)

where ξ is given by (3.6), ζ by (6.8) and θ by the §9 below.

Remark. In case q “ k “ fibre dimension of E, Z Ă V is the zero locus

of σ P H0pV,OpEqq. Then LkpEq “ rH0pV,OpEqq, where r : OVpEq Ñ
OZpNq is the restriction mapping, and θ in (7.17) is constructed as fol- 156

lows. Let η P H1pV,OpHompE,Eqqq. Then η ¨ σ P H1pV,OpEqq “ 0

and so η ¨ σ “ Bτ for some τ P Γ8pV,Eq (“ C8 sections of E Ñ V).

We set θpηq “ τ|Z. If also η ¨ σ “ Bpτ, then Bpτ ´ pτq “ 0 so that θpηq is

determined up to rH0pV,OpEqq.

(d) Behavior in exact sequences. Let tEλu, tSλu, tQλu be families

of holomorphic vector bundles over V such that we have

0 Ñ Sλ Ñ Eλ Ñ Qλ Ñ 0. (7.20)

We shall prove:

If (6.4) holds for each of the

families tSλu, tQλu, then it is true for tEλu.
(7.21)

Proof. The exact sequences (7.20) are classified by classes

e P H1pV,OpHompQλ,Sλqqq,
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with e giving the same class as e1 if, and only if, e “ λe1pλ ‰ 0q. If

we show that the periods of Eλ are independent of this extension class

e, then we will have φqpEλq “ φqpSλ ‘ Qλq and so we can use (7.1).

But φqpeq (extension class e) = φqpteq for all t ‰ 0, and since φqpteq is

continuous at t “ 0, φqpEλq “ φqpSλ ‘ Qλq. Thus, in order to prove

(7.21), we must show :

Suppose the tEλu is a family with 0 Ñ S Ñ Eλ Ñ Q Ñ 0 for all λ.

Then ζpηq “ 0 in (6.8) where

η “ δ

ˆ
B

Bλ

˙
P H1pV,OpHom E,Eqq. (7.22)

�

Proof of (7.22). Assuming that E “ E0 with

0 Ñ S Ñ E
π
ÝÑ Q Ñ 0, (7.23)

we clearly have η P H1pV,OpHom Q,Sqq Ă H1pV,OpHompE,Eqqq. Let

η be a C8p0, 1q form with values in HompQ,Sq, and let e1, . . . , ek be a

local holomorphic frame for E such that e1, . . . , el is a frame for S. Then

el`1, . . . , ek projects to a frame for Q, and locally η “ p η11 η12
η21 η22

q. Since

η|S “ 0 and ηpEq Ă S, η11 “ η21 “ η22 “ 0 and η “
`

0 η12

0 0

˘
.

Suppose now that we can find a p1, 0q connection in E whose local157

connection matrix (using the above frame) has the form pθ “
´ pθ11

pθ12

0 pθ22

¯
.

Then the curvature Bpθ “ pΘE “
´ pΘ11

pΘ12

0 pΘ22

¯
, and it follows that

Pqp pΘEloomoon
q´1

; ηq ” 0.

Then let θ be an arbitrary p1, 0q connection in E. Locally θ “`
θ11 θ12

θ21 θ22

˘
, and we check easily that θ21 is a global p1, 0q form with values

in HompS,Qq; let ξ “
`

0 0
θ21 0

˘
P A1,0pV,HompS,Qqq and let φ : Q Ñ E

be a C8 splitting of (7.23). Then ψ “ I ´ φπ : E Ñ S and satisfies

ψpvq “ v for v P S. We let

pθ “ θ ´ φξψ (7.24)
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be the p1, 0q connection for E. Then πpθ|S “ 0 and so pθ “
´ pθ11

pθ12

0 pθ22

¯
as

required.

(e) Proof of (6.4) for line bundles. Let E Ñ V be a line bundle;

we want to prove (6.4) for any family tEλuλP∆ with E0 “ E. By (7.14),

we may assume that E Ñ V is ample and Z Ă V is the zero locus of a

holomorphic section σ P H0pV,OpEqq. Using (7.18), to prove (6.4) we

need to show that the following diagram commutes:

H1pV,Oq

θ

��

ζ

))❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘

H0,1pVq

H0pZ,OpNqq{H0pV,OpEqq

ξ
55❧❧❧❧❧❧❧❧❧❧❧❧❧❧

(7.25)

where ζ is now
i

2π
(identity). Let ω P Hn,n´1pVq and η P H1pV,Oq –

H0,1pVq. To prove the commutativity of (7.25), we must show:

i

2π

ż

V

η ^ ω “

ż

Z

θpηq ^ ξ˚ω. (7.26)

The argument is now similar to the proof (3.10). Letting Tǫ be an ǫ- 158

tubular neighborhood of Z in V ,
ş
V

η^ω “ lim
ǫÑ0

ş
V´Tǫ

η^ω. On the other

hand, ησ “ Bτ for some τ P Γ8pV,Eq, and θpηq “ τ|Z P H0pZ,OpEqq.

On V ´ Tǫ , η ^ ω “ ησ ^
ω

σ
“ B

´
τ

σ
^ ω

¯
“ d

´
τ

σ
^ ω

¯
, and so

lim
ǫÑ0

ş
V´Tǫ

η ^ ω “ lim
ǫÑ0

´
ş

BTǫ

τω

σ
“

2π

i

ş
Z

τξ˚ω by the same argument as

used to prove (3.10).

Corollary 7.27. (6.4) holds whenever E Ñ V is restricted to have the

triangular group of matrices as structure groups.

Proof. Use (7.21) and what we have just proved about line bundles. �
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8 Proof of (6.4) for the Highest Chern Class. Let E Ñ
V be an ample holomorphic vector bundle (c.f. (7.14)) with fibre Ck

and such that H1pV,OpEqq “ 0. The diagram (7.19) then becomes, for

q “ k,

H1pV,OpHompE,Eqqq

θ

��

ζ

))❙❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙

Hk´1,kpVq.

H0pZ,OpNqq{rH0pV,OpEqq

ξ´

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦

(8.1)

Let η P H1pV,OpHompE,Eqqq be given by a global HompE,Eq-valued

p0, 1q form η and suppose σ P H0pV,OpEqq is such that Z “ tσ “ 0u
and η ¨ σ “ 0 in H1pV,OpEqq. Then η ¨ σ “ Bτ where τ is a C8 section

of E Ñ V , and τ|Z “ θpηq. If ω P Hn´k`1,n´kpVq and Θ is a curvature

in E, then we need to show that
ż

Z

ξ˚ω ¨ τ “

ż

V

kPkp Θloomoon
k´1

; ηq ^ ω, (8.2)

where ξ˚ω P Hn´kpZ,Ωn´kpN˚qq is the Poincaré residue operator (3.6).

What we will do is write, on V ´ Z, kPkp Θloomoon
k´1

; ηq “ Bψk where ψk159

is a C8pk´1, k´1q form. Then, if Tǫ is the tubular ǫ-neighborhood of Z

in V ,
ş
V

kPkp Θloomoon
k´1

; ηq^ω “ lim
ǫÑ0

ş
V´Tǫ

dpψk^ωq “ ´ lim
ǫÑ0

ş
BTǫ

ψk^ω. We

will then show, by a residue argument, that ´ lim
ǫÑ0

ş
BTǫ

ψk ^ω “
ş
Z

ξ˚ω ¨τ.

Suppose now that we have an Hermitian metric in E Ñ V . This

metric determines a p1, 0q connection θ in E with curvature Θ “ Bθ. Let

σ˚ on V ´Z be the C8 section of E˚|V ´Z which is dual to σ (using the

metric). Setting λ “ τ b σ˚, pη “ η ´ Bλ is C8p0, 1q form with values

in HompE,Eq|V ´ Z and pη ¨σ “ η ¨σ´ Bpτbσ˚ ¨σq “ η ¨σ´ Bτ ” 0.

On the other hand, we will find a C8p1, 0q form γ on V ´ Z, which

has values in HompE,Eq, and is such that Dσ “ γ ¨ σ. Then pθ “ θ ´ γ
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gives a C8 connection in E|V ´Z whose curvature pΘ “ Θ´Bγ satisfies
pΘ ¨ σ ” 0. Since kPkp pΘloomoon

k´1

;pηq ” 0 (because pΘ ¨ σ ” 0 ” pη ¨ σq, it is

clear that, on V ´ Z,

kPkp Θloomoon
k´1

; ηq “ kPkppΘ` Bγloomoon
k´1

;pη ` Bλq “ Bψk,

and this will be our desired form ψk. Having found ψk explicitly, we will

carry out the integrations necessary to prove (8.2).

(a) An integral formula in unitary Geometry. On pCk “ Ck ´
t0u, we consider frames pz; e1, . . . , ekq where z P pCk and e1, . . . , ek is

a unitary frame with e1 “
z

|z|
. Using the calculus of frames as in [5],

we have : Deρ “
kř

σ“1

θσρ eσpθρσ ` θ
σ

ρ “ 0q. In particular, the differential

forms θ
ρ

1
“ pDe1, eρq are horizontal forms in the frame bundle over pCk.

Since 0 “ Bz “ Dnp|z|e1q “ B|z|e1 ` |z|

˜
kř

ρ“1

θ
ρ2

1
eρ

¸
, we find that 160

θα
2

1
“ 0pα “ 2, . . . , kq and θ12

1
“ ´

B|z|

|z|
“ ´B log |z|. It follows that

θ11

α “ 0pα “ 2, . . . , kq and θ11

1
“ B log |z|, so that

θ1
1 “ pB ´ Bq ¨ log |z|.

Given a frame pz; e1, . . . , ekq, the eρ give a basis for the p1, 0q tangent

space to pCk at z. Thus there are p1, 0q formsω1, . . . , ωk dual to e1, . . . , ek,

and we claim that

ω1 “ 2|z|θ11

1

ωα “ |z|θα
1
pα “ 2, . . . , kq

.

*
(8.3)

Proof. By definition dz “
kř

ρ“1

ωρeρ. But z “ |z|e1 and so dz “ pB|z| `

|z|θ11

1
qe1 `

kř
α“2

|z|θα
1
eα. Since θ11

1
“

B|z|

|z|
, we get (8.3) by comparing both
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sides of the equation :

kÿ

ρ“1

ωρeρ “ 2|z|θ11

1 e1 `
kÿ

α“2

|z|θα1 eα.

Now let τ “
kř

ρ“1

τρeρ and ω “
kř

ρ“1

ξρω
ρ be respectively a smooth

vector field and p1, 0q form on Ck. Then xω, τy “
kř

ρ“1

ξρτ
ρ is a C8

function on Ck. We want to construct a pk ´ 1, k ´ 1q form pψkpτq on pCk

such that

xω, τy0 “ lim
ǫÑ0

ż

BBǫ

pψkpτq ^ ω, (8.4)

where Bǫ Ă Ck is the ball of radius ǫ. Let Γpkq be the reciprocal of the

area of the unit 2k ´ 1 sphere in Ck and set

pψkpτq “
Γpkq

|z|

#
τ1

2

kź

α“1

θα1θ
1
α `

kÿ

β“2

τβ{θ11

1

ź

α‰β

θα1θ
1
α

+
. (8.5)

What we claim is that pψkpτq, as defined by (8.5), is a pk ´ 1, k ´ 1q
form on pCk satisfying (8.4). �

Proof. It is easy to check that pψkpτq is a scalar C8 form on pCk of type161

pk ´ 1, k ´ 1q. Now ω “
kř

ρ“1

ξρω
ρ “ |z|p2ξ1θ

11

1
`

kř
α“2

ξαθ
α
1
q, and so

ω ^ pψkpτq “ Γpkq

#
kÿ

ρ“1

τρξρ

+#
θ11

1

kź

α“2

θα1θ
1
α

+
. (8.6)

Using (8.6), we must show : If f is a C8 function of Ck, then

lim
ǫÑ0
Γpkq

ż

δBǫ

f pzqθ11

1

kź

α“2

θα1θ
1
α “ f p0q. (8.7)
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But, by (8.3), ω1ω2ω2 . . . ωkωk “ 2|z|2k´1θ11

1
θ2

1
θ1

2
. . . θk

1
θ1

k
, and so

Γpkqθ11

1

kś
α“2

θα
1
θ1
α is a 2k ´ 1 form on pCk having constant surface inte-

gral one over all spheres BBǫ for all ǫ. From this we get (8.7). �

Remarks. (i) Using coordinates z “

«
z1

...
zk

ff
,

θ11

1 θ
2
1θ

1
2 . . . θ

k
1θ

1
k “

kÿ

ρ“1

p´1qρ´1`kzρdz1 . . . dzkdz1 . . . dpzρ . . . dzk

|z|2k
.

(8.8)

(ii) If µ is a C8 differential form on pCk which becomes infinite at zero

at a slower rate than pψkpτq, then

lim
ǫÑ0

ż

BBǫ

ω ^ pψkpτq “ lim
ǫÑ0

ż

BBǫ

ω ^ ppψkpτq ` µq. (8.9)

(iii) On Cl ˆ Ck, let ω be a C8 form of type pl ` 1, lq. Then, if

τ “
kř

ρ“1

τρeρ is a C8 vector on Ck, we may write ω “
kř

ρ“1

γρ^ωρ

where the C8 form ξ˚ω ¨ τ “
kř

ρ“1

τργρ is of type pl, lq on Cl and

is uniquely determined by ω and τ.

Suppose now thatω has compact support in Cl (i.e. is supported in

∆lˆCk for some polycylinder ∆l Ă Ck). Then, as a generalization

of (8.4), we have
ż

Cl

ξ˚ω ¨ τ “ lim
ǫÑ0

ż

ClˆBBk
ǫ

pψkpτq ^ ω. (8.10)

162

Note that ξ˚ω “

«
γ1

...
γk

ff
is here the Poincaré residue of ω on Cl ˆ

t0u Ă Cl ˆ Ck.
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(iv) Combining remarks (ii) and (iii) above, we have :

Let ω be a C8 form of type pl ` 1, lq with support

in ∆l ˆ Ck and let ψkpτq be a C8 form on Cl ˆ pCk

whose principal part (i.e. term with the highest

order pole on Cl ˆ t0u) is pψkpτq given by (8.5). Then

(8.11)

ż

Cl

ξ˚ω ¨ τ “ lim
ǫÑ0

ż

ClˆδBǫ

ω ^ ψkpτq. (8.12)

(b) Some Formulae in Hermitian Geometry. Let W be a complex

manifold and E Ñ W a holomorphic, Hermitian vector bundle with

fibre Ck. We suppose that E has a non-vanishing holomorphic section

σ and we let S be the trivial line sub-bundle of E generated by σ. Thus

we have over W

0 Ñ S Ñ E Ñ Q Ñ 0. (8.13)

We consider unitary frames e1, . . . , ek where e1 “
σ

|σ|
is the unit vector

in S. The metric connection in E gives a covariant differentiation Deρ “ř
σ

θσρ eσpθσρ ` θ
ρ

σ “ 0q with D2 “ B. From 0 “ Bσ “ D2p|σ|e1q “

pB|σ| ` |σ|θ12

1
qe1 ` |σ|

ˆ
kř

α“2

θα
2

1
eα

˙
, we find

θα
2

1 “ 0pα “ 2, . . . , kq, θ1
1 “ pB ´ Bq log |σ|. (8.14)

Now then Dσ “ D1σ “ pB|σ| ` |σ|θ11

1
qe1 ` |σ|

ˆ
kř

α“2

θα
1
eα

˙
“

|σ|

"
2θ11

1
e1 `

kř
α“2

θα
1
eα

*
“ γ ¨ σ where

γ “ 2θ11

1 e1 b e˚
1 `

kÿ

α“2

θα1 eα b e˚
1 (8.15)

is a global p1, 0q form with values in HompE,Eq. In terms of matrices,163
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γ “

»
———–

2θ11

1
0 . . . 0

θ2
1

0 . . . 0
...

θk
1

0 . . . 0

fi
ffiffiffifl (8.16)

Letting pθ “ θ ´ γ, we get a p1, 0q connection pD in E with pD2 “ B
and pDσ “ 0. This was one of the ingredients in the construction of ψk

outlined above.

For later use, we need to compute Bγ “ D2γ. Since γ is of type

p1, 0q, D2γ is the p1, 1q part of Dγ “ dγ ` θ ^ γ ` γ ^ θ. Also, we

won’t need the first column of D2γ, so we only need to know pDγqρα “ř
τ

θ
ρ
τγ

τ
α `

ř
τ

γ
ρ
τθ
τ
α (since γ

ρ
α “ 0) “ γ

ρ

1
θ1
α. This gives the formula :

δγ “

»
————–

˚ 2θ11

1
θ1

2
. . . 2θ11

1
θ1

k
... θ2

1
θ1

2
. . . θ2

1
θ1

k
...

...

˚ θk
1

θ1
2

. . . θk
1

θ1
k

fi
ffiffiffiffifl
. (8.17)

As another part of the construction of ψk with Bψk “ kPkp Θloomoon
k´1

; ηq,

we let τ “
kř

ρ“1

τρeρ be a C8 section of E with Bτ “ η ¨ σ (c.f. below

(8.1)). Set

λ “ τ b σ˚ “
kÿ

ρ“1

τρ

|σ|
eρ b e˚

1 . (8.18)

In terms of matrices,

λ “
1

|σ|

»
—–
τ1 0 . . . 0
...

...
...

τk 0 . . . 0

fi
ffifl . (8.19)
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We want to compute the HompE,Eq-valued p0, 1q form Bλ, and we claim

that

Bλ “
kÿ

ρ“1

η
ρ

1
eµ b e˚

1 ´
1

|σ|

ÿ

ρ,α

τρθ1
αeρ b e˚

α. (8.20)

164

Proof.

Bγ “ Bτ b σ˚ ` τ b Bσ˚

“
kÿ

ρ“1

η
ρ

1
eρ b e˚

1 `
kÿ

ρ“1

τρeρ b D2

ˆ
e˚

1

|σ|

˙

(since
e˚

1

|σ|
“ σ˚ and Bτ “ η ¨ σ). Now D2

ˆ
e˚

1

|σ|

˙
“ B

ˆ
1

|σ|

˙
e˚

1
`

1

|σ|
D2e˚

1
and D2e˚

1
“

kř
ρ“1

θ
˚ρ2

1
e˚
ρ “ ´

kř
ρ“1

θ12

ρ e˚
ρ (since θ ` tθ˚ “ 0).

But B

ˆ
1

|σ|

˙
´

1

|σ|
θ12

1
“

1

|σ|
p´partial log |σ| ´ θ12

1
q “ 0 by (8.14)

so that D2

ˆ
e˚

1

|σ|

˙
“

´1

|σ|

kř
α“2

θ1
αe˚

α (since θ11

α “ 0 by (8.14)). Thus

Bλ “
kř

ρ“1

η
ρ

1
eρ b e˚

1
´

1

|σ|

ř
ρ,α

τρθ1
αeρ b e˚

α as required.

In terms of matrices,

Bλ “ ´

»
—————–

η1
1

τ1θ1
2

|σ|
. . .

τ1θ1
k

|σ|
...

...
...

ηk
1

τkθ1
2

|σ|
. . .

τkθ1
k

|σ|

fi
ffiffiffiffiffifl

“ ´
1

|σ|

»
—–

˚ τ1 θ1
2

. . . τ1 θ1
k

...
...

...

˚ τk θ1
2

. . . τk θ1
k

fi
ffifl .

(8.21)

�

(c) Completion of the Proof. Given E Ñ V and σ P H0pV,OpEqq
with Z “ tz P V : σpzq “ 0u, we let pE “ E ´ t0u and lift E up to lie
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over pE. Letting W “ pE, the considerations in 8(b) above apply, as well

as the various formulae obtained there. Using σ : V ´ Z Ñ pE, we may

pull everything back down to V ´ Z. In particular, |σ| may be thought

of as the distance to Z, and the forms θ
ρ
α will go to infinity like

1

|σ|
near

Z (c.f. 8(a)).

Now, since Θ ¨ σ “ Bγ ¨ σ and η ¨ σ “ Bγ ¨ σ on V ´ Z we have

0 ” kPkpΘ´ Bγloomoon
k´1

; η ´ Bλq. (8.22)

Expanding (8.22) out, we will have 165

kPkp Θloomoon
k´1

; ηq “ Bψk, (8.23)

on V ´ Z. It is clear that ψk will be a polynomial with terms containing

Θ
ρ
σ, η

ρ
σ, θρ, τ j. Furthermore, from (8.16), (8.17), and (8.21), the highest

order term of ψk will become infinite near Z like
1

|σ|2k´1
. From (8.5)

and (8.11), the expression

´ lim
ǫÑ0

ż

BTǫ

ω ^ ψk (8.24)

will depend only on this highest order part of ψk. Let us use the notation

” to symbolize “ignoring terms of order
1

|σ|2k´2
or less.” Then from

(8.22), we have

ψk ” p´1qkkPkp γloomoon
1

; Bγloomoon
k´2

; Bλloomoon
1

q. (8.25)

This is because Θ and η are smooth over Z. Note that the right hand side

of (8.25) behaves as
1

|σ|2k´1
near Z. Using (8.5) and (8.11) from 8(a),

to prove the commutativity of (8.1), we must show:

p´1qkkPkp γloomoon
1

; Bγloomoon
k´2

; Bλloomoon
1

q
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” ´
Γpkq

2|σ|

#
τ1

kź

α“2

θα1θ
1
α ` 2

kÿ

β“2

τβθ1
βθ

11

1

ź

α‰β

θα1θ
1
α

+
(8.26)

where γ, Bγ, and Bλ are given by (8.16), (8.17), and (8.21).
The left hand side of (8.26) is, by (A4.4)

ˆ
1

2πi

˙
1

pk ´ 1q!

$
’’’&
’’’%

1

|σ|

kÿ

α“2

det

»
———–

2θ11

1
2θ11

1
θ1

2
. . . τ1θ1

α . . . 2θ11

1
θ1

k

θ2
1

θ2
1

θ1
2

τ2θ1
α θ2

1
θ1

k

.

.

.
.
.
.

.

.

.

θk
1

θk
1

θ1
2

. . . τkθ1
α . . . θk

1
θ1

k

fi
ffiffiffifl

,
///.
///-

(8.27)

Fixing α, the coefficient of τ1θ1
α on the right hand side of (8.27) is166

p´1qα det

»
—–
θ2

1
θ2

1
θ1

2
. . . pα . . . θ2

1
θ1

k
...

...
...

θk
1

θk
1

θ1
2

. . . θk
1

θ1
k

fi
ffifl

(pα means that the column beginning θ2
1
θ1
α is deleted). This last determi-

nant is evaluated as
ÿ

π

sgn πθ
π1

1
θ
π2

1
θ1

2 . . . ppαqθπk´1
1

θ1
k , (8.28)

where the sum is over all permutations of 2, . . . , k. Obviously then (8.28)

is equal to pk´1q!p´1qα´1θα
1

ś
β‰α

θ
β

1
θ1
β
. This then gives for the coefficient

of τ1 in (8.27) the term

´

ˆ
1

2πi

˙k pk ´ 1q

|σ|

kź

α“2

θα1θ
1
α. (8.29)

In (8.27), the term containing ταθ1
β

is

β

p´1qα`β det
αąβ

»
———–

2θ11

1
2θ11

1
θ1

2
. . . 2θ11

1
θ1

k

θ2
1

θ2
1

θ1
2

θ2
1

θ1
k

...
...

θk
1

θk
1

θ1
2

. . . θk
1

θ1
k

fi
ffiffiffifl
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“ 2pk ´ 1q!θ
β

1
θ11

1

˜ ź

γ‰β,α

θ
γ

1
θ1
γ

¸
θ1
α.

Thus, combining, (8.27) is evaluated to be

´
Γpkq

2|σ|

#
τ1

kź

α“2

θα1θ
1
α ` 2θ11

1

kÿ

β“2

τβθ1
β

ź

α‰β

θα1θ
1
α

+

where Γpkq´1 “
ş
αB1

ω1ω2ω2 . . . ωkωk in 8(a). Comparing with (8.26)

we obtain our theorem.

9 Proof of (6.8) for the General Chern Classes. The

argument given in section 8 above will generalize to an arbitrary nonsin-

gular Chern class ZqpEq. The computation is similar to, but more com- 167

plicated than, that given in §8, (a)-(c) above. However, in general ZqpEq
will have singularities, no matter how ample E is. Thus the normal

bundle N Ñ ZqpEq is not well-defined, and so neither the infinitesimal

variation formula (3.8) nor (7.16) makes sense as it now stands.

We shall give two proofs of (6.8). The first and more direct argu-

ment makes use of the fact that the singularities of ZqpEq are not too

bad; in particular, they are “rigid,” and so the argument in §8 can be

generalized. The second proof will use the transformation formulae of

§4; it is not completely general, in that we assume the parameter space

to be a compact Riemann surface and not just a disc.

First Proof of (6.4) (by direct argument). To get an understanding

of the singularities of ZqpEq, let σ1, σ2 be general sections of E Ñ V

so that Zk´1pEq is given by σ1 ^ σ2 “ 0. If, say, σ1pz0q ‰ 0, we

may choose a local holomorphic frame e1, . . . , ek with e1 “ σ1. Then

σ2pzq “
kř

α“1

ξαpzqeα, and Zk´1pEq is locally given by ξ2 “ . . . “ ξk “

0. We may thus assume that the singular points of Zk´1pEq will come

where σ1 “ 0 “ σ2. If n ě 2k, there will be such points; choosing

a suitable holomorphic frame e1, . . . , ek, we may assume that σ1pzq “
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kř
α“1

zαeα and σ2pzq “
kř

α“1

zk`αeα. Then Zk´1pEq is locally given by

zαzk`β ´ zβzk`α “ 0 p1 ď α ă β ď kq. (9.1)

For example, when k “ 2, (9.1) becomes z1z4 ´ z2z3 “ 0, which is

essentially an ordinary double point.

Now let tEλu be a family of ample (c.f. §7) vector bundles satis-

fying H1pV,OpEλqq “ 0 (c.f. (7.18)). Then we may choose general

sections σ1pλq, . . . , σkpλq of Eλ which depend holomorphically on λ; in

this case, Zλ “ ZqpEλq is defined by σ1pλq ^ . . .^σk´q`1pλq “ 0. Let-

ting Z “ Z0, we see that, although the Zλ are singular, the singularities

are rigid in the following sense:

There are local biholomorphic mappings fλ : U Ñ U (U = open set168

on V) such that

Zλ X U “ fλpZ X Uq (9.3)

We now define an infinitesimal displacement mapping:

ρ : T0p∆q Ñ H0pZ,HompI{I2,OZqq, (9.4)

where I Ă OV is the ideal sheaf of Z. To do this, let z1, . . . , zn be local

coordinates in U and f pz; λq “ fλpzq the mappings given by (9.3). Let

θ f pzq be the local vector field
nř

i“1

B f i

Bλ
pz, λq

B

Bzi
. If ξpzq is a function in

I (so that ξpzq “ 0 on Z), then θ f ¨ ξ gives a section of OV{I “ OZ .

Furthermore, the mapping ξ Ñ θ f ¨ ξ|Z is linear over OV and is zero on

I2, so that we have a section of HompI{I2,OZq over U.

To see that this section is globally defined on Z, we suppose that pfλ :

U Ñ U also satisfies pfλpZ XUq “ ZλXU. Then pf pz; λq “ f phpz, λq; λq
where hpz; λq : Z X U Ñ Z X U. Then

nÿ

i“1

B pf i

Bλ
pz, λq

Bξ

Bzi
pzq “

ÿ

i, j

B f i

Bz j

Bh j

Bλ

Bξ

Bzi
`
ÿ B f i

Bλ
phpz, λq; λq

Bξ

Bzi
.

Thus, at λ “ 0 and for z P Z, θ pf ¨ ξ ´ θ f ¨ ξ

“
ÿ

i, j

Bξ

Bzi
pzq

B f i

Bz j
pz; 0q

Bh j

Bλ
pz; 0q “

„
B

Bλ
pξp f phpz, λq, 0qqq



λ“0
zPZ

“ 0.
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From this we get that θ pf ξ “ θ f ξ in OZ . The resulting section of

HompI{I2,OZq is, by definition, ρ

ˆ
B

Bλ

˙
.

Examples. (a) In case Z is nonsingular, HompI{I2,OZq “ OZpNq

where N Ñ Z is the normal bundle; then ρ

ˆ
B

Bλ

˙
P H0pZ,OZpNqq

is just Kodaira’s infinitesimal displacement mapping (3.8).

(b) In case Z Ă V is a hypersurface, ρ

ˆ
B

Bλ

˙
ξ vanishes on the sin-

gular points of Z. This is because ξ “ ηg where gpzq “ 0

is a minimal equation for Z X U. Then, in the above notation,

θ f ¨ ξ|Z “ ηθ f ¨ g|Z, and θ f ¨ g vanishes on g “ 0, dg “ 0, which

is the singular locus of Z.

Now suppose that 169

dim Z “ n ´ q and that ω “
ÿ

I“pi1,...,in´q`1q
J“p j1,..., jn´qq

ω
IJ

dzIzdJ

is a C8 form of type pn ´ q ` 1, n ´ qq. Then

xθ f , ωy “
ÿ

I,J,l

˘ω
IJ

B f 1l

Bλ
dzi1 ^ . . . ^ xdzil ^ . . . ^ dzin´q`1 ^ dzJ

is a C8pn ´ q, n ´ qq form in U whose restriction to the manifold points

Zreg Ă Z is well-defined. Thus, there exists a C8pn ´ q, n ´ qq form

Ω “ xξ˚ω, ρ

ˆ
B

Bλ

˙
y on Zreg such that

ş
Zreg

Ω
def.
“

ż

Z

Ω converges. Just as

in the proof of (3.7) (c.f. [9], §4), we can now prove:

The differential φ˚ : T0p∆q Ñ Hq´1,qpVq of the mapping

φpλq “ φqpZλ ´ Zq (9.5)
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is given by ż

V

φ˚

ˆ
B

Bλ

˙
^ ω “

ż

Z

xξ˚ω, ρ

ˆ
B

Bλ

˙
y, (9.6)

where the right-hand side of (9.6) means, as above, that we take the

Poincaré residue ξ˚ω of ω on Zreg and contract with

ρ

ˆ
B

Bλ

˙
P H0pZ,HompI{I2,OZqq

given by (9.4).

Example. The point of (9.5) can be illustrated by the following ex-

ample. Let Z Ă C2 be given by xy “ 0 and θ P HompI{I2,OZq by

θpxyq “ 1. Then, on the x-axis py “ 0q, θ is the normal vector field
1

x

B

By
; on the y-axis, θ is

1

y

B

Bx
. If now ω “ dxdy, then, on the x-axis,

xξ˚ω, θy “
1

x
dx and so

ş
Zreg

xξ˚ω, θy becomes infinite on the singular

points of Z.

More generally, if gpx, yq “ xa ´ yb with pa, bq “ 1, and if θ P
HompI{I2,OZq is given by θpgq “ 1, then θ corresponds to the normal

vector field
1

Bg{By

B

By
. Thus, if ω “ dxdydx, xξ˚ω, θy “

dxdx

pBg{Byq
.

Letting x “ tb, y “ ta, we have

xξ˚ω, θy “

ˆ
b2

a

˙
¨

|t|2a´2dtdt

tapb´1q
,

which may be highly singular at t “ 0p“ Zsingq.170

We now reformulate (9.5) as follows.

Let tEλuλP∆ be our family of bundles and φ : ∆ Ñ TqpVq the map-

ping (3.1) corresponding to ZqpEλq ´ ZqpE0q. If σ1pλq, . . . , σkpλq are

general sections of Eλ Ñ V which depend holomorphically on λ, then

ZqpEλq is given by σ1pλq ^ . . . ^ σk´q`1pλq “ 0. We let Yλ Ă Zλ be

the Zariski open set where σ1pλq ^ . . .^ σk´qpλq ‰ 0. Then Yλ Ă V is
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a submanifold (not closed) and tYλuλP∆ forms a continuous system. We

let ρ : T0p∆q Ñ H0pY,OpNqq (where N Ñ Y “ Y0 is the normal bundle)

be the infinitesimal displacement mapping. If then ψ P Hn´q`1,n´qpVq,

we have the formula:
ż

V

φ˚

ˆ
B

Bλ

˙
^ ψ “

ż

Y

xρ

ˆ
B

Bλ

˙
, ξ˚ψy, (9.8)

where φ˚

ˆ
B

Bλ

˙
P Hq´1,qpVq and ξ˚ψ P An´q,n´qpY,N˚q is the Poincaré

residue of ψ along Y .

With this formulation, to prove (6.4) we want to show that

ż

Y

xρ

ˆ
B

Bλ

˙
, ξ˚ψy “

ż

V

qPqpΘ, . . . ,Θlooomooon
q´1

; ηq ^ ψ, (9.9)

where Θ is a curvature in E Ñ V and η P H0,1pV,HompE,Eqq is the

Kodaira-Spencer class δ

ˆ
B

Bλ

˙
(c.f. (6.3)).

Now Zq`1pEq is defined by σ1 ^ . . .^σk´q “ 0, and we let W Ă V

be the Zariski open set σ1 ^ . . . ^ σk´q ‰ 0; thus W “ V ´ Zq`1pEq.

Clearly we have

ż

V

qPqpΘ, . . . ,Θlooomooon
q´1

; ηq ^ ψ “

ż

W

qPqpΘ, . . . ,Θlooomooon
q´1

; ηq ^ ψ. (9.10)

On the other hand, over W we have an exact sequence

0 Ñ S Ñ EW Ñ Q Ñ 0, (9.11)

where S is the trivial bundle generated by σ1, . . . , σk´q. Suppose that 171

we have an Hermitian metric in E Ñ V such that Θ is the curvature of

the metric connection. Using this, we want to evaluate the right hand

side of (9.10).

We now parallel the argument in §8 for a while. Since H1pV,OpEqq “
0, ησα “ Bγα for some C8 section γα of E Ñ Vpα “ 1, . . . , k ´ qq.
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On W “ V ´ Zq`1pEq we find a section ζα of E˚ Ñ V such that

xζα, σβy “ δα
β
. We claim that we can find such ζα having a first order

pole at a general point of Zq`1pEq.

Proof. On W, we look at unitary frames e1, . . . , ek such that e1, . . . , ek´q

is a frame for S. Then σα “
k´qř
β“1

hαβeβ where detphαβq vanishes to

first order along Zq`1pEq. Set ζα “
k´qř
β“1

ph´1qβαe˚
β
; then xζα, σβy “

ř
γ,λ

ph´1qγαhβλxe˚
γ , eλy “ δα

β
. �

Remark. In the case k ´ q “ 1, e1 “
σ1

|σ1|
and ζ1 “

e˚
1

|σ1|
.

On W, we define γ “

˜
k´qř
α“1

ζα b γα

¸
. Then Bγ ¨σα “ η ¨σα and so,

if pη “ η ´ Bγ, pη ¨ σα ” 0 and pη has a pole of order one along Zq`1pEq.

By Stoke’s theorem then,
ż

W

qPqpΘ, . . . ,Θlooomooon
q´1

; ηq “

ż

W

qPqpΘ, . . . ,Θlooomooon
q´1

;pηq. (9.12)

In terms of the natural unitary frames for 0 Ñ S Ñ EW Ñ Q Ñ 0,

pη “

ˆ
0 *

0 *

˙
.

We now work on the curvature Θ. The curvature pΘ in S ‘ Q Ñ W

may be assumed to have the form pΘ “
´

0 0
0 ΘQ

¯
(since ΘS “ 0), and the

same techniques as used in the Appendix to §4 can be applied to show:

qPqpΘ, . . . ,Θ;pηq ´ qPqppΘ, . . . , pΘ;pηq “ Bλ, (9.13)

where λ has a pole of order 2q ´ 1 along Zq`1pEq (c.f. (A4.24) and the172

accompanying calculation). By Stoke’s theorem again,
ż

W

qPqpΘ, . . . ,Θlooomooon
q´1

;pηq “

ż

W

qPqppΘ, . . . , pΘlooomooon
q´1

;pηq. (9.14)
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From (9.9), (9.10), (9.12), and (9.14), we have to show

ż

Y

xρ

ˆ
B

Bλ

˙
, ξ˚ψy “

ż

W

qPqppΘ, . . . , pΘlooomooon
q´1

;pηq ^ ψ. (9.15)

Now write pη “
´

0 ˚
0 ηQ

¯
; clearly we have

PqppΘ, . . . , pΘlooomooon
q´1

;pηq “ PqpΘQ, . . . ,ΘQlooooomooooon
q´1

; ηQq.

Thus, to prove (9.9), we need by (9.15) to show that

ż

Y

xρ

ˆ
B

Bλ

˙
, ξ˚ψy “

ż

W

qPqpΘQ, . . . ,ΘQ; ηQq. (9.16)

The crux of the matter is this. Over W, we have a holomorphic

bundle Q Ñ W and a holomorphic section σ P H0pW,OpQqq; σ is

just the projection on Q of σk´q`1 P H0pV,OpEqq. The subvariety Y is

given by σ “ 0, and the normal bundle of Y is Q Ñ Y . Thus ρ

ˆ
B

Bλ

˙

is a holomorphic section of Q Ñ Y , and (9.16) is essentially the exact

analogue of (8.2) with Y replacing Z and W replacing V. To make the

analogy completely precise, we need to know that ηQ and ρ

ˆ
B

Bλ

˙
are

related as in (8.2). If we know this, and if we can keep track of the

singularities along Zq`1pEq, then (9.16) can be proved just at (8.2) was

above. Thus we need the analogues of (7.17) and (7.19); what must be

proved is this:

There exists a C8 section τ of Q Ñ W such that τ|Y is

ρ

ˆ
B

Bλ

˙
and Bτ “ ηQσ. (9.17)

In addition, we must keep track of the singularities of τ along

Zq`1pEq so as to insure that the calculations in §8 will still work.
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For simplicity, suppose that q “ k ´ 1 so that Zk´1pEq is given by173

σ1 ^ σ2 “ 0 and ZkpEq by σ1 “ 0. Let Eλ Ñ V be given by tgαβpλqu
(c.f. §6) and σ jpλq by holomorphic vectors tσ jαpλqup j “ 1, 2q. Then

σ jαpλq “ gαβpλqσ jβpλq and

Bσ jαpλq

´Bλ
“ gαβpλq

Bσ jβpλq

Bλ
`

Bgαβpλq

Bλ
gαβpλq´1tgαβpλqσ jβpλqu.

At λ “ 0, this says that

δ

ˆ
Bσ j

Bλ

˙
“ η ¨ σ j, (9.18)

where
Bσ j

σλ
is a zero cochain for the sheaf OpEq and η “ t

•

gαβg
´1
αβ

u is

the Kodaira-Spencer class (6.3).

Let 1 denote
B

Bλ



λ“0

. Then from (9.18) we have

pσ1 ^ σ2q1 “ σ1
1 ^ σ2 ` σ1 ^ σ1

2 “ η ¨ pσ1 ^ σ2q. (9.19)

Thus, over Zk´1pEq, pσ1 ^σ2q1 is a holomorphic section of Λ2E Ñ
Zk´1pEq. On the other hand, over Y “ Zk´1pEq Ñ ZkpEq, σ1 is non-

zero. Since S Ă EW is the sub-bundle generated by σ1, we have on W

an exact sequence:

0 Ñ S Ñ EW Ñ σ1 ^ EW Ñ 0, (9.20)

where the last bundle is the sub-bundle of Λ2EW of all vectors ξ such

that ξ ^ σ1 “ 0 in Λ3EW .

Along Y , σ1 ^σ2 “ 0 and so σ1 ^ pσ1 ^σ2q1 “ 0; thus pσ1 ^σ2q1

is a section along Y of σ1 ^ E. But σ1 ^ E is naturally isomorphic to Q

and, under this isomorphism, we may see that

pσ1 ^ σ2q1 “ ρ

ˆ
B

Bλ

˙
. (9.21)

Thus we have identified ρ

ˆ
B

Bλ

˙
.
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Let now η P A0,1pV,HompE,Eqq be a Dolbeault class corresponding

to t
•

gαβg
´1
αβ

u. Then ησ1 “ Bγ1 and η ¨ σ2 “ Bγ2 where γ1, γ2 are C8

sections of E Ñ V . Clearly these equations are the global analogue of

(9.18). In particular, we may assume that, along Zk´1pEq,

σ1
1 ^ σ2 ` σ1 ^ σ1

2 “ γ1 ^ σ2 ` σ1 ^ γ2 “ ρ

ˆ
B

Bλ

˙
. (9.22)

174

Now γ1 ^ σ2 ` σ1 ^ γ2 is a C8 section of Λ2EW Ñ W, but will

not in general lie in σ1 ^ EW Ă Λ2EW . However, letting γ “ ζ1 b γ1

be as just above (9.12) (thus ζ1 is a C8 section of E˚
W

Ñ W satisfying

xζ1, σ1y “ 1), we may subtract

γ ¨ pσ1 ^ σ2q “ γ1 ^ σ2 ` σ1 ^ xζ1, σ2yγ1

from γ1 ^ σ2 ` σ1 ^ γ2 without changing the value along Y . But then

τ “ γ1 ^ σ2 ` σ1 ^ γ2 ´ γ ¨ pσ1 ^ σ2q “ σ1 ^ γ2 ´ xζ1, σ2yσ1 ^ γ1

lies in σ1 ^ EW . This gives us that:

τ is a C8 section of Q Ñ W such that τ|Y “ ρ

ˆ
B

Bλ

˙
. (9.23)

Also, Bτ “ Bγ1 ^σ2 `σ1 ^ Bγ2 ´ Bγ ¨ pσ1 ^σ2q “ η ¨σ1 ^σ2 `
σ1 ^ ησ2 ´ Bγ ¨ pσ1 ^ σ2q “ pη ´ Bγq ¨ σ1 ^ σ2 “ pη ¨ pσ1 ^ σ2q.

Under the isomorphism σ1 ^ EW – Q, pη ¨ pσ1 ^σ2q “ σ1 ^pησ2 (since

pη ¨ σ1 “ 0) corresponds to ηQ ¨ σ, i.e. we have

Bτ “ ηQσ. (9.24)

Combining (9.23) and (9.24) gives (9.17).

The only possible obstacle to using the methods of §8 to prove (9.16)

is the singularities along Zq`1pEq. Now τ has at worst a pole of order

one along Zq`1pEq, ΘQ has a pole of order 2, and so the forms which

enter into the calculation will have at most a pole of order 2q along

Zq`1pEq. But this is just right, because Zq`1pEq has (real) codimension

2q ` 2, and we can use the following general principle.
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Let X be an n-dimensional compact, complex manifold and S Ă X

an irreducible subvariety of codimension r. If Ω is a smooth 2n-form

on X ´ S with a pole of order 2r ´ 1 along S , then
ş

X´S

Ω converges.

Furthermore, if Ω1,Ω2 are two C8 forms on X ´ S such that degpΩ1q `
degpΩ2q “ 2n´1 and such that torder of pole of pΩ1qu + torder of pole

of pΩ2qu “ 2r ´ 2, then
ş

X´S

dΩ1 ^Ω2 “ p´1qdegΩ2
ş

X´S

Ω1 ^ dΩ2.

Proof. The singularities of S will not cause trouble, so assume S is175

nonsingular and let Tǫ be an ǫ-tube around S . Then clearly lim
ǫÑ0

ş
X´Tǫ

Ω

converges and, by definition, equals
ş

X´S

Ω “
ş
X

Ω. Also,
ş

X´Tǫ

dΩ1 ^

Ω2 ´ p´1qdegΩ1
ş

X´Tǫ

Ω1 ^ dΩ2 “ ´
ş

BTǫ

Ω1 ^ Ω2. But, on BTǫ , |Ω1 ^

Ω2| ď
c

ǫ2r´2
dµ where dµ is the volume on BTǫ . Since

ş
BTǫ

dµ ď c1ǫ2r´1,

lim
ǫÑ0

ş
BTǫ

Ω1 ^Ω2 “ 0. �

Second proof of (6.4) (by functoriality). We shall consider over V a

family of holomorphic vector bundles tEλuλPC parametrized by a non-

singular algebraic curve C; this family is given by a holomorphic bun-

dle E Ñ V ˆ C where Eλ – E|V ˆ tλu. We let X “ V ˆ C and

Vλ “ V ˆ tλu, V “ Vλ0
where λ0 P C is the marked point. It may be as-

sumed that EÑ X is ample and H1pV,OpEλqq “ 0 “ H1pX,OpEqq “ 0

for all λ P C (c.f. §7(c)).

Let Zq Ă X be the qth Chern class of EÑ X and Zqpλq “ Zq ¨ Vλ;

thus Zqpλq is the qth Chern class of Eλ Ñ V . More precisely, letting

π : X Ñ V be the projection, πpZq ¨ Vλq Ñ Zqpλq is the qth Chen class

of Eλ Ñ V .

Now let

Zλ “ Zq ¨ Vλ ´ Zq ¨ Vλ0
“ Zq ¨ pVλ ´ Vλ0

q and Zλ “ Zqpλq ´ Zqpλ0q.

Then Zλ is a cycle of codimension q ` 1 on X which is algebraically

equivalent to zero, and Zλ “ πpZλq is a similar cycle of codimension q
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on V . Using an easy extension of the proof of (4.14), we have :

Tq`1pXq

π˚

��

C

φq`1pXq 66❧❧❧❧❧❧❧❧❧❧

φqpVq ((❘❘
❘❘❘

❘❘❘
❘❘❘

TqpVq,

(9.26)

where π˚ : H˚pX,Cq Ñ H˚pV,Cq is integration over the fibre and

φq`1pXqpλq “ φq`1pXqpZλq (similarly for φqpVq).

In infinitesimal form, (9.26) is:

Hq,q`1pXq

π˚

��

Tλ0
pCq

φq`1pXq˚
55❦❦❦❦❦❦❦❦❦❦

φqpVq˚
))❙❙❙

❙❙❙❙
❙❙❙

Hq´1,qpVq.

(9.27)

We let ω “ φqpVq˚

ˆ
B

Bλ

˙
andΩ “ φq`1pXq˚

ˆ
B

Bλ

˙
, so that π˚Ω “ ω 176

in Hq´1,qpVq. The class ω P Hq´1,qpVq is characterized by

ż

X

Ω^ π˚ψ “

ż

V

ω ^ ψ, for all ψ P Hn´q`1,n´qpVq. (9.28)

The family of divisors Vλ Ă X defines φ1pXq : C Ñ T1pXq, and,

from the mapping

φ1pXq˚ : Tλ0
pCq Ñ H0,1pXq, (9.29)

we let θ “ φ1pXq˚

ˆ
B

Bλ

˙
. Thus θ is the infinitesimal variation of

Vλ measured in the Picard variety of X. Letting Ψ P Hq,qpXq be the

Poincaré dual of Zq, we have by (4.17) that

Ω “ θΨ. (9.30)

187



188 P. A. Griffiths

Because Vλ Ă X is a divisor and because of (3.10), we know how

to compute θ P H0,1pXq. By (9.30), Ω P Hq,q`1pXq is known, and so

we must find π˚pΩq. This calculation, when carried out explicitly, will

prove (6.4).

First, let L Ñ X be the line bundle rVλ0
s and σ P H0pX,OpLqq

the holomorphic section with Vλ0
given by σ “ 0. Then L|V “ N is

the normal bundle of V in X; in fact, N Ñ V is clearly a trivial bundle

with non-vanishing section
B

Bλ
, where λ is a local coordinate on C at λ0.

Choose a C8 section τ of L Ñ X with τ|V “
B

Bλ
and write

Bτ “ θσ. (9.31)

Then, by §7(e), θ P H0,1pXq and gives φ1pXq˚

ˆ
B

Bλ

˙
. By the same177

argument as in (3.10), we have :

ż

X

pBΨq ^ π˚ψ “ ´ lim
ǫÑ0

ż

BTǫ

B
´
τ

σ

¯
Ψ^ π˚ψ “

ż

V

x
B

Bλ
, ξ˚pΨ^ π˚ψqy

(ξ˚ being given by (3.6)) “
ş
V

x
B

Bλ
, ξ˚Ψy ^ ψ. Combining, we have

ş
X

Ω ^ π˚ψ “
ş
V

x
B

Bλ
, ξ˚Ψyψ for all ψ P Hn´q`1,n´qpVq; by (9.28), we

see then that

ω “ π˚pΩq “ x
B

Bλ
, ξ˚Ψy. (9.32)

This equation is the crux of the matter; in words, it says that:

The infinitesimal variation of ZqpEq in TqpVq is given by the Poincaré

residue, relative to B{Bλ along V ˆ tλ0u in V ˆ C, of the form

PqpΘ, . . . ,Θq on V ˆ C where Θ is a curvature in EÑ V ˆ C. (9.33)

Since Θ|V “ ΘE is a curvature in E Ñ V , and since

x
B

Bλ
, PqpΘ, . . . ,Θqy “ qPqpΘ, . . . ,Θ, x

B

Bλ
,Θyq,
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to prove (6.4) we must show that:

x
B

Bλ
,Θy “ η P H0,1pV,HompE,Eqq is the Kodaira-Spencer class

δ

ˆ
B

Bλ

˙
given by (6.3). (9.34)

Let then ∆ be a neighborhood, with coordinate λ, of λ0 on C and

tUαu an open covering for V . Then E|V ˆ ∆ is given by transition

functions tgαβpz, λqu, and a p1, 0q connection θ for EÑ V ˆ C is given

by matrices θα “ θαpz, λ; dz, dλq of p1, 0q forms which satisfy

θα ´ gαβθβg
´1
αβ

“ dgαβg
´1
αβ

“

˜ÿ

k

Bgαβ

Bz j
dz j `

Bgαβ

Bλ
dλ

¸
g´1
αβ
. (9.35)

The curvature Θ|Uα ˆ ∆ is given by Θ|Uα ˆ ∆ “ Bθα. Thus

x
B

Bλ
,Θy|Uα ˆ∆ is given by Bx

B

Bλ
, θαy. But, on Uα ˆ tλ0u pλ0 “ 0q, we 178

have x
B

Bλ
, θαy ´ gαβx

B

Bλ
, θβyg´1

αβ
“

•

gαβg
´1
αβ

, so that

B

"
x

B

Bλ
, θαy|Uα ˆ tλ0u

*

is a Dolbeault representative of the Cêch cocycle t
•

gαβg
´1
αβ

u “ δ

ˆ
B

Bλ

˙

by (6.3). Thus δ

ˆ
B

Bλ

˙
is given by x

B

Bλ
,Θy|V ˆ tλ0u which proves

(9.34).

10 Concluding Remarks. Let V be an algebraic manifold and

Σq the group of algebraic cycles of codimension q which are algebraically

equivalent to zero. Letting TqpVq be the torus constructed in §2, there is

a holomorphic homomorphism

φ : Σq Ñ TqpVq, (10.1)
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given by (3.2). Letting Aq be the image of φ, we have that:

Aq is an abelian variety (c.f. (2.6)) and T0pAqq Ă Hq´1,qpVq. (10.2)

The two main questions are: What is the equivalence relation de-

fined by φ (Abel’s theorem), and what is T0pAqq (inversion theorem)?

While we have made attempts at both of these, none of our results are

definitive, and we want now to discuss the difficulties.

The obvious guess about the image of φ is:

T0pAqq is the largest rational subspace contained in Hq´1,qpVq.
(10.3)

Remark. A subspace S Ă Hq´1,qpVq is rational if there exist integral

cycles Γ1, . . . ,Γl P H2q´1pV,Zq such that S “ tω P Hq´1,qpVq for

which
ş
Γρ

ω “ 0, ρ “ 1, . . . , lu.

We want to show that:

(10.3) is equivalent to a special

case of the (rational) Hodge conjecture.
(10.4)

Proof. Let S Ă Hq´1,qpVq be a rational subspace and S R Ă H2q´1pV,Rq
the corresponding real vector space of all vectors ω ` ωpω P S q. Then

S R X H2q´1pV,Zq is a lattice ΓS and S R{ΓS “ JqpVq is a torus which

has a complex structure given by: S Ă S R b C is the space of holomor-179

phic tangent vectors of JqpVq. Furthermore, JqpVq is an abelian variety

which will vary holomorphically with V , provided that its dimension re-

mains constant and that S RpVq varies continuously (c.f. §2). The space

of holomoprhic 1-forms on JqpVq is S ˚ Ă Hn´q`1,n´qpVq.

Now suppose that Z Ă Jq ˆV is an algebraic cycle of codimension q

on Jq ˆV such that, for a general point λ P Jq, Z ¨tλuˆV “ Zλ is a cycle

of codimension q on V . This gives a family tZλuλPJq
of codimension q-

cycles on V , and we have then a holomorphic homomorphism

φ : Jq Ñ TqpVq. (10.5)
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At the origin, the differential is

φ˚ : S Ñ Hq´1,qpVq, (10.6)

and to compute φ˚ we shall use a formula essentially proved in the last

part of §9: Let e P S be a p1, 0q vector on Jq and Ψ on Jq ˆ V the pq, qq
form which is dual to Z. Then xe,Ψy is a pq ´ 1, qq form on Jq ˆ V and

we have (c.f. (9.33)):

φ˚peq is xe,Ψy restricted to t0u ˆ V. (10.7)

What we must do then is construct a rational pq, qq form Ψ on Jq ˆ V

such that, according to (10.7),

xe,Ψy is equal to e on t0u ˆ V. (10.8)

Let e1, . . . , er be a basis for S Ă Hq´1,q and ψ1, . . . , ψr the dual basis

for S ˚ Ă Hn´q`1,n´q. Then the ψρ can be thought of as p1, 0q forms on

Jq, the eρ become p1, 0q vectors on Jq, and xeρ, ψσy “ δ
ρ
σ on Jq. We let

Ψ “
lÿ

ρ“1

pψρ b eρ ` ψρ b eρq. (10.9)

Then Ψ is a real pq, qq form on Jq ˆ V and xeρ,Ψy “ eρ is a pq ´ 1, qq
form on V . Thus (10.8) is satisfied and, to prove (10.4) we need only

show that Ψ is rational.

If f1, . . . , f2r is a rational basis for S R Ă H2q´1pV,Rq and θ1, . . . , θ2r

a dual rational basis for S ˚
R

Ă H2n´2q`1pV,Rq, then eρ “
2rř
β“1

Mβρ fβ and

fα “
rř

ρ“1

mραeρ ` mραeρ. This gives mM “ I and mM “ 0 where m is 180

an r ˆ 2r and M a 2r ˆ r matrix. Thus
´

m

m

¯
pMMq “

`
I 0
0 I

˘
. We also

see that ψρ “
2rř
α“1

mραθα and so Ψ “ ΣpmραMβρ ` mραMβρqθα b fβ “

2rř
α“1

θα b fα, which is rational on Jq ˆ V . �
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Remark. A similar classΨ of Jq ˆV has been discussed by Lieberman,

who calls it a Poincaré cycle, from the case q “ 1. In this case J1pVq “
PicpVq – H0,1pVq{H1pV,Zq, and there is a line bundle L Ñ J1 ˆ V

with c1pL q “ Ψ and such that L |tλu ˆ V “ Lλ is the line bundle over

V corresponding to λ P H0,1pVq{H1pV,Zq Ă H1pV,O˚q.

We now prove:

If (10.3) holds, then the equivalence relation defined by φ

in (10.1) is rational equivalence on a suitable subvariety

of a Chow variety associated to V .

(10.10)

Proof. Let Z Ă V be an irreducible subvariety of codimension q on V ,

and let Φ parametrize an algebraic family of subvarieties Z Ă V such

that Z P Φ. Then (c.f. §5) Φ is a subvariety of the Chow variety of Z.

Now, if (10.3) holds, then in proving it we will certainly be able to

find a family tWλu of effective subvarieties Wλ Ă V of codimension n´
q`1 which are parametrized by λ P Jn´q`1 and such that φn´q`1pWλ´
W0q “ λ. Then, as in §5, each Z P Φ defines a divisor DpZq on Jn´q`1

and we want to prove :

DpZq ” DpZq if, and only if, φqpZ ´ Zq “ 0 in TqpVq. (10.11)

Let ψ be a residue operator for Z ´ Z (c.f. §5(a)) and set θ “

d

#
Wλş
W0

ψ

+
on Jn´q`1 (c.f. (5.21)). Then θ is a meromorphic form of the

third kind on Jn´q`1 associated to the divisor DpZq ´ DpZq. By (5.24),

we have:

DpZq ” DpZq on Jn´q`1 if, and only if, there exists ω P H1,0pJn´q`1q
such that

ş
δ

θ ` ω ” 0p1q for all δ P H1pJn´q`1,Zq.

(10.12)

181

Denote by S Ă Hn´q,n´q`1pVq the largest rational subspace; then

S is the holomorphic tangent space to Jn´q`1. The holomorphic one
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forms H1,0pJn´q`1q are then S ˚ Ă Hq,q´1pVq. Given Ω P S ˚, the

corresponding form ω P H1,0pJn´q`1q is defined by

ω “ d

$
&
%

Wλż

W0

Ω

,
.
- .

Given δ P H1pJn´q`1,Zq, there is defined a 2q ´ 1 cycle T pδq P
H2q´1pV,Zq by tracing out the Wλ for λ P δ. Clearly we have

ż

δ

θ ` ω “

ż

Tpδq

ψ `Ω. (10.13)

Combining (10.13) and (10.12), we see that:

DpZq ” DpZq on Jn´q`1, if, and only if,
ş
Γ

ψ `Ω ” 0p1q

for some Ω P S ˚ and all Γ P H2q´1pV,Zq.
(10.14)

�

Now taking into account the reciprocity relation (5.30), we find that

(10.14) implies (10.10).

Remark. The mapping T : H1pJn´q`1,Zq Ñ H2q´1pV,Zq may be

divisible so that, to be precise, (10.10) holds up to isogeny.

Example 10.15. Take q “ n, so that Φ is a family of zero-cycles on

V and φn : Φ Ñ TnpVq is the Albanese mapping. Then Jn´q`1 “
J1 “ PicpVq and we may choose tWλuλPPicpVq to be a family of ample

divisors. In this case we see that:

Albanese equivalence on Φ is, up to isogeny,

linear equivalence on PicpVq.
(10.16)

The conclusion drawn from (10.4) and (10.10) is:

The generalizations to arbitrary cycles of both the inversion

theorem and Abel’s theorem, as formulated in (10.3) and (10.10),

essentially depend on a special case of the Hodge problem.

(10.17)
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The best example I know where the inversion theorem (10.3)

and Abel’s theorem (10.10) hold is the case of the cubic threefold

worked out by F. Gherardelli. Let V Ă P4 be the zero locus of a

nonsingular cubic polynomial. Through any point z0 in V ,

there will be six lines in P4 lying on V .

(10.18)

182

Proof. Using affine coordinates x, y, z, w and taking z0 to be the ori-

gin, V will be given by f px, y, z,wq “ 0 where f will have the form

f px, y, z,wq “ x ` g2px, y, z,wq ` g3px, y, z,wq. Any line through z0 will

have an equation x “ α0t, y “ α1t, z “ α2t, w “ α3t. If the line is to lie

on V , then we have α0t ` g2pα0, α1, α2, α3qt2 ` g3pα0, α1, α2, α3qt3 “ 0

for all t; thus α0 “ 0 and g2p0, α1, α2, α3q “ 0 “ g3p0, α1, α2, α3q.

Thinking z0 are given by the points of intersection of a quadric and cu-

bic in P2, so there are six of them.

Let Φ be the variety of lines on V . Then it is known that Φ is a non-

singular surface and the irregularity h0,1pΦq is five. But also h1,2pVq “ 5

and h0,3pVq “ 0. Thus, in this case, J2pVq “ T2pVq is the whole torus.

Fixing a base point z0 P Φ, there is defined φ2 : Φ Ñ T2pVq by the

usual method. What Gherardelli has proved is:

φ2 : AlbpΦq Ñ T2pVq is an isogeny. (10.19)

Thus, in the above notation, we have:

For the cubic threefold V , A2 ´ J2 “ T2 and so the inversion

theorem (10.3) holds. Furthermore, the equivalence relation

given by the intermediate torus is, up to an isogeny, linear

equivalence on Φ.

(10.20)

�
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APPENDIX

A Theorem on the Cohomology of Algebraic Mani-
folds. Let V be a compact, complex manifold and Ap,qpVq the vector

space of C8 forms of type pp, qq on V . From

B : Ap,qpVq Ñ Ap`1,qpVq, B2 “ 0,

B : Ap,qpVq Ñ Ap,q`1pVq, B
2

“ 0, BB ` BB “ 0,

+
(A.1)

we find a spectral sequence (c.f. [7], section 4.5) tE
p,q
r u with E

p,q

1
“

H
p,q

B
pVq – HqpV,Ωpq (Dolbeault). This spectral sequence was dis-

cussed by Frölicher [6], who observed that, if V was a Kähler manifold, 183

then E
p,q

1
“ E

p,q

2
“ . . . “ E

p,q
8 . This proved that:

There is a filtration F
p`q
p`qpVq Ă ¨ ¨ ¨ Ă F

p`q

0
pVq “ Hp`qpV,Cq such

that

F
p`q
p pVq{F

p`q

p`1
pVq – H

p,q

B
pVq – HqpV,Ωpq. (A.2)

Thus

F
p`q
p pVq –

ÿ

rě0

H
p`r,q´r

B
pVq. (A.3)

We call the filtration (A.3) the Hodge filtration. Our object is to give

a description of the Hodge filtration tFr
qpVqu using only holomorphic

functions, from which it follows, e.g., that the Hodge filtration varies

holomorphically with V . It will also prove that

F
p`q
p pVq – ker d X

˜ÿ

rě0

Ap`r,q´rpVq

¸
{d

˜ÿ

rě0

Ap`r,q´r´1pVq

¸
,

(A.4)

which is the result (A3.5) used there to prove (A3.6), the fact that the

mappings φq : Σq Ñ TqpVq depend only on the complex structure of V .

(a) Let V be a complex manifold and Ω
p
c the sheaf on V of closed

holomorphic p-forms. There is an exact sheaf sequence:

0 Ñ Ωp
c Ñ Ωp B

ÝÑÑ Ωp`1
c Ñ 0. (A.5)
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Theorem A.6. (Dolbeault) In case V is a compact Kähler manifold,

we have HqpV,Ω
p
c q Ñ HqpV,Ωpq Ñ 0, so that the exact cohomology

sequence of (A.5) is

0 Ñ Hq´1pVΩ
p`1
c q Ñ HqpV,Ω

p
c q Ñ HqpV,Ωpq Ñ 0. (A.7)

Proof. We shall inductively define diagrams:

Hq´k´1pV,Ω
p`k`2
c q

δ
��

HqpV,Ωpq
αk //

αk`1

66♥♥♥♥♥♥♥

βk ((◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗
Hq´kpV,Ω

p`k`1
c q

��
Hq´kpV,Ωp`k`1q

(A.8)k

pk “ 0, . . . , qq, where the first one is:

Hq´1pV,Ω
p`2
c q

δ
��

HqpV,Ωpq
α0 //

α1

77♦♦♦♦♦♦

β0 ''❖❖
❖❖❖

❖❖❖
❖❖❖

❖
HqpV,Ω

p`1
c q

��
HqpV,Ωp`1q

(A.8)0

and where (A.8)k will define αk`1 after we prove that βk “ 0. In (A.8)k,184

the mapping δ is the coboundary in the exact cohomology sequence of

0 Ñ Ωp`k`1
c Ñ Ωp`k`1 B

ÝÑ Ωp`k`2
c Ñ 0.
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We want to prove that α0 “ 0. If αk`1 “ 0, then αk “ 0 so it will

suffice to prove that αq “ 0. Now (A.8)q is

0

��

HqpV,Ωqq

βq ''❖❖
❖❖❖

❖❖❖
❖❖❖

❖

αq // H0pV,Ω
q`p`1
c q

��
H0pV,Ωq`p`1q,

(A.8)q

and so we have to show that βq “ 0. Thus, to prove Theorem A.6, we

will show that:

The maps βk in (A.8)k are zero for k “ 0, . . . , q. (A.9)

The basic fact about Kähler manifolds which we use is this:

Let φ P Ap,qpVq be a C8pp, qq form with Bφ “ 0,

so that φ defines a class φ in the Dolbeault group

H
p,q

B
pVq – HqpV,Ωpq. Suppose that φ “ Bψ for

some ψ P Ap´1,qpVq. Then φ “ 0 in H
p,q

B
pVq.

(A.10)

�

Proof. Let lB and HB be the Laplacian and harmonic projection for B,

and similarly for lB and HB. Thus HB is the projection of Ap,qpVq onto 185

the kernel H
p,q

B
pVq of lB, and likewise for HB. Since lB is self-adjoint

and lB “ lB (because V is Kähler), HB “ HB. Thus, if φ “ Bψ,

HBpφq “ HBpφq “ 0. But if HBpφq “ 0 and Bφ “ 0, φ “ BB
˚
GBφ

where B
˚

is the adjoint of B and GB is the Green’s operator for lB

(recall that φ “ HBpφq ` lBGBpφq and BGB “ GBB). Thus φ “ 0 in

H
p,q

B
pVq if φ “ Bψ.

Now β0 : H
p,q

B
pVq Ñ H

p`1,q

B
pVq is given by β0pφq “ Bφ so that

β0 “ 0 and α1 is defined.
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Write Bφ “ Bψ1 where ψ1 P Ap`1,q´1pVq. Then BpBψ1q “ ´BBψ1 “
´B2φ “ 0 so that Bψ1 is a B-closed form in Ap`2,q´1pVq. We claim that,

in the diagram

Hq´2pV,Ω
p`3
c q

δ
��

HqpV,Ωpq
α1 //

α2

77♦♦♦♦♦♦

β1 ''❖❖
❖❖❖

❖❖❖
❖❖❖

❖
Hq´1pV,Ω

p`2
c q

��
Hq´1pV,Ωp`2q,

(A.8)1

β1pφq “ Bψ1. �

Proof. We give the argument for q “ 2; this will illustrate how the

general case works. Let then tUαu be a suitable covering of V with

nerve U, and denote by CqpU, S qpZqpU, S qq the q-cochains (q-cocycles)

for U with coefficients in a sheaf S . Now φ P Z2pU,Ωpq, and φ “ δξ1

for some ξ1 P C1pU, Ap,0q (Ap,q being the sheaf of C8pp, qq forms).

Then Bξ1 P Z1pU, Ap,1q and Bξ1 “ δξ2 for ξ2 P C0pU, Ap,1q. Now Bξ2 P
Z0pU, Ap,2q and the global form ξ P Ap,2pVq defined by ξ|Uα “ Bξ2 is a

Dolbeault representative in H2

B
pV,Ωpq of φ.

Clearly Bξ P Ap`1,2pVq is a Dolbeault representative of β0pφq P
H2pV,Ωp`1q, and Bξ “ Bψ1 for some ψ1 P Ap`1,1pVq. We want to

find a Cêch cochain θ P C1pU,Ωp`1q with δθ “ Bφ. To do this, we

let ζ2 “ Bξ2 ` ψ1 P C0pU, Ap`1,1q. Then Bζ2 “ ´Bξ ` Bψ “ 0 so

that ζ2 “ Bλ2 for some λ2 P C0pU, Ap`1,0q. We let ζ1 “ Bξ1 ` δλ2 P
C1pU, Ap`1,0q. Then δζ1 “ δBξ1 “ Bφ, and Bζ1 “ ´BBξ1 ` δBλ2 “186

´BBξ1 ` δζ2 “ ´Bδξ2 ` Bδξ2 “ 0 so that θ “ ζ1 P C1pU,Ωp`1q.

In (A.8)0, α1pφq P H1pV,Ω
p`2
c q is represented by Bθ P Z1pU,Ωp`1

c q.

Observe that δBθ “ δBζ1 “ δpB2ξ1 ` δBλ2q “ 0.

We now want a Dolbeault representative for Bθ P Z1pU,Ωp`1q.

Since Bθ “ δBλ2 where Bλ2 P C0pU, Ap`2,0q, such a representative

is given by BBλ2 P Z0pU, Ap`2,1q. But BBλ2 “ ´BBλ2 “ ´Bζ2 “
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´BpBξ2 ` ψ1q “ ´Bψ1; that is to say, ´Bψ1 is a Dolbeault representa-

tive of α1pφq P H1pV,Ωp`2q, which was to be shown.

Now β1pφq “ 0 by the lemma on Kähler manifolds, and so Bψ1 “
Bψ2 where ψ2 P Ap`2,q´2pVq. Then BpBψ2q “ ´BBψ2 “ ´B2ψ1 “ 0 so

that Bψ2 is a B-closed form in Ap`3,q´2pVq. As before, we show that, in

the diagram,

Hq´3pV,Ω
p`4
c q

δ
��

HqpV,Ωpq
α2 //

α3

77♦♦♦♦♦♦♦♦♦♦♦♦

β2 ''❖❖
❖❖❖

❖❖❖
❖❖❖

❖
Hq´2pV,Ω

p`3
c q

��
Hq´2pV,Ωp`3q,

(A.8)2

β2pφq “ Bψ2.

Inductively then we show that βkpφq “ 0 in Hq´kpV,Ωp`k`1q be-

cause βkpφq “ Bψk for some ψk P Ap`k,q´kpVq. At the last step,

βqpφq ” 0 because no holomorphic form on V can be B-exact. This

completes the proof of (A.9), and hence of Theorem A.6. �

Examples. For q “ 0, the sequence (A.7) becomes

0 Ñ H0pV,Ω
p
c q Ñ H0pV,Ωpq Ñ 0, (A.11)

which says that every holomorphic p-form on V is closed (theorem of

Hodge).

For p “ 0, (A.10) becomes:

0 Ñ Hq´1pV,Ω1
cq Ñ HqpV,Cq

α
ÝÑ HqpV,Oq Ñ 0, (A1.12)

and α is just the projection onto H
0,q

B
pVq – HqpV,Oq of a class φ P 187

HqpV,Cq. In particular, for q “ 1, we have:

0 Ñ H0pV,Ω1q Ñ H1pV,Cq Ñ H1pV,Oq Ñ 0. (A.13)
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As a final example, we let H1pV,O˚q be the group of line bundles on

V . Then we have a diagram

0 // H0pV,Ω2q // H1pV,Ω1
cq // H1pV,Ω1q // 0

H1pV,O˚q

d log

OO

c1

88q
q

q
q

q

(A1.14)

(here c1 is the usual Chern class mapping).

(b) What we want to show now is that there are natural injections

0 Ñ HqpV,Ω
p
c q
∆
ÝÑ Hp`qpV,Cq (A1.15)

such that

(i) the following diagram commutes:

0 // Hp`qpV,Cq Hp`qpV,Cq

:

δ

OO

:

0 // HqpV,Ω
p
c q

δ

OO

∆ // Hp`qpV,Cq

0 // Hq´1pV,Ω
p`1
c q

δ

OO

∆ // Hp`qpV,Cq

:

δ

OO

:

0 // H0pV,Ω
p`q
c q

δ

OO

∆ // Hp`qpV,Cq;

0

OO

(A1.16)
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(ii) the following diagram commutes:188

HqpV,Ω
p
c q

��

∆ // Hp`qpV,Cq

��
HqpV,Ωpq // H

p,q

B
pVq,

(A.17)

where H
p,q

B
pVq is the space of harmonic pp, qq forms;

(iii) In the filtration tF
p`q
m pVqu of Hp`qpV,Cq arising from the spec-

tral sequence of (A.1), F
p`q
p pVq is the image of HqpV,Ω

p
c q; and

is represented by a d-closed form φ P
ř

rě0

Ap`r,q´rpVq defined

modulo dψ where

ψ P
ÿ

rě0

Ap`r,q´r´1pVq (c.f. (A.4)). (A.18)

Proof of (i). This is essentially a tautology; the vertical maps δ are

injections by (A.7), and so the requirement of commutativity defines ∆ :

HqpV,Ω
p
c q Ñ Hp`qpV,Cq. For later use, it will be convenient to have a

prescription for finding ∆, both in Cêch theory and using deRham, and

so we now do this.

Let then tUαu be a suitable covering of V with nerve U and let φ P
HqpV,Ω

p
c q. Then φ is defined by φ P ZqpU,Ωp

c q, and φ “ dψ1 for some

ψ1 P CqpU,Ωp´1q. Now dδψ1 “ δdψ1 “ δφ “ 0 so that φ1 “ δψ1 P
Zq`1pU,Ωp´1

c q. In fact, φ1 “ δpφq in (A1.16). Continuing, we get

φ2 P Zq`2pU,Ωp´2
c q, . . . , on up to φp P Zp`qpU,CqpC “ Ω0

cq, where

φ “ φ0, φk “ Bψk with φk´1 “ dψkpψk P Cq`k´1pU,Ωp´kqq, and then

∆pφq “ φp.

To find the deRham prescription for ∆, we let As,t be the sheaf of

C8 forms of type ps, tq on V and Bs,t “
ř

rě0

As`r,t´r. Also, B
s,t
c will be

the closed forms. Then dBs,t Ă B
s,t`1
c , and we claim that we have exact

sheaf sequences:

0 Ñ Bs,t
c Ñ Bs,t d

ÝÑ Bs,t`1
c Ñ 0. (A1.19)
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Proof. Let φ be a germ in B
s,t`1
c and write φ “

ř
rě0

φs`r,t`1´r. Since189

dφ “ 0, Bφs,t`1 “ 0 and so φs,t`1 “ Bψs,t. Then φ ´ dψs,t P B
s`1,t
c ,

and continuing we find ψs,t, . . . , ψs`t,0 with φ´ dpψs,t ` ¨ ¨ ¨ ` ψs`t,0q P
B

s`t`1,0
c . But then φ ´ dpψs,t ` ¨ ¨ ¨ ` ψs`t,0q is a closed holomorphic

s ` t ` 1-form, and so φ´ dpψs,t ` ¨ ¨ ¨ `ψs`t,0q “ dηs`t,0; i.e. d is onto

in (A1.19), which was to be shown.

The exact cohomology sequence of (A1.19) gives:

0 Ñ HrpV, B
s,t`1
c q Ñ Hr`1pV, B

s,t
c q Ñ 0 pr ě 1q;

0 Ñ H0pV, B
s,t`1
c q{dH0pV, Bs,tq Ñ H1pV, B

s,t
c q Ñ 0.

*
(A.20)

Using these, we find the following diagram:

HqpV,Ω
p
c q HqpV, B

p,0
c q

„

Hq´1pV, B
p,1
c q

„

:

„

H1pV, B
p,q´1
c q

„
H0pV, B

p,q
c q{dH0pV, Bp,q´1q;

(A.21)

the composite in (A.21) gives

0 Ñ HqpV,Ω
p
c q
∆
ÝÑ B

p,q
c pVq{dBp,q´1pVq Ñ 0. (A.22)

This ∆ is just the deRham description of ∆ in (A1.16), and by writing

down (A.22) we have proved (iii) above. �
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STANDARD CONJECTURES ON ALGEBRAIC

CYCLES

By A. Grothendieck

193

1 Introduction. We state two conjectures on algebraic cycles, which

arose from an attempt at understanding the conjectures of Weil on the

ζ-functions of algebraic varieties. These are not really new, and they

were worked out about three years ago independently by Bombieri and

myself.

The first is an existence assertion for algebraic cycles (considerably

weaker than the Tate conjectures), and is inspired by and formally anal-

ogous to Lefschetz’s structure theorem on the cohomology of a smooth

projective variety over the complex field.

The second is a statement of positivity, generalising Weil’s well-

known positivity theorem in the theory of abelian varieties. It is formally

analogous to the famous Hodge inequalities, and is in fact a consequence

of these in characteristic zero.

What remains to be proved ofWeil’s conjectures ? Before stating

our conjectures, let us recall what remains to be proved in respect of the

Weil conjectures, when approached through l-adic cohomology.

Let X{Fq be a smooth irreducible projective variety of dimension n

over the finite field Fq with q elements, and l a prime different from the

characteristic. It has then been proved by M. Artin and myself that the

Z-function of X can be expressed as

Zptq “
L1ptq

Lptq
,

Lptq “
L0ptqL2ptq . . . L2nptq

L1ptqL3ptq . . . L2n´1ptq
,

Liptq “
1

Piptq
,
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206 A. Grothendieck

where Piptq “ tdim HipXqQipt´1q, Qi being the characteristic polynomial194

of the action of the Frobenius endomorphism of X on HipXq (here Hi

stands for the ith l-adic cohomology group and X is deduced from X by

base extension to the algebraic closure of Fq). But it has not been proved

so far that

(a) the Piptq have integral coefficients, independent of lp‰ char Fq;

(b) the eigenvalues of the Frobenius endomorphism on HipXq, i.e.,

the reciprocals of the roots of Piptq, are of absolute value qi{2.

Our first conjecture meets question (a). The first and second together

would, by an idea essentially due to Serre [4], imply (b).

2 A weak form of conjecture 1. From now on, we work with

varieties over a ground field k which is algebraically closed and of arbi-

trary characteristic. Then (a) leads to the following question: If f is an

endomorphism of a variety X{k and l ‰ char k, f induces

f i : HipXq Ñ Hipxq,

and each of these f i has a characteristic polynomial. Are the coefficients

of these polynomials rational integers, and are they independent of l

? When X is smooth and proper of dimension n, the same question is

meaningful when f is replaced by any cycle of dimension n in X ˆ X,

considered as an algebraic correspondence.

In characteristic zero, one sees that this is so by using integral coho-

mology. If char k ą 0, one feels certain that this is so, but this has not

been proved so far.

Let us fix for simplicity an isomorphism

ι8k˚ » Ql{Zl (a heresy!).

We then have a map

cl : Z
ipXq bZ Q Ñ H2i

l pXq
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which associates to an algebraic cycle its cohomology class. We denote

the image by Ci
l
pXq, and refer to its elements as algebraic cohomology

classes.

A known result, due to Dwork-Faton, shows that for the integrality 195

question (not to speak of the independence of the characteristic polyno-

mial of l), it suffices to prove that

Tr f N
i P

1

m
Z for every N ě 0,

where m is a fixed positive integer*. Now, the graph Γ f N in X ˆ X of f N

defines a cohomology class on X ˆ X, and if the cohomology class ∆ of

the diagonal in X ˆ X is written as

∆ “
nÿ

0

πi

where πi are the projections of ∆ onto HipXqbHn´ipXq for the canonical

decomposition HnpX ˆ Xq »
nř

i“0

HipXqb Hn´ipXq, a known calculation

shows that

Trp f NqHi “ p´1qi clpΓ f N qπi P H4npX ˆ Xq « Qι.

Assume that the πi are algebraic. Then πi “
1

m
clpΠiq, where Πi is an

algebraic cycle, hence

Trp f NqHi “ p´1qipΠi ¨ Γ f N q P
1

m
Z

and we are through.

Weak form ofConjecture 1. pCpXqq: The elements πl
i
are algebraic,

(and come from an element of Z ipXq bZ Q, which is independent of l).

N.B. 1. The statement in parenthesis is needed to establish the indepen-

dence of Pi on l.

*This was pointed out to me by S. Kleimann.
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2. If CpXq and CpYq hold, CpX ˆ Yq holds, and more generally, the

Künneth components of any algebraic cohomology class on XˆY

are algebraic.

3 The conjecture 1 (of Lefschetz type). Let X be smooth

and projective, and ξ P H2pXq the class of a hyperplane section. Then

we have a homomorphism

Yξn´i : HipXq Ñ H2n´ipXq pi ď nq. (*)

It is expected (and has been established by Lefschetz [2], [5] over the196

complex field by transcendental methods) that this is an isomorphism

for all characteristics. For i “ 2 j, we have the commutative square

H2 jpXq
ξn´2 j

// H2n´2 jpXq

C jpXq

OO

// Cn´ jpXq

OO

Our conjecture is then: pApXqq:

(a) (*) is always an isomorphism (the mild form);

(b) if i “ 2 j, (*) induces an isomorphism (or equivalently, an epi-

morphism) C jpXq Ñ Cn´ jpXq.

N.B. If C jpXq is assumed to be finite dimensional, (b) is equiva-

lent to the assertion that dim Cn´ jpXq ď dim C jpXq (which in particular

implies the equality of these dimensions in view of (a).

An equivalent formulation of the above conjecture (for all varieties

X as above) is the following.

pBpXqq : The Λ-operation (c.f. [5]) of Hodge theory is algebraic.

By this, we mean that there is an algebraic cohomology class λ in

H˚pX ˆ Xq such that the map Λ : H˚pXq Ñ H˚pXq is got by lifting
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a class from X to X ˆ X by the first projection, cupping with λ and

taking the image in H˚pXq by the Gysin homomorphism associated to

the second projection.

Note that BpXq ñ ApXq, since the algebraicity of Λ implies that of

Λn´i, and Λn´i provides an inverse to Yξn´i : HipXq Ñ H2n´ipXq. On

the other hand, it is easy to show that ApX ˆ Xq ñ BpXq and this proves

the equivalence of conjectures A and B.

The conjecture seems to be most amenable in the form B. Note that

BpXq is stable for products, hyperplane sections and specialisations. In

particular, since it holds for projective space, it is also true for smooth 197

varieties which are complete intersections in some projective space. (As

a consequence, we deduce for such varieties the wished-for integrality

theorem for the Z-function !). It is also verified for Grassmannians, and

for abelian varieties (Liebermann [3]).

I have an idea of a possible approach to Conjecture B, which relies

in turn on certain unsolved geometric questions, and which should be

settled in any case.

Finally, we have the implication BpXq ñ CpXq (first part), since

the πi can be expressed as polynomials with coefficients in Q of Λ and

L “ Yξ. To get the whole of CpXq, one should naturally assume further

that there is an element of Z pX ˆ Xq bZ Q which gives Λ for every l.

4 Conjecture 2 (of Hodge type). For any i ď n, let PipXq be

the ‘primitive part’ of HipXq, that is, the kernel of Yξn´i`1 : HipXq Ñ
H2n´i`2pXq, and put C

j

Pr
pXq “ P2 j X C jpXq. On C

j

Pr
pXq, we have a

Q-valued symmetric bilinear form given by

px, yq Ñ p´1q jKpx ¨ y ¨ ξn´2 jq

where K stands for the isomorphism H2npXq » Ql. Our conjecture is

then that

pHdgpXqq: The above form is positive definite.

One is easily reduced to the case when dim X “ 2m is even, and

j “ m.

209



210 A. Grothendieck

Remarks. (1) In characteristic zero, this follows readily from Hodge

theory [5].

(2) BpXq and HdgpX ˆ Xq imply, by certain arguments of Weil and

Serre, the following: if f is an endomorphism of X such that

f ˚pξq “ q ¨ ξ for some q P Q (which is necessarily ą 0), then the

eigenvalues of fHipXq are algebraic integers of absolute value qi{2.

Thus, this implies all of Weil’s conjectures.

(3) The conjecture HdgpXq together with ApXqpaq (the Lefschetz con-

jecture in cohomology) implies that numerical equivalence of cy-

cles is the same as cohomological equivalence for any l-adic co-198

homology if and only if ApXq holds.

Thus, we see that in characteristic 0, the conjecture ApXq is equiv-

alent to the well-known conjecture on the equality of cohomolog-

ical equivalence and numerical equivalence.

(4) In view of (3), BpXq and HdgpXq imply that numerical equivalence

of cycles coincides with Ql-equivalence for any l. Further the

natural map

ZipXqb
Z

Ql Ñ Hi
lpXq

is a monomorphism, and in particular, we have

dimQ CipXq ď dimQl
Hi

lpXq.

Note that for the deduction of this, we do not make use of the

positivity of the form considered in HdgpXq, but only the fact that

it is non-degenerate.

Another consequence of HdgpXq and BpXq is that the stronger ver-

sion of BpXq, viz. that Λ comes from an algebraic cycle with rational

coefficients independent of l, holds.

Conclusions. The proof of the two standard conjectures would yield

results going considerably further than Weil’s conjectures. They would

form the basis of the so-called “theory of motives” which is a systematic
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theory of “arithmetic properties” of algebraic varieties, as embodied in

their groups of classes of cycles for numerical equivalence. We have

at present only a very small part of this theory in dimension one, as

contained in the theory of abelian varieties.

Alongside the problem of resolution of singularities, the proof of the

standard conjectures seems to me to be the most urgent task in algebraic

geometry.
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FORMAL LINE BUNDLES ALONG EXCEPTIONAL

LOCI

By Heisuke Hironaka

201

Introduction. If A is a noetherian ring with an ideal I, then we

define the I-adic Henselization to be the limit of all those subrings of
pA which are étale over A, where pA denotes the I-adic completion of

A. This notion naturally globalizes itself. Namely, if X is a noetherian

scheme with a closed subscheme Y , then the Henselization of X along Y

is the local-ringed space rX with a structural morphism h : rX Ñ X such

that |rX| “ |Y| and OrXpUq “ the IYpUq-adic Henselization of O
X

pUq for

every open affine subset U of |Y|, where | | denotes the underlying topo-

logical space and IY the ideal sheaf of Y in O
X

. If pX is the completion (a

formal scheme) of X along Y with the structural morphism f : pX Ñ X,

there exists a unique morphism g : pX Ñ rX such that f “ hg. In this

article, I present some general techniques for “equivalences of homo-

morphisms” with special short accounts in various special cases, and

then briefly sketch a proof of the following algebraizability theorem :

Let k be a perfect field and π : X Ñ X0 a proper morphism of algebraic

schemes over k. Let rX (resp. pX) be the Henselization (resp. comple-

tion) of X along π´1pY0q with a closed subscheme Y0 of X0. If π induces

an isomorphism X ´ π´1pY0q
„
ÝÑ X0 ´ Y0, then the natural morphism

g : rX Ñ rX induces an isomorphism g˚ : R1 ppO˚
rXq

„
ÝÑ R1 ppO˚

pXq, where

p denotes the continuous map from |rX| “ |pX| “ |π´1pY0q| to |Y0| in-

duced by π. In other words, if z is a closed point of Y0, every line bundle

on pX in a neighborhood of π´1pzq is derived from a line bundle on rX in

some neighborhood of π´1pzq.

A Henselian scheme is, by definition, a local-ringed space S with a202

coherent sheaf of ideals J such that p|S |,O
S

{Jq is a noetherian scheme

and S is locally everywhere isomorphic to a Henselization of a noethe-

rian scheme. Such J (resp. the corresponding subscheme) is called a
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defining ideal sheaf (resp. subscheme) of S . If S is a scheme (resp.

Henselian scheme, resp. formal scheme) and I a coherent sheaf of ide-

als on S , then the birational blowing-up π : T Ñ S of I is defined in the

category of schemes (resp. Henselian schemes, resp. formal schemes,

where morphisms are those of local-ringed spaces) is defined to be the

one which has the universal mapping property : (i) IO
T

is invertible as

O
T

-module, and (ii) if π1 : T 1 Ñ S is any morphism with the property

(i) and with a scheme (resp. Henselian scheme, resp. formal scheme)

T 1, there exists a unique morphism b : T 1 Ñ T with π1 “ πb. One can

prove the existence in those categories. Now, let T be any noetherian

scheme (resp. Henselian scheme, resp. formal scheme), and Y a noethe-

rian scheme with a closed embedding : Y Ă T . Let p : Y Ñ Y0 be any

proper morphism of schemes. Then the birational blowing-down along

p (in the respective category) means a “proper” morphism π : T Ñ S

(in the respective category) together with as embedding Y0 Ă S such

that there exists a coherent ideal sheaf J on S which has the following

properties : (1) J Ą I j for j ąą 0, where I is the ideal sheaf of Y0 in

S , and (2) if α : T 1 Ñ T and β : S 1 Ñ S are the birational blowing-up

of the ideal sheaves JO
T

and J, respectively, then the natural morphism

T 1 Ñ S 1 is an isomorphism. Now, given a noetherian scheme X and a

closed subscheme Y of X, we let rX (resp. pX) denote the Henselization

(resp. completion) of X along Y . Let p : Y Ñ Y0 be a proper mor-

phism of noetherian schemes. We then propose the following problem:

If there exists a birational blowing-down of pX along p in the category

of formal schemes, does there follow the same of rX along p in the cate-

gory of Henselian schemes ? For simplicity, let us consider the case in

which X, Y , Y0 are all algebraic schemes over a perfect field k. In this

case, we can prove that, pX Ñ S being the formal birational blowing-

down, the Henselian blowing-down exists if and only if S is locally 203

everywhere algebraizable, i.e. isomorphic to completions of algebraic

schemes over k. Clearly the problem is local in S . Suppose we have

an algebraic scheme X0 containing Y0 in such a way that S is isomor-

phic to the completion of X0 along Y0. By a somewhat refined Chow’s

Lemma we may assume that there exists an ideal sheaf pJ in S which

contains pI j for j ąą 0, where pI = the ideal sheaf of Y0 in S , and such
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that pX Ñ S is the birational blowing-up of pJ. Clearly, pJ is induced by

an ideal sheaf J on X0. Let X1 Ñ X0 be the birational blowing-up of J,

and rX (resp. rX1) the Henselization of X (resp. X1) along Y (resp. the in-

verse image of Y0). Then we can prove that rX is isomorphic to rX1, using

the above algebraizability theorem of line bundles and some techiniques

of “equivalence of embeddings along exceptional subschemes.”. All the

details in these regards will be presented elsewhere. I like to note that

recently M. Artin obtained an outstanding theorem in regard to “étale

approximations”, which produced a substantial progress in the above

Blowing-down Problem as well as in many related problems.

The work presented in this article was done while I was financially

supported by Purdue University and by N. S. F. through Harvard Uni-

versity. To them, I am grateful.

1 Derivatives of a map. Let R be a commutative ring with unity,

let A and B be two associative R-algebras with unity, and let E be an

pA, BqR-module, i.e. a left A-and right B-module in which the actions of

A and B induce the same R-module structure. Then an endomorphism τ

of E as an abelian group will be called a pA, BqR-module derivation of E

(into itself) if there exist ring derivations in the usual sense, say α (resp.

β, resp. d) of A (resp. B, resp. R) into itself, such that

1.1.1 τpaebq “ αpaqeb ` aτpeqb ` aeβpbq for all a P A, e P E and

b P B, and

1.1.2 αpraq “ dprqa ` rαpaq and βprbq “ dprqb ` rβpbq for all r P R,

a P A and b P B.

Remark 1.2. If the actions of R, A, and B upon E are all faithful, then204

τ determines all the other α, β and d. In any case, under the conditions,

we say that α, β and d are compatible with τ.

We are interested in applying the above definition to the follow-

ing situation. Let L and L1 be two R-modules, let A “ EndRpLq and

B “ EngRpL1q, and let E “ HomRpL1, Lq. If D is an R-module of ring

derivations of R into itself, then we obtain an R-module, denoted by
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DerDpL1, Lq, which consists of all the pA, BqR-module derivations of E

which are compatible with the derivations in D. If L1 and L are both

finite free R-modules with fixed free bases, say b1 “ pb1
1
, . . . , b1

rq and

b “ pb1, . . . , bsq respectively, then we can give explicit presentations to

all the elements of DerDpL1, Lq. Namely, if d P D and f “ pp fi jqq P E,

then we let db,b1p f q “ ppd fi jqq P E, where the matrix presentation (( ))

is given by means of the free bases b and b1. The following fact is then

immediate from a well-known theorem about ring derivations of a full

matrix algebra.

Theorem 1.3. Let L, L1, b, b1, A, B and D be the same as above. Then

every pA, BqR-module derivation τ of HomRpL1, Lq, compatible with d P
D, can be written as follows:

τpeq “ db,b1peq ` a0e ´ eb0

for all e P HomRpL1, Lq, where a0 P A and b0 P B.

As is easily seen, if we define αpaq “ db,bpaq ` a0a ´ aa0 for all

a P A and βpbq “ db1,b1pbq ` b0b ´ bb0 for all b P B, then α (resp. β) is

ring derivation of A (resp. B) which is compatible with τ.

From now on, we assume that R is noetherian. Given a homomor-

phism f : F1 Ñ F, of finite R-modules, we consider various permissible

squares pp, α, β, f q over f , i.e. p : L1 Ñ L, α : L1 Ñ F1 and β : L Ñ F

such that βp “ fα, that both α and β are surjective, that both L1 and L

are finite free R-modules and that ppKerpαqq “ Kerpβq. We can prove

Theorem 1.4. Let R, f : F1 Ñ F, and D be the same as above. Let

h : F Ñ F be a homomorphism of R-modules. Then there exists an

R-submodule B “ Bp f , h,Dq of HomRpF1, Fq such that for every per- 205

missible square pp, α, β, f q over f as above,

B “ α˚´1phβq˚pDerDpL1, Lqpq

where α˚ : HomRpF1, Fq Ñ HomRpL1, Fq is induced by α, phβq˚ :

HomRpL1, Lq Ñ HomRpL1, Fq induced by hβ, and DerDpL1, Lqp is the

R-submodule of HomRpL1, Lq of all the derivatives of p by the elements

of DerDpL1, Lq.
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Definition 1.5. If f , D and h are the same as in (1.4), then we define the

obstruction module for p f , h,Dq to be

TRp f , h,Dq “ Kp f , hq{Bp f , h,Dq X Kp f , hq

where Kp f , hq “ KerpHomRpF1, Fq Ñ HomRpKerp f q, Fq.

We shall be particularly interested in the two special cases, the one

in which h is the natural homomorphism F Ñ Cokerp f q and the other

in which h is the identity automorphism of F. We write TRp f ,Dq for

TRp f , h,Dq in the former special case, and T ˚
R

p f ,Dq in the latter. We

also write TRp f q for TRp f , p0qq, and T ˚
R

p f q for T ˚
R

p f , p0qq.

Remark 1.5.1. It is easy to prove that if h f “ 0, then Bp f , h,Dq is

contained in Kp f , hq.

Remark 1.5.2. Assume that both F and F1 are free. In virtue of (1.3),

one can then find a canonical isomorphism

TRp f q
„
ÝÑ Ext1RpE, Eq,

where E “ Cokerp f q. Moreover, one can find a homomorphism of

D into Ext1RpE, Eq whose cokernel is TRp f ,Dq. In particular, if E “
R{J with an ideal J, we have a canonical homomorphism β : D Ñ
Ext1RpE, Eq having the property. Namely, there is a canonical isomor-

phism HomRpJ, Eq
„
ÝÑ Ext1RpE, Eq, and an element of D induces an R-

homomorphism from J to R{J. The canonical isomorphism TRp f ,Dq
„
ÝÑ

Cokerpβq is then induced by the obvious epimorphism

Kp f , hq Ñ Ext1RpE, Eq.

Remark 1.5.3. Let pp, α, β, f q be a permissible square over f as before.206

Then β induces an isomorphism from Cokerppq to Cokerp f q. If E de-

notes this cokernel, α induces a homomorphism from HomRpF1, Eq to

HomRpL1, Eq. We can prove that this homomorphism induces a mono-

morphism m : TRp f ,Dq Ñ TRpp,Dq and that m is an isomorphism

if F and F1 are projective. Let us say that two homomorphisms fi :

F1
i

Ñ Fipi “ 1, 2q are equivalent to each other if they admit permissible
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squares pp, αi, βi, fiq with the same p : L1 Ñ L. Let C be an equiv-

alence class of such homomorphisms. Then TRp f ,Dq with f P C is

independent of f : F1 Ñ F, so long as F and F1 are projective.

Remark 1.5.4. If x is a prime ideal in R (or any multiplicatively closed

subset of R), then D generates an Rx-module of derivations of Rx into

itself. Let Dx denote this module. Let fx : F1
x Ñ Fx and hx : Fx Ñ Fx

denote the localizations of f and h respectively. Then there exists a

canonical isomorphism :

TRp f , h,Dqxp“ TRp f , h,Dq b Rxq
„
ÝÑ TRx

p fx, hx,Dxq.

Remark 1.5.5. Assume that both F and F1 are free. Let Np f q “ tλ P
HomRpL1, Lq|λpKerp f qq Ă Imp f qu. Then the natural homomorphism

h : F Ñ E “ Cokerp f q induces an epimorphism Np f q Ñ Kp f , hq.

This then induces an isomorphism Np f q{Bp f , id,Dq Ñ TRp f ,Dq. As

Np f q Ą Kp f , idq, we get a monomorphism ω : T ˚
R

p f ,Dq Ñ TRp f ,Dq in

general.

Remark 1.5.6. Let

F1 f
ÝÑ F

fr´1
ÝÝÑ Fr´2

fr´2
ÝÝÑ . . . Ñ F0

f0ÝÑ G Ñ 0

be an exact sequence of R-modules, where r is an integer ą 1 and all

the F1s (i.e., F1, F, Fi, 0 ď i ď r ´ 2) are free. Take the case of D “
p0q. Then we get a canonical isomorphism T ˚

R
p f q Ñ ImpExt1RpE, Fq Ñ

Ext1RpE, Eqq, with E “ Cokerp f q, and the monomorphism ω of (1.5.5)

in this case is nothing but inclusion into Ext1RpE, Eq with respect to the

isomorphism of (1.5.2). Moreover, we get a canonical isomorphism 207

T ˚
R

p f q
„
ÝÑ ImpExtrRpG, Fq Ñ ExtrRpG, Eqq.

Remark 1.5.7. Let C be an equivalence class of homomorphisms in the

sense of (1.5.3). Then, for any two f1 and f2 belonging to C, there exists

a canonical isomorphism from T ˚
R

p f1,Dq to T ˚
R

p f2,Dq, i.e. T ˚
R

p f q with

f P C is uniquely determined by C provided the fi and f are homomor-

phisms of projective R-modules.
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2 Two equivalence theorems of homomorphisms. Let

R be a Zariski ring with an ideal of definition H, and D an R-module of

ring derivations of R. Let us assume :

2.1 There is given a group of ring automorphisms of R, denoted by

pDq, such that for every integer j ą 1 and every d P H jD, there exists

λ P pDq with λprq ” r ` dprqmod H2 j for all r P R.

When R is complete, ppDq denotes the closure of pDq in AutpRq with

respect to the H-adic congruence topology.

If f and f 1 are two homomorphisms of R-modules from F1 to F,

then we ask whether there exists a pDq-equivalence from f to f 1, i.e. a

triple pλ, α, βq with λ P pDq and λ-automorphisms α and β of F and F1,

respectively, such that f 1α “ β f .

Let F be a finite R-module. We say that F is pDq-rigid (with respect

to the H-adic topology in R) if the following condition is satisfied :

2.2 Let b : L Ñ F be any epimorphism of R-modules with a finite

free R-module L. Then one can find a pair of nonnegative integers

pr0, t0q such that if α is a λ-automorphism of L, ” idL mod H jL with

j ě t0 and with λ P pDq, then there exists an R-automorphism α1 of L,

” idL mod H j´r0 L, such that α1α induces a λ-automorphism of F, i.e.

α1αpKerpbqq “ Kerpbq.

Note that the pDq-rigidity is trivial if pDq consists of only the iden-

tity. As to the other nontrivial cases, we have the following useful suffi-

cient condition : If F is locally free on SpecpRq ´ SpecpR{Hq, then it is

pDq-rigid for any pDq. In fact, we can prove

Theorem 2.3. Let X “ SpecpRq and Y “ SpecpR{Hq. Let L be a finite208

R-module, locally free on X ´ Y, and K a submodule of L such that L{K

is locally free on X ´ Y. Then there exists a pair of nonnegative integers

pt0, r0q which has the following property. Let K1 be any submodule of

L such that L{K1 is locally free on X ´ Y and that rankppL{K1qxq ě
rankppL{Kqxq for every x P X ´ Y. If K1 ” Kmod H jL with j ě t0,

then there exists an automorphism σ of the R-module L such that σ ”
idL mod H j´r0 L and σpKq “ K1.
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We have two types of equivalence criteria, the one in terms of the

obstruction module TRp f ,Dq and the other in terms of T ˚
R

p f ,Dq. Each

of the two serves better than the other, depending upon the type of ap-

plications, as will be seen in the next section.

Equivalence Theorem I. Let us assume that R is complete. Let f :

F1 Ñ F be a homomorphism of finite R-modules, such that

(i) both F and F1 are pDq-rigid, and

(ii) HcTRp f ,Dq “ p0q for all c ąą 0.

Then there exists a triple of nonnegative integers ps, t, rq which has

the following property. Let us pick any integer j ě t and any homomor-

phism f 1 : F1 Ñ F such that

(a) Kerp f q Ă Kerp f 1q ` HsF1, and

(b) f 1 ” f mod H jF.

Then there exists a ppDq-equivalence from f to f 1 which is congruent

to the identity mod H j´r.

The last congruence means, of course, that if pλ, α, βq is the pDq-

equivalence then λ ” idR mod H j´r, α ” idF mod H j´rF and β ”
idF1 mod H j´rF1.

Equivalence Theorem II. Let us assume that R is complete. Let f :

F1 Ñ F be a homomorphism of finite R-modules, such that

(i) f is injective,

(ii) both F and F1 are pDq-rigid, and

(iii) HcT ˚
R

p f ,Dq “ p0q for all c ąą 0.

Then there exists a pair of nonnegative integers pt, rq which has the 209

following property. Let us pick any integer j ě t and any homomor-

phism f 1 : F1 Ñ F such that f 1 ” f mod H jF. Then there exists a ppDq-

equivalence from f to f 1 which is congruent to the identity mod H j´r.
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Remark 2.4.1. If pDq consists of only idR, then the pDq-equivalence is

nothing but a pair of R-automorphisms α and β with the commutativity.

In this case, the equivalence theorems hold without the completeness of

R.

Remark 2.4.2. Let us assume that both F and F1 are locally free on

SpecpRq ´ SpecpR{Hq. Let us say that two homomorphisms of finite

R-modules fi : F1
i

Ñ Fi, i “ 1, 2, are f -equivalent to each other if

there exist epimorphisms of finite free R-modules ei : L1
i

Ñ Li, an

isomorphism b : F1 ‘L1 Ñ F2 ‘L2 and an isomorphism b1 : F1
1
‘L1

1
Ñ

F1
2

‘ L1
2

such that p f2 ‘ e2qb1 “ bp f1 ‘ e1q. Let C be the f -equivalence

class of the given map f . Then ps, t, rq of E.Th.I (resp. pt, rq of E.Th.II)

can be so chosen to have the property of the theorem not only for the

given f but also for every f1 : F1
1

Ñ F1 belonging to C (and satisfying

(i) of E.Th.II).

Remark 2.4.3. The equivalence theorems can be modified in a some-

what technical fashion so as to become more useful in a certain type of

application. To be precise, let q be any nonzero element of R which is

not a zero divisor of Cokerp f qx for any point x of SpecpRq´SpecpR{Hq.

Then, under the same assumptions of the respective E. Th.’s, we can

choose ps, t, rq (resp. pt, rq) in such a way that : If f 1 satisfies the stronger

congruence f 1 ” f mod qH jF, instead of mod H jF, then we can find

a ppDq-equivalence from f 1 to f , ” id mod qH j´r. This modification of

the E.Th.’s is used in establishing certain equivalence by a dimension-

inductive method in terms of hyperplane sections.

3 Examples of applications.

Example I (Equivalence of Singularities). Let k be a noetherian ring

(for instance, a field). Let R0 “ krxs “ krx1, . . . , xNs, a polynomial210

ring of N variables over k. (In what follows, R0 may be replaced by a

convergent power series over an algebraically closed complete valued

field.) Let R1 be a ring of fractions of R0 with respect to a multiplica-

tively closed subset of R0, and H1 a non-unit ideal in R1. Let R be the

H1-adic completion of R1, and H “ H1R1. Let J be an ideal in R,
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let X “ SpecpR{Jq, let Y “ SpecpR{J ` Hq and π : X Ñ S be the

projection map with S “ Specpkq. We assume:

3.1 X ´ Y is formally S -smooth, i.e. for every point x of X ´ Y , the

d ˆ d-minors of the jacobian Bp f1, . . . , fmq{Bpx1, . . . , xNq generate the

unit ideal in the local ring OX,x, where J “ p f1, . . . , fmqR and d is the

codimension of X in SpecpRq at x. If X1 “ SpecpR{J1q with another

ideal J1 in R, then we ask if there exists a k-automorphism σ of R which

induces an isomorphism from X to X1. For this purpose, we pick and fix

an exact sequence

L2
g

ÝÑ L1
f

ÝÑ R
h

ÝÑ R{J Ñ 0 (3.2)

where Li are finite free R-modules for i “ 1, 2, Imp f q “ J and h is the

natural homomorphism. Let D be the R-module of derivations of the k-

algebra R, which is generated by B{Bx1, . . . , B{BxN . We apply our equiv-

alence theorem to this D and the map f . As was seen in (1.5.2), we have

a canonical homomorphism β : D Ñ Ext1RpR{J,R{Jq and an isomor-

phism TRp f ,Dq
„
ÝÑ Cokerpβq. Thus the obstruction module TRp f ,Dq is

seen to be independent of the choice of pg, f q in (3.2). Moreover, as is

easily seen, (3.1) is equivalent to saying that the localization of β, or

βx : Dx Ñ Ext1RpR{J,R{Jqx p“ HomRpJ{J2,R{Jqxq,

is surjective for every point x of X ´ Y . Hence it is also equivalent to

HcTRp f ,Dq “ p0q for all c ąą 0. (3.3)

Therefore the following is a special case of E.Th. I.

Theorem 3.3. Let the assumptions be the same as above. Then there

exists a triple of nonnegative integers ps, t, rq which has the follow-

ing property. Let j be any integer ě t, and let g1 : L2 Ñ L1 and 211

f 1 : L1 Ñ R be any pair of homomorphisms such that (a) f 1g1 “ 0, (b)

g1 ” gmod HsL1 and (c) f 1 ” f mod H j. Then there exists an auto-

morphism of the k-algebra R which induces an isomorphism from X to

X1 “ SpecpR{Imp f 1qq and which is congruent to the identity mod H j´r.
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Example II (Equivalence of Vector Bundles) Let R be any noetherian

Zariski ring with an ideal of definition H. (For instance, R “ pR0{J0qp1`
H0q´1 with any pair of ideals J0 and H0 in the ring R0). Let X “
SpecpRq and Y “ SpecpR{Hq. Let V be a vector bundle on X ´ Y ,

or a locally free sheaf on X ´ Y . Then there exists a finite R-module E

which generates V on X ´ Y . Let us fix an exact sequence

L2
g

ÝÑ L1
f

ÝÑ L0
h

ÝÑ E Ñ 0 (3.4)

where the Li are all free R-modules pi “ 0, 1, 2q. We apply our equiv-

alence theorem to f with D “ p0q. We have TRp f q “ Ext1RpE, Eq by

(1.5.1). Since E is locally free on X ´ Y , Ext1RpE, Eqx “ p0q for all

x P X ´ Y . This implies

HcTRp f q “ p0q for all c ąą 0. (3.5)

Thus we get the following special case of E.Th. I.

Theorem 3.6. Let the assumptions be the same as above. Then there ex-

ists a triple of nonnegative integers ps, t, rq which has the following prop-

erty. Let j be any integer ě t, and let g1 : L2 Ñ L1 and f 1 : L1 Ñ L0 be

any pair of homomorphisms such that (a) f 1g1 “ 0, (b) g1 ” gmod HsL1

and (c) f 1 ” f mod H jL0. Then there exists an automorphism of the R-

module L0 which induces an isomorphism from V to V 1, with the locally

free sheaf V 1 on X ´ Y generated by Cokerp f 1q, and which is congruent

to the identity mod H j´rL0.

Remark 3.7. An important common feature of Theorems 3.3 and 3.6

is that, when the singularity or the vector bundle is represented by an

R-valued point p f , gq in the affine algebraic scheme defined by the si-

multaneous quadratic equations f g “ 0 (in terms of fixed free bases of

the Li), all the approximate points (with respect to the H-adic topology212

of R) in the scheme represent the same singularity or the same vector

bundle respectively.

Example III. Let R be a regular Zariski ring with an ideal of definition

H. Let R “ R{J with an ideal J, and H “ HR. Let E be a finite R-

module. Let Z “ SpecpRq, X “ SpecpRq and Y “ SpecpR{Hq. Let us

assume :
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3.8 X is locally a complete intersection of codimension e in Z at every

point of X ´ Y , and

3.9 E is locally free on X ´ Y .

Let us take a resolution of E as an R-module by finite free R-modules:

Ñ Lp

fp
ÝÑ Lp´1

fp´1
ÝÝÑ . . .

f1ÝÑ L0
f0ÝÑ E Ñ 0. Then, by 1.5.6, T ˚

R
p fpq is

isomorphic to the image of the natural homomorphism Ext
p

R
pE, Lp´1q Ñ

Ext
p

R
pE, Eq with E “ Cokerp fpq. By (3.8), Ext

p

R
pR,Rqx “ 0 if p ‰ e,

and “ Ex if p “ e, for all points x of Z ´ Y . Thus, by (3.9), we get

3.10 For every positive p ‰ e, HcT ˚
R

p fpq “ 0 for all c ąą 0.

Let F1 “ Imp fpq, F “ Lp´1 and f : F1 Ñ F the inclusion. Then

T ˚
R

p f q is isomorphic to T ˚
R

p fpq, and the following is a special case of E.

Th. II.

Theorem 3.11. Let the assumptions be the same as above, and let p be

a positive integer ‰ e. Then there exists a pair of nonnegative integers

pt, rq such that if f 1 : Lp Ñ Lp´1 is any homomorphism with Kerp f 1q Ą
Kerp f q and with f 1 ” f mod H jLp´1 for an integer j ě t, then there

exists an equivalence from f 1 to f which is congruent to id mod H j´r.

Example IV. Let us further specialize the situation of Example III and

examine the case of p “ e. Namely, we take pR,Hq of Example I and

assume (3.1) in addition to (3.8) and (3.9). Let D be the same as in

Example I. We can then prove that T ˚
R

p fe,Dqx “ 0 for all x P Z ´ Y , in

the following two special cases.

Case (a) e “ 1 and E has rank 1 on X ´Y . (Or the case of a line bundle 213

on a sliced hypersurface.)

Case (b) e “ 2 and L0 “ R, so that E “ R{J. (Or the case of singular-

ity of embedding codimension two.)

Again, as a corollary of E.Th.II, we obtain an equivalence theorem for

fe in these two special cases, in which pt, rq has the same property as
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that of (3.11) except that “equivalence” must be replaced by “AutkpRq-

equivalence”.

Remark 3.12. The equivalence theorems in Examples III and IV give

us the following rather strong algebraizability theorem in the above spe-

cial cases. Let the notation be the same as above and as in Example I.

Assume the situation of either Case (a) or Case (b). Suppose E admits a

free resolution of finite length. (This is always so, if R is local and reg-

ular.) Then, for every positive integer j, we can find a finite R0-module

E0 and an automorphism λ of R, ” idR mod H j, such that E0b
R0

R and

Eb
λ

R are isomorphic to each other as R-modules, where bλ denotes the

tensor product over R as R is viewed as R-algebra by λ. In fact, we can

prove the algebraizability of the homomorphism fp (or, ppDq-equivalence

from fp to a homomorphism obtained by the base extension R0 Ñ R)

by an obvious descending induction on p.

4 An algebraizability theorem of line bundles. Let k

be a perfect field, and R0 a local ring of an algebraic scheme over k at a

closed point. Let X0 “ SpecpR0q. Let Y0 be a closed subscheme of X0

defined by an ideal H0 in R0. Let R be the H0-adic completion of R0,

and R1 the H0-adic Henselization of R0, i.e. the limit of those sub-rings

of R which are étale over R0. Let X “ SpecpRq, X1 “ SpecpR1q, Y “
SpecpR{Hq with H “ H0R, and Y 1 “ SpecpR1{H1q with H1 “ H0R1. We

have natural morphisms c : X Ñ X1 and c1 : X1 Ñ X0, which induce

isomorphisms Y
„
ÝÑ Y 1 and Y 1 „

ÝÑ Y0. Note that every subscheme D of

X with |D| Ă |Y| has an isomorphic image in X1 and in X0, where | |
denotes the point-set. The following is the algebraizability theorem of214

line bundles along the exceptional locus of a birational morphism.

Theorem 4.1. Let π1 : X1
1

Ñ X1 be a proper morphism which induces

an isomorphism X1
1

Ñ π1´1pY 1q
„
ÝÑ X1 Ñ Y 1. Let pX1 be the completion

(a formal scheme) of X1
1

along π1´1pY 1q, and h1 : pX1 Ñ X1
1

the natural

morphism. Then h1 induces an isomorphism

h1˚ : PicpX1
1q

„
ÝÑ PicppX1q.
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If π : X1 Ñ X is the morphism obtained from π1 by the base ex-

tension c : X Ñ X1, then we have a natural morphism h : pX1 Ñ X1.

By the GFGA theory of Grothendieck, this induces an isomorphism

h˚ : PicpX1q
„
ÝÑ PicppX1q. Hence, (4.1) amounts to saying that the natu-

ral morphism g : X1 Ñ X1
1

induces an isomorphism

g˚ : PicpX1
1q

„
ÝÑ PicpX1q. (4.1.1)

Let U 1 “ X1 ´ Y 1 and U “ X ´ Y . It is not hard to see that, for

each individual pR0,H0q, (4.1) for all π1 as above is equivalent to the

following

Theorem 4.2. The morphism c : X Ñ X1 induces an isomorphism

λ : PicpU 1q
„
ÝÑ PicpUq.

In fact, we can easily prove:

(i) If ω P PicpUq, then there exists a finite R-submodule E of H0pωq
which generates the sheaf ω.

(ii) If pω, Eq is as above and if ω “ λpω1q with ω1 P PicpU 1q, then

there exists a finite R1-submodule E1 of H0pω1q such that E is

isomorphic to E1ˆ
R1

R.

Now, to see the equivalence of (4.1) and (4.2), all we need is the follow-

ing “Cramer’s rule”.

Remark 4.3. Quite generally, let E be a finite R-module which is locally

free of rank r in X ´ Y , and E the coherent sheaf on X generated by E. 215

Assume that SupppEq is equal to the closure of X ´ Y in X. Let us pick

an epimorphism α : L Ñ E with a free R-module of rank p. Let D

be the subscheme of X defined by the annihilator in R of the cokernel

of the natural homomorphism p^p´r Kerpαqq b p^rLq Ñ ^pL. Let

π : X1 Ñ X be the birational blowing-up with center D, and let E1 be

the image of the natural homomorphism π˚pEq Ñ i˚i˚pπ˚pEqq, where

i is the inclusion X1 ´ π´1pYq Ñ X1. Then π induces an isomorphism

X1 ´ π´1pYq
„
ÝÑ X ´ Y , π˚pEq Ñ E1 is isomorphic in X1 ´ π´1pYq,

and E1 is locally free of rank r throughout X1. Moreover, D has an
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isomorphic image D1 in X1 and if π1 : X1
1

Ñ X1 is the birational blowing-

up with center D1, then π1 satisfies the assumptions in (4.1). Note that a

birational blowing-up and a base extension commute if the latter is flat.

Let E be the same as in (4.3). Let E1
i
, i “ 1, 2, be finite R1-modules

such that we have an isomorphism from E1
i
b
R1

R to E for each i. Then

there exists an isomorphism from E1
1

to E1
2
. In fact, since R is R1-flat, we

have a natural isomorphism

HomR1pE1
1, E

1
2qb

R1
R Ñ HomRpE, Eq

with reference to the given isomorphisms. This means that idE is ar-

bitrarily approximated by the image of an element of HomR1pE1
1
, E1

2
q.

But, as is easily seen, any good approximation of idE is an isomorphism

itself. since R is faithfully R1-flat, this proves the existence of an isomor-

phism from E1
1

to E1
1
. Let us remark that this proves the injectivity of λ

of (4.2). We can also deduce from this, without much difficulty, that g˚

of (4.1.1) (and hence h1˚ of (4.1)) is also injective.

The essence of the theorems is the surjectivity of g˚, or the same of

λ. As is seen in the arguments given above, this surjectivity is equivalent

to the following

Theorem 4.4. Let E be a finite R-module which is invertible on X ´ Y.

Then there exists a finite R1-module E1 such that E1b
R1

R is isomorphic

to E.

We shall now indicate the key points in proving these theorems. As216

a whole, the proof is a combination of induction on n “ dim R and the

reduction to the case of (3.12)-(a).

Remark 4.5. Let the assumptions be the same as in (4.1) and in the

immediately following paragraph. Let N1 be any coherent ideal sheaf on

X1
1

with N12 “ 0. Let pN “ N1OpX1
. Let X1

2
(resp. pX2) be the subscheme

of X1
1

(resp. pX1) defined by N1 (resp. pN). Then we have the following
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natural commutative diagram

0 // N1

��

// O˚
X1

1

��

// O˚
X1

2

��

// 0

0 // pN // O˚
pX1

// O˚
pX2

// 0

which yields the following exact and commutative diagram.

// H1pN1q

��

// PicpX1
1
q

a1

��

// PicpX1
2
q

a2

��

// H2pN1q

��

//

// H1ppNq // PicppX1q // PicppX2q // H2ppNq //

(4.5.1)

We have natural isomorphisms HipN1qˆ
R1

R Ñ HippNq because R is R1-

flat. Since SupppHipN1qq Ă |Y| for all i ą 0, HipN1q Ñ HipNq are

isomorphisms for i “ 1, 2. Hence the surjectivity of a2 implies the same

of a1.

Remark 4.6. By the standard amalgamation technique, one can eas-

ily reduce the proof of either one of the three theorems to the case of

dim Y ă n “ dim X. Assuming this, let us try to prove (4.1) by in-

duction on n. Let d be any element of H0 such that dim R0{dR0 ă n.

Let pX1p jq (resp. X1
1
p jq) be the subscheme of pX1 (resp. X1

1
) defined by

the ideal sheaf generated by d j`1. Let h1
j

: pX1p jq Ñ X1
1
p jq be the

natural morphism. By induction assumption, we have isomorphisms

ph1
j
q˚ : PicpX1

1
p jqq

„
ÝÑ PicppX1p jqq for all j. In view of the cohomology

sequences of (4.5.1) adapted to these cases, as the cohomology of co-

herent sheaves (those nilideal sheaves) is computable by any fixed open 217

affine covering, we get canonical isomorphisms:

LimÐÝÝ
j

PicppX1p jqq Ñ PicppX1q and LimÐÝÝ
j

PicpX1
1p jqq Ñ PicppX1q,

where rX1 “ LimÐÝÝ
j

X1
1
p jq. Therefore, the natural morphism pX1 Ñ rX1
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induces an isomorphism PicprX1q Ñ PicppX1q. In short, to prove (4.1) (or

any of the other theorems), we may replace H0 by any dR0 as above.

Remark 4.7. To prove (4.4), we may assume that R0 is reduced and

dim R0{H0 ă n “ dim R0. (See (4.5) and (4.2)). We can choose a

system z “ pz1, . . . , zn`1q with zi P R0 and an element d P krzs such that

if S 0 is the local ring of Specpkrzsq which is dominated by R0, then

(i) R0 is a finite S 0-module,

(ii) d P H0 and dim R0{dR0 ă n,

(iii) V0´W0 is of pure dimension and k-smooth, where V0 “ SpecpS 0q
and W0 “ SpecpS 0{dS 0q, and

(iv) the natural morphism X0 Ñ V0 induces an isomorphism X0 ´
rY0 Ñ V0 ´ W0, where rY0 denotes the preimage of W0 in X0. Now,

by (4.6), the proof of (4.4) is reduced to the case of H0 “ dR0

and, in view of (4.2), to the case in which X0 “ V0 and X0 is the

closure of X0 ´ Y0. In short, to prove (4.4), we may assume that

R0 is a local ring of a hypersurface in an affine space over k and

that X0 ´ Y0 is k-smooth and dense in X0.

In this final situation, a proof of (4.4) can be derived from the al-

gebraizability theorem for Case (a) of Ex. IV, or Remark 3.12. To see

this, let T0 be the local ring of the affine space of dimension n ` 1 which

carries X0, at the closed point of X0. Let G0 be the ideal in T0 which

corresponds to H0 in R0, T 1 the G0-adic Henselization of T0, and T the

G0-adic completion of T0. Let G “ G0T . Then the result of (3.12) (in

which R should be replaced by T ) implies that, for every positive integer218

j, we can find an automorphism λ of T and a finite T0-module E0 such

that λ ” idT mod G j and E0b
T0

T is isomorphic to Eb
λ

T as T -module,

where E is view as T -module in an obvious way. Let E2 “ E0b
T0

T 1. Let

J1 be the kernel of the epimorphism T 1 Ñ R1, and J2 the annihilator in

T 1 of E2. Clearly J1T is the annihilator of E. Thanks to the equivalence

theorem (3.6), it is now sufficient to find an automorphism λ1 of R1, well
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approximate to λ, such that λ1pJ2q “ J1. Namely, E1 “ E2b
λ1

T 1 then has

the property of (4.4). The existence of λ1 is easy enough to prove, be-

cause J1 is generated by a single element whose gradient does not vanish

at any point of X1 ´ Y 1. (This is essentially Hensel’s lemma.)
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219

1 Introduction. Let X be a compact oriented differentiable mani-

fold without boundary of dimension 4k ´ 1 with k ě 1. Let T : X Ñ X

be an orientation preserving fixed point free differentiable involution. In

[7] an invariant αpX,T q was defined using a special case of the Atiyah-

Bott-Singer fixed point theorem. If the disjoint union mX of m copies

of X bounds a 4k-dimensional compact oriented differentiable manifold

N in such a way that T can be extended to an orientation preserving

involution T1 on N which may have fixed points, then

αpX,T q “
1

m
pτpN,T1q ´ τpFix T1 ˝ Fix T1qq. (1)

Here τpN,T1q is the signature of the quadratic form fT1
defined over

H2kpN,Qq by

fT1
px, yq “ x ˝ T1y

where “˝” denotes the intersection number. τpFix T1 ˝ Fix T1q is the

signature of the “oriented self-intersection cobordism class” Fix T1 ˝
Fix T1. According to Burdick [4] there exist N and T1 with m “ 2.

In §2 we shall study a compact oriented manifold D whose bound-

ary is X ´ 2pX{T q. This manifold D was first constructed by Dold [5];

we give a different description of it. Namely, D is a branched covering

of degree 2 of pX{T q ˆ I, where I is the unit interval. The covering

transformation is an orientation preserving involution T1 of D which re-

stricted to the boundary is T on X and the trivial involution on 2pX{T q,

and Fix T1 is the branching locus.

*Presented by F. Hirzebruch
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We show that

αpX,T q “ τpD ,T1q “ ´τpDq,

where τpDq is the signature of the 4k-dimensional manifold D . Thus 220

αpX,T q is always an integer. The construction of D is closely related to

Burdick’s result on the oriented bordism group of BZ2
and can in fact be

used to prove it.

In [7] it was claimed that if X4k´1 is an integral homology sphere

then τpDq “ ˘βpX,T q, where βpX,T q is the Browder-Livesay invariant

[3]. The proof was not carried through. It turns out that the definition

of Browder-Livesay is also meaningful without assumptions on the ho-

mology of X. In §3 we shall prove

βpX,T q “ ´τpDq. (3)

By (??), we obtain

αpX,T q “ βpX,T q. (4)

Looking at D as a branched covering of pX{T q ˆ I has thus simplified

considerably the proof of (4) envisaged in [7].

If a “ pa0, a1, . . . , a2kq P Z2k`1 with a j ě 2, then the affine alge-

braic variety

z
a0

0
` z

a1

1
` ¨ ¨ ¨ ` z

a2k

2k
“ 0 (5)

has an isolated singularity at the origin whose “neighborhood boundary”

is the Brieskorn manifold [1]

Σ4k´1
a Ă C2k`1

given by the equation (5) and

2kÿ

i“0

zizi “ 1. (6)

If all the a j are odd, then Tz “ ´z induces an orientation preserving

fixed point free involution Ta on Σa. The calculation of αpΣa,Taq is an

open problem (compare [7]). This problem on isolated singularities is

the justification for presenting our paper to a colloquium on algebraic

geometry. In §4 we give the recipe for calculating αpΣa,Taq for k “ 1

in the case where the exponents a0, a1, a2 are pairwise prime and odd.
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221 2 The Dold construction. Let Y be a compact differentiable

manifold without boundary and W a 1-codimensional compact subman-

ifold with boundary BW. Then, as it is well known, one can construct

a double covering of Y , branched at BW, by taking two copies of Y ,

“cutting” them along W and then identifying each boundary point of the

cut in copy one with its opposite point in copy two. The same can be

done if Y is a manifold with boundary and W intersects BY transversally

in a union of connected components of BW. The covering will then be

branched at BW ´ BW X BY .

We are interested in a very special case of this general situation.

Let M be a compact differentiable manifold without boundary and V a

closed submanifold without boundary of codimension 1 in M. Then we

define Y “ M ˆ r0, 1s and W “ V ˆ r0, 1
2
s.

For the following we will need a detailed description of the double

covering corresponding to pMˆr0, 1s,V ˆr0, 1
2
sq. The normal bundle of

V in M defines a Z2-principal bundle rV over V . If we “cut” M along V ,

we obtain a compact differentiable manifold C with boundary BC “ rV .

As a set, C is the disjoint union of M ´ V and rV , and there is an obvious

canonical way to introduce topology and differentiable structure in pM´
Vq Y rV . Similarly, let C1 be the disjoint union of M ˆ r0, 1s ´ V ˆ r0, 1

2
q

and rV ˆ r0, 1
2
q, topologized in the canonical way. Then we consider
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two copies C1
1

and C1
2

of C1 and identify in their disjoint union each

x P V ˆ t 1
2
u Ă C1

1
with the corresponding point x P V ˆ t 1

2
u Ă C1

2

and for 0 ď t ă 1
2

each point v P rV ˆ ttu Ă C1
1

with the opposite

point ´v P rV ˆ ttu Ă C1
2
. Let D denote the resulting topological space 222

and π : D Ñ M ˆ r0, 1s the projection. Then C1
1
, C1

2
and V ˆ t 1

2
u are

subspaces, and D ´ V ˆ t 1
2
u has a canonical structure as a differentiable

manifold with boundary.

To introduce a differentiable structure on all of D , we use a tubular

neighbourhood of V in M. This may be given as a diffeomorphism

κ : rVˆ
Z2

D1 Ñ M

onto a closed neighbourhood of V in M, such that the restriction of κ

to rVˆ
Z2

t0u “ V is the inclusion V Ă M. Let Z2 act on D2 Ă C by

complex conjugation. Then we get a tubular neighbourhood of V ˆ t 1
2
u

in M ˆ r0, 1s

λ : rVˆ
Z2

D2 Ñ M ˆ r0, 1s by

rv, x ` iys ÞÑ pκpv, yq,
1

2
`

1

4
xq.

(1)

Let the “projectin” p : rVˆ
Z2

D2 Ñ rVˆ
Z2

D2 be given on each fibre by

z Ñ z2{|z|. Then λp can be lifted to D , which means that we can

choose a map λ1 : rVˆ
Z2

D2 Ñ D such that

rVˆ
Z2

D2

p

��

λ1 // D

π

��
rVˆ

Z2

D2 λ // M ˆ r0, 1s

(2)

is commutative. Then there is exactly one differentiable structure on D

for which λ1 is a diffeomorphism onto a neighborhood of V ˆ t 1
2
u in D
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and which coincides on D ´ V ˆ t 1
2
u with the canonical structure. Up

to diffeomorphism, of course, this structure does not depend on κ.

D , then, is a double covering of M ˆ r0, 1s, branched at V ˆ t 1
2
u.

The covering transformation on D shall be denoted by T1. Note that

on rVˆ
Z2

D2 (identified by λ1 with a subset of D) the transformation T1 is

given by rv, zs Ñ rv,´zs.
As a differentiable manifold, D is the same as the manifold con-

structed by Dold in his note [5].

Now consider once more the differentiable manifold C with bound-223

ary BC “ rV , which we obtained from M by cutting along V . Let C1YC2

be the disjoint union of two copies of C. If we identify x P rV1 Ă C1

with ´x P rV1 Ă C1 and x P rV2 with ´x P rV2, we obtain from C1 Y C2

the disjoint union of two copies of M :

If we identify x P rV1 Ă C1 with ´x P rV2 Ă C2, we get a differen-

tiable manifold which we denote by rM :

If we identify x P rV1 Ă C1 with x P rV2 Ă C2, then C1 YC2 becomes

a closed manifold B (the usual “double” of C), and we use κ to introduce

the differentiable structure on B :

If we, finally, identify for each x P rV all four points x P rV1, ´x P rV1,

x P rV2, ´x P rV2 to one, then we obtain a topological space A :

(3)
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Now obviously we have 2M “ π1pMˆt1uq, A “ π´1pMˆt 1
2
uq and

rM “ π´1pM ˆ t0uq, and by our choice of the differentiable structures

of B and D (p in (2) is given by z Ñ z2{|z| instead of z Ñ z2), the

canonical map B Ñ A defines an immersion

f : B Ñ D .

It should be mentioned, perhaps, that for the same reason π : D Ñ
M ˆ r0, 1s is not differentiable at V ˆ t 1

2
u.

Up to this point, we did not make any orientability assumptions. 224

Considering now the “orientable case”, we shall use the following con-

vention : for orientable manifolds with boundary, we will always choose

the orientations of the manifold and its boundary in such a way, that the

orientation of the boundary, followed by the inwards pointing normal

vector, gives the orientation of the manifold.

Now if X is any compact differentiable manifold without boundary

and T a fixed point free involution on X with X{T – M, then pX,T q is

equivariantly diffeomorphic to p rM,T1| rMq for a suitably chosen V Ă M,

and in fact our p rM,T1| rMq plays the role of the pX,T q in §1. Therefore

we will assume from now on, that rM is oriented and T1| rM is orientation

preserving. Let us also write T for T1| rM.

Then the orientation of rM defines an orientation of M and hence of

C, and since rV “ BC, an orientation of rV is thus determined. Further-

more, the orientation of rM Ă BD induces an orientation of D , relative

to which

BD “ rM ´ 2M. (4)

Clearly T1 on D is orientation preserving, V may not be orientable, and
rV Ñ V is the orientation covering of V , because M is orientable.

The relation of the construction of D to the result of Burdick is the

following. Let Ω˚pZ2q denote the bordism group of oriented manifolds

with fixed point free orientation preserving involutions. Then we have

homomorphisms

Ωn ‘ Nn´1

i
Ô

j
ΩnpZ2q
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as follows: if rMs P Ωn is represented by an oriented n-dimensional

manifold M, the irMs P ΩnpZ2q is simply given by 2M with the triv-

ial involution. Now let rWs2 P Nn´1 be represented by an pn ´ 1q-

dimensional manifold W, let rW Ñ W denote the orientation covering,

and let Y be the sphere bundle of the Whitney sum of the real line bundle

over W associated to rW and the trivial line bundle W ˆ R:

225

The manifold Y is orientable, and we may orient Y at rW by the canonical

orientation of rW followed by the normal vector pointing toward Wˆt1u.

Then we denote by ipWq the oriented double covering of Y correspond-

ing to pY,W ˆ t1uq, and we define irWs P ΩnpZ2q to be represented by

ipWq.

As already mentioned, any element of ΩnpZ2q can be represented

by the (unbranched) double covering rM corresponding to some pM,Vq,

and we define jr rW,T s “ rMs ‘ rVs2. Then i and j are well defined

homomorphisms and clearly j ˝ i “ Id, so i is injective. To show that

i is also surjective, we have to construct for given pM,Vq and pn ` 1q-

dimensional oriented manifold B with boundary and with an orientation

preserving fixed point free involution, such that equivariantly BB “
rM ´2M ´ ipVq. But such a manifold is given by B “ π´1pM ˆr0, 1s´

Uq,
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where U is the interior of the tubular neighborhood (1) of V ˆ t 1
2
u in

M ˆ r0, 1 :

BB “ π´1pM ˆ t0uq Y π´1pM ˆ t1uq Y π´1p
•

Uq

“ rM ´ 2M ´ ipVq.

Thus i : Ωn ‘ Nn´1 Ñ ΩnpZ2q is an isomorphism. Brudick uses in [4] 226

essentially the same manifold B to prove the surjectivity of i.

We will now consider the invariant α and therefore assume that

dim rM “ 4k ´ 1 with k ě 1. First we remark, that for the trivial involu-

tion T on 2M the invariant α vanishes: since the nontrivial elements of

Ω4k´1 are all of order two, there is an oriented X with BX “ 2M. Let

T 1 be the trivial involution on 2X. Then 2αp2M,T q “ τp2X,T 1q “ 0,

because it is the signature of a quadratic form which can be given by a

matrix of the form

O E

E O

where E is a symmetric matrix. Hence it follows, that αpBD ,T1|BDq “
αp rM,T q and therefore by (1) of §1 we have

αp rM,T q “ τpD ,T1q ´ τpFix T1 ˝ Fix T1q. (5)
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Notice that here we apply the definition (1) of §1 of α in a case, where

Fix T1 is not necessarily orientable, so that we have to use the Atiyah-

Bott-Singer fixed point theorem also for the case of non-orientable fixed

point sets.

Proposition. αp rM,T q “ τpD ,T1q “ ´τpDq.

Proof. Fix T1 ˝ Fix T1 “ 0 P Ω˚, since the normal bundle of Fix T1 “
V ˆ t 1

2
u in D has a one-dimensional trivial subbundle. Therefore by

(5), αp rM,T q “ τpD ,T1q. To show that τpD ,T1q “ ´τpDq, let again U

denote our open tubular neighbourhood of V ˆ t 1
2
u in M ˆ r0, 1s, U its

closure in Mˆr0, 1s and correspondingly U1 “ π´1pUq, U1 “ π´1pUq.

Then τpUq “ τpU1q “ τpU1,T1q “ 0, because U and U1 are disc

bundles of vector bundles with a trivial summand and hence the zero

section, which carries all the homology, can be deformed into a section

which is everywhere different from zero. Because of the additivity of227

the signature (compare (8) of [7]), we therefore have

τpD ,T1q “ τpD ´ U1,T1q.

But T1 is fixed point free on D´U1, and hence we can apply formula (7)

of [7], which is easy to prove and which relates the signature τpM4k,T q
of a fixed point free involution with the signatures of M4k and M4k{T

and we obtain

τpD ,T1q “ τpD ´ U1,T1q “ 2τpM ˆ r0, 1s ´ Uq ´ τpD ´ U1q

“ 2τpM ˆ r0, 1sq ´ τpDq.

�

3 The Browder-Liversay invariant. The involution on rV
which is given by x Ñ ´x shall also be denoted by T , because it is

the restriction of T on rM to rV , if we regard rV via rV1 Ă C1 Ă rM
as a submanifold of rM. T is orientation reversing on rV , and since the

intersection form px, yq Ñ x ˝ y on H2k´1prV ,Qq is skew-symmetric, the

238



Involutions and Singularities 239

quadratic form px, yq Ñ x ˝ Ty is symmetric on H2k´1prV ,Qq. Now we

restrict this form to

L “ kernel of H2k´1prV ,Qq Ñ H2k´1pC,Qq, (1)

where the homomorphism is induced by the inclusion rV “ BC Ă C,

and we denote by βp rM, rV ,T q the signature of this quadratic form on L.

(If rM “ Σ4k´1 is a homotopy sphere, then βp rM, rV ,T q is by definition

the Browder-Livesay invariant [3] σpΣ4k´1,T q of the involution T on

Σ4k´1).

Theorem. αp rM,T q “ βp rM, rV ,T q.

Thus βp rM,T q “ βp rM, rV ,T q is a well defined invariant of the ori-

ented equivariant diffeomorphism class of p rM,T q.

Proof of the Theorem. First notice, that the canonical deformation

retraction of M ˆ r0, 1s to M ˆ t 1
2
u induces a deformation retraction

of D “ π´1pM ˆ r0, 1sq to A “ π´1pM ˆ t 1
2
uq. To study H2kpA,Qq,

we consider the following part of a Mayer-Vietoris sequence for A (all

homology with coefficients in Q): H2kpVq‘H2kpC1 YC2q
φ
ÝÑ H2kpAq

χ
ÝÑ 228

H2k´1prV1 Y rV2q
ψ
ÝÑ H2k´1pVq ‘ H2k´1pC1 Y C2q

where rV1 Y rV2 and C1 Y C2 denote the disjoint unions, see figure (3) of

§2.

In H2kpAq we have to consider the quadratic forms given by px, yq Ñ
x ˝ y and px, yq Ñ x ˝ Ty, where ˝ denotes the intersection number in D .

Now, the maps V “ V ˆ t 1
2
u Ă A and C1 Y C2 Ñ A, which induce the

homomorphism φ, are homotopic in D to maps into D ´ A. Therefore

if x P Im φ Ă H2kpAq and y is any element of H2kpAq, then x ˝ y “ 0.

Thus if we denote

L1 “ H2kpAq{Im φ, (2)

then the quadratic forms px, yq Ñ x ˝ y and px, yq Ñ x ˝ Ty are well

defined on L1, and their signatures as forms on L1 are τpDq and τpD ,T1q
respectively.

239



240 F. Hirzebruch and K. Jänich

L1 is isomorphic to the kernel of ψ, and hence we shall now take a

closer look at kerψ. For this purpose we consider the Mayer-Vietoris

sequences for rM and B:

H2kp rMq
rχ
ÝÑ H2k´1prV1 Y rV2q

rψ
ÝÑ H2k´1prVq ‘ H2k´1pC1 Y C2q

H2kpBq
χB

ÝÑ H2k´1prV1 Y rV2q
ψB

ÝÑ H2k´1prVq ‘ H2k´1pC1 Y C2q.

In the sequence for rM, the homomorphism H2k´1prV1YrV2q Ñ H2k´1prVq
is induced by the identity rV1 Ñ rV on rV1 and by the involution T :
rV2 Ñ rV on rV2, in the sequence for B however by the identity on both

components. If we write H2k´1prV1 Y rV2q as H2k´1prVq ‘ H2k´1prVq, the

kernel of H2k´1prV1 Y rV2q Ñ H2k´1pC1 Y C2q is L ‘ L, and so we get:

ker rψ “ tpa, bq P L ‘ L|a ` Tb “ 0u,

kerψB “ tpa, bq P L ‘ L|a ` b “ 0u.

Let a be an element of H˚prV ,Qq. Then a ` Ta vanishes if and only if a229

is in the kernel of H˚prV ,Qq Ñ H˚pV,Qq. Thus the kernel of ψ is

kerψ “ tpa, bq P L ‘ L|a ` Ta ` b ` Tb “ 0u.

kerψB and ker rψ are subspaces of kerψ, and if we write pa, bq as

ˆ
a ´ b

2
,

b ´ a

2

˙
`

ˆ
a ` b

2
,

a ` b

2

˙
,

we see that in fact

kerψ “ kerψB ` ker rψ. (3)

By the isomorphism L1 – kerψ, which is induced by χ, (3) becomes

L1 “ LB ` rL,

where LB denotes the subspace of L1 corresponding to kerψB under this

isomorphism, and rL corresponds to ker rψ.
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Let us first consider rL. Any element in rL can be represented by an

element rf˚pxq, where x P H2kp rMq and rf : rM Ñ A is the canonical map:

H2kp rMq

rf˚

��

rχ // H2k´1prV1 Y rV2q

Id

��

rψ // H2k´1prVq ‘ H2k´1pC1 Y C2q

��
H2kpAq

χ // H2k´1prV1 Y rV2q
ψ // H2k´1pVq ‘ H2k´1pC1 Y C2q.

But rf is homotopic in D to the inclusion rM “ π´1pM ˆ t0uq Ă D ,

hence we have LB ˝ L1 “ 0. Therefore the quadratic forms on L1 given

by px, yq Ñ x ˝ y and px, yq Ñ x ˝ Ty can be restricted to LB and their

signatures will still be τpDq and τpD ,T1q.

Now, any element in LB Ă H2kpAq{Im φ can be represented by an

element f B
˚ pxq, where x P H2kpBq and f B : B Ñ A is the canonical map.

Furthermore, χ induces an isomorphism between LB and the “Browder-

Livesay Module” L, because

LB ÝÑ
–

kerψB “ tpa,´aq|a P Lu – L.

Hence in view of the proposition in §2, out theorem would be proved if 230

we can show that the following lemma is true.

Lemma. Let x, y P H2kpBq and x “ f˚pxq, y “ f˚pyq the corre-

sponding element under the homomorphism f˚ : H2kpBq Ñ H2kpDq
induced by the canonical map f : B Ñ A Ă D . By (3), we have

χBpxq “ χpxq “ pa,´aq and χBpyq “ χpyq “ pb,´bq for some a,

b P L. We claim:

´x ˝ y “ a ˝ Tb (4)

Proof of the Lemma. First we note that we can make some simpli-

fying assumptions on x and y. By a theorem of Thom ([9], p. 55), up

to multiplication by an integer ‰ 0, any integral homology class of a

differentiable manifold can be realized by an oriented submanifold, and

hence we may assume that x and y are given by oriented 2k-dimensional
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submanifolds of B, which we will again denote by x and y. Of course

x and y may be assumed to be transversal at rV Ă B. Then rV X x and
rV Xy are differentiable p2k´1q-dimensional orientable submanifolds of
rV . We orient rV X x (and similarly rV X y) as the boundary of the oriented

manifold C1 X x. Then rV X x and rV X y represent a and b in H2k´1prVq,†

and we shall now denote rV X x by a and rV X y by b.

Since in a neighborhood of rV , B is simply rV ˆ R and x is a ˆ R, it is

clear that any isotopy of a in rV can be extended to an isotopy of x in B

which is the identity outside a given neighborhood of rV in B, such that x

remains transversal to rV during the isotopy. Therefore we may assume

that the submanifold a of rV is transversal to b and Tb.

There are all the preparations we have to make in B. Now let us

immerse B into D and thus get immersions of x and y into D which

will represent x and y P H2kpDq. To obtain transversality of these im-

mersions however, we immerse x into D by the standard immersion231

f : BtoA Ă D and y by an immersion f 1 : B Ñ D , which is different,

but isotopic to f .

To define f 1, let 0 ă ǫ ă 1
4

and choose a real-valued C8-function

h on the interval r0, 1s with hptq “ t for t ă 1
2
ǫ, hptq “ ǫ for t ą 1

2

and 0 ă hptq ď ǫ for all other t. Using κ : rVˆ
Z2

D1 Ñ M, we get a

function on κprVˆ
Z2

D1q Ă M by rv, ts Ñ hp|t|q, which we now extend to

a function h on M by defining hppq “ ǫ for all p R κprVˆ
Z2

D1q. Then

M Ñ M ˆ r0, 1s, given by p Ñ pp, 1
2

` hppqq is obviously covered by

an immersion f 1 : B Ñ D which is isotopic to f .

Then in fact the immersions f : x Ñ D and f 1 : y Ñ D are

transversal to each other, and for p P x, q P y we have

f ppq “ f 1pqq ô p “ q P a X b or p “ Tq P a X Tb.

Looking now very carefully at all orientations involved, we obtain

´x ˝ y “ a ˝ Tb ` a ˝ b. (5)

†Or ´a and ´b, but we may replace χ and χB in the Mayer-Vietoris sequences for

A and B by ´χ and ´χB, so let us assume that they represent a and b.
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Recall that rV is the boundary BC of the oriented manifold C and that

a and b are in the kernel of H2k´1pBCq Ñ H2k´1pCq. Then the inter-

section homology class spa, bq P H0pBCq is in the kernel of H0pBCq Ñ
H0pCq (see Thom [8], Corollaire V.6, p. 173), and therefore the inter-

section number a ˝ b is zero, hence (5) becomes–x ˝ y “ a ˝ Tb, and the

lemma is proved.

4 Resolution of some singularities. For a tripel

a “ pa0, a1, a2q

of pairwise prime integers with a j ě 2 consider the variety Va Ă C3

given by

z
a0

0
` z

a1

1
` z

a2

2
“ 0. (1)

The origin is the only singularity of Va. We shall describe a resolution 232

of this singularity.

Theorem. There exist a complex surface (complex manifold of complex

dimension 2) and a proper holomorphic map

φ : Ma Ñ Va

such that the following is true:
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(i) φ : Ma ´ φ´1p0q Ñ Va ´ t0u is biholomorphic.

(ii) φ´1p0q is a union of finitely many rational curves which are non-

singularly imbedded in Ma.

(iii) The intersection of three of these curves is always empty. Two of

these curves do not intersect or intersect transversally in exactly

one point.

(iv) We introduce a finite graph ga in which the vertices correspond to

the curves and in which two vertices are joined by an edge if and

only if the corresponding curves intersect. ga is star-shaped with

three rays.

(v) The graph ga will be weighted by attaching to each vertex the self-

intersection number of the corresponding curve. This number is

always negative. Thus ga looks as follows.

(vi) b “ 1 or b “ 2; b
j

i
ě 2. Let q0 be determined by233

0 ă q0 ă a0 and q0 ” ´a1a2mod a0

and define q1, q2 correspondingly. Let q1
j
be given by

0 ă q1
j ă a j and q jq

1
j ” 1mod a j.
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Then the numbers b
j

i
in the graph ga are obtained from the con-

tinued fractions

(vii) If the exponents a0, a1, a2 are all odd, then

b “ 1 ðñ q1
0 ` q1

1 ` q1
2 ” 0mod 2,

b “ 2 ðñ q1
0 ` q1

1 ` q1
2 ” 1mod 2.

Before proving (i)-(vii) we study as an example

z3
0 ` z

6 j´1

1
` z

18 j´1

2
“ 0. (2)

We have

q0 “ q1
0 “ 2

q1 “ 4 for j “ 1 and q1 “ 6 j ´ 7 for j ě 2

q1
1 “ 5 j ´ 1

q2 “ 2, q1
2 “ 9 j.

By (vii) we get b “ 2. The continued fractions for
3

2
,

5

4
resp.

6 j ´ 1

6 j ´ 7
,

18 j ´ 1

2
lead then to the graph
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vertices

the end for

the end for

(11.1)

234

Proof of the preceding theorem. We use the methods of [6]. The

algebroid function

f “ p´x
a1a2

1
´ x

a1a2

2
q1{a0

defines a branched covering V
p1q
a of C2 (coordinates x1, x2 in C2). Blow-

ing up the origin of C2 (compare [6], §1.3) gives a complex surface W

with a non-singular rational curve K Ă W of self-intersection number

´1 and an algebroid function rf on W branched along K and along a1a2

lines which intersect K in the a1a2 points of K satisfying

´x
a1a2

1
´ x

a1a2

2
“ 0 (4)

where x1, x2 are now regarded as homogeneous coordinates of K. The

algebroid function rf defines a complex space V
p2q
a lying branched over

W with a1a2 singular points lying over the points of K defined by (4).

In a neighborhood of such a point we have

rf “ pζ1ζ
a1a2

2
q1{a0 (5)
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where ζ2 “ 0 is a suitable local equation for K and ζ1 “ 0 for the line

passing through the point and along which V
p2q
a is branched over W. The 235

singularity of type (5) can be resolved according to [6], §3.4, where

ω “ pz1z
n´q

2
q1{n, p0 ă q ă n, pq, nq “ 1q (6)

was studied. In our case, we have

n “ a0 and q “ q0, see (vi) above,

for all the a1a2 singular points of V
p2q
a . The resolution gives a complex

surface V
p3q
a with the following property. The singularity of V

p1q
a was

blown up in a system of rational curves satisfying (iii) and represented

by a star-shaped graph with a1a2 rays of the same kind. The following

diagram shows only one ray where the unweighted vertex represents the

central curve rK which under the natural projection V
p3q
a Ñ W has K as

bijective image

(7)

V
p1q
a is of course just the affine variety

x
a0

0
` x

a1a2

1
` x

a1a2

2
“ 0

which can be mapped onto Va (see ((1)) by

px0, x1, x2q Ñ pz0, z1, z2q “ px0, x
a2

1
, x

a1

2
q.

Denote by G the finite group of linear transformations

px1, x2q Ñ pǫ2x1, ǫ1x2q with ǫ
a2

2
“ ǫ

a1

1
“ 1.

Va “ V
p1q
a {G.

(8)

Then the group G operates also on V
p3q
a . There are two fixed points,

namely the points 0 “ p0, 1q and 8 “ p1, 0q of rK “ K (with respect

to the homogeneous coordinates x1, x2 on K). The a1a2 points of rK
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in which the curves with self-intersection number ´b0
t0

of the a1a2 rays

intersect rK are an orbit under G. The a1a2 rays are all identified in

V
p3q
a {G. Thus V

p3q
a {G is a complex space with two singular points P0,

P8 corresponding to the fixed points. V
p3q
a {G is thus obtained from Va

by blowing up the singular point in a system of t0 ` 1 rational curves

showing the following intersection behaviour:

(9)

but where the vertex without weight represents a rational curve passing236

through the singular points P0, P8.

We must find the representation of G in the tangent spaces of the

fixed points 0 “ p0, 1q and 8 “ p1, 0q. In the neighborhood of 0 we

have local coordinates such that

y1 “
x1

x2

and x2 “ y
a0

2
. (10)

We consider G as the multiplicative group of all pairs pδ2, δ1q with δ
a2

2
“

δ
a1

1
“ 1 and put δ

a0

1
“ ǫ1 and δ2 “ ǫ2 (see (8)). Then G operates in the

neighborhood of the fixed point 0 as follows:

py1, y2q Ñ pδ2δ
´a0

1
y1, δ1y2q. (11)

Thus P0 is the quotient singularity with respect to the action (11). If

we first take the quotient with respect to the subgroup G0 of G given by

δ1 “ 1 we obtain a non-singular point which admits local coordinates

pt1, t2q with

t1 “ y
a2

1
and t2 “ y2. (12)

Thus P0 is the quotient singularity with respect to the action of G{G0

which is the group of a1-th roots of unity. By (11) and (12) for δ
a1

1
“ 1

the action is

pt1, t2q Ñ pδ´a0a2

1
t1, δ1t2q “ pδ

q1

1
t1, δ1t2q. (13)
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Looking at the invariants ζ1 “ t
a1

1
, ζ2 “ t

a1

2
and w “ t1t

a1´q1

2
for which

wa1 “ ζ1ζ
a1´q1

2

we see that P0 is a singularity of type (6). We use [6], §3.4 (or [2],

Satz 2.10) for P0 and in the same way for P8 and have finished the

proof except for the statements on b in (vi) and (vii). The surface Ma

of the theorem is V
p3q
a {G with P0 and P8 resolved. The function f

we started from gives rise to a holomorphic function on Ma. Using the

formulas of [6], §3.4, we see that f has on the central curve of Ma the

multiplicity a1a2, and on the three curves intersecting the central curve

the multiplicities

pa1a2q1
0 ` 1q{a0, a2q1

1, a1q1
2.

By [6], §1.4 (1), we obtain 237

a0a1a2b “ q1
0a1a2 ` q1

1a0a2 ` q1
2a0a1 ` 1.

Therefore

a0a1a2b ă 3a0a1a2 and b “ 1 or 2.

The congruence in (vii) also follows. This completes the proof.

Remark. Originally the theorem was proved by using the C˚-action on

the singularity (1) and deducing abstractly from this that the resolution

must look as described. Brieskorn constructed the resolution explicitly

by starting from xn
0
`xn

1
`xn

2
pn “ a0a1a2q and then passing to a quotient.

This is more symmetric. The method used in this paper has the advan-

tage to give the theorem also for some other equations z
a0

0
`hpz1, z2q “ 0

as was pointed out by Abhyankar in Bombay.

Now suppose moreover that the exponents a0, a1, a2 are all odd.

The explicit resolution shows that the involution Tz “ ´z of C3 can be

lifted to Ma. The lifted involution is also called T . It has no fixed points

outside φ´1p0q. It carries all the rational curves of the graph ga over

into themselves [7]. Thus T has the intersection points of two curves as

fixed points. Let Fix T be the union of those curves which are pointwise

fixed. Then Fix T is given by the following recipe.
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Theorem. For the involution T on Mapa0, a1, a2 oddq we have: The

central curve belongs to Fix T. If a curve is in Fix T, then the curves

intersecting it are not in Fix T. If the curve C is not in Fix T and not

an end curve of one of the three rays, then the following holds: If the

self-intersection number C ˝ C is even, then the two curves intersecting

C are both in Fix T or both not. If C ˝ C is odd, then one of the two

curves intersecting C is in Fix T and one not. If C is an end curve of one

of the three rays and if C is not in Fix T, then C ˝ C is odd if and only if

the curve intersecting C belongs to Fix T.

Proof. The involution can be followed through the whole resolution. It238

is the identity on the curve K. On the three singularities of type (6)

the involution is given by pz1, z2q Ñ pz1,´z2q. Here z1 and z2 are not

coordinate functions of C3 as used in (1), but have the same meaning

as in [6], §3.4. The theorem now follows from formula (8) in [6], §3.4.

Compare also the lemma at the end of §6 of [7].

For a0, a1, a2 pairwise prime and odd, we can now calculate the in-

variant α of the involution Ta on Σ3
pa0,a1,a2q

(see the Introduction). The

quadratic form of the graph ga is negative-definite. Therefore ([7], §6)

αpΣ3
pa0,a1,a2q

,Taq “ ´pt0 ` t1 ` t2 ` 1q ´ Fix T ˝ Fix T. (14)

Here t0 ` t1 ` t2 ` 1 is the number of vertices of ga whereas Fix T ˝
Fix T is of course the sum of the self-intersection numbers of the curves

belonging to Fix T . The calculation of α is a purely mechanical process

by the two theorems of this §. The number α in (14) is always divisible

by 8 (compare [7]) and for pa0, a1, a2q “ p3, 6 j ´ 1, 18 j ´ 1q we get for

α the value 8 j (see (11.1)).

Observe that

Fix T ˝ C ” C ˝ Cmod 2 (15)

for all curves in the graph ga, a fact which is almost equivalent to our

above recipe for Fix T . The quadratic form of ga has determinant ˘1

because Σ3
pa0,a1,a2q

is for pairwise prime a j an integral homology sphere

([1], [2], [7]). The divisibility of α by 8 is then a consequence of a well

known theorem on quadratic forms.
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The manifold Σ2n´1
a (see the Introduction) is diffeomorphic to the

manifold Σ2n´1
a pǫq given by

z
a0

0
` ¨ ¨ ¨ ` z

an
n “ ǫ (16)

Σzizi “ 1,

where ǫ is sufficiently small and not zero. Σ2n´1
a pǫq bounds the manifold

Napǫq given by

z
a0

0
` ¨ ¨ ¨ ` z

an
n “ ǫ (17)

Σzizi ď 1.

This fact apparently cannot be used to investigate the involution Ta in 239

the case of odd exponents because then (17) is not invariant under Ta.

If, however, the exponents are all even, then (17) is invariant under Ta

and for n “ 2k the number αpΣ4k´1
a ,Taq can be calculated using like

Brieskorn [1] the results of Pham on Napǫq. We get in this way �

Theorem. Let a “ pa0, a1, . . . , a2kq with ai ” 0mod 2. Then

αpΣ4k´1
a ,Taq “

ÿ

j

ǫp jqp´1q j0`¨¨¨` j2k . (18)

The sum is over all j “ p j0, j1, . . . , j2kq P Z2k`1 with 0 ă jr ă ar

and ǫp jq is 1, ´1 or 0 depending upon whether the sum
j0

a0

` ¨ ¨ ¨ `
j2k

a2k
lies strictly between 0 and 1mod 2, or strictly between 1 and 2mod 2, or

is integral.

Remark. For simplicity the resolution was only constructed for the

exponents a0, a1, a2 being pairwise relatively prime. The resolution of

the singularity

z
a0

0
` z

a1

1
` z

a2

2
“ 0

can also be done in a similar way for arbitrary exponents and gives the

following information.
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Theorem. If a0 ” a1 ” a2mod 2 and d is any integer ě 1, then

αpΣ3
pda0,da1,da2q

,Tdaq “ dαpΣ3
pa0,a1,a2q

,Taq ` d ´ 1.

For a0, a1, a2 all odd and d “ 2 we get

αpΣ3
pa0,a1,a2q

,Taq “
1

2
pαpΣ3

p2a0,2a1,2a2q
,T2aq ´ 1q

and therefore a method to calculate α also for odd exponents by formula

(18).
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GEOMETRIC AND ANALYTIC METHODS IN THE

THEORY OF THETA-FUNCTIONS˚

By Jun-Ichi Igusa

It is well known that theta-functions appeared in the early nineteenth241

century in connection with elliptic functions. This theory, although it

has apparent analytic features, is basically geometric. However, the

Gauss proof of the transformation law for the Legendre modulus and

Jacobi’s application of theta-functions to number theory are not geomet-

ric. More precisely, if we start from the view-point that theta-functions

give nice projective embeddings of a polarized abelian variety over C,

we are in the geometric side of the theory. On the other hand, if we re-

gard theta-functions as functions obtained by the summations of normal

densities over a lattice in a vector space over R, we are in the analytic

side of the theory. After this naive explanation of the title, we shall start

discussing certain results in the theory of theta-functions.

1. Suppose that X is a vector space of dimension n over C and L

a lattice in X. Then, a holomorphic function x Ñ θpxq on X is called a

theta-function belonging to L if it has the property that

θpx ` ξq “ epAξpxq ` bξq ¨ θpxq

for every ξ in L with a C-linear form Aξ on X and with a constant bξ
both depending on ξ. The notation epbq stands for expp2πibq. If the

theta-function is not the constant zero, it determines a positive divisor

D of the quotient Q “ X{L, which is a complex torus. A fundamen-

tal existence theorem in the theory of theta-functions asserts that every

positive divisor of Q can be obtained in this manner (cf. [23], [24]).

We observe that the function px, ηq Ñ Aηpxq on X ˆ L can be ex-

tended uniquely to an R-bilinear form on X ˆ X. Then, the bi-character

*This work was partially supported by the National Science Foundation.
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f of X ˆ X defined by

f px, yq “ epAypxq ´ Axpyqq

takes the value 1 on LˆL and also on the diagonal of XˆX. The divisor 242

D is called non-degenerate if f is non-degenerate. In this case, f gives

an autoduality of X, and the pair pQ, f q is called a polarized abelian

variety over C. Another fundamental theorem in the theory of theta-

functions asserts that the vector space over C of theta-functions which

have the same periodicity property as θpxq3 gives rise to a projective

embedding of this polarized abelian variety (c.f. [23], [24]). We shall

consider the special case when f gives an autoduality of pX, Lq in the

sense that the annihilator L˚ of L with respect to f coincides with L.

The polarized abelian variety is then called autodual. In this case, we

can choose a Z-base ξ1, . . . , ξ2n of L so that we get

f

˜
2nÿ

i“1

xiξi,

2nÿ

i“1

yiξi

¸
“ epx1 ty2 ´ x2 ty1q.

We are denoting by x1 and x2 the line vectors determined by x1, . . . , xn

and xn`1, . . . , x2n; similarly for y1 and y2. We observe that there exists a

unique C-base of X, and hence a unique C-linear isomorphism X
„
ÝÑ Cn

mapping the colomn vector determined by ξ1, . . . , ξ2n to a 2n ˆ n matrix

composed of an n ˆ n matrix τ and 1n. Then τ is necessarily a point of

the Siegel upper-half plane Sn and, if x is mapped to z, we have

θpxq “eppolynomial in z of degree twoq

¨
ÿ

pPZn

ep
1

2
pp ` m1qτtpp ` m1q ` pp ` m1qtpz ` m2qq,

in which m1, m2 are elements of Rn. We shall denote this series by

θmpτ, zq in which m is the line vector composed of m1 and m2.

The above process of obtaining the theta-function θmpτ, zq of char-

acteristic m depends on the choice of the Z-base ξ1, . . . , ξ2n of L. How-

ever, once it is chosen, the process is unique except for the fact that the
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characteristic m is determined only up to an element of Z2n. Now, the

passing to another Z-base of L is given by a left multiplication of an el-

ement σ of S p2npZq to the column vector determined by ξ1, . . . , ξ2n. If

σ is composed of n ˆ n submatrices α, β, γ, δ the point τ˚ of Sn which243

corresponds to the new base is given by

σ ¨ τ “ pατ ` βqpγτ ` δq´1.

Furthermore, if θm˚pτ˚, z˚q corresponds to the new base, the relation

between θm˚pτ˚, z˚q and θmpτ, zq is known except for a certain eighth

root of unity. This eighth root of unity has been calculated explicitly for

some special σ, e.g. for those σ in which γ is non-degenerate. This is

the classical transformation low of theta-functions. In particular, if we

consider the theta-constants θmpτq “ θmpτ, 0q for m in Q2n, the transfor-

mation law implies that any homogeneous polynomial of even degree,

say 2k, in the theta-constants defines a modular form of weight k be-

longing to some subgroup, say Γ, of S p2npZq of finite index. We recall

that a modular form of wight k belonging to Γ is a holomorphic function

ψ on Sn (plus a boundedness condition at infinity for n “ 1) obeying

the following transformation law:

ψpσ ¨ τq “ detpγτ ` δqk ¨ ψpτq

for every σ in Γ. The set of such modular forms forms a vector space

ApΓqk over C, and the graded ring

ApΓq “
à
kě0

ApΓqk

is called the ring of modular forms belonging to Γ.

Now, the above summarized theory does not give the precise nature

of the subgroup Γ, nor does it provide information on the set of modu-

lar forms obtained from the theta-constants. We have given an almost

satisfactory answer to these problems in [9], and it can be stated in the

following way.

Let Γnplq denote the principal congruence group of level l and con-

sider only those characteristics m satisfying lm ” 0mod 1. Then, for any
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even level l, a monomial θm1
. . . θm2k

defines a modular form belonging

to Γnplq if and only if the quadratic form q on R2n defined by

qpxq “ pl{2q

˜
2kÿ

α“1

pxtmα

¸2

` pk{2qx1 t x2q

is Z-valued on Z2n. Moreover, the integral closure within the field of 244

fractions of the ring generated over C by such monomials is precisely

the ring ApΓnplqq.

The proof of the first part depends on the existence of an explicit

transformation formula for θm1
. . . θm2k

valid for every σ in Γnp2q. The

proof of the second part depends on the theory of compactifications (c.f.

[1], [4]) and on the Hilbert ‘Nullstellensatz”. We would like to call

attention to the fact that this result connects the unknown ring ApΓnplqq
to an explicitly constructed ring of theta-constants. As an application,

we have obtained the following theorem [12]:

There exists a ring homomorphism ρ from a subring of ApΓnp1qq
to the ring of projective invariants of a binary form of degree 2n ` 2

such that ρ increases the weight by a 1
2
n ratio. Moreover, an element of

ApΓnp1qq is in the kernel of ρ if and only if it vanishes at every “hyper-

elliptic point” of Sn.

This subring contains all elements of even weights as well as all

polynomials in the theta-constants whose characteristics m satisfy 2m ”
0mod 1 and which are contained in ApΓnp1qq. It may be that ApΓnp1qq
simply consists of such polynomials in the theta-constants. If we denote

by Anplq, for any even l, the ring generated over C by all monomi-

als θm1
. . . θm2k

satisfying lm ” 0mod 1, this is certainly the case when

Anp2q is integrally closed. Now. Mumford informed us (in the fall of

1966) that A1p4q is not integrally closed. Subsequently we verified that

A1plq is integrally closed if and only if l “ 2. On the other hand, we

have shown in [8] that A2p2q is integrally closed. Therefore, it is possi-

ble that Anp2q is integrally closed for every n. We can propose the more

general problem of whether we can explicitly give a set of generators for

the integral closure of Anplq. Concerning this problem, we would like to

mention a result of Mumford to the effect that Anplq is integrally closed
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locally at every finite point. For this and for other important results, we

refer to his paper [16]. Also, we would like to mention a relatively re-

cent paper of Siegel that has appeared in the Göttingen Nachrichten [22,

III].

For the application of the homomorphism ρ, it is useful to know that,245

if ψ is a cusp form, i.e. a modular form vanishing at infinity, at which ρ

is defined, the image ρpψq is divisible by the discriminant of the binary

form. Also, in the case when n “ 3, the kernel of ρ is a principal ideal

generated by a cusp form of weight 18. From this, we immediately get

dimC ApΓnp1qq8 ď 1

for n “ 1, 2, 3. Actually we have an equality here because each coeffi-

cient ψk in

Πpt ` pθmq8q “ tN ` ψ1 ¨ tN´1 ` ¨ ¨ ¨ ` ψN ,

in which the product is taken over the N “ 2n´1p2n ` 1q characteristics

m satisfying 2m ” 0, 2m1tm2 ” 0mod 1, is an element of ApΓnp1qq4k

different from the constant zero for every n. Furthermore, by using the

classical structure theorem for the ring of projective invariants of a bi-

nary sextic, we have reproduced our structure theorem of ApΓ2p1qq in

[12]. It seems possible to apply the same method to the case when n “ 3

by using Shioda’s result in [21] on the structure of the ring of projective

invariants of a binary octavic.

We shall discuss a special but hopefully interesting application of

what we have said so far to a conjecture made by Witt in [27]. He ob-

served that the lattice in Rm generated by the root system Dm can be

extended to a lattice on which p 1
2
qxt x is Z-valued if and only if m is a

multiple of 8. In this case, there are two extensions, and they are conju-

gate by an isomorphism inducing an automorphism of Dm. The restric-

tion of p 1
2
qxt x to the extended lattice gives a positive, non-degenerate

quadratic form (of discriminant 1) to which we can associate, for every

given n, a theta-series called the class invariant. For m “ 8k, this is

an element of ApΓnp1qq4k different from the constant zero. If we denote

the first two elements by fn, gn, the conjecture is that p f3q2 “ g3. We
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note that dimC ApΓ3p1qq8 ď 1 gives an affirmative answer to this conjec-

ture. Also, M. Kneser has given another solution by a highly ingenious

argument in [14].

Now, if we consider the difference p f4q2 ´ g4, we get a cusp form 246

of weight 8 for n “ 4. According to the property of the homomor-

phism ρ, this cusp form vanishes at every hyperelliptic point. We may

inquire whether it also vanishes at every “jacobian point”. This ques-

tion reminds us of an invariant discovered by Schottky which vanishes

at every jacobian point (c.f. [19]). We can see easily that the Schottky

invariant, denoted by J, is also a cusp form of weight 8 for n “ 4. We

may, therefore, inquire how the two cusp forms are related. The answer

is given by the following identity:

p f4q2 ´ g4 “ 2´2325.7-times J.

Actually, this identity can be proved directly, and it provides a third

solution for the Witt conjecture.

In this connection, we would like to mention that, as far as we can

see it, Schottky did not prove the converse, i.e. the fact that the van-

ishing of J is “characteristic” for the jacobian point. In fact, he did not

even attempt to prove it. However, it appears that this can be proved.

A precise statement is that the divisor determined by J on the quotient

Γ4p1qzS4 is irreducible in the usual sense and it contains the set of jaco-

bian points as a dense open subset. We shall publish the proofs for this

and for the above mentioned identity in a separate paper.

2. We have considered the ring of modular forms so to speak alge-

braically. However, as we mentioned earlier, it depends on the possibil-

ity of compactifying the quotient ΓzSn to a (normal) projective variety,

say S pΓq. This is a natural approach to the investigation of modular

forms. After all, to calculate the dimension of ApΓqk is a problem of

“Riemann-Roch type”, and it was with this problem in mind that Satake

first attempted to compactify the quotient Γnp1qzSn in [18]. The theory

of compactifications has been completed recently by Baily and Borel

[2], and it may be just about time to examine the possibility of applying

it to the determination of the dimension of ApΓqk.
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Now, for such a purpose, it is desirable that S pΓnplqq becomes non-247

singular for a large l. However, the situation is exactly the opposite. In

fact, every point of S pΓnplqq´ΓnplqzSn is singular on S pΓnplqq except

for a few cases and, for instance, the dimension of the Zariski tangent

space tends to infinity with l (c.f. [10]). We may, therefore, inquire

whether S pΓnplqq admits a “natural” desingularization. If the answer is

affirmative, we may further hope to obtain the Riemann-Roch theorem

for this non-singular model. It turns out that the problem is quite delicate

and the whole situation seems to be still chaotic.

In order to explain some results in this direction, we recall that the

boundary of a bounded symmetric domain has a stratification which is

inherited by the standard compactification of its arithmetically defined

quotient. We shall consider only such “absolute” stratification. The

union of the first, the second,. . . .strata is called the boundary of the com-

pactification. Then we can state our results in the following way.

Suppose that D is isomorphic to a bounded symmetric domain, and

convert the complexification of the connected component of AutpDq, up

to an isogeny, into a linear algebraic group, say G, over Q. Denote by

Γ the principal congruence group of GZ of level l. Then the monoidal

transform, say M pΓq, of the standard compactification S pΓq of ΓzD

along its boundary, i.e. the blowing up of S pΓq with respect to the

sheaf of ideals defined by all cusp forms, is non-singular over the first

strata for every l not smaller than a fixed integer. Moreover, the fiber of

M pΓq Ñ S pΓq at every point of the first strata is a polarized abelian va-

riety. In the special case when D “ Sn and G “ S p2npCq, the monoidal

transformation desingularizes up to the third strata with 3 as the fixed

integer.

The proof of the first part is a refinement of the proof of a similar

result in [10]. It was obtained (in the summer of 1966) with the help of

A. Borel. The proof of the second part and the description of various

fibers are in [11]. (The number 3 comes from the theorem on projective

embeddings of a polarized abelian variety and from the fact that Γnplq248

operates on Sn without fixed points for l ě 3). The basis of the proofs

is the theory of Fourier-Jacobi series of Pyatetski-Shapiro [17]. In this

connection, we would like to mention an imaginative paper by Gindikin
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and Pyatetski-Shapiro [7]. However, their main result requires the exis-

tence of a non-singular blowing up of S pΓq which, so to speak, coin-

cides with the monoidal transformation along the first strata and which

does not create a divisor over the higher strata. The existence of such

blowing up is assured for Γ “ Γnplq up to n “ 3. In fact, the monoidal

transformation has the required properties (c.f. [11]).

Because of the serious difficulty in constructing a natural desingu-

larization, we may attempts to apply directly to S pΓq the “Riemann-

Roch theorem for normal varieties” proved first by Zariski. According

to Eichler, his work on the “Riemann-Roch theorem” [6] contains addi-

tional material useful for this purpose. Eichler informed us (in the spring

of 1967) that he can calculate, for instance, the dimension of ApΓ2p1qqk

at least when k is a multiple of 6, and thus recover the structure theorem

for ApΓ2p1qq.

3. We have so far discussed the geometric method in the theory

of theta-functions. The basic features are that objects are “complex-

analytic” if not algebraic. We shall now abandon this restriction and

adopt a freer viewpoint. This has been provided by a recent work of

A. Weil that has appeared in two papers ([25], [26]). We shall start by

giving an outline of his first paper.

We take an arbitrary locally compact abelian group X and denote its

dual by X˚. We shall denote by T the multiplicative group of complex

numbers t satisfying tt “ 1 and by px, x˚q Ñ xx, x˚y the bicharacter of

XˆX˚ which puts X and X˚ into duality. Then the regular representation

of X and the Fourier transform of the regular representation of X˚ satisfy

the so-called Heisenberg commutation relation. Therefore the images

of X and X˚ by these representations generate a group ApXq of unitary

operators with the group T, of scalar multiplications by elements of T ,

as its center such that

ApXq{T
„
ÝÑ X ˆ X˚,

the isomorphism being bicontinuous. Consider the normalizer BpXq 249

of ApXq in AutpL2pXqq. Then the Mackey theorem [15] implies that

T is the centralizer of ApXq in AutpL2pXqq and that every bicontinuous

automorphism of ApXq inducing the identity on T is the restriction to
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ApXq of an inner automorphism of BpXq. If BpXq denotes the group of

such automorphisms of ApXq, we have

BpXq{T
„
ÝÑ BpXq,

the isomorphism being bicontinuous. On the other hand, if S pXq* is

the Schwarz-Bruhat space of X (c.f. [3]), Weil has shown that every s in

BpXq gives a bicontinuous automorphism ΦÑ sΦ of S pXq. The proof

is based on what might be called a five-step decomposition of ΦÑ sΦ,

which comes from a work of Segal [20]. Now, if L is a closed subgroup

of X, every Φ in S pXq gives rise to a function FΦ on BpXq by the

following integral

FΦpsq “

ż

L

psΦqpξqdξ

taken with respect to the Haar measure dξ on L. Weil has show that FΦ

has a remarkable invariance property with respect to a certain subgroup

of BpXq determined by L. Then he has specialized to the “arithmetic

case” and proved the continuity of ps,Φq Ñ sΦ and s Ñ FΦpsq restrict-

ing s to the metaplectic group, which is a fiber-product over BpXq of

BpXq and of an adelized algebraic group.

We shall now explain some supplements to the Weil theory and our

generalization of theta-functions in [13]. For other group-theoretic treat-

ment of theta-functions, we refer to Cartier [5].

If s is an element of BpXq, it gives rise to a bicontinuous automor-

phism σ of X ˆ X˚ keeping

ppx, x˚q, py, y˚qq Ñ xx, y˚yxy, x˚y´1

invariant. The group S ppXq of such automorphisms of X ˆ X˚ is known

as the symplectic group of X. The Weil theory implies that s Ñ σ gives

rise to a continuous monomorphism

BpXq{ApXq Ñ S ppXq.

250

*There should be no confusion between S pΓq and S pXq because in the first case

the group is non-commutative and in the second it is commutative.
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We have shown that this monomorphism is surjective and bicontin-

uous. The topology of S ppXq is determined by the fact that the group

of bicontinuous automorphisms of any locally compact group becomes

a topological group by the (modified) compact open topology. We ob-

serve that neither BpXq nor S ppXq is locally bounded, in general. How-

ever, if G is a locally compact group and G Ñ S ppXq, a continuous

homomorphism, the fiber-product

BpXqG “ BpXq ˆ
S ppXq

G

is always locally compact. As for the continuity of BpXq ˆ S pXq Ñ
S pXq, it is false in general. However, if Σ is a locally compact sub-

set of BpXq, the induced mapping Σ ˆ S pXq Ñ S pXq is continu-

ous. In particular, the mapping BpXqG ˆ S pXq Ñ S pXq defined by

pps, gq,Φq Ñ sΦ is continuous. Also, the function FΦ is always con-

tinuous on BpXq. In fact, it can be considered locally everywhere as a

coimage of continuous functions on Lie groups.

The continuous function FΦ on BpXq may be called an automorphic

function because of its invariance property mentioned before. We may

then define a theta-function as a special automorphic function. For this

purpose, we observe that X can be decomposed into a product X0 ˆ Rn,

in which X0 is a closed subgroup of X with compact open subgroups. Al-

though this decomposition is not intrinsic (except when X0 is the union

of totally disconnected compact open subgroups), the dimension n is

unique and X0 contains all compact subgroups of X. We consider a

function Φ0 b Φ8 on X defined by

Φ0 “ the characteristic function of a compact open

subgroup of X0

Φ8px8q “ expp´πx8
t x8q.

Then finite linear combinations of elements of ApX0qΦ0 b BpRnqΦ8

form a dense subspace G pXq of S pXq which is BpXq-invariant. More-

over G pXq is intrinsic. We take an element Φ of G pXq and call FΦ a

theta-function on BpXq. Then, every automorphic function on BpXq can
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be approximated uniformly on any compact subset of BpXq by a theta- 251

function. Also, we can restrict FΦ to the fiber-product BpXqG. This

procedure gives rise to various theta-functions.

On the other hand, if a tempered distribution I on X vanishes on

G pXq, it vanishes identically. Actually a smaller subspace than G pXq is

dense in S pXq. In fact, we can find a locally compact, solvable sub-

group ΣpXq of BpXq such that the vanishing of the continuous func-

tion s Ñ IpsΦq on ΣpXq is characteristic for the vanishing of I for

Φ “ Φ0 b Φ8. Consequently, we would have an identity I1 “ I2

of tempered distributions I1 and I2 on X if they give rise to the same

function on ΣpXq. It appears that these facts explain to some extent the

rôles played by theta-functions in number theory. For instance, we can

convince ourselves easily that the Siegel formula (for the orthogonal

group) as formulated and proved by Weil [26] and the classical Siegel

formula by Siegel [22] involving theta-series and Eisenstein series are

equivalent. This does not mean that the Siegel formula for any given

Φ in S pXq can be obtained linearly from the classical Siegel formula.

The space G pXq is too small for this. We observe that, if we denote by

GkpXq the subspace of S pXq consisting of elements of G pXq multiplied

by “polynomial functions” of degree k, it is also BpXq-invariant. Such

a space has appeared (in the arithmetic case) in the proof of the func-

tional equation for the Hecke L-series. It seems that the meaning and

the actual use of elements of S pXq not contained in the union of

G pXq “ G0pXq Ă G1pXq Ă ¨ ¨ ¨

are things to be investigated in the future.

In rounding off our talk, we remark that, if we take a vector space

over R as X and a lattice in X as L, the theta-function FΦ becomes, up to

an elementary factor, the theta-function that we have introduced in the

beginning (with the understanding that the previous pX, Lq is replaced

by pX ˆ X˚, Lˆ L˚q). Moreover, the invariance property of FΦ becomes

the transformation law of theta-functions.
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alites Sci. et Ind. (1958).

[25] A. Weil : Sur certains groupes d’opérateurs unitaires, Acta Math.
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ON SOME GROUPS RELATED TO CUBIC

HYPERSURFACES

By Yu. I. Manin

255

Introduction and motivation. Let V be a nonsingular cubic

curve in a projective plane over a field k. If the set Vpkq of its k-points is

nonempty, one may endow V with a structure of an abelian variety over

k, taking one of the points for identity. Then the group law on Vpkq may

be easily described geometrically. The description is especially simple

if identity is an inflexion point of V: then the sum of three points is iden-

tity if and only if they are collinear. It follows that the ternary relation

Lpx, y, zq (“x, y, z are collinear”) may be considered as the basic one for

the theory of one-dimensional abelian varieties. This is the classical ap-

proach, which makes possible, for example, to give “elementary” proofs

of Mordell-Weil theorem and Riemann conjecture for elliptic curves.

The ternary relation L is defined not only for cubic curves but, say,

for all geometrically irreducible cubic hypersurfaces in a projective

space. However, this relation was scarcely utilized for studying of arith-

metic and geometric properties of these varieties. One of the main rea-

sons of it was that one could not relate L to some standard algebraic

structure: in fact, cubic hypersurfaces of dimension ě 2 are definitely

not group varieties.

In this talk we suggest and discuss two different ways to construct a

group by means of the relation L.

The first way is to consider for any nonsingular point x P Vpkq the

birational automorphism tx : V Ñ V , which in its existence domain is

given by the relation Lpx, y, txpyqq. (In other words, tx is “the reflection

relatively to point x”). Then one may consider the group B, generated

by automorphisms tx for all x P Vpkq (or for some subset of points). If

dim V “ 1, this group B is easily seen to be isomorphic to the canonical

extension of Z2 by Vpkq with usual group law. In particular one can256

268



On Some Groups Related to Cubic Hyper-surfaces 269

reconstruct Vpkq from B. So one can hope that properties of the group

B are of some interest in the general case.

The second way to construct a group is to imitate the one-dimensio-

nal definition, but applying it to some classes of points of V rather than

the points themselves. Namely, consider a decomposition of Vpkq in

disjoint subsets Vpkq “ YCi, enjoying the following properties:

(a) if Lpx, y, zq, where x P Cp, y P Cq, z P Cr, then any of classes Cp,

Cq, Cr is uniquely defined by the other two;

(b) on the set of classes tCiu there exists a structure of abelian group

Γ of period two such that the relation “sum of three classes is

equal to zero” coincides with the relation, induced by L on this

set.

(All this simply means that one can add two classes, drawing a line

through its representatives and then taking the class of the third point

of intersection of this line with V . In fact, one must be a little bit more

careful to avoid lines lying in V: c.f. the statement of Theorem 3 below.)

An example of such decomposition in case dim V “ 1 is given by

the family of cosets Vpkq{2Vpkq. So the groups constructed by this pro-

cedure are similar to “weak Mordell-Weil groups”. F. Châtelet has dis-

covered nontrivial groups of this kind for certain singular cubic surfaces

[1].

We shall describe now briefly our main results. The first section

below contains complete definitions and statements, the second gives

some ideas of proof.

The group B is studied in some detail for nonsingular cubic surfaces.

In particular, we give a complete system of relations between maps tx

for x, not lying on the union of 27 lines of V . Besides, we prove, that for

k-minimal surfaces such tx together with the group of projective trans-

formations of V generate the whole group of birational k-automorphisms

of V (Theorems 1 and 2).

The main result on the group Γ of classes of points of Vpkq is proved

for all dimensions and states the existence of the unique “finest” decom- 257

position or “biggest” group Γ. In fact, we consider such decompositions
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not only of the total set Vpkq, but of any subset of it fulfilling some nat-

ural conditions. It happens then that, say, the identity class of any such

decomposition may be decomposed again and so on. So one can con-

struct for any V a sequence of 2-groups Γn which for dim V “ 1 is given

by Γn “ 2nVpkq{2n`1Vpkq (Theorem 3).

The last Theorem 4 shows a connection between groups B and Γ.

Main statements. Let V be a nonsingular cubic surface in P3, de-

fined over a field k. All points we consider are geometric K-points for

subfields K of an algebraic closure k of k.

A point x P Vpkq is called nonspecial, if it does not belong to the

union of 27 lines on V b k.

A pair of points px, yq P Vpkq ˆ Vpkq is called nonspecial, if points

x, y are distinct and nonspecial and if the line in P3, containing x, y, is

not tangent to V and is disjoint with any line of V b k.

For any point x P Vpkq the birational k-automorphism tx : V Ñ V

is defined (c.f. Introduction). If the point txpyq is defined, we shall

sometimes denote it x ˝ y. If x ˝ y and y ˝ x are both defined, then

x ˝ y “ y ˝ x.

Theorem 1. Let W be the group of projective automorphisms of V b k

over k and B the group of birational automorphisms generated by the

reflections tx relative to the nonspecial points x P Vpkq.

Then the group, generated by W and B, is the semidirect product of

these subgroups with normal subgroup B and the natural action

wtxw´1 “ twpxq, w P W, x P Vpkq.

Moreover, the complete system of relations between the generators

tx of group B is generated by

t2
x “ 1; ptxtx˝ytyq2 “ 1 (1)

for all nonspecial pairs px, yq of points of Vpkq.

In particular, it follows from relations (1), that if px, yq is a non-258

special pair of points, defined and conjugate over a quadratic exten-

sion K{k, then the K-automorphism txtx˝yty of V b K is obtained by
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the ground field extension from some k-automorphism of V which we

shall denote sx,y.

Theorem 2. Suppose moreover that k is perfect and the surface V is

k-minimal (i.e. any birational k-morphism V Ñ V 1 is an isomorphism).

Then the group of birational k-automorphisms of V is generated by the

subgroup of its projective automorphisms and by elements tx, sx,y for all

nonspecial points x P Vpkq and for all nonspecial pairs of points px, yq,

defined and conjugate over some quadratic extension of k.

We note that in the paper [2] the following statement was proved:

two minimal cubic surfaces are birationally equivalent over k if and

only if they are (projectively) isomorphic. So Theorems 1 and 2 give

us a fairly complete description of the category of such surfaces and

birational applications. Note also an analogy with the category of one-

dimensional abelian varieties. It suggests the desirability to investigate

also rational applications of finite degree (“isogenies”).

To compare the two-dimensional case with one-dimensional one

note that if dim V “ 1, then

t2
x “ 1, ptxtytzq

2 “ 1 (2)

for all triples px, y, zq of points of V . But even this is not a complete

system of relations: there exist relations, depending on the structure of

k and on the particular nature of some points. Thus in dimension 2 the

properties of group B are less subtle.

The statement of Theorem 1 without essential changes should be

valid for all dimensions ě 2.

Now we shall state the main notions necessary to define the groups

Γ.

Let V be a geometrically irreducible cubic hypersurface over a field

k. Let C Ă Vpkq be a Zariski-dense set of points of V . We say that

a subset C1 Ă C consists of almost all points of C, if C1 contains the

intersection of C with a Zariski-dense open subset of V .

The following definition describes a class of sets C, for which we 259

can construct “group decompositions”.
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Definition. C Ă Vpkq is called an admissible set, if the following two

conditions are fulfilled.

(a) C is Zariski-dense and consists only of nonsingular points of V.

(b) Let x P C. Then for almost all points y P C the point txpyq is

defined and belongs to C.

The following sets, if they are dense, are admissible:

1. the set of all nonsingular points of V;

2. the set of hyperbolic points of a nonsingular cubic surface over R,

if it is a connected component of VpRq;

3. the minimal set, containing a given system of points and closed

under the relation L.

Theorem 3. Let C Ă Vpkq be an admissible set. Let ΓpCq be the abelian

group, generated by the family of symbols Cpxq for all x P C, subject to

following relations :

2Cpxq “ 0, Cpxq ` Cpyq ` Cpzq “ 0 (3)

for all triples of different points x, y, z P C, lying on a line not belonging

to V. Then the map of sets

C Ñ ΓpCq : x Ñ Cpxq

is surjective. Thus the group ΓpCq is isomorphic to a group of classes of

C under certain equivalence relation, with the composition law “draw-

ing a line through two points”.

Moreover, the union of classes, corresponding to any subgroup of

ΓpCq, is an admissible set.

From this theorem it is clear that any different “group decompo-

sition” of ΓpCq (c.f. Introduction) can be obtained from the one con-

structed by collecting together cosets of some subgroup of ΓpCq.
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As was stated, for dim V “ 1 and C “ Vpkq we have ΓpCq “
Vpkq{2Vpkq. A certain modification of this result remains valid in the

dimension two.

Theorem 4. Let C be an admissible subset of nonspecial points of a260

nonsingular cubic surface V. Let BpCq be the group of birational auto-

morphisms of V, generated by tx, x P C, and B0pCq Ă BpCq the normal

subgroup generated by sx,y for all nonspecial pairs px, yq P C ˆC. Then

ΓpCq » BpCq{B0pCq.

This is an easy consequence of the Theorem 1 and so probably gen-

eralizes to all dimensions ě 2.

Our knowledge of groups ΓpCq is very poor. Unlike groups B they

depend on the constant field k in a subtle way. For example, if C con-

sists of all nonsingular points of V in an algebraically closed field, the

ΓpCq “ t0u (as is the one-dimensional case: the group of points of an

abelian variety is divisible).

On the other hand, I can construct examples of nonsingular cubic

surfaces V over number fields k such that the group CpVpkqq has arbi-

trarily many generators. I do not know whether it can be infinite. Per-

haps for a reasonable class of varieties a kind of “weak Mordell-Weil

theorem” is true.

We wish to formulate some more problems which arise naturally in

connection with our construction. Beginning with some admissible set

C0, denote by C1 Ă C0 the identity class of ΓpC0q. As C1 is admisible,

we can construct the identity class of ΓpC0q, and so on. Let Ci`1 be the

identity class of ΓpCiq; we get a sequence of sets of points C0 Ą C1 Ą
C2 Ą ¨ ¨ ¨ and of groups ΓpCiq.

Let k be a number field and C0 “ Vpkq. Does the sequence tCiu
stabilize? What is the intersection XCi? (In the one-dimensional case

it consists of points of odd order). Is it possible to “put together” all

of groups ΓpCiq by constructing an universal group and say, a normal

series of it, with factors ΓpCiq ?
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Theorem 4 shows a certain approach to the last question. In fact,

ΓpCiq “ BpCiq{B0pCiq, where

BpC0q Ą ¨ ¨ ¨ Ą BpCiq Ą B0pCiq Ą BpCi`1q Ą ¨ ¨ ¨

But the “gaps” B0pCiq Ą BpCi`1q are probably nontrivial.

One of the serious obstacles to studying ΓpVpkqq is the lack of a261

manageable criterion for a point to be in the identity class. More gener-

ally, one would like to have a substitute for the basic homomorphism

δ : Vpkq{2Vpkq Ñ H1pk,2Vpkqq,

of one-dimensional case.

Ideas of proofs. Theorem 1 is proved by a refinement of methods, de-

veloped in the section 5 of [2], where a complete proof of Theorem 2 is

given.

Let V be a (nonsingular) projective k-surface. Let ZpVq “ limÝÑ
PicpV 1q, where the system of groups Pic is indexed by the set of bi-

rational k-morphisms V 1 Ñ V b k with natural dominance relation. The

group ZpVq is endowed with the following structures all of which are

induced from “finite levels”.

1. ZpVq is a G-module, where G “ Galpk{kq;

2. there is a G-invariant pairing “intersection index” ZpVqˆZpVq Ñ
Z;

3. there is a G-invariant augmentation ZpVq Ñ Z : “intersection

index with the canonical class”;

4. the cone of positive elements Z`pVq;

5. the cone Z``pVq, dual to Z`pVq relative to the pairing.
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Now for any k-birational map f : V 1 Ñ V an isomorphism f ˚ :

ZpVq Ñ ZpV 1q is defined, preserving all of the structures above, and

p f gq˚ “ f ˚g˚. In particular, the group of birational k-automorphisms

of V is represented in the group ZpVq.

To use this representation effectively, one must look at the group

ZpVq differently.

Construct a prescheme EpVq “ pYV 1q{R, the sum of all V 1, k-

birationally mapped onto V b k, by the equivalence relation R, which 262

patches together the biggest open subsets of V 1 and V2 isomorphic un-

der the natural birational application V 1 ÐÑ V2.

To understand better the architecture of EpVq, look at the simplest

morphism V 1 Ñ V , contracting a line l onto a point x. Patching V 1 and

V by identifying V 1zl with V 1zx, we get a little bit of EpVq. If k “ C,

l is the Riemann sphere; so the result of patching may be viewed as V

complemented by a “bubble” blown up from the point x P V . To get the

whole EpVq one must blow up bubbles from all points of V , then from

all points of these bubbles, and so on. So I suggest to call this EpVq “the

bubble space” associated to V .

Now, this bubble space is connected with ZpVq as follows. Each

point of ZpVqpkq defines its bubble to which in turn corresponds a certain

element of ZpVq. So there is the natural homomorphism

PicpV b kq ‘ C0pEpVqq Ñ ZpVq

where C0pVq is the free abelian group, generated by all k-points of V .

In fact it is an isomorphism. The structures on ZpVq, defined ear-

lier, have a rather detailed description in this new setting. On the other

hand this presentation of ZpVq is well fit for calculations giving a nice

“geometric” set of generators for ZpVq.

We omit these calculations which are rather long, especially those in

the proof of Theorem 1. Note only some similarity with the description

of all relations in Coxeter groups generated by reflections in an Euclid-

ian space.

The proof of Theorem 3 is much more elementary. To prove the

surjectivity of C Ñ ΓpCq it is sufficient to find for any x, y P C a
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third point z P C such that Cpxq ` Cpyq “ Cpzq. We say that points x,

y P C are in general position, if the line, containing them, is not tangent

to V (and in particular does not belong to V) and the third intersection

point of this line with V belongs to C. Then, by definition, Cpxq `
Cpyq “ Cpzq. So one must consider the case, when x, y are not in

general position. One can find such points u, v P C, that the following263

pairs of points are in general position:

px, uq; ptupxq, vq; ptvtupxq, u ˝ vq; ptu˝vtvtupxq, yq.

So we are done:

Cpxq`Cpyq “ Cpxq`Cpuq`Cpvq`Cpu˝vq`Cpyq “ Cpy˝ptu˝vtvtuxqq.

To find points pu, vq one may work in Vpkq, because C is dense, and

then one sees that such points exist on a plane section through px, yq.

The same argument shows the density and consequently the admis-

sibility of a subgroup of ΓpCq.
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ON CANONICALLY POLARIZED VARIETIES

By T. Matsusaka*
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Brief summary of notations and conventions. We shall

follow basically notations and conventions of [21], [25], [32]. For ba-

sic results on specializations of cycles, we refer to [24]. When U is a

complete variety, non-singular in codimension 1 and X a U-divisor, the

module of functions g such that divpgq ` X ą 0 will be denoted by

LpXq. We shall denote by lpXq the dimension of LpXq. The complete

linear system determined by X will be denoted by ΛpXq. A finite set of

functions pgiq in LpXq defines a rational map f of U into a projective

space. f will be called a rational map of U defined by X. When pgiq is

a basis of LpXq, it will be called a non-degenerate map. X will be called

ample if a non-degenerate f is a projective embedding. It will be called

non-degenerate if a positive multiple of X is ample. (In the terminology

of Grothendieck, these are called very ample and ample). Let W be the

image of U by f and Γ the closure of the graph of f on U ˆ W. We

shall denote by degp f q the number rΓ : Ws. For any U-cycle Y , we

shall denote by f pYq the cycle pr2pΓ ¨ pY ˆ Wqq. We shall denote by

KpUq a canonical divisor of U. When X is a Cartier divisor on U, we

shall denote by L pXq the invertible sheaf defined by X. When U is a

subvariety of a projective space, CU will denote a hyperplane section of

U. When U is a polarized variety, a basic polar divisor will be denoted

by XU .

By an algebraic family of positive cycles, we shall understand the

set of positive cycles in a projective space such that the set of Chow-

points forms a locally closed subset of a projective space. By identifying

these cycles with their Chow-points, some of the notations and results

on points can be carried over to algebraic families and this will be done

frequently.

*This work was done while the author was partially supported by N. S. F.
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Finally, Gl, Ga, „ will denote respectively the group of divisors

linearly equivalent to zero, the group of divisors algebraically equivalent

to zero and the linear equivalence of divisors.

266

Introduction. Let Vn be a polarized variety and XV a basic polar

divisor on V . Then the Euler-Poincaré characteristic χpV,L pmXVqq is a

polynomial Ppmq in m. We have defined this to be the Hilbert charac-

teristic polynomial of V (c.f. [16]). If d is the rank of V , i.e. d “ X
pnq
V

,

any algebraic deformation of V of rank d has the same Hilbert charac-

teristic polynomial Ppmq (c.f. [16]). As we pointed out in [16], if we

can find a constant c, which depends only on Ppmq, such that mXV is

ample for m ě c, then the existence of a universal family of algebraic

deformations of V of bounded ranks follows. The existence of such a

constant is well-known in the case of curves and Abelian varieties. We

solved this problem for n “ 2 in [17] (compare [9], [10], [12]). But the

complexity we encountered was of higher order of magnitude compared

with the case of curves. The same seems to be the case for n ě 3 when

compared with the case n “ 2. One of the main purposes of this paper

is to solve the problem for n “ 3 when V is “generic” in the sense that

KpVq is a non-degenerate polar divisor.

In general, let us consider the following problems.

pAnq Find a constant c, which depends on the polynomial Ppxq only,

such that hipV,L pmXVqq “ 0 for i ą 0 whenever m ě c.

pA1
nq Find two constants c, c1, which depend on Ppxq only, such that

hipV,L pmXVqq ă c1 for i ą 0 whenever m ě c.

pA2
nq Find two constants c, c1, which depend on Ppxq only, such that

|lpmXVq ´ Ppmq| ă c1 whenever m ě c.

pBnq Find a constant c, which depends on Ppxq only, such that mXV

defines a birational map of V whenever m ě c.

pCnq Find a constant c, which depends on Ppxq only, such that mXV is

ample whenever m ě c.
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As we mentioned, what we are interested in is the solution of pCnq. But

pAnq, pBnq could be regarded as step-stones for this purpose. It is easy to

see that the solution of pCnq implies the solutions of pAnq and pBnq. In

the case of characteristic zero and KpVq a non-degenerate polar divisor,267

pAnq can be solved easily (§1). Assuming that pA2
nq has a solution, we

shall show that pBnq has a solution for n “ 3 when the characteristic

is zero. Assuming that pAnq and pBnq have solutions and that KpVq is

a non-degenerate polar divisor, we shall show that pCnq has a solution

when the characteristic is zero. Hence pC3q has a solution when the

characteristic is zero and KpVq is a non-degenerate polar divisor.

Chapter I. pA2
n
q and pBnq

1 Canonically polarized varieties. We shall first recall the

definition of a polarized variety as modified in [16]. Let Vn be a com-

plete non-singular variety and M a finite set of prime numbers consist-

ing of the characteristic of the universal domain (or the characteristics

of universal domains) and the prime divisors of the order of the torsion

group of divisors of V . Let X be a set of V-divisors satisfying the fol-

lowing conditions: (a) X contains an ample divisor X; (b) a V-divisor

Y is contained in X if and only if there is a pair pr, sq of integers, which

are prime to members of M , such that rY ” sXmod Ga. When there is

a pair pM ,X q satisfying the above conditions, X is called a structure

set of polarization and pV,X q a polarized variety. A divisor in X will

be called a polar divisor of the polarized variety. There is a divisor XV

in X which has the following two properties: (a) a V-divisor Y is in X

if and only if Y ” rXVmod Gqa where r is an integer which is prime to

members of M ; (b) when Z is an ample polar divisor, there is a positive

integer s such that Z ” sXVmod Ga (c.f. [16]). XV is called a basic

polar divisor. The self-intersection number of XV is called the rank of

the polarized variety. A polarized variety will be called a canonically

polarized variety if KpVq is a polar divisor.

280



On Canonically Polarized Varieties 281

Lemma 1. Let Vn be a canonically polarized variety and Ppxq “ Σγn´i
xi

the Hilbert characteristic polynomial of V. Then KpVq ” ρXVmod Ga

where ρ is a root of Ppxq ´ p´1qnγn “ 0.

Proof. It follows from Serre’s duality theorem that

χpV,L pmXVqq “ p´1qnχpV,L pKpVq ´ mXVqq pc.f. [23]q.

We may replace KpVq by ρXV in this equality since χ is invariant under 268

algebraic equivalence of divisors (c.f. [4], [16]). Then we get Ppmq “
p´1qnPpρ ´ mq. Setting m “ 0, we get p´1qnPpρq “ γn. Our lemma is

thereby proved. �

Proposition 1. Let V be a canonically polarized variety in character-

istic zero and Ppxq the Hilbert characteristic polynomial of V. Then

there is a positive integer ρ0, which depends on Ppxq only, such that

hipV,L pYqq “ 0 for i ą 0 and h0pV,L pYqq “ lpYq ą 0 whenever

m ě ρ0 and Y ” mXVmod Ga.

Proof. Let γn be the constant term of Ppxq and s0 the maximum of the

roots of the equation Ppxq ´ p´1qnγn “ 0. Let KpVq be a canonical

divisor of V and k an algebraically closed common field of rationality of

V , XV and KpVq. There is an irreducible algebraic family H of positive

divisors on V , defined over k, such that, for a fixed k-rational divisor C0

in H, the classes of the C ´C0, C P H, with respect to linear equivalence

exhausts the points of the Picard variety of V (c.f. [15]). We shall show

that 2s0 can serve as ρ0.

Take t so that t ´ ps0 ´ ρq “ t1 ą 0 and t ´ 2ps0 ´ ρq “ m ą 0

where KpVq ” ρXVmod Ga. For any C1 in H, tXV ` C1 ´ C0 ` KpVq ”
pt1 ` s0qXVmod Ga and t1 ` s0 ą 0. Hence tXV ` C1 ´ C0 ` KpVq is

non-degenerate (c.f. [16], Th. 1) and the higher cohomology groups of

the invertible sheaf A determined by tXV ` C1 ´ C0 ` 2KpVq vanish

by Kodaira vanishing theorem (c.f. [11]). tXV ` C1 ´ C0 ` 2KpVq ”
pm ` 2s0qXVmod Ga and χpV,A q “ Ppm ` 2s0q since χ is invariant

by algebraic equivalence of divisors. Moreover, Ppm ` 2s0q ą 0 by our

choice of m and s0. It follows that h0pV,A ą 0. Therefore, in order
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to complete our proof, it is enough to prove that a V-divisor Z such that

Z ” pm ` 2s0qXVmod Ga has the property that Z „ tXV ` C1 ´ C0 `
2KpVq for some C1 in H. Clearly, such Z is algebraically equivalent to

tXV ` 2KpVq. Hence

Z ´ ptXV ` 2KpVqq „ C1 ´ C0

for some C1 in H. Our proposition is thereby proved. �

269

2 Estimation of lpCUq on a projective surface. Let V

be a non-singular surface in a projective space and Γ a curve on V . Let

R be the intersection of local rings of Γ at the singular points of Γ. Using

only those functions of Γ which are in R, we can define the concept of

complete linear systems and associated sheaves, as on a non-singular

curve. Let Γ1 be a V-divisor such that Γ1 „ Γ, that Γ1 and Γ intersect

properly on V and that no singular point of Γ is a component of Γ ¨ Γ1.

Similarly let KpVq be such that KpVq and Γ intersect properly on V and

that no singular point of Γ is a component of Γ ¨ KpVq. Then Γ ¨ pΓ1 `
KpVqq “ KpΓq is a canonical divisor of Γ, papΓq “ 1 ` 1

2
degpKpΓqq and

the generalized Riemann-Roch theorem states that lpmq “ degpmq ´
papΓq ` 1 ` lpKpΓq “ mq for a Γ-divisor m (c.f. [20], [22]).

If C is a complete non-singular curve, the theorem of Clifford states

that degpmq ě 2lpmq´2 for a special C-divisorm. We shall first extend

this to Γ.

Lemma 2. Let V, Γ and KpΓq be as above and m a special positive

divisor on Γ (i.e. lpKpΓq ´mq ą 0). Then degpmq ě 2lpmq ´ 2.

Proof. When lpmq “ 1, our lemma is trivial since m is positive. There-

fore, we shall assume that lpmq ą 1.

Let Γ˚ be a normalization of Γ, α the birational morphism of Γ˚ on

Γ and T the graph of α. For any Γ-divisor a, we set a˚ “ α´1paq “
prΓ˚ppaˆ Γ˚q ¨ T q. When the f are elements of Lpaq, i.e. elements of R

such that divp f q ` a ą 0, the f ˝α “ f ˚ generate a module of functions

on Γ˚ which we shall denote by α´1Lpaq. The module LpKpΓq ´ mq is

not empty since m is special. Hence it contains a function g in R. Let
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divpg˚q “ m˚ `n˚ ´KpΓq˚. Let N be the submodule of functions f ˚ in

α´1LpKpΓqq defined by requiring f ˚ to pass through n˚, i.e. requiring

f ˚ to satisfy: coefficient of x in divp f ˚q ě coefficient of x in n˚ for each

component x of n˚. Let dim N “ dim LpKpΓqq ´ t. Then n˚ imposes

t linearly independent conditions in α´1LpKpΓqq. When these t linear

conditions are imposed on the vector subspace α´1LpKpΓq ´mq, we get

the vector space generated by g˚ over the universal domain. It follows

that lpKpΓq´mq´t ď 1, i.e. t ě lpKpΓq´mq´1. Since lpKpΓqq “ papΓq, 270

we then get papΓq ´ dim N ě pKpΓq ´ mq ´ 1. Lpmq has a basis phiq
from R. The hi ¨ g are elements of LpKpΓqq and h˚

i
¨ g˚ P N. Hence

the multiplication by g˚ defines an injection of α´1Lpmq into N. It

follows that lpmq ď dim N and papΓq ´ lpmq ě lpKpΓq ´ mq ´ 1.

By the generalized Riemann-Roch theorem, we have lpKpΓq ´ mq “
lpmq ´ degpmq ` papΓq ´ 1. When this is substituted above, we get the

required inequality. �

Proposition 2. Let V be a non-singular surface in a projective space

such that pg ě 1. Let C0 be a curve on V such that the complete

linear system ΛpC0q is without fixed point and that C
p2q
0

ą 0. Then

dimΛpC0q ď 1
2
C

p2q
0

` 1.

Proof. If dimΛpC0q “ 0, there is nothing to prove. Therefore we shall

assume that dimΛpC0q ą 0. Let R be the intersection of local rings of

C0 at the singular points of C0. There is a canonical divisor KpVq of V

whose support does not contain any singular point of C0. Such KpVq and

C0 intersect properly on V . There is a member C of ΛpC0q which does

not contain any singular point of C0. Such C and C0 intersect properly

on V . We have

papC0q “ 1 `
1

2
degpC0 ¨ pC ` KpVqq

and C0 ¨ pC ` KpVqq “ k is a canonical divisor of C0. Let m “ C0 ¨ C.

By the generalized Riemann-Roch theorem, we get lpmq “ degpmq ´
papC0q ` 1 ` lpk´mq and k´m “ C0 ¨KpVq. By our assumption there

is a function f , other than 0, in the module LpKpVqq. Since the support
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of KpVq does not contain any singular point of C0, f is regular at these

points. Let f 1 be the function on C0 induced by f ¨ f 1 is then regular at

every singular point of C0 and is contained in R. Since divp f q`KpVq ą

0 it follows that divp f 1q ` C0. KpVq ą 0. Hence f 1 P LpC0 ¨ KpVqq “
Lpk ´ mq, which proves that lpk ´ mq ą 0 and that m is a special C0-

divisor.

By Lemma 2 we have degpmq “ C
p2q
0

ě 2lpmq ´ 2. Every function

g in LpCq induces a function g1 on C0 contained in R since C0 ¨ C has no

singular component on C0. Hence divpg1q ` m ą 0 and it follows that

g1 P Lpmq. If g1 “ 0, divpgq “ C0 ´ C. Consequently lpmq ě lpCq ´ 1271

and C
p2q
0

ě 2lpCq ´ 4. Our proposition follows at once from this.

We shall recall here the definition of the effective geometric genus

of an algebraic variety W. Let W and W 1 be complete normal vari-

eties and assume that there is a birational morphism of W 1 on W. Then

pgpWq ě pgpW 1q. Hence there is a complete normal variety W2, bira-

tionally equivalent to W, such that pqpW2q has the minimum value pg

among the birational class of W. This pg is called the effective geometric

genus of W. When W is non-singular, pgpWq “ pg (c.f. [13], [31]). �

Proposition 3. Let U be an algebraic surface in a projective space and

CU a hyperslane section of U. Assume that the effective geometric genus

pg of U is at least 1. Let Λ be the linear system of hyperplane sections

of U and denote by C
p2q
U

the degree of U. Then dimΛ ď 1
2
C

p2q
U

` 1.

Proof. Let V be a non-singular surface in a projective space and f a

birational morphism of V on U (c.f. [34]). Let k be an algebraically

closed common field of rationality of U, V and f . Let T be the graph of

f on V ˆ U and P the ambient projective space of U. We may assume

that U is not contained in any hyperplane. Then T and V ˆ H intersect

properly on V ˆ P for every hyperplane H. We set f ´1pHq “ prVpT ¨
pV ˆ Hqq. Let Λ˚ be the set of f ´1pHq. It is a linear system on V .

Since f is a morphism, it has no fixed point. Therefore it has no fixed

component in particular. Let H be a generic hyperplane over k and CU “
U ¨ H. The prVpT ¨ pV ˆ Hqq “ prVpT ¨ pV ˆ CUqq where the latter

intersection-product is taken on V ˆ U (c.f. [25], Chap. VIII). Setting
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f ´1pCUq “ prVpT ¨pV ˆCUqq, f ´1pCUq is a generic member ofΛ˚ over

k. Since f is a birational transformation, every component of f ´1pCUq
has to appear with coefficient 1. It follows that f ´1pCUq is an irreducible

curve by the theorem of Bertini (c.f. [25], Chap. IX) andΛ˚ has no fixed

point. Moreover, pgpVq “ pg and dimΛ “ dimΛ˚.

Let CU and C1
U

be two independent generic members of Λ over k.

When Q is a component of CU X C1
U

, it is a generic point of U over k

and is a proper component of multiplicity 1 on U. When that is so, we 272

get f ´1pCUq ¨ f ´1pC1
U

q “ f ´1pCU ¨ C1
U

q (c.f. [25], Chap. VIII). Then

degpCU ¨ C1
U

q “ degp f ´1pCUq ¨ f ´1pC1
U

qq and our proposition follows

from these and from Proposition 2. �

3 A discussion on fixed components. Let Vn be a complete

variety, non-singular in codimension 1 and X a divisor on V . We denote

by ΛpXqred the reduced linear system determined uniquely by ΛpXq.

Then ΛpXq “ ΛpXqred ` F and F is called the fixed part of ΛpXq. A

component of F is called a fixed component of ΛpXq.

Lemma 3. Let Vn be a complete variety, non-singular in codimension 1,

X a positive V-divisor and F “ Σl
1
aiFi the fixed part of ΛpXq. Assume

that lppα´ 1qX ` Fq ą lppα´ 1qXq for some positive integer α ą 1 and

that X ‰ F. Then we have the following results: (a) there is a positive

divisor F1 “ Σl
1
a1

i
Fi such that F ´ F1 ą 0, that lppα ´ 1qX ` F1q “

lppα´ 1qX ` Fq and that lppα´ 1qX ` F1 ´ F jq ă lppα´ 1qX ` Fq for

all j with F1 ´ F j ą 0; (b) let I be the set of indices i such that a1
i

‰ 0.

Then the Fi, i P I, are not fixed components of Λppα ´ 1qX ` F1q.

Proof. (a) follows immediately from our assumption. Let k be an alge-

braically closed common field of rationality of V , X and for the compo-

nents of F. Let L be a generic divisor of Λppα ´ 1qX ` F1qred over k.

The fixed part of Λppα ´ 1qX ` F1q is obviously of the form Σl
1
bsFs.

Suppose that bi ‰ 0 for some i P I. Then L ` Σl
1
bsFs ´ Fi is positive

and is a member of Λppα´ 1qX ` F1 ´ Fiq. Hence lppα´ 1qX ` F1q “
lppα´ 1qX ` F1 ´ Fiq which is contrary to our choice of F1. Our lemma

is thereby proved. �
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Lemma 4. Using the same notations and assumptions of Lemma 3,

let β “ ΠIa
1
i
. Then there is the smallest positive integer γ satisfying

βpai ´ a1
i
q ´γa1

i
ě 0 for i P I and βpai0 ´ a1

i0
q ´γa1

i0
“ 0 for some i0 P I.

Moreover, ΛpβαX ` γpα ´ 1qXq has the property that Fi0 is not a fixed

component of it.

Proof. Let Z be a generic divisor of ΛpXqred over k. Then αX „ pα ´
1qX ` Σl

1
aiFi ` Z “ ppα ´ 1qX ` ΣIa

1
i
Fiq ` ΣIpai ´ a1

i
qFi ` F2 ` Z

for some positive divisor F2 which does not contain the Fi, i P I, as273

components. By the above lemma,Λppα´1qX`ΣIa
1
i
Fiq has the property

that no Fi, i P I, is a fixed component of it. Let m be a positive integer.

Then pβ ` mqppα ´ 1qX ` ΣIa
1
i
Fiq ` βZ ` ΣIpβai ´ βa1

i
´ ma1

i
qFi `

βF2 „ βαX ` mpα ´ 1qX. By what we have seen above. the Fi, i P I,

are not fixed components of the complete linear system determined by

pβ` mqppα´ 1qX ` ΣIa
1
i
Fiq ` βZ. By the definition of β, the βpai ´ a1

i
q

are divisible by the a1
i
. Hence we can find the smallest positive integer

γ as claimed in our lemma. Then there is an index i0 P I such that Fi0

is not a component of ΣIpβai ´ βa1
i

´ γa1
i
qFi. From these our lemma

follows at once. �

Proposition 4. Let Vn be a complete non-singular variety, X a positive

non-degenerate divisor on V and F the fixed part of ΛpXq. Assume that

there is an integer α ą 1 such that lppα´ 1qX ` Fq ą lppα´ 1qXq and

that X ‰ F. Let d “ Xpnq and µpX, αq “ pddα ` dd`1pα ´ 1qq!. Then

there is a component Fi of F such that it is not a fixed component of the

complete linear system determined by µpX, αqX.

Proof. We shall estimate β and γ of Lemma 4. Let Z be as in the proof

of Lemma 4 and Ip , q denote the intersection number. Since X „
Z `Σl

1
aiFi, Xpnq “ IpXpn´1q,Zq `Σl

1
aiIpXpn´1q, Fiq “ d. Hence ai ą 0

and Σl
1
ai ă d. It follows that β ă ΠIai ă dd ¨γ satisfies βpai ´a1

i
q ě γa1

i
.

Hence γ ď βpai ´ a1
i
q ă βai ă dd`1. Our proposition now follows from

these and from Lemma 4. �
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4 Estimation of some intersection numbers and its
application. Let Wn be a non-singular projective variety and T n´1

a subvariety of W. Let Y be a non-degenerate divisor on W and k a

common field of rationality of W, T and Y . Let m be a positive integer

such that lpmYq ą 1 and A1, . . . , Ann independent generic divisors of

ΛpmYq over k. Let the Di be the proper components of |A1| X ¨ ¨ ¨ X |As|
on W and ai “ coef.Di

pA1 . . . Asq. Let I be the set of indices i such that

Di contains a generic point of W over k. Then we define the symbol

IpA1 . . . As{W, kq to denote ΣIai. We shall denote by pA1 . . . As{W, kq the

W-cycle ΣIaiDi. Let the E j be the proper components of |A1| X ¨ ¨ ¨ X
|As| X |T | on W and b j “ coef.E j

pA1 . . . As ¨ T q. Let J be the set of 274

indices j such that E j contains a generic point of T over k. Then we

denote by pA1 . . . As ¨ T{T, kq and by IpA1 . . . As ¨ T{T, kq the W-cycle

ΣJb jE j and the number ΣJb j respectively.

Lemma 5. Let Wn be a non-singular projective variety and T n´1 a

subvariety of W, both defined over a field k. Let Y be a non-degenerate

W-divisor, rational over k, and m a positive integer such that lpmYq ą 1.

Let A1, . . . , As, s ď n, be s independent generic divisors of ΛpmYq over

k. Then we have the following inequalities: (a) IpA1 . . . As{W, kq ď
msYpnq; (b) IpA1 . . . As ¨ T{T, kq ď msIpYpn´1q,T q.

Proof. We shall prove only (b). (a) can be proved similarly. We set

ΣbiEi “ A1 ˚ . . . ˚ As ˚ T . If the bi are zero for all i, our lemma is

obviously true. Hence we shall assume that the bi are positive.
Let r be a large positive integer such that rm Y is ample and C1, . . . ,

Cs,C
1
1
, . . . ,C1

n´s´1
n´1 independent generic divisors ofΛprm Yq over k.

Since pA1 . . . As ¨ T{T, kq ă A1 ˚ . . . ˚ As ˚ T , it follows that IpA1 . . . As ¨
T{T, kq ă Σbi. Since Y is non-degenerate, ΣbiIpEi,Y

pn´s´1qq ě Σbi.
We have

p1{prmqn´s´1q degtpA1 ˚ . . . ˚ As ˚ T q ¨ C1
1 . . .C

1
n´s´1u “ ΣbiIpEi,Y

pn´s´1qq.

The left hand side can be written as

p1{rsprmqn´s´1q degtprA1 ˚ . . . ˚ rAs ˚ T qC1
1 . . .C

1
n´s´1u.
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The rAi are members of Λprm Yq. Hence pprAiq,T, pC
1
j
qq is a spe-

cialization of ppCiq,T, pC
1
j
qq over k. Letm “ C1 . . .Cs ¨T ¨C1

1
. . .C1

n´s´1

and m1 an arbitrary specialization of m over k over the above specializa-

tion. Then, when Q is a component of rA1 ˚ . . . ˚ rAs. T ¨ C1
1
. . .C1

n´s´1

with the coefficient v, Q appears exactly v times in m1 by the compati-

bility of specializations with the operation of inter-section-product (c.f.

[24]). It follows that degpmq “ pmrqn´1IpYpn´1q,T q ě degtprA1 ˚ . . . ˚
rAs ˚ T qC1

1
. . .C1

n´s´1
u. (b) follows easily from these. �

As an application of Lemma 5, we shall prove the following propo-

sition which we shall need later.

Proposition 5. Let Wn be a non-singular projective variety and Y a275

non-degenerate divisor on W. Let m be a positive integer such that

lpmYq ą Ypnqmn´1 ` n ´ 1. Let f be a non-degenerate rational map

of W defined by mY. Then degp f q ‰ 0, i.e. the image of W by f has

dimension n.

Proof. By our assumption, lpmYq ą Ypnqms ` s for 1 ď s ď n ´ 1. Let

U s be the image of W by f . Then ΛpmYqred consists of f ´1pHq where

H denotes a hyperplane in the ambient space of U. Let k be a common

field of rationality of W, Y and f and A1, . . . , As (resp. B1, . . . , Bs) inde-

pendent generic divisors of ΛpmYq (resp. ΛpmYqred) over k. As is well

known and easy to prove by means of the intersection theory. degpUq ď
IpB1 . . . Bs{W, kq. Moreover, IpB1 . . . Bs{W, kq “ IpA1 . . . As{W, kq as

can be seen easily. Then we get degpUq ď msYpnq by Lemma 5. Let

Λ be the linear system of hyperplane sections of U. We have dimΛ ď
msYpnq ` s´1 (c.f. [17]). On the other hand, lpmYq “ dimΛpmYq`1 “
dimΛpmYqred`1 “ dimΛ`1. This contradicts our assumption if s ă n.

Our proposition is thereby proved. �

5 A solution of pB3q, (I). First, we shall fix some notations

which shall be used through the rest of this chapter. Let V3 be a polar-

ized variety of dimension 3 and Ppmq “ Σ3
0
γ3´im

i the Hilbert character-

istic polynomial of V . Let d “ X
p3q
V

. As is well known, γ0 “ d{3! As we
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pointed out in our introduction, we shall solve pB3q under the assump-

tion that pA2
3
q has a solution. As we showed in Proposition 1, pA2

3
q has

a solution when V is canonically polarized and the characteristic is zero.

Therefore, we shall assume that there are two constants c0 and c, which

depend on the polynomial Ppxq only, such that |lpmXVq ´ Ppmq| ă c

whenever m ě c0. We shall denote by Σ the set of polarized varieties

of dimension 3 such that Ppxq is their Hilbert characteristic polynomial.

We shall use V to denote a “variable element” of Σ.

From our basic assumption, we can find a positive integer e0 ě c0,

which depends on Ppxq only, such that lpmXVq ą dm2 ` 2 for m ě e0.

For such m a non-degenerate rational map of V defined by mXV maps V 276

generically onto a variety of dimension 3 by Proposition 5. Moreover,

when that is so, ΛpmXVqred is irreducible, i.e. it contains an irreducible

member (c.f. [25], Chap. IX).

The following lemma has been essentially proved in the course of

the proof of Proposition 4.

Lemma 6. Let r ě e0 and F1 “ Σv
1
biFi the fixed part of ΛprXVq. Then

v ď r3d, Σv
1
bi ă r3d and bi ă r3d.

When r is a positive integer, we shall set Pprxq “ Prpxq to regard it

as a polynomial in x. For two positive integers r and m, we set δpr,mq “
3pγ0r3qm2 ´ p1{rdqm2 ` 2c ` 2; δ1pr,mq “ 2pγ0r3qm2 ` 2c ` 2.

Lemma 7. When a positive integer r is given, it is possible to find a

positive integer α1, which depends on Ppxq and r only, such that Prpmq´
Prpm ´ 1q ą δpr,mq and ą δ1pr,mq whenever m ě α1.

Proof. Prpmq “ γ0r3m3`¨ ¨ ¨ and Prpmq´Prpm´1q “ 3pγ0r3qm2`¨ ¨ ¨
Therefore such a choice of α1 is possible. �

Proposition 6. There are positive integers v, v, which depend on Ppxq
only, and e, α, which depend on a member V of Σ, with the following

properties : (a) e0 ď e ď v, α ď v; (b) when F “ Σl
1
aiFi is the fixed part

of Λpe0XVq, there is a positive integer t such that t ď 1 ă e3
0
d and that

F1, . . . , Ft are not fixed components ofΛpeXVq; (c) Pepmq´Pepm´1q ą
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δpe,mq and ą δ1pe,mq for m ě α; (d) when F˚ is the fixed part of

ΛpeXVq, lppα ´ 1qeXV ` F˚q “ lppα ´ 1qeXVq.

Proof. We can choose α0, depending on Ppxq only, such that Pe0
pmq ´

Pe0
pm ´ 1q ą δpe0,mq and ą δ1pe0.mq whenever m ě α0 by Lemma 7.

Assume that lppα0 ´ 1qe0XV ` Fq ą lppα0 ´ 1qe0XVq. Then, after rear-

ranging indices if necessary, we may assume that F1 is not a fixed com-

ponent of the complete linear system determined by µpe0XV , α0qe0XV

by Proposition 4, where

µpe0XV , α0q “ pssα0 ` ss`1pα0 ´ 1q! and s “ e3
0d.

Let e1 “ e0µpe0XV , α0q and F1 the fixed part of Λpe1XVq. By

Lemma 7 we can find a positive integer α1, depending on Ppxq only, so

that Pe1
pmq ´ Pe1

pm ´ 1q ą δpe1,mq and ą δ1pe1,mq whenever m ě α1.277

Assume still that lppα1 ´ 1qe1XV ` F1q ą lppα1 ´ 1qe1XVq. Then the

complete linear system determined by µpe1XV , α1qe1XV has not F2 as a

fixed component, after rearranging indices if necessary (c.f. Proposition

4).

Since l ă e3
0
d by Lemma 6, this process has to terminate by at most

e3
0
d ´ 1 steps. Positive integers ei, αi we choose successively can be

chosen so that they depend only on Ppxq. To fix the idea, let us choose

αi as follows. Let ri be the largest among the set of roots of the equations

Pei
pxq ´ Pei

px ´ 1q ´ δpei, xq “ 0, Pei
pxq ´ Pei

px ´ 1q ´ δ1pei, xq “ 0

and let αi “ |ri| ` 1. Suppose that our process terminates when we

reach to the pair pet, αtq. Then t ď l ă e3
0
d. From the definition of the

function µ (c.f. Proposition 4) and from our choice of the αi, we can

find easily upperbounds v, v for et, αt which depend on Ppxq only and

not on t. Moreover, when F2 is the fixed part of ΛpetXVq, F1, . . . , Ft

are not components of F2 and lppαt ´ 1qetXV ` F2q “ lppαt ´ 1qetXVq
by our assumption made above. Our proposition follows from these at

once. �

6 A solution of pB3q, (II). In this paragraph, we shall keep the

notations of Proposition 6. Let k be an algebraically closed common

field of rationality of V and XV and T a generic divisor of ΛpeXVqred
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over k. ΛpαeXVq is canonically associated to the module LpαeXVq. Let

K be a field of rationality of T over k and L1 the module of rational

functions on T induced by LpαeXVq. Let g be a non-degenerate rational

map of T defined by L1, defined over K. Let U be the image of T by g. A

non-degenerate rational map of V defined by meXV maps V generically

onto a variety of dimension 3 since me ě e ě e0 by Proposition 5,

whenever m ą 0. Since T is a generic divisor of ΛpeXVqred over k, it

follows that dim U “ 2. Let h be a non-degenerate rational map of T

defined by the module of rational functions on T which is induced by

LpeXVq. Then the image W of T by h has dimension 2 also as we have

seen above.

We shall establish some inequalities.

dim TrT
ΛpαeXVq ą

1

2
e3α2d ´ p1{edqα2 ` 1. (6.1)

In fact, dim TrTΛpαeXVq “ lpαeXVq ´ lpαeXV ´ T q ´ 1 “ lpαeXVq ´ 278

lppα´ 1qeXV ` F˚q ´ 1 “ lpαeXVq ´ lppα´ 1qeXVq ´ 1 by our choice

of α and e (c.f. Proposition 6). By Proposition 6, (c) and by the equality

γ0 “ d{6, lpαeXVq ´ lppα ´ 1qeXVq ą Pepαq ´ Pepα ´ 1q ´ 2c ą
1
2
e3α2d ´ p1{edqα2 ` 2. Our inequality is thereby proved.

The following formulas are well known and easy to prove by means

of the intersection theory (c.f. [25], Chap. VII).

degpgq ¨ degpUq “ IpA1 ¨ A2 ¨ T{T,Kq,

degphq ¨ degpWq “ IpB1 ¨ B2 ¨ T{T,Kq, (6.2)

where A1, A2 (resp. B1, B2) are independent generic divisors ofΛpαeXVq
(resp. ΛpeXVq) over K.

Next we shall find an upperbound for degpU).

degpUq ď p1{ degpgqqpe3α2d ´ e2α2q if F˚ ‰ 0; (6.3)

degpUq ď p1{ degpgqqe3α2d if F˚ “ 0.

In fact, Ai „ αeXV and XV is non-degenerate. Applying Lemma 5 to our

case, we get IpA1 ¨ A2 ¨ T{T,Kq ď e2α2IpX
p2q
V
,T q and T ` F˚ „ eXV .
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We have IpX
p2q
V
,T q “ IpX

p2q
V
, eXVq ´ IpX

p2q
V
, F˚q “ ed ´ IpX

p2q
V
, F˚q.

(6.3) follows from these.

Let Λ be the linear system of hyperplane sections of U. From (6.3)

and from Theorem 3 in [17], we immediately get

dimΛ ď p1{ degpgqqpe3α2d ´ e2α2q ` 1 if F˚ ‰ 0;

dimΛ ď p1{ degpgqqe3α2d ` 1 if F˚ “ 0. (6.4)

In order to estimate an upper bound for degpgq, it is enough to do so

for degphq. By doing so, we shall get

degpgq ď e3d. (6.5)

From (6.2) we get degphq ď IpB1 ¨ B2 ¨ T{T,Kq. By Lemma 5, the latter

is bounded by e2IpX
p2q
V
,T q. This, in turn, is bounded by e2IpX

p2q
V
,T `

F˚q “ e3d. This proves our inequality since degpgq ď degphq.

Combining (6.4) and (6.5), we get

dimΛ ď p1{ degpgqqe3α2d ´ p1{edqα2 ` 1 if F˚ ‰ 0. (6.6)

As is well known, dim TrTΛpαeXq “ dimΛ. Consider now the279

case F˚ ‰ 0 first. From (6.1) and (6.6), we get p1{ degpgqqe3α2d ´
p1{edqα2 ` 1 ą 1

2
e3α2d ´ p1{edqα2 ` 1. Hence degpgq ă 2 and conse-

qently degpgq “ 1 and g is birational. From the definition of g, it follows

that a non-degenerate rational map f of V defined by αeXV induces on

T a birational map. When that is so, f is a birational map since T is

a generic divisor of the linear system ΛpeXVqred of positive dimension

over k, a proof of which will be left as an exercise to the reader.

Next, consider the case when F˚ “ 0. By Proposition 6, we have

Pepαq ´ Pepα ´ 1q ą δ1pe, αq. Then we get dim TrTΛpαeXVq ą
p1{3qe3α2d ` 1, a proof of which is quite similar to that of (6.1). Com-

bining this with (6.4), we get p1{ degpgqqe3α2d ą p1{3qe3α2d. Hence

degpgq ă 3. This proves that degp f q ď 2, a proof of which will be left

to the reader again.

By Proposition 6, e is bounded by v and α is bounded by v. Let

ρ1 “ pv vq! We shall summarize the results of this paragraph as follows.
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Proposition 7. There is a constant ρ1, which depends on Ppxq only, such

that the following properties hold: (a) if ΛpeXVq has a fixed component,

ρ1XV defines a birational transformation of V; (b) if ΛpeXVq has no

fixed component, a non-degenerate rational map of V defined by ρ1XV

is of degree at most 2; (c) ρ1 is divisible by e and α.

7 A solution of pB3q, (III). Proposition 7 solves our problem in

the case when ΛpeXVq has a fixed component. In order to treat the other

case, we shall review the concept of minimum sums of linear systems

and fix some notations.

In general, let W be a variety and M , N two modules of rational

functions of finite dimensions on W. We shall denote by ΛpM q, ΛpN q
the reduced linear systems on W defined by these two modules. Let R

be the module generated by f ¨ g with f P M and g P N . Then the

reduced linear system ΛpRq is known as the minimum sum of ΛpM q
and ΛpN q. We shall denote this minimum sum by ΛpM q ‘ ΛpN q.

When Λ is a reduced linear system on W and Λ1 the minimum sum of r 280

linear systems equal to Λ, we shall write ‘rΛ for Λ1.

Let W 1 be another variety and β a rational map of W 1 into W. Let

Γ be the closure of the graph of β on W 1 ˆ W and Λ a linear system of

divisors on W. Let Λ1 be the set of W 1-divisors β´1pZq “ prW1pΓ ¨ pW 1 ˆ
Zqq with Z P Λ. Then Λ1 is a linear system of W 1-divisors and this will

be denoted by β´1pΛq.

Lemma 7. Let f be a non-degenerate rational map of V defined by ρ1XV

and W the image of V by f . When N is the dimension of the ambient

space of W, the following inequalities hold:

Ppρ1q ´ c ´ 1 ď N ď Ppρ1q ` c ´ 1; degpWq ď ρ3
1d.

Proof. N “ lpρ1XVq ´ 1. Hence the first inequality follows from pA2
3
q.

Let k be a common field of rationality of V , XV and f and Z1, Z2, Z3

independent generic divisors of Λpρ1XVq over k. Then degpWq ď IpZ1 ¨
Z2 ¨ Z3{V, kq ď ρ3

1
d by Lemma 5. Our lemma is thereby proved. �

Corollary. Let k0 be the algebraic closure of the prime field. There is

a finite union of irreducible algebraic families of irreducible varieties
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in projective spaces, all defined over k0, such that, when V P Σ and

when f , W are as in our lemma, W is a member of at least one of the

irreducible families.

Proof. This follows at once from our lemma and from the main theorem

on Chow-forms (c.f. [3]). �

In the following lemma, we shall assume that global resolution,

dominance and birational resolution in the sense of Abhyankar hold for

algebraic varieties of dimension n (c.f. [35]). These hold for character-

istic zero (c.f. [5]) and for algebraic varieties of dimension 3 when the

characteristic is different from 2, 3 and 5 (c.f. [35]).

Lemma 8. Let F be an irreducible algebraic family of irreducible vari-

eties in a projective space and k an algebraically closed field over which

F is defined. Then F can be written as a finite union
Ť

j F j of irreducible

algebraic families, all defined over k, with the following properties: (a)281

Fi X F j “ H whenever i ‰ j; (b) for each j, there is an irreducible

algebraic family H j of non-singular varieties in a projective space, de-

fined over k; (c) when Wi is a generic member of Fi over k, there is a

generic member W˚
i

of Hi over k and a birational morphism φi of W˚
i

on Wi such that W˚
i

, φi are defined over an algebraic extension of the

smallest field of definition of Wi over k; (d) when W 1
i

is a member of Fi,

Γi the graph of φi and when pΓ1
i
,W˚1

i
q is an arbitrary specialization of

pΓi,W
˚
i

q over k over the specialization Wi Ñ W 1
i

ref. k, W˚1

i
is a member

of Hi and Γ1
i

is the graph of a birational morphism φ1
i

of W˚1

i
on Wi; (e)

when C1
i

is a generic hyperplane section of W 1
i

over a filed of definition

of W 1
i
, φ1´1

i pC1
i
q is non-singular.

Proof. Let W be a generic member of F over k and K the smallest field

of definition of W over k. There is a non-singular variety W˚ in a projec-

tive space and a birational morphism φ of W˚ on W, both defined over K.

For the sake of simplicity, replace W˚ by the graph of φ. Then φ is sim-

ply the projection map. Therefore, we can identify the graph of φ with

W˚. A multiple projective space can be identified with a non-singular

subvariety of a projective space by the standard process. Chow-points
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of positive cycles in a multiple projective space can then be defined by

means of the above process. Let C be a hyperplane section of W, ra-

tional over K. W˚ can be chosen in such a way that φ´1pCq “ U is

non-singular. Let w, w˚, u be respectively the Chow-points of W, W˚,

U and T , T
˚

the locus of w, pw˚, uq over k. An open subset T of T over

k is the Chow-variety of F. The set T ˚ of points on T
˚

corresponding to

pairs of non-singular varieties is k-open on T
˚

as can be verified with-

out much difficulty. Let Z be the locus of pw,w˚, uq over k on T ˆ T ˚.

Let T1 be the set of points of T over which Z is complete (i.e. proper).

Then T1 is non-empty and k-open (c.f. [25], Chap. VII, Cor., Prop. 12).

The set-theoretic projection of the restriction Z1 of Z on T1 ˆ T ˚ on T1

contains a non-empty k-open set F1. Let H1 be the locus of w˚ over k.

Then the families F1, H1 defined by F1, H1 satisfy (b), (c), (d) and (e)

of our lemma which is not difficult to verify. T1 ´ F1 can be written

as a finite union of locally closed irreducible subvarieties of T , defined 282

over k, such that no two distinct components have a point in common.

Then we repeat the above for each irreducible component to obtain the

lemma. �

Corollary. There are two finite sets of irreducible algebraic families

tFiu, tHiu with the following properties : (a) when V P Σ and f a non-

degenerate rational map of V defined by ρ1XV , there is an index i such

that the image W of V by f is a member of Fi; (b) every member of the

Hi is a non-singular subvariety of a projective space; (c) the Fi and the

Hi satisfy (c), (d) and (e) of our lemma.

Proof. This follows from the Corollary of Lemma 7, Lemma 8 and from

the basic assumptions on resolutions of singularities. �

Lemma 9. Let the characteristic be zero, V P Σ and f a non-degene-

rate rational map of V defined by ρ1XV . Let W be the image of V by

f . Then there is a non-singular projective variety W˚ and a birational

morphism φ of W˚ on W with the following properties: (a) when k is a

common field of rationality of V, XV , f and φ and when CW is a generic

hyperplane section of W over k, φ´1pCWq is non-singular; (b) when CW
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and C1
W

are independent generic over k, φ´1pCWq ¨ φ´1pC1
W

q is non-

singular; (c) there is a positive integer π, which depends only on Ppxq,

such that |papφ´1pCWqq| ă π.

Proof. When a non-singular subvariety of a projective space is special-

ized to another such variety over a discrete valuation ring, the virtual

arithmetic genus is not changed (c.f. [2], [4]). Take the Fi, Hi as in the

Corollary of Lemma 9 and take W˚ from a suitable Hi. Then there is

a birational morphism φ of W˚ on W, satisfying (a). (c) follows from

(a) when we take the above remark into account. (a) and (b) follow eas-

ily also from the theorem of Bertini on variable singularities since the

characteristic is zero. �

Lemma 10. There is a constant ρ2, which depends on Ppxq only, such

that mρ1XV has the following properties for m ě ρ2, provided that it

does not define a birational map and the characteristic is zero: (a) when

f 1 is a non-degenerate rational map of V defined by mρ1XV , k1 a field of

rationality of V and XV and T a generic divisor of ‘mΛpρ1XVq over k1,283

T is irreducible and the effective geometric genus of the proper trans-

form of T by f 1 is at least 2; (b) degp f 1q “ 2 and f 1 induces on T a

rational map of degree 2.

Proof. Let f , W, W˚, φ, k be as in Lemma 10. Let CW be generic over k

and U “ φ´1pCWq. Let U 1 be a generic specialization of U over k, other

than U. By the modular property of pa
†, we get papmUq “ mpapUq `

Σ
m´1
1

papsU 1 ¨Uq. Applying the modular property again to papsU 1 ¨Uq on

U, which is non-singular by Lemma 10 we get the following equality:

spapU 1 ¨ Uq `
1

2
sps ´ 1qpU 1 ¨ Uqp2q ´ s ´ 1 “ papsU 1 ¨ Uq.

From the definition of U, it is clear that Up3q ą 0 on W˚. Hence pU 1 ¨
Uqp2q “ Up3q ą 0. Moreover |papUq| ă π, by Lemma 10. Using these

†This can be proved exactly in the same way as Lemma 5 of [31] because of our

Lemma 10.
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and Σm´1
1

sps ´ 1q “ pm ´ 1qmp2m ´ 1q{6, we get

papmUq ą ´mpπ ` 1q ´ mpm ´ 1q ` pm ´ 1qmp2m ´ 1q{12 ` 1.

We can find a positive integer ρ2, which depends on Ppxq only, such

that the right hand side of the above inequality is at least 2 whenever

m ě ρ2. When that is so, any member A of ΛpmUq satisfies papAq ą 1

since the virtual arithmetic genus of divisors is invariant with respect to

linear equivalence.

Let Λ be the linear system of hyperplane sections of W. Clearly

φ´1p‘mΛq “ φmφ´1pΛq and the latter contains a non-singular member

A by the theorem of Bertini on variable singularities. Let pg, pa, q

denote respectively the effective geometric genus, effective arithmetic

genus and the irregularity of A. Then q “ pg ´ pa and papAq “ pa.

Since q ě 0, it follows that pg ą 1 whenever m ě ρ2. When Cm is a

generic divisor of ‘mΛ over k, we can take for A the variety φ´1pCmq.

Therefore, the effective geometric genus of Cm is at least 2 when m ě
ρ2.

Assume that f 1 is not birational for some m ě ρ2 and rational over

k. Then Λpmρ1XVq has no fixed component and degp f 1q “ 2 by Propo-

sition 7. By the same proposition, the same is true for Λpρ1XVq and f . 284

Let W 1 be the image of V by f 1. Since degp f q “ degp f 1q, there is a bi-

rational transformation h between W 1 and W such that f “ h ˝ f 1 holds

generically. Then f ´1pCmq “ T is irreducible (c.f. [25], Chap. IX)

and is a generic divisor of ‘m f ´1pΛq “ ‘mΛpρ1XVq over k. Let L be

the proper transform of T by f 1. Cm and L are birationally correspond-

ing subvarieties of W and W 1 by h´1 and, when that is so, the effective

geometric genus of L is at least 2. Our lemma follows easily from this.

Let now f 1 denote a non-degenerate rational map of V defined by

ρ2ρ1XV , and assume that f 1 is not birational. By Proposition 7, deg

p f 1q “ 2 and Λpρ2ρ1XVq has no fixed component. By Lemma 11, the

complete linear system contains a linear pencil whose generic divisor

T has the property that its proper transform D by f 1 has the effective

geometric genus which is at least 2.

Let f be a non-degenerate rational map of V into a projective space

defined by mρ2ρ1XV and assume that f has still the property that deg
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p f q “ 2. Let E be the proper transform of T by f and g the rational

map induced on T by f . Then D and E are clearly birationally equiv-

alent and the effective geometric genus of E is at least 2. As in (6.1),

dim TrTΛpmρ2ρ1XVq “ lpmT q´lpmT ´T q´1 ą Pρ1ρ2
pmq´Pρ1ρ2

pm´
1q ´ 2c ´ 1. The leading coefficient of the right hand side of the above

inequality is given by 1
2
pρ1ρ2q3d. �

Let K be the smallest field of rationality of T over k and Z1, Z2

two independent generic divisors of ΛpmT q over K. Then exactly as in

(6.2), we get degpgq degpEq “ IpZ1 ¨ Z2 ¨ T{T,Kq. By Lemma 5, the

latter is bounded by pρ1ρ2q3m2d. By Lemma 11 and by our assumption,

degpgq “ 2. Hence degpEq ď 1
2
pρ1ρ2q3m2d. Let Λ be the linear system

of hyperplane sections of E. By Proposition 3, dimΛ ď 1
4
pρ1ρ2q3m2d `

1. Since g is defined by TrTΛpmT q, it follows that dim TrTΛpmT q “
dimΛ. Therefore,

Pρ1ρ2
pmq ´ Pρ1ρ2

pm ´ 1q ´ 2c ´ 1 ă
1

4
pρ1ρ2q3m2d ` 1.

Since the leading coefficient of the left hand side is 1
2
pρ1ρ2q3d, we can

find a constant ρ3, which depends on Ppxq only, such that the above

inequality does not hold for m ě ρ3. For such m, g and hence f has

to be birational. Setting 1
2
ρ4 “ ρ1ρ2ρ3 and combining the above result285

with that of Proposition 7, we get

Theorem 1. Let the characteristic be zero, V3 a polarized variety, Ppmq
“ χpV,L pmXVqq and assume that pA2

3
q is true. Then there is a constant

ρ4, which depends on Ppxq only, such that mXV defines a birational

transformation of V when m ě ρ4.

Corollary. Let the characteristic be zero and V3 be canonically polar-

ized. Then pB3q is true.
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Chapter II. The Problem pCnq.

In this chapter, we shall solve pCnq for canonically polarized vari-

eties Vn under the following assumptions: pAnq and pBnq are true; theo-

rems on dominance and birational resolution in the sense of Abhyankar

hold for dimension n. As we remarked already, this is the case when the

characteristic is zero (c.f. [5]) or when n “ 1, 2, 3 if the characteristics

2, 3 and 5 are excluded for n “ 3 (c.f. [35]).

8 Preliminary lemmas.

Lemma 11. Let U and U 1 be two non-singular subvarieties of pro-

jective spaces and g a birational transformation between U and U 1.

Then we have the following results: (a) gpKpUqq ` E1 „ KpU 1q where

E1 is a positive U 1-divisor whose components are exceptional divisors

for g´1; (b) lpmKpUqq “ lpmKpU 1qq for all positive integers m; (c)

ΛpmKpU 1qq “ ΛpgpmKpUqqq ` mE1 for all positive integers m.‡

Proof. These results are well known for characteristic zero. (b) and

(c) are easy consequences of (a). (a) can be proved as in [33] using

fundamental results on monoidal transformations (c.f. [29], [33]) and

the theorem of dominance. �

Lemma 12. Let U be a non-singular subvariety of a projective space

such that CU „ mKpUq for some positive integer m. Let U 1 be a non-

singular subvariety of a projective space, birationally equivalent to U. 286

Then mRpU 1q defines a non-degenerate birational map h1 of U 1, map-

ping U 1 generically onto a non-singular subvariety U˚ of a projective

space such that CU˚ „ mKpU˚q. Moreover, U and U˚ are isomorphic.

Proof. Let g be a birational transformation between U and U 1. Then

gpCUq „ gpmKpUqq and ΛpgpKpUqqq ` mE1 “ ΛpmKpU 1qq where E1

is a positive U 1-divisor whose components are exceptional divisors for

g´1 by Lemma 12. Assume first that the set of hyperplane sections of U

‡A subvariety of codimension 1 of U1 is called exceptional for g´1 if the proper

transform of it by g´1 is a subvariety of U of codimension at least 2.
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forms a complete linear system. Then gpCUq is irreducible for general

CU (c.f. [25], Chap. IX). Hence mE1 is the fixed part of ΛpmKpU 1qq.

Since lpmKpUqq “ lpmKpU 1qq by Lemma 12, it follows that all members

of ΛpgpmKpUqqq are of the form gpCUq. This proves that g´1 is a non-

degenerate rational map defined by mKpU 1q. If our assumption does

not hold for U, apply a non-degenerate map of U, defined by CU , to

U. This amp is obviously an isomorphism and the image of U by this

clearly satisfies our assumption. �

Lemma 13. Let Un (resp. U 1n) be a complete non-singular variety,

KpUq (resp. KpU 1q) a canonical divisor of U (resp. U 1) and O a dis-

crete valuation ring with the quotient field k0 and the residue field k1
0
.

Assume that U, KpUq are rational over k0 and that pU 1,KpU 1qq is a

specialization of pU,KpUqq over O. Assume further that the follow-

ing conditions are satisfied: (i) there is a positive integer m0 such that

lpm0KpUqq “ lpm0KpU 1qq; (ii) a non-degenerate rational map h (resp.

h1) defined by m0KpUq (resp. m0KpU 1q) is birational; (iii) h1pU 1q “ W 1

is non-singular and CW1 „ m0KpW 1q. Then the following two state-

ments are equivalent: (a) There is a birational map g of U, between

U and a non-singular subvariety W˚ of a projective space such that

CW˚ „ tKpW˚q for some positive integer t and KpW 1qpnq “ KpW˚qpnq;

(b) degphpUqq “ degph1pU 1qq. Moreover, when (a) or (b) is satisfied,

hpUq “ W is non-singular, CW „ m0KpWq and KpWqpnq “ KpW 1qpnq.

Proof. First assume (a). h is uniquely determined by m0KpUq up to a

projective transformation. Therefore we get degphpUqq ě degph1pU 1qq287

by Proposition 2.1 of the Appendix since specializations are compatible

with the operation of algebraic projection (c.f. ([24]). Let the Zi be n

independent generic divisors ofΛpm0KpUqq over k0. Then degphpUqq “
IpZ1 . . .Zn{U, k0q since h is birational. Let d0 “ KpW 1qpnq “ KpW˚qpnq.

Then degph1pU 1qq “ m0
nd0 by (iii). Hence degphpUqq ě m0

nd0. By

Lemma 11, ΛpgpmKpUqqq ` mE˚ “ ΛpmKpW˚qq for all positive m

where E˚ is as described in the lemma. Let L be a common field of

rationality of W˚ and g over k0 and the Yi (resp. Y˚
i

) n independent

generic divisors of ΛpmKpUqq (resp. ΛpmKpW˚qq) over L. Then we
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have IpY1 . . .Yn{U, Lq “ IpY˚
1
. . .Y˚

n {W˚, Lq. By Lemma 5,

IpY˚
1 . . . Y

˚
n {W˚, Lq ď mnd0.

Setting m “ m0, we therefore get IpY1 . . .Yn{U, Lq ď m0
nd0. The left

hand side of this is obviously IpZ1 . . .Zn{U, k0q. Combining the two

inequalities we obtained, we get degphpUqq “ m0
nd0 “ degph1pU 1qq.

Hence (a) implies (b).

Now we assume (b). Let W “ hpUq, C “ CW , C1 “ CW1 . By

Proposition 2.1 of the Appendix and by the compatibility of specializa-

tions with the operation of algebraic projection, we get pU,KpUq,Wq Ñ
pU 1,KpU 1q,W 1q ref. O. Since W 1 is non-singular, W is non-singular

too. Since h is defined by m0KpUq, there is a positive U-divisor F

such that h´1pCq ` F „ m0KpUq. Hence there is a positive divisor

T with hpm0KpUqq „ C ` T . There is a positive divisor E such that

C`T `E „ m0KpWq by Lemma 11. Let C2`T 1`E1 be a specialization

of C ` T ` E over O over the specialization under consideration. Since

linear equivalence is preserved by specializations (c.f. [24]), C1 „ C2

and C1 ` T 1 ` E1 „ m0KpW 1q (c.f. Lemma 1.1 of the Appendix; U, U 1

are clearly non-ruled since lpmKpUqq, lpmKpU 1qq are positive for large

m). Since m0KpW 1q „ C1 by (iii), it follows that T 1, E1 are positive and

T 1 ` E1 „ 0. This proves that T “ E “ 0 and m0KpWq „ C. Our

lemma is thereby proved. �

9 A proof of pCnq. In order to solve pCnq, we shall fix some no-

tation. We shall denote by Σ the set of canonically polarized varieties

with the fixed Hilbert characteristic polynomial Ppxq and by Vn a “vari-

able element” of Σ. As we have shown in Lemma 1, there is a root ρ

of the equation Ppxq ´ p´1qnγn “ 0 such that KpVq ” ρXVmod Ga. 288

Then Σ can be expressed as a union of subspaces Σρ corresponding to

ρ. In order to solve pCnq, we may restrict our attention to Σρ. From our

basic assumptions stated at the beginning of this chapter, there is a con-

stant ρ5, which depends on Ppxq only, having the following properties:

(a) higher cohomology groups of L pYq vanish and lpYq ą 0 whenever

Y ” mXVmod Ga and m ě ρ5; (b) such Y defines a birational transfor-

mation of V . When V P Σρ and when XV is replaced by KpVq, (a) and
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(b) still hold since KpVq ” ρXVmod Ga and ρ is a positive integer by

the definition of a basic polar divisor. From now on, we shall restrict

ourselves to the study of Σρ and V shall denote a “variable element” of

this set. We set d0 “ KpVqpnq and ρ6 “ ρ ¨ ρ5.

Let f be a non-degenerate birational map of V defined by ρ5KpVq.

f maps V into the projective space of dimension Ppρ6q ´ 1 and the

degree of the image is bounded by ρ6
nX

pnq
V

“ ρ5
nd0, which follows

easily from Lemma 5. When we do this for each member of Σρ, we

see that each such image is contained in a finite union F of irreducible

algebraic families of irreducible varieties by the main theorem on Chow-

forms (c.f. [3]). Let A1 be the set of images of members of Σρ in F thus

obtained. Applying Lemma 8 to F, we get immediately the following

results.

Lemma 14. There are finite unions
Ť

i Fi and
Ť

i Hi of irreducible al-

gebraic families of irreducible varieties in projective spaces with the

following properties: (a) each Fi contains some members of A1 and A1

is contained in
Ť

i Fi; (b)
Ť

i Hi consists of non-singular varieties; (c)

when W is a member of Fi, there is a member U of Hi and a birational

morphism of U on W.

Let H be a finite union of irreducible algebraic families of positive

cycles in projective spaces and u a set of members of H. We shall say

that H is u-admissible if each component family of H contains some

members of u. We shall denote by A the set of members U of
Ť

i Hi such

that there is a birational morphism of U on a member of A1. Then
Ť

i Hi289

is A-admissible by Lemma 15. Elements U of A satisfy the following

three conditions (c.f. Lemma 13):

(I) mKpUq defines a birational transformation fm of U for large m;

(II) fmpUq is non-singular for large m;

(III) lppρ5 ` mqKpUqq “ Pρpρ5 ` mq for m ą 0.

We shall find a subset of
Ť

i Hi, containing A, satisfying the above three

conditions, which can be expressed as a finite union of irreducible al-

gebraic families of non-singular varieites. From this we shall recover
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members of Σρ in some definite projective space, up to isomorphisms, in

such a way that hyperplane sections are some fixed multiple of canoni-

cal divisors. This is the main idea of the rest of this paragraph.

Lemma 15. There is a finite union
Ť

i J j of irreducible algebraic fam-

ilies contained in
Ť

i Hi having the following properties: (a)
Ť

j J j is

A-admissible; (b) every member of
Ť

j J j satisfies the condition (III).

Proof. Since
Ť

i Hi is A-admissible, there is a member V of Σρ and a

member U of Hi such that V and U are birationally equivalent. Then

lppρ5 ` mqKpVqq “ lppρ5 ` mqKpUqq for all positive integers m by

Lemma 12. Setting m0 “ ρ5, mi “ ρ5 ` i, qmi
“ Pρpρ5 ` iq and then

qmi
“ Pρpρ5 `iq`1 in the Corollary to Proposition 1.1 in the Appendix,

we get our lemma easily. �

Lemma 16. There is a finite union
Ť

i Ji of irreducible algebraic fam-

ilies contained in
Ť

i J j having the following properties: (a)
Ť

i Ji is

A-admissible; (b) every member of
Ť

i Ji satisfies the condition (I).

Proof. Let k be a common field of definition of the component families

Ji. Let U0 P J j X A and U a generic member of J j over k. mKpU0q
defines a birational map for large m by Lemma 12. Therefore mKpUq de-

fines a rational map f of U such that f does not decrease the dimension

by Lemma 1.1 and the Corollary to Proposition 2.1 of the Appendix.

Then we see that mKpUq defines a birational map for large m which is

an easy consequence of the technique of normalization in a finite alge-

braic extension of the function field (c.f. [25], Appendix I).

Fix a positive integer m0 such that m0KpUq, m0KpU0q both define bi- 290

rational transformations. Then m0KpUq is, in particular, linearly equiva-

lent to a positive U-divisor Y . Consider an algebraic family with divisors

over k such that pU,Yq is a generic element of it over k and apply Propo-

sition 2.2 and its Corollary 3 of the Appendix to it (c.f. also Lemma 1.1

of the Appendix). Then we see that there is an irreducible algebraic fam-

ily J1
j

such that the Chow-variety of J1
j

is k-open on that of J j and that

m0KpU 1q defines a birational map of U 1 whenever U 1 is in J1
j
¨J j ´J1

j
is
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a finite union of irreducible algebraic families. Apply the above proce-

dure to all those components of J j ´J
1
j
which contain some members of

A. This process cannot continue indefinitely. Doing the same for each

J j, we get easily our lemma. �

Lemma 17. Let K be a finite union of irreducible algebraic families in

projective spaces and B a set of members of K. Assume that the fol-

lowing conditions are satisfied : (i) K consists of non-singular varieties;

(ii) K is B-admissible; (iii) B is a subset of A; (iv) every member of

K satisfies the conditions (I) and (III). Then there is a finite union K˚

of irreducible algebraic families, contained in K, having the following

properties: (a) K˚ is B-admissible; (b) for each component K˚
i

cf K˚,

there is a Ui P K˚
i

XB and a positive integer mi ě ρ5 such that miKpUiq
defines a non-degenerate birational map hi of Ui such that hipUiq “ Wi

is non-singular and that CWi
„ miKpWiq; (c) when U is a generic mem-

ber of K˚
i

over a common field k of definition of the K˚
i
, miKpUq defines

a non-degenerate birational map h of U such that degpWiq “ degpWq,

where W “ hpUq; (d) for each member U 1 of K˚
i
, miKpU 1q defines a

birational map.

Proof. We proceed by induction on the dimension of K. When the di-

mension of K is zero, our lemma is trivial. Therefore we assume that our

lemma is true for dimension up to s ´ 1 and set dimK “ s. In order to

prove our lemma, it is clearly enough to do so when K is an irreducible

algebraic family.

Let Y be a positive divisor on U such that Y „ ρ5KpUq, where U

denotes a generic member of K over k. Then we consider an algebraic

family with divisors defined over k such that pU,Yq is a generic member291

of it over k and apply Corollary 2 to Proposition 2.2 in the Appendix to

our situation. By doing so, we can find a positive integer m0 such that

mKpU 1q defines a birational map for every member U 1 of K whenever

m ě m0.

Let U1 be a member ofB. SinceB is contained in A, there is a posi-

tive integer m1 ě ρ5, m0 with the following properties: m1KpU1q defines

a non-degenerate birational map h1 of U1 and W1 “ h1pU1q is non-
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singular; CW1
„ m1KpW1q (c.f. Lemma 13). Let h be a non-degenerate

birational map defined by m1KpUq. Since h is determined uniquely by

m1KpUq up to a projective transformation, we see that degphpUqq ě
degph1pU1qq “ degpW1q, W1 “ h1pU1q, by applying Proposition 2.1

of the Appendix and using the compatibility of specializations with the

operations of algebraic projection.

Let K1 be the set of members U 1 of K with the following properties:

when h1 is a non-degenerate birational map of U 1 defined by m1KpU 1q,

then degph1pU 1qq ď degpW1q. We claim that K1 Ą B and is a finite union

of irreducible algebraic families. We consider the same algebraic fam-

ily with divisors as above, which is defined over k, having pU,Yq as a

generic element over k. In applying Corollary 1 to Proposition 2.2 in the

Appendix to our situation, we let degph1pU1qq “ s0. In view of Lemma

1.1 of the Appendix, it is then easy to see that the set of Chow-points of

members of K1 is a closed subset of that of K over k. Let U2 be a member

of B. Then it is contained in A and there is a member V2 of Σρ such that

there is a birational map f 2 of V2, mapping V2 generically onto U2. Let

k1 be a common field of rationality of U2, V2 and f over k. By Lemma

11, Λp f 2pm1KpV2qqq ` m1E “ Λpm1KpU2qq where E is a positive U2-

divisor whose components are exceptional divisors for f 2´1
. Let h2 be a

non-degenerate rational map of U2 defined by m1KpU2q and the Zi (resp.

Z1
i
) independent generic divisors of Λpm1KpV2qq (resp. Λpm1KpU2qq)

over k1. Then the above relation between two complete linear systems

show that IpZ1 . . . Zn{V2, k1q “ IpZ1
1
. . .Z1

n{U2, k1q. Moreover, h2 is bi-

rational by our choice of m1, degph2pU2qq ď IpZ1
1
. . .Z1

n{U2, k1q and 292

IpZ1 . . .Zn{V2, k1q ď m1
nd0 by Lemma 5. It follows that degph2pU2qq ď

m1
nd0. On the other hand, U1 is the underlying variety of some mem-

ber of Σρ by Lemma 13. Consequently degpW1q “ mn
1
d0 by the same

lemma. This proves that U2 is contained inK1. Our contention is thereby

proved. �

Let K2 be the union of those components of K1 which contain U1.

Denote by U2 now a generic member of a component of K2 over k. As

before, from Proposition 2.1 and from the compatibility of specializa-

tions with the operation of algebraic projection, we see that degph2pU2qq
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ě degph1pU1qq and consequently degph2pU2qq “ degph1pU1qq. More-

over, K2 is K2 XB-admissible.

We have B “ pK2 XBq ` ppK1 ´K2q XBq. K1 ´K2 is a finite union

of irreducible algebraic families. Call K1 the union of those components

of K1 ´K2 which contain some members ofB and setB1 “ BXK1. We

have dimK ą dimK1. By our induction assumption, (a), (b), (c), (d) are

satisfied by K1, B1. We have shown that K2, K2 XB satisfy these too by

Lemma 14. Thus our lemma is proved.

From our lemma, Lemma 14 and from Lemma 1.1 of the Appendix,

we get

Corollary 1. U and h in (c) of our lemma further satisfy the following

properties : W “ hpUq is non-singular, CW „ miKpWq and KpWqpnq “
KpWiq

pnq “ d0.

Corollary 2. In our Lemma 17 and Corollary 1 above, mi may be re-

placed by a positive integer which is a multiple of mi.

Proof. This is an easy consequence of Lemma 11. �

Theorem 2. Let Vn be a canonically polarized variety and Ppxq its

Hilbert characteristic polynomial. Assume that pAnq and pBnq have so-

lutions for V and that theorems on dominance and birational resolution

in the sense of Abhyankar hold for dimension n. Then there is a constant

ρ7 which depends on Ppxq only such that ρ7XV defines a non-degenerate

projective embedding of V.

Proof. As we pointed out at the beginning of this paragraph, it is enough293

to prove this for V P Σρ. By Lemmas 15, 15, 16, the finite union J of

irreducible families constructed in Lemma 16, together with A, satisfies

the requirements of Lemma 17. Therefore, there is a finite union M of

irreducible algebraic families satisfying the conclusions of Lemma 17.

For the sake of simplicity, we shall say that a non-singular projective

variety D has a property (*) with respect to t1 if t1KpDq defines a non-

degenerate birational map h of D such that A “ hpDq is non-singular, is

the underlying variety of a member of Σ and that CA „ t1KpAq.
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Let the Mi be the components of M and the Ui, mi as in Lemma

17, (b) (K˚
i

in the Lemma is our Mi). By Corollary 2 of Lemma 17, mi

may be replaced by t “ Πimi or by any positive multiple of t. Let k be

an algebraically closed common field of rationality of the Mi and U a

generic member of Mi over k. U has the property (*) with respect to t

by Lemma 17 and its corollaries. Let U 1 P Mi and h1 a non-degenerate

birational map defined by tKpU 1q. Assume that h1 has the properties that

degph1pU 1qq “ degphpUqq and that h1pU 1q is non-singular. h is uniquely

determined by tKpUq up to a projective transformation. Therefore, we

may assume without loss of generality transformation. Therefore, we

may assume without loss of generality that W 1 “ h1pU 1q is a special-

ization of W “ hpUq over k by Lemma 1.1 and Proposition 2.1 of the

Appendix, since specializations are compatible with the operation of

algebraic projection. Since self-intersection numbers and linear equiv-

alence are preserved by specializations, it follows that W 1 has also the

property (*) with respect to t (c.f. Lemma 1.1 of the Appendix and [2]).

Let Y be a member of ΛptKpUqq and consider an algebraic family

with divisors, defined over k, with a generic element pU,Yq over k. We

apply Corollary 3 to Proposition 2.2 in the Appendix to this. By do-

ing so, we can find an irreducible algebraic family M1
i

of non-singular

varieties, having the following properties: (a) the Chow variety of M1
i

is k-open on that of Mi; (b) when U 1 P M1
i
, tKpU 1q defines a non-

degenerate birational map of U 1 such that h1pU 1q is non-singular; (c)

degph1pU 1qq “ degphpUqq. LetM1 “
Ť

iM
1
i

and A˚ “ A XM1. As we 294

have shown above U 1 P A˚ has the property (*) with respect to t.

Let B “ pM ´ M1q X A ¨ M ´ M1 is a finite union of irreducible

algebraic families. When we remove from it those components which

do not contain members of B, we get a finite union N of irreducible

algebraic families, which is contained in M, B-admissible and satisfies

dimM ą dimN. When we apply our process to N and B and continue

it, applying Lemma 17 and its corollaries, it has to terminate by a finite

number of steps. Consequently, we can find a positive integer t1 such

that a member of B has the property (*) with respect to t1. When we set

ρ7 “ t ¨ t1 ¨ρ, this constant satisfies the requirements of our theorem. �
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Corollary. Let the characteristic be zero, V3 a canonically polarized

variety and Ppxq the Hilbert characteristic polynomial of V. Then pC3q
is true for V3 and Ppxq.

Proof. This follows easily from our theorem, Theorem 1 and from Propo-

sition 1. �

Appendix

1 Lemma 1.1. Let Un and U 1n be non-singular and non-ruled subva-

rieties of projective spaces such that U 1 is a specialization of U over a

discrete valuation ring O. Let KpUq be a canonical divisor of U and

pU 1,Yq a specialization of pU,KpUqq over O. Then Y is a canonical

divisor of U 1.

Proof. When n “ 1, the complete linear system of canonical divisors

on U (resp. U 1) is characterized by the fact that it is a complete linear

system of positive divisor of degree 2g ´ 2 and dimension at least g ´ 1.

Hence our lemma is easily seen to be true in this case.

Assume that our lemma is true for dimensions up to n ´ 1. Let k

(resp. k1) be a common field of rationality of U and KpUq (resp. U 1 and

Y) and C, C˚ (resp. C1, C1˚) independent generic hypersurface sections295

of U (resp. U 1) over k (resp. k1). Then pU 1,Y,C1,C1˚q is a specialization

of pU,KpUq,C,C˚q over O. C ¨ pC˚ ` KpUqq is a canonical divisor

of C (c.f. [31]) and this has the unique specialization C1 ¨ pC1˚ ` Yq
over the above specialization with reference to O, since specializations

and intersection-product are compatible operations. It follows that C1 ¨
pC1˚ ` Yq is a canonical divisor of C1. When KpU 1q is a canonical

divisor of U 1, rational over k1, C1 ¨ pC1˚ ` Yq „ C1 ¨ pC1˚ ` KpU 1qq. C1

is a generic hypersurface section of U 1 over a filed of rationality of C1˚

over k1. Moreover, when the degree of the hypersurface is at least two,

a generic linear pencil contained in the linear system of hypersurface
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sections consists of irreducible divisors (c.f. [19]). It follows that Y „
KpU 1q by an equivalence criterion of Weil (c.f. [27], Th. 2).§

We shall consider a family of varieties with divisors on them. Let A

be an irreducible algebraic family of subvarieties in a projective space, A

the Chow-variety of it and a a generic point of A over a field of definition

k of A, corresponding to a variety Upaq. Let Xpaq be a divisor on Upaq
and Xpaq “ Xpaq` ´ Xpaq´ the reduced expression for Xpaq where

Xpaq`, Xpaq´ are both positive divisors. Let u (resp. v) be the Chow-

point of Xpaq` (resp. Xpaq´) and z “ pu, vq. Let A1 be the locus of

pa, zq over k. When pa1, z1q is a point of A1, a1 defines a cycle Upa1q
in the projective space uniquely such that the support of Y is contained

in the support of Upa1q. When every member of A is irreducible. A1

defines an irreducible family whose member is a variety with a chain of

codimension 1 on it. We shall call this an irreducible family of varieties

with chains of codimension 1. When k1 is a field of definition for A1, we

shall call k1 a field of definition or rationality of the family. �

Proposition 1.1. Let A1 be an irreducible algebraic family of non-sin-

gular varieties Upa1q with divisors Xpa1q and tqmi
u an increasing se-

quence of positive integers starting with qm0
ą 1. Assume that there 296

is a member pUpa0q, Xpa0qq such that lpmiXpa0qq ě qmi
for all i. Let

pUpaq, Xpaqq be a generic member of A1 over a common field k of ratio-

nality of A1, a0 and assume that lpmiXpaqq ě qmi
for 0 ď i ď s ´ 1 but

lpmsXpaqq ă qms
. Then, there is a finite union E of irreducible families,

defined over k and contained in A1, such that a member pUpa1q, Xpa1qq
of A1 is in E if and only if lpmiXpa1qq ě qmi

for 0 ď i ď s.

We shall prove this by a series of lemmas.

Let dim Upa0q “ n and H1, . . . ,Hn´1 independent generic hyper-

surfaces of degree t over k. Let Hp1q “ H1 . . .Hn´1 and Hp1q, . . . ,Hprq r

independent generic specializations of Hp1q over k. For each point a1 of

§In [27], Th. 2, it is claimed that Y ´ KpU1 „ ΣmiTi where the Ti are some sub-

varieties of U1. But these Ti are components of reducible members of such a pencil

contained in the linear system of hyperplane secitons. We can eliminate them using

linear systems of hypersurface sections.
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A1, we set Upa1q ¨ Hpiq “ Cpa1qi whenever the intersection is proper. We

take r and t sufficiently large.

Lemma 1.2. Let B be the set of points a1 on A1 satisfying the following

conditions: (i) Cpa1qi is defined for all i; (ii) the Cpa1qi are non-singular

for all i; (iii) Xpa1q and Cpa1qi intersect properly on Upa1q for all i. Let

k1 be an algebraically closed common field of rationality for the Hpiq

over k. Then B is a k1-open subset of A1.

Proof. These are well-known and easy exercises. Therefore, we shall

omit a proof. �

We shall show that the set of points a1 on B such that lpmsXpa1qq ě
qms

forms a k1-closed subset of B. We can cover A1 by open sets B

by changing the Hpiq. Therefore our problem is reduced to the similar

problem on the family defined by B. In order to solve our problem on

this family we may replace B by a variety with a proper and surjective

morphism on it. Therefore, we may assume without loss of generality

that the Cpa1qi carry rational points over k1pa1q.

For each a1 in B, let Jpa1qi be the Jacobian variety of Cpa1qi and

Γpa1qi the graph of the canonical map φpa1qi of Cpa1qi into Jpa1qi. We

assume that these are constructed by the method of Chow so that these

are compatible with specializations (c.f. [1], [8]). In order to simplify

the notations, we simply denote by IpY ¨ Cpa1qiq the Abelian sum of

Y ¨ Cpa1qi on Jpa1qi, whenever Y is a Upa1q-divisor such that Y ¨ Cpa1qi is297

defined. It should be pointed out here that the Jpa1qi and the Γpa1qi are

rational over k1pa1q.

Let P be the ambient projective space of the Upaq and F˚ the closed

subset of a projective space, consisting of Chow-points of positive cy-

cles in P which have the same dimension and degree as members of

ΛpmsXpa0qq. There is a closed subset T ˚ of B ˆ F˚ such that a point

pa, yq of B ˆ F˚ is in T ˚ if and only if Upaq carries the cycle Ypyq de-

fined by y (c.f. [3]). Let F be the geometric projection of T ˚ on F˚ and

T “ B ˆ F X T ˚. T is a k1-closed subset of B ˆ F. Let a be a generic

point of B over k1. Since the Jpa1qi are defined over k1pa1q for a1 P B,
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there is a subvariety Z of B ˆΠiPi, where the Pi are ambient spaces for

the Jpaqi, such that Zpaq “ ΠiJpaqi (c.f. [25], Chap. VIII).

Lemma 1.3. Let U and U 1 be non-singular subvarieties of a projective

space such that U 1 is a specialization of U over a field k. Let X (resp.

X1) be a divisor on U (resp. U 1) such that pU 1, X1q is a specialization

of pU, Xq over k. Let u1 be a given point of U 1. Then there are divisors

D, E (resp. D1, E1) on U (resp. U 1) with the following properties: (a)

X „ D ´ E on U and X1 „ D1 ´ E1 on U 1; (b) the supports of D1, E1

do not contain u1; (c) pU 1, X1,D1, E1q is a specialization of pU, X,D, Eq
over k.

Proof. Let C (resp. C1) be a hypersurface section of U (resp. U 1) by a

hypersurface of degree m. Then, as is well known, X `C (resp. X1 `C1)

is ample on U (resp. U 1) and lpX ` Cq “ lpX1 ` C1q, lpCq “ lpC1q when

m is sufficiently large (c.f. [25], Chap. IX, [31], [21], [4]). Denote by

Gp˚q the support of the Chow-variety of the complete linear system de-

termined by ˚. Since linear equivalence is preserved by specializations

(c.f. [24]), it follows that pU 1, X1,GpX1 ` C1q,GpC1qq is a specialization

of pU, X,GpX ` Cq,GpCqq over k. When a point x1 in GpX1 ` C1q and a

point y1 in GpCq are given, there is a point x in GpX `Cq and a point y in

GpCq such that px, yq Ñ px1, y1q ref. k over the above specialization. We

can choose x1, y1 so that the corresponding divisors D1, E1 do not pass

through u1. Since X1 „ X1 ` C1 ´ C1 and X „ X ` C ´ C, our lemma

follows at once from the above observations. �

Corollary. Let Tα be a component of T and pa, yq a generic point of 298

Tα over k1. There is a rational map fα of Tα into Z such that fαpa, yq “
pa, . . . ,S pYpyq ¨ Cpaqiq, . . .q.¶ Moreover, fα satisfies the following con-

ditions: (a) when pa1, y1q P Tα, fαpa, yq has a unique specialization

pa1,Q1q over k1 over pa, yq Ñ pa1, y1q ref. k1; (b) when Y 1 is a Upa1q-

divisor such that Y 1 „ Ypy1q and that Y 1 and the Cpa1qi intersect prop-

erly on Upa1q, Q1 “ pa1, . . . ,S pY 1,Cpa1qiq, . . .q; (c) the locus L of

pa, . . . ,S pmsXpaq ¨ Cpaqiq, . . .q over k1 is a subvariety of Z and con-

¶Ypyq denotes the divisor defined by y.
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tains pa1, . . . ,S pmsXpa1q ¨ Cpaqiq, . . .q whenever a1 P B and the latter is

a unique specialization of the former over k1, over a Ñ a1 ref. k1.

Proof. This follows easily from Lemma 1.3, from the compatibility of

specializations with the Chow-construction of Jacobian varieties, the op-

eration of intersection-product (c.f. [24]), the Abelian sums and from

the invariance of linear equivalence by specializations. �

Let W˚
α be the closure of the graph of fα on B ˆ F ˆ Z, W˚ the

union of the W˚
α and W “ W˚ X B ˆ F ˆ L. W is a k1-closed subset of

B ˆ F ˆ L.

Lemma 1.4. The set E1 of points a1 P B such that W X a1 ˆ F ˆ L has

component of dimension at least qms
´1 forms a k1-closed proper subset

of B.

Proof. When a is a generic point of B over k1, the projection of the inter-

section on F is the support of the Chow-variety of ΛpmsXpaqq (c.f. [14],

[26]). Then our lemma follows at once from [27], Lemma 7, applied to

B ˆ F ˆ L where L denotes the closure of L in its ambient space. �

Lemma 1.5. Let a1 P B such that lpmsXpa1qq ă qms
. Then a1 R E1.

Proof. Assume the contrary. Then the intersection W X a1 ˆ F ˆ L

contains a component a1 ˆ D of dimension at least qms
´ 1 by Cor.,

Lemma 1.3. Let k2 be an algebraically closed field, containing k1, over

which D is defined and Q1 a generic point of D over k2. It is of the

form py1, e1q where e1 “ pa1, . . . ,S pmsXpa1q ¨ Cpa1qiq, . . .q (c.f. Cor.,

Lemma 1.3). Since r is sufficiently large, there is an index i such that299

Hpiq is generic over kpa1, y1q (c.f. [26], Lemma 9). Then Cor., Lemma

1.3 implies that S pmsXpa1q ¨ Cpa1qiq “ S pYpy1q ¨ Cpa1qiq. Since t is

sufficiently large and since Hpiq is generic over kpa1, y1q, it follows that

msXpa1q „ Ypy1q by an equivalence criterion of Weil (c.f. [27], Th. 2;

see also the footnote for Lemma 1.1). Hence lpmsXpa1qq ě qms
and this

contradicts our assumption. �
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Lemma 1.6. Let a1 P B such that lpmsXpa1q Pq ě qms
. Then a1 P E1.

Proof. Let D1 be the Chow-variety of the complete linear system

ΛpsXpa1qq. Then dim D1 ě qms
´ 1 ą 0. Let k2 be an algebraically

closed field, containing k1, over which D1 is rational. Let y1 be a generic

point of D1 over k2. Then pa1, y1q is contained in some component Tα of

T . Let pa, yq be a generic point of Tα over k2. Let

e1 “ pa1, . . . ,S pmsXpa1q ¨ Cpa1qiq, . . .q

and e “ pa, . . . ,S pYpyq ¨ Cpaqiq, . . .q. Then pa, y, eq Ñ pa1, y1, e1q ref.

k2 by Cor., Lemma 1.3. Hence pa1, y1, e1q is a point of W. It follows that

W X a1 ˆ F ˆ L contains a1 ˆ D1 ˆ e1 and a1 is contained in E1. Our

lemma is thereby proved. �

As we have pointed out, Lemmas 1.4, 1.5, 1.6 prove our proposition.

Corollary to Proposition 1.1. Let the notations and assumptions be

as in our proposition. There is a finite union E of irreducible families,

defined over k and contained in A1, such that a member pUpa1q, Xpa1qq
of A1 is in E if and only if lpmXpa1qq ě qm for all m.

2 Proposition 2.1. Let Vn (resp. V 1n) be a complete abstract variety,

non-singular in codimension 1, and X (resp. X1) a divisor on V (resp.

V 1). Let k be a common field of rationality of V and X, O a discrete

valuation ring of k and assume that pV 1, X1q is a specialization of pV, Xq
over O and that lpXq “ lpX1q. Let Γ1 be the closure of the graph of a

non-degenerate rational map of V 1 defined by X1. Then, there is a field K

over k, a discrete valuation ring O1 of K dominating O and the closure

Γ of the graph of a non-degenerate rational map of V defined by X such 300

that pV 1, X1,Γ1 ` Z1q is a specialization of pV, X,Γq over O1, where Z1 is

such that prV 1Z1 “ 0.

Proof. Let k1 be the residue field ofO. Since X1 is rational over k1,ΛpX1q
is defined over k1. Let g1

1
“ 1, g1

2
, . . . , g1

N`1
be functions on V 1 which

define Γ1. From Lemmas 4 and 5, [16], we can see easily that there is a

filed K over k, a discrete valuation ring O1 of K which dominates O and
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a basis pgiq of LpXq over K such that pV 1, X1, pg1
i
qq is a specialization of

pV, X, pgiqq overO1. Let Γ be the closure of the graph of a non-degenerate

rational map of V defined by X, determined in terms of pgiq. Let T be a

specialization of Γ overO1. It is clear and easy to see that Γ1 is contained

in the support of T . Therefore, Γ1 is a component of T . When that is so,

our proposition follows from the compatibility of specializations with

the operation of algebraic projection (c.f. [24]).

In the discussions which follow, we shall need the following defi-

nition. Let U and W be two abstract varieties, f a rational map of U

into W and U 1 a subvariety of U along which f is defined. Let f 1 be the

restriction of f on U 1 and W 1 the geometric image of U 1 by f 1. We shall

denote by f rU 1s the variety W 1 if dim U 1 “ dim W 1 and 0 otherwise. �

Corollary. Notations and assumptions being the same as in our propo-

sitions, let f (resp. f 1) be a non-degenerate rational map of V (resp. V 1)

defined by X (resp. X1). When f 1rV 1s ‰ 0, then f rVs ‰ 0.

Proof. Let k1 be the residue field of O and Q1 a generic point of V 1 over

k1. Then there are n independent generic divisors X1
i

of ΛpX1q over k1

such that Q1 is a proper point of intersection of
Ş

i X1
i
. Let the Xi be

n independent generic divisors of ΛpXq over k and O˚ a discrete valu-

ation ring, dominating O, such that pV 1, X1, pX1
i
qq is a specialization of

pV, X, pXiqq over O˚ (c.f. [16]). By the compatibility of specializations

with the operation of intersection-product (c.f. [24], in particular, Th.

11, Th. 17), there is a point Q in V such that it is a proper component ofŞ
i Xi and that Q1 is a specialization of Q over the above specialization

with reference to O˚. This proves our corollary. �

We shall consider again, as in §1, an algebraic family (irreducible)301

A1 with divisors in a projective space. We shall assume that every mem-

ber pUpaq, Xpaqq satisfies the conditions that Upaq is non-singular in

codimension 1 and that Xpaq is a positive divisor on Upaq. Therefore,

a is a pair of the Chow-point of Upaq and that of Xpaq. Let k be an

algebraically closed field of rationality of A1 and A1 the locus of a over

k, where a corresponds to a generic member of A1 over k.
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Proposition 2.2. A1 and A1 being as above, assume that the following

conditions are satisfied: (i) when a1 P A1, then lpXpa1qq “ lpXpaqq
where a is a generic point of A1 over k; (ii) when f is a non-degenerate

rational map of Upaq defined by Xpaq, then f rUpaqs ‰ 0. Then the set

E of points a1 in A1 such that a non-degenerate rational map f 1 of Upa1q
defined by Xpa1q has the property degp f 1rUpa1qsq ă s “ degp f rUpaqsq
is a k-closed subset of A1.

Proof. Since Xpaq is rational over kpaq, there is a non-degenerate ratio-

nal map f of Upaq, defined by Xpaq, which is defined over kpaq. Let Γ

be the closure of the graph of f and t the Chow-point of Γ. We shall

denote Γ by Γptq. Let w be the Chow-point of f rUpaqs. We shall denote

f rUpaqs also by Wpwq. Let T (resp. W) be the locus of t (resp. w) over k

and D the locus of pa, t,wq over k. D is then a subvariety of A1 ˆ T ˆ W.

Let W0 be the set of points w1 such that the corresponding Wpw1q
with the Chow-point w1 is irreducible and not contained in any hyper-

plane. Let T0 be the set of points t1 such that the corresponding Γpt1q
with the Chow-point t1 is irreducible and D0 “ D X A1 ˆ T0 ˆ W0. As

is well known, W0 is k-open on W and T0 is k-open on T . Hence D0 is

a closed subvariety of A1 ˆ T0 ˆ W0, defined over k. The set-theoretic

projection of D0 on A1 contains a k-open subset of A1 (c.f. [28]). Let D1

be the largest k-open subset of A1 contained in this projection.

Let a1 P D1. There is a point pa1, t1,w1q P D0. By our choice of

W0, T0 and D0, Γpt1q is irreducible, Wpw1q is irreducible, degpWpw1qq “
degpWpwqq “ s and Wpw1q is not contained in any hyper-plane. More- 302

over, pUpa1q, Xpa1q,Γpt1q,Wpw1qq is a specialization of pUpaq, Xpaq,Γptq,
Wpwqq over k. Since linear equivalence is preserved by specializa-

tions and since specializations are compatible with the operations of

intersection-product and algebraic projection (c.f. [24]), it follows that

Γptq1 is the closure of the graph of a non-degenerate map of Upa1q de-

termined by Xpa1q and pr2 Γpt1q “ mWpw1q if pr2Γptq “ mWpwq. Thus

a point of E cannot be contained in D1.

A1 ´ D1 is a k-closed subset of A1. Let A2 be a component of it and

a1 a generic point of A2 over k. Let f 1 be a non-degenerate rational map

of Upa1q defined by Xpa1q and assume that f 1rUpa1qs “ 0. If A2 has
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another point a2, let f 2 be a similar map of Upa2q defined by Xpa2q. We

consider a curve C on A2 which contains a1 and a2. The existence of

such a curve is well known and easy to prove by using the theorem of

Bertini. Normalizing C and localizing it at a point corresponding to a2,

we apply the result of Proposition 2.1. Then we see that f 2rUpa2qs “
0 since specializations are compatible with the operation of algebraic

projection. Assume this time that f 1rUpa1qs ‰ 0. Consider a curve C

on A1 which contains a and a1 and proceed as above. Then we see that

degp f rUpaqsq “ s ě degp f 1rUpa1qsq. When a2, f 2 are as above, we

see also that degp f 1rUpa1qsq ě degp f 2rUpa2qsq by the same technique.

Therefore, choosing only those A2 such that degp f 1rUpa1qsq “ s and

repeating the above process, we get our proposition easily. �

Corollary 1. Let s0 ď s be a non-negative integer. Then the set Es0
of

points a1 of A1 such that a non-degenerate rational map f 1 defined by

Xpa1q has the property degp f 1rUpa1qsq ď s0 is a k-closed subset of A1.

Proof. This follows easily from our proposition. �

Corollary 2. With the same notations and assumptions of our proposi-

tion, assume further that f is a birational map. Then there is a k-open

subset A1
0

of A1 such that the following conditions are satisfied by points

a1 of A1
0
: When f 1 is a non-degenerate map of Upa1q defined by Xpa1q,

f 1 is a birational map and degp f pUpaqqq “ degp f 1pUpa1qqq.

Proof. Using the same notations of the proof of our proposition, let a1 P
D1. Then a point pa1, t1,w1q P D0 was such that Γpt1q is irreducible,303

Wpw1q is irreducible, degpWpwqq “ degpWpw1qq “ s and Wpw1q is not

contained in any hyperplane. Then Γpt1q is the closure of the graph of

a birational map defined by Xpa1q. Therefore, it is easy to see that D1

satisfies our requirement as A1
0
. �

Corollary 3. With the same notations and assumptions of our proposi-

tion, assume further that f is a birational map and that f pUpaqq is non-

singular. Then there is a k-open subset A1
0

of A1 such that the following
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conditions are satisfied by points a1 of A1
0
: When f 1 is a non-degenerate

rational map of Upa1q defined by Xpa1q, f 1 is a birational map, f 1pUpa1qq
is non-singular and that degp f pUpaqqq “ degp f 1pUpa1qqq.

Proof. In the proofs of our proposition and corollary, above take W0

to be the set of points w1 such that Wpw1q is irreducible, non-singular

and not contained in any hyperplane. W0 is also a k-open subset of W.

The rest of our proof will then be exactly the same as that of the above

corollary. �

Corollary 4. With the same notations and assumptions of our propo-

sition, assume that f is not birational. Then there is a k-open sub-

set A2
0

of points a1 of A1 with the following property: When f 1 is a

non-degenerate rational map defined by Xpa1q, f 1 is not birational and

degp f rUpaqsq “ degp f 1rUpa1qsq.

Proof. The proof of Corollary 2 above goes through almost word for

word when we make the following change: (i) “birational” should be

changed to “not birational”. It should be noted that pr2 Γptq “ mWpwq,

pr2 Γpt1q “ mWpw1q and m ą 1 in the proof of our proposition since f

in our case is not birational. �
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9-26.

[24] G. Shimura : Reduction of algebraic varieties with respect to a

discrete valuation of the basic field, Amer. J. Math. 77 (1955), 134-

176.

[25] A. Weil : Foundations of Algebraic Geometry, Amer. Math. Soc.

Col. Publ., No. 29 (1960).

[26] A. Weil : Variétés Abeliennes et Courbes Algébriques, Act. Sci.
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BI-EXTENSIONS OF FORMAL GROUPS

By David Mumford

In the Colloquium itself, I announced that all abelian varieties can 307

be lifted to characteristic zero. The proof of this, as sketched there, is

roughly as follows.

(i) It suffices to prove that every char p abelian variety is a spe-

cialization of a char p abelian variety with multiplicative formal

group (an “ordinary” abelian variety), since Serre (unpublished)

has shown that these admit liftings.

(ii) A preliminary reduction of the problem was made to abelian va-

rieties X such that the invariant

αpXq “ dimk Hompαp, Xq

is 1.

(iii) A method was found to construct deformations of a polarized

abelian variety from deformations of its polarized Dieudonné mod-

ule.

(iv) Finally, some simple deformations of polarized Dieudonné mod-

ules were constructed to establish the result.

However, it seems premature to give this proof here, since the basic

method used in (iii) promises to give much fuller information on the

local structure of the formal moduli space of a polarized abelian variety,

and this would make my ad hoc method obsolete. I want instead to give

some basic information on the main new technical tool which is used in

(iii).
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1 Cartier’s result. In the note [1], Cartier has announced a

module-theoretic classification of formal groups over arbitrary ground-

rings R. We require only the special case where p “ 0 in R, which

is foreshadowed in Dieudonn’es original paper [2], before the category

men got a hold of it, modifying the technique until the restriction “R =

perfect field” came to seem essential.

Definition. Let R be a ring of characteristic p. Let WpRq be the ring of308

Witt vectors over R, and let

pa0, a1, a2, . . .q
σ “ pa

p

0
, a

p

1
, a

p

2
, . . .q,

pa0, a1, a2, . . .q
t “ p0, a0, a1, . . .q.

Then AR will denote the ring

WpRqrrVssrFs

modulo the relations:

(a) FV “ p,

(b) VaF “ at,

(c) Fa “ aσF,

(d) aV “ Vaσ,

for all a P WpRq.

Theorem (Dieudonné-Cartier). There is a covariant equivalence of cat-

egories between

(A) the category of commutative formal groups Φ over R, and

(B) the category of left AR-modules M such that

(a)
Ş
i

V iM “ p0q,

(b) Vm “ 0 ñ m “ 0, all m P M,
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Bi-Extensions of Formal Groups 323

(c) M{V M is a free R-module of finite rank.

The correspondence between these 2 categories can be set up as

follows. Recall first that a formal group Φ{R (by which we mean a set

of n power series φipx1, . . . , xn; y1, . . . , ynq, 1 ď i ď n, satisfying the

usual identities, c.f. Lazard [3]) defines a covariant functor FΦ from

R-algebbras S to groups : i.e. @ S {R,

FΦpS q “ tpa1, . . . , anq|ai P S , ai nilpotentu

where

pa1, . . . , anq ¨ pb1, . . . , bnq

“ pφ1pa1, . . . , an; b1, . . . , bnq, . . . , φnpa1, . . . , an; b1, . . . , bnqq.

N. B. In what follows, we will often call the functor FΦ instead of the

power series Φ the formal group, for simplicity.

Let pW be the functor 309

" xW “ tpa0, a1, . . .q|ai P S , ai nilpotent, almost all ai “ 0u,
gp law “ Witt vector addition.

Then we attach to the commutative formal group Φ the set

M “ Homgp. functors/Rp pW, FΦq,

and since AR – HompxW,xWq0, we can endow M with the structure of

left AR-module. Conversely, to go in the other direction, first note that

any AR-module M as in the theorem can be resolved:

0 Ñ An
R

β
ÝÑ An

R

α
ÝÑ M Ñ 0. (*)

In fact, choose m1, . . . ,mn P M whose images mod V M are a basis of

M{V M as R-module. Define

αpP1, . . . , Pnq “
nÿ

i“1

Pimi.
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It is easy to check that Fmi can be expanded in the form
nř

j“1

Qi jpVqm j,

Qi j a power series in V with coefficients in WpRq. Define

βpP1, . . . , Pnq “

˜
nÿ

i“1

Pi ¨ Qi1 ´ δi1F, . . . ,

nÿ

i“1

Pi ¨ Qin ´ δinF

¸
.

It is not hard to check that (*) is exact. Then β defines a monomorphism

of group functors β˚ : p pWqn Ñ p pWqn, and let F be the quotient functor

p pWqn{β˚p pWqn. Then F is isomorphic to FΦ for one and-up to canonical

isomorphism-only one formal group Φ.

Moreover, we get a resolution of the functor FΦ:

0 Ñ p pWqn β˚

ÝÑ p pWqn Ñ FΦ Ñ 0.

When R is a perfect field, the above correspondence can be extended

to an analogous correspondence between p-divisible groups over R and

WpRqrF,Vs-modules of suitable type (c.f. [4], [5]). However, it does310

not seem likely at present that such an extension exists for non-perfect

R’s. This is a key point.

2 Bi-extensions of abelian groups. Let A, B, C be 3 abelian

groups. A bi-extension of B ˆ C by A will denote a set G on which A

acts freely, together with a map

G
π
ÝÑ B ˆ C

making B ˆ C into the quotient G{A, together with 2 laws of composi-

tion:

`1 : Gˆ
B

G Ñ G

def

; `2 : Gˆ
C

G Ñ G

def

tpg1, g2q|πpg1q, πpg2q have tpg1, g2q|πpg1q, πpg2q have

same B-componentu some C-componentu
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These are subject to the requirement:

(i) for all b P B, G1
b

“ π´1pb ˆ Cq is an abelian group under `1, π is

a surjective homomorphism of G1
b

onto C, and via the action of A

on G1
b
, A is isomorphic to the kernel of π;

(ii) for all c P C, G2
c “ π´1pB ˆ cq is an abelian group under `2, π is

a surjective homomorphism of G2
c onto B, and via the action of A

on G2
c , A is isomorphic to the kernel of π;

(iii) given x, y, u, v P G such that

πpxq “ pb1, c1q

πpyq “ pb1, c2q

πpuq “ pb2, c1q

πpvq “ pb2, c2q,

then

px `1 yq `2 pu `1 vq “ px `2 uq `1 py `2 vq.

This may seem like rather a mess, but please consider the moti- 311

vating example: let X be an abelian variety over an algebraically

closed field k, let pX be its dual, and let P be the universal, or

Poincaré, line bundle on over X ˆ pX. Then Pk, the underlying set

of closed points of P, is a bi-extension of Xk ˆ pXk by k˚!

Notice that if G is a bi-extension of B ˆ C by A, then π´1pB ˆ 0q
splits canonically into A ˆ B, and π´1p0 ˆ Cq splits canonically into

A ˆ C. In fact, we can lift B to π´1pB ˆ 0q by mapping b P B to the

element of G which is the identity in π´1pb ˆ Cq; and we can lift C to

π´1p0 ˆ Cq by mapping c P C to the element of G which is the identity

in π´1pB ˆ cq.

Bi-extensions can be conveniently described by co-cycles: choose a

(set-theoretic) section
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Via s and the action of A on G, we construct an isomorphism

G – A ˆ B ˆ C

such that the action of A on G corresponds to the action of A on A ˆ
B ˆ C which is just addition of A-components, leaving the B-and C-

components fixed. Then `1 and `2 go over into laws of composition on

A ˆ B ˆ C given by:

pa, b, cq `1 pa1, b, c1q “ pa ` a1 ` φpb; c, c1q, b, c ` c1q

pa, b, cq `2 pa1, b1, cq “ pa ` a1 ` ψpb, b1; cq, b ` b1, cq.

For `1, `2 to be abelian group laws, we need:

(a) φpb; c ` c1, c2q ` φpb; c, c1q “ φpb; c, c1 ` c2q ` φpb; c1, c2q
φpb; c, c1q “ φpb; c1, cq;

(b) ψpb ` b1, b2; cq ` ψpb, b1; cq “ ψpb, b1 ` b2; cq ` ψpb1, b2; cq
ψpb, b1; cq “ ψpb1, b; cq.

The final restriction comes out as:

(c) φpb ` b1; c, c1q ´ φpb; c, c1q ´ φpb1; c, c1q312

“ ψpb, b1; c ` c1q ´ ψpb, b1; cq ´ ψpb, b1; c1q.

What are the co-boundaries? If you alter s by adding to it a map ρ :

B ˆ C Ñ A, then you check that the new φ1, ψ1 are related to the old

ones by

φ1pb; c, c1q ´ φpb; c, c1q “ ρpb, c ` c1q ´ ρpb, cq ´ ρpb, c1q

ψ1pb, b1; cq ´ ψpb, b1; cq “ ρpb ` b1, cq ´ ρpb, cq ´ ρpb, cq.

Using this explicit expression by co-cycles and co-boundaries, it is

clear that the set of all bi-extensions of BˆC by A forms itself an abelian

group, which we will denote

Bi-ext pB ˆ C, Aq.

It is also clear, either from the definition or via co-cycles, that Bi-ext

is a covariant functor in A, and a contravariant functor in B and C.
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3 Bi-extensions of group-functors.

Definition. If F, G, H are 3 covariant functors from the category of

R-algebras to the category of abelian groups, a bi-extension of G ˆ H

by F is a fourth functor K such that for every R-algebra S , KpS q is a

bi-extension of GpS q ˆ HpS q by FpS q and for every R-homomorphism

S 1 Ñ S 2, the map KpS 1q Ñ KpS 2q is a homomorphism of bi-extensions

(in the obvious sense). In particular, if F, G, H are formal groups, this

gives us a bi-extension of formal groups.

If F, G, H are formal groups, it is easy again to compute the bi-

extensions K by power series co-cycles. In fact, one merely has to check

that:

(i) there is a functorial section

(this follows using the “smoothness” of the functor F, i.e. FpS q Ñ 313

FpS {Iq is surjective if I is a nilpotent ideal);

(ii) any morphism of functors from one product of formal groups to

another such product is given explicitly by a set of power series

over R in the appropriate variables.

In fact, we will be exclusively interested in the case where F “ pGm

is the formal multiplicative group; that is

pGmpS q “

"
Units in S of form 1 ` x, x nilpotent,

composed via multiplication.

*

Then if G and H are formal groups in variables x1, . . . , xn and y1, . . . , ym,

a bi-extension of G ˆ H by pGm is given by 2 power series

σpx1, . . . , xn; y1, . . . , ym, y
1
1, . . . , y

1
mq, τpx1, . . . , xn, x1

1, . . . , x1
n; y1, . . . , ymq
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with constant terms 1 such that - abbreviating n-tuples and m-tuples:

σpx;Φpy, y1q, y2q ¨ σpx; y, y1q “ σpx; y,Φpy1, y2qq ¨ σpx; y1, y2q

σpx; y, y1q “ σpx; y1, yq

τpΨpx, x1q, x2, yq ¨ τpx, x1; yq “ τpx,Ψpx1, x2q; yq ¨ τpx1, x2; yq

τpx, x1; yq “ τpx1, x; yq

σpΨpx, x1q; y, y1q ¨ σpx; y, y1q´1 ¨ σpx1; y, y1q´1 “ τpx, x1;Φpy, y1qq¨

τpx, x1; yq´1 ¨ τpx, x1; y1q´1,

if Φ, Ψ are the group laws of G and H respectively.

We want one slightly non-trivial fact about general bi-extensions.

This result gives essentially the method for computing Bi-ext’s via res-

olutions.

Proposition 1. Let E, G, G1 be abelian group functors as above. Sup-

pose

0 Ñ F1 Ñ F0 Ñ G Ñ 0

0 Ñ F1
1 Ñ F1

0 Ñ G1 Ñ 0

are 2 exact sequences of such functors. Then

KertBi-ext pG ˆ G1, Eq Ñ Bi-ext pF0 ˆ F1
0, Equ

–

tp f , gq| f : F0 ˆ F1
1

Ñ E and g : F1 ˆ F1
0

Ñ E bi-homomorphisms

res f “ res g on F1 ˆ F1
1
u

tp f , gq|Dh : F0 ˆ F1
0

Ñ E bi-homomorphism, f and g restrictions of hu

314

The proof goes along these lines: let H be a bi-extension of G ˆ G1

by E. If it lies in the above kernel, then the induced bi-extension of

F0 ˆ F1
0

is trivial:

H ˆ
pGˆG1q

pF0 ˆ F1
0q – E ˆ F0 ˆ F1

0.

Consider the equivalence relation on the functor E ˆF0 ˆF1
0

induced by

the mapping of it onto H. It comes out that there are maps f : F0ˆF1
1

Ñ
E, g : F1 ˆ F1

0
Ñ E such that this equivalence relation is generated by
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pa, b, cq „ pa ` f pb, cq, b, c ` cq, a P EpS q, b P F0pS q

c P F1
0pS q, c P F1

1pS q. (15.1)

and

pa, b, cq „ pa ` gpb, cq, b ` b, cq, a P EpS q, b P F0pS q

b P F1pS q, c P F1
0pS q. (15.2)

Moreover, f and g have to be bi-homomorphisms with res f “ res g

on F1 ˆ F1
1
. Conversely, given such g and g, define the functor H to

be the quotient of E ˆ F0 ˆ F1
0

by the above equivalence relation. H

turns out to be a bi-extension. Finally, the triviality of H can be seen to

be equivalent to f and g being the restrictions of a bi-homomorphism

h : F0 ˆ F1
0

Ñ E.

4 Bi-extensions of pW.

Proposition 2. Bi ´ extpxW ˆ xW, pGmq “ p0q.

Proof. Consider functors F from (R-algebras) to (abelian groups) which

are isomorphic as set functors to DI , where

DIpS q “ tpaiq|ai P S , all i P I, ai nilpotent, almost all ai “ 0u

and where I is an indexing set which is either finite or countably infinite.

Note that all our functors are of this type. Then I claim that for all R of

char p, all such F, there is a canonical retraction pF :

Hom

gp-functorsinclusionset-functors
Hom

315

which is functorial both with respect to (15.1) any homomorphism

F Ñ G, and (15.2) base changes R1 Ñ R2.

The construction of pF is based on Theorem 1 of Cartier’s note [1].

Let pW˚ be the full Witt group functor (i.e. based on all positive integers,
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rather than powers of p), and let i : D Ñ xW˚ be the canonical inclusion

used in [1]. Then Theorem 1 asserts that for all formal groups F, every

morphism φ : D Ñ F extends uniquely to a homomorphism u : xW˚ Ñ
F.

D
φ //

_�

i

��

F

xW˚

u

>>⑥
⑥

⑥
⑥

⑥
⑥

Cartier informs me that this theorem extends to all F’s of our type. On

the other hand, xW, over a ring of char p, is a direct summand of xW˚:

xW˚

π
// xW.

joo

Construct pF as follows: given f : xW Ñ F, let φ “ res to D of f ˝ π;

let u = extension of φ to a homomorphism u; let pFp f q “ u ˝ j.

Now let F be a bi-extension of xW ˆ xW by pGm. For every R-algebra

S and every a P xWpS q, let F1
a (resp. F2

a ) denote the fibre functor of F

over tau ˆ xW (resp. xW ˆ tau) (i.e. FapT q “ tb P FpT q|1st (resp. 2nd)

component of πpbq is induced by a via S Ñ T }). Then F1
a and F2

a are

group functors of the good type extending xW by pGm over ground ring316

S . Now since pGm is smooth, one can choose a section s to π:

s restricts to morphisms sa : pW{S Ñ F1
a, for all a P xWpS q. Take

pF1
a
psaq. As a varies, these fit together into a new section p1psq to π.

But p1psq is now a homomorphism with respect to addition into the 2nd

variable, i.e.

p1psqpu, vq `1 p1psqpu, v1q “ p1psqpu, v ` v1q. (*)1
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Now switch the 2 factors : p1psq restricts to morphism p1psqa : xW{S Ñ
F2

a , for all a P xWpS q. Take pF2
a
pp1psqaq. As a varies, these fit together

into a new section p2pp1psqq to π.

Then this satisfies :

p2pp1psqqpu, vq `2 p2pp1psqqpu1, vq “ p2pp1psqqpu ` u1, vq. (*)2

But now, using the functoriality of p, and the property of bi-extensions

linking `1 and `2, it falls out that p2pp1psqq still has property p˚q1 en-

joyed by p1psq! So p2pp1psqq preserves both group laws and splits the

extension F. �

Definition. AR will denote the ring WpRqrrF,Vss modulo the relations

(a) FV “ p

(b) VaF “ a1

(c) Fa “ aσF

(d) aV “ Vaσ, all a P WpRq.

Every element in this ring can be expanded uniquely in the form:

P “ a0 `
8ÿ

i“1

V iai `
8ÿ

i“1

a´iF
i.

For every such P, let

P˚ “ a0 `
8ÿ

i“1

aiF
i `

8ÿ

i“1

V ia´i.

Then * is an anti-automorphism of Ak of order 2. We shall consider AR 317

as an AR ˆ AR-module via

pP,Qq ¨ x “ P ¨ x ¨ Q˚. (*)

Proposition 3. Bi-homRpxW ˆ xW, pGmq – AR.

Moreover, since AR “ HomRpxW,xWq0, the left-hand side is an AR ˆ AR-

module; under the above isomorphism, this structure corresponds to the

AR ˆ AR-module structure on AR defined by p˚q.
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Proof. Cartier [1] has shown that for all R, the Artin-Hasse exponential

defines isomorphisms

HomRpxW, pGmq – WpRq

where W is the full Witt functor
"

WpRq “ tpa0, a1, . . .q|ai P Ru
group law = addition of Witt vectors.

Therefore,

Bi-HomRpxW ˆ xW, pGmq – HomRpxW,Wq.

Define a homomorphism

AR
φ
ÝÑ HomRpxW,Wq

by P Ñ the map rb ÞÑ Ppbqs.

Here Ppbq means that V and F operate on Witt vectors in the usual way:

note that the doubly infinite series P operators on b since b has only

a finite number of components and all are nilpotent, whereas Ppbq is

allowed to have all components non-zero.

Let

xWnpRq “ tpa0, a1, . . .q|apn

i
“ 0, all i; almost all ai “ 0u.

Notice that

HomRpxW,Wq – limÐÝ
n

HomRpxWn,Wq,

and that φ factors through maps318

AR{AR ¨ Fn φnÝÑ HomRpxWn,Wq.

It suffices to show that φn is an isomorphism for all n. But for n “ 1,

AR{AR ¨ F – RrrVss, while

HomRpxW1,Wq – Homp-Lie algebraspLiepxW,LiepWqq.
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Also LiepxWq is the free R-module on generators pe0, pe1, pe2, . . . with

peppq
i

“ pei`1; and LiepWq is the R-module of all expressions
8ř

i“0

aiei,

ai P R, with same pth power map. Moreover
8ř

i“0

V iai P RrrVss goes via

φ1 to the lie algebra map taking pe0 to
8ř

i“0

aiei. Thus φ1 is an isomor-

phism. Now use induction on n, and the exact sequences

0 Ñ xWn´1 Ñ xWn
Fn´1

ÝÝÝÑ xW1 Ñ 0.

This leads to the diagram:

0 // HomRpxW1,Wq
˝Fn´1

// HomRpxWn,Wq // HomRpxWn´1,Wq

0 // AR{AR ¨ F
ˆFn´1

//

φ1

OO

AR{AR ¨ Fn

φn

OO

// AR{AR ¨ Fn´1 Ñ 0.

φn´1

OO

The bottom line is easily seen to the exact, so if φ1 and φn´1 are isomor-

phisms, the diagram implies that φn is an epimorphism. �

Corollary. Let F1 and F2 be group functors isomorphic to pxWqni for

some n1, n2. Let Mi “ HomRpxW, Fiq be the corresponding finitely gen-

erated, free AR-module. Then there is a 1 ´ 1 correspondence between

bi-homomorphisms

B : F1 ˆ F2 Ñ pGm

and maps

β : M1 ˆ M2 Ñ AR,

bi-linear in the following sense: 319

βpPm,Qnq “ P ¨ pm, nq ¨ Q˚

(all m P M1, n P M2, P, Q P AR).
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5 Applications. Putting Propositions 1, 2 and 3 together, we con-

clude the followng

Corollary. (a) Let Φ, Ψ be formal groups over R.

(b) Let M, N be the corresponding Dieudonné modules.

(c) Let

0 Ñ F1 Ñ F0 Ñ M Ñ 0

0 Ñ G1 Ñ G0 Ñ N Ñ 0

be resolutions of M and N by finitely generated, free AR-modules.

Then the group Bi ´ extRpΦ ˆ Ψ, pGmq of bi-extensions of formal

groups can be computed as the set of pairs of bi-linear maps:

β : F0 ˆ G1 Ñ AR,

γ : F1 ˆ G0 Ñ AR,

such that β “ γ on F1 ˆG1, taken modulo restrictions of bi-linear

maps α : F0 ˆ G0 Ñ AR.

In another direction, bi-extensions can be linked to p-divisible

groups, as defined by Take [6].

Proposition 4. Let F and F1 be formal groups over a char p ring R.

Assume that the subgroups Gn(resp. G1
n) = Kerppn in Fpresp F1qq form

p-divisible groups over R(i.e. F and F1 are “equi-dimensional”, or of

“finite height”). Then there is a 1 ´ 1 correspondence between (1) bi-

extensions of F ˆ F1 by pGm and (2) sets of bi-homomorphisms βn :

Gn ˆ G1
n Ñ µpn , such that for all x P Gn`1pS q, y P G1

n`1
pS q,

βnppx, pyq “ βn`1px, yqp.

Proof. We will use descent theory and existence of quotients by finite,320

flat equivalence relations: c.f. Raynaud’s article in the same volume as

Tate’s talk [6]. Starting with the βn’s, let Ln be the quotient functor in

the flat topology of pGm ˆ Gn ˆ G1
2n

by the equivalence relation:

pλ, x, yq „ pλ ¨ βnpx, bq, x, y ` bq
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where λ P pGmpS q, x P GnpS q, y P G1
2n

pS q, b P G1
npS q. Then Ln is a

bi-extension of Gn ˆG1
n by pGm. Moreover, Ln is a subfunctor of Ln`1, so

if we let L be the direct limit of the functor Ln, then L is a bi-extension

of F ˆ F1 by pGm.

Conversely, if we start with L, let Ln be the restriction of L over

Gn ˆ G1
n. In the diagram

Ln

π

��
Gn ˆ G1

2n

φ

44✐✐✐✐✐✐✐✐✐✐✐

1ˆpr
// Gn ˆ G1

n,

I want to define a canonical map φ which is a homomorphism in both

variables, i.e. which splits the induced bi-extension over Gn ˆ G1
2n

.

Suppose x P GnpS q, y P G1
npS q for some R-algebra S . Choose z1 P LpS q

such that πpz1q “ px, yq. If we add z1 to itself pn times in the 1st variable,

we obtain a point:

rpns`1
pz1q “ z2

πpz2q “ p0, yq.

But π´1pp0 ˆ F1q is canonically isomorphic to pGm ˆ p0q ˆ F1, so z2 “
pλ, 0, yq, some λ P pGmpS q. Now choose a finite flat S -algebra S 1 such

that λ “ µpn for some µ P pGmpS 1q. Letting z1 also denote the element of

LpS 1q induced by z1, define z1
1

“ µ´1 ¨ z1. This is a new point of L over

px, yq, which now satisfies rpns`1
pz1

1
q “ p1, 0, yq. Now add z1

1
to itself

pn times in the 2nd variable. This gives a point

rpns`2
pz1

1q “ z1
3 P L˚

n pS 1q,

πpz1
3q “ px, pnyq.

Clearly, z1
3

is independent of the choice of µ, so by descent theory, z1
3

321

must be induced by a unique element z3 P LnpS q. Define φpx, yq “ z3.

It is easy to check that φ is a homomorphism in both variables.
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We can use φ to set up a fibre product diagram:

pGm ˆ Gn ˆ G1
2n

π

��

α // Ln

π

��
Gn ˆ G1

2n p1ˆpnq
// Gn ˆ G1

n

where α is a homomorphism of bi-extensions. Since pn is faithfully flat,

so is α, and Ln is therefore the quotient of pGm ˆ Gn ˆ G1
2n

by a suitable

flat equivalence relation. For every x P GnpS q, y P G1
2n

pS q, b P G1
npS q

and λ P pGmpS q, there is a unique element βnpx, y, b, λq P pGmpS q such

that

αppλ, x, yqq “ αppλ ¨ βnpx, y, b, λq, x, y ` bq

and this function βn describes the equivalence relation. Using the fact

that α is a homomorphism of bi-extensions, we deduce

(1) that βn does not depend on λ,

(2) βnpx, y, bq ¨ βnpx, y ` b, b1q “ βnpx, y, b ` b1q (via associativity of

equivalence relation),

(3) βnpx, y, bq ¨ βnpx1, y, bq “ βnpx ` x1, y, bq (α preserves `1),

(4) βnpx, y, bq ¨ βnpx, y1, b1q “ βnpx, y ` y1, b ` b1q (α preserves `2).

By (4) and (2) with b “ y1 “ 0,

βnpx, y, 0q ¨ βnpx, 0, b1q “ βnpx, y, b1q “ βnpx, y, 0q ¨ βnpx, y, b1q,

hence βn is independent of y too. Then (3) and (4) show that βn is a

bi-homomorphism, so Ln is constructed from a βn as required. We leave322

it to the reader to check that if we start from a set of βn’s, and construct

a bi-extension L, then the above procedure leads you back to these same

βn’s. �

I think that with these results, bi-extensions can be applied to the

problem of determining the local structure of the moduli space of polar-

ized abelian varieties.
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SOME QUESTIONS ON RATIONAL ACTIONS OF

GROUPS

By Masayoshi Nagata

The contents are divided into two parts. In Part I, we discuss the323

rings of invariants of a finite group in a noetherian ring. In Part II, we

raise some questions on rational actions of groups, mostly connected

algebraic groups. By a ring, we mean a commutative ring with identity.

By a subring, we mean a subring having common identity.

Part I.

0 We discuss here the following question.

Question 0.0. Let R be a noetherian ring and let G be a finite group

acting on R. Let A be the ring of invariants in R. Is A noetherian ?

Unfortunately, the answer is not affirmative in general as will be

shown later by counter-examples. Since the examples which we have

non-normal, we raise a question.

Question 0.1. Assume, in Question 0.0, R is a direct sum of normal

rings. Is then A noetherian ?

We shall begin with some simple cases. We maintain the meanings

of R, G, A of Question 0.0.

Proposition 0.2. If the order g of G is not divisible by the characteristic

of any residue class field of R, in other words, if g is a unit in R, then A

is noetherian.

Proof. If h1, . . . , hs P A and if f P pΣhiRq X A, then f “ Σhiripri P Rq.

Then g f “
ř
σPG

σ f “
ř
i

ř
σPG

hipσriq, and f “
ř
i

hipg´1
ř
σPG

σriq P

ΣhiA. Thus we have pΣhiRqXA “ ΣhiA. From this the assertion follows

easily. �
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Proposition 0.3. If R is a Dedekind domain, then A is also a Dedekind 324

domain, and R is a finite A-module.

The proof is obvious in view of the following well known lemma

(see for instance [L]).

Lemma 0.4. Let A1 be a normal ring and let k1 be an integral extension

of A1 in an algebraic extension L of the field of quotients K of A1. Assume

that a P R1 generates L over K. Let f pxq be the irreducible monic

polynomial for a over A1. Then letting d be one of (i) discriminant of

f pxq and (ii) d f paq{dx, we have dR1 Ď A1ras.
Another easy case is:

Remark 0.5. If R is a ring of quotients of a finitely generated ring R0

over a subring F of A and if F is pseudo-geometric, then A is a ring of

quotients of a finitely generated ring A0 over F, hence A is noetherian.

As our example below (see the proof of Proposition 0.11) shows,

Question 0.0 is not affirmative even if we assume that R is a pseudo-

geometric local integral domain of Krull dimension 1, whose derived

normal ring is a valuation ring: this fact shows that:

Remark 0.6. Assume that a subring S of R is G-stable and that B is the

ring of G-invariants in S . Even if R is a discrete valuation ring of the

field of quotients of S and is a finite S -module, A may not be a finite

B-module.

On the other hand, one can show:

Remark 0.7. If, for a subring S of a noetherian ring R, R is a finite

S -module, then S is noetherian. (Proof of this remark will be published

somewhere else.)

Therefore the writer believes it is an important question to ask for

reasonable sufficient conditions for R to be a finite A-module.

Now we are going to construct counter-examples to the question.

Proposition 0.8. Let F be a field of characteristic p ‰ 0 and let x1,

x2, . . . infinitely many indeterminates. Consider the derivation D “
ř
i“1

x
si

i

B

Bxi

of the field K “ Fpx1, . . . , xn, . . .q, such that (i) each si is 325
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a non-negative integer ” 0, 1 modulo p, either 0 or greater than p ´ 1

and (ii) infinite number of si are ” 1 modulo p. Let C be the field of

constants with respect to D. Then rK : Cs “ 8.

Proof. For simplicity, we assume that si “ p`1 for i “ r, r`1, . . .. We

show that xr, xr`1, . . . are linearly independent over C. For, if
ř
iěr

xici “

0pci P Cq, then by the operation of D, we have Σx
si

i
ci “ 0 which can

be written Σxipx
p

i
ciq “ 0. Since x

p

i
ci P C, we have got another linear

relation, and we get a contradiction. �

Proposition 0.9. Let K be a field of characteristic p ‰ 0. Let y be an

element defined by y2 “ 0. Consider the ring R “ Krys “ K ` yK. Let

D be a derivation of K. Then the map σ : f ` yg Ñ f ` yg ` y D f

gives an automorphism of R and σp “ 1.

Proof is easy and we omit it.

Now we have

Proposition 0.10. In the question stated at the beginning, even if R is

an artinian ring, A can be non-noetherian.

Proof. Let K, C and D be as in Proposition 0.8 and then let y, σ be as

in Proposition 0.9. For G “ t1, σ, . . . , σp´1u, A “ t f ` yg|D f “ 0u “
C ` yK. Since rK : Cs “ 8, A is not noetherian. �

Proposition 0.11. In the question, even if R is assumed to be a pseudo-

geometric local integral domain of Krull dimension 1, A can be non-

noetherian.

Proof. Let F be a field of characteristic p ‰ 0 and let y, z1, z2, . . .

be infinitely many indeterminates. Set K˚ “ Fpz1, z2, . . .q and V “
K˚ryspyq. Then V is a discrete valuation ring and has an automorphism σ

such thatσz1 “ z1`y andσ fixes every element of Frz2, z3, . . . , ys¨σp “
1. We set

x1 “ z
2p

1
, xi “ zi ` ypz

p`1

i
z

p

i
pi ě 2q,w1 “ y2p,wi “ y2pzipi ě 2q.
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Then σzi “ zi ` wi and σwi “ wi. Thus G “ t1, σ, . . . , σp´1u acts326

on the ring R1 “ Frx1, x2, . . . ,w1,w2, . . .s. Set R “ R1
yVXR1 . Then G

acts on R. The ring of invariants A is of the form A1
yVXA1 with A1 “

A X R1. We observe elements of A1. It is of the form f pxq ` Σwitipxq`

(terms of higher degree in w). Invariance implies that Σwi

B f pxq

Bxi

”

0pmod y2p`1Vq. This implies that, denoting by D the derivation
B

Bx1

`

ř
iě2

x
p`1

i

B

Bxi

of K “ Fpx1, x2, . . .q, D f pxq “ 0. Therefore A1{yV X A1 is

contained in the field of constants with respect to this D. Thus, Proposi-

tion 0.8 shows that rR{yV XR : A{yV XAs “ 8 and that the sequence of

ideals py2p`1V X Aq `
2ř

i“2

wiApn “ 2, 3, . . .q gives an infinite ascending

chain of ideals. Thus A is not noetherian. That R is a pseudogeometric

local integral domain of Krull dimension 1 follows from the fact that

R Ą Fpx1, x2, . . .qry2ps. �

Remark 0.12. The examples above can be modified to be examples in

case of unequal characteristics. In the first example, R is such that (i)

characteristic is p2, (ii) R{PR “ K. In the latter example, let y be p1{2p.

At the end of this Part I, we raise the following question in view of

our construction of these counter-examples.

Question 0.13. Let R be a noetherian ring and let S be a subring such

that R is integral over S . Assume that for every prime ideal P of E, the

ring R{P is an almost finite integral extension of S {pP X S q and that

there is a non-zero-divisor d P S such that dR Ď S . Is S noetherian ?

We note that the following fact can be proved easily.

Remark 0.14. Question 0.13 is affirmative if R is either an artinian ring

or an integral domain of Krull dimension 1, even if we do not assume

the existence of d. Without assuming the existence of d, one can have

a counter-example in case R is a normal local domain of Krull dimen-

sion 2. (In [L], there is an example of a local domain, say B, of Krull 327
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dimension 2 such that there is a non-noetherian ring S between B and

its derived normal ring R. These S and R give a counter-example.)

Part II.

1 Let G be a group acting on a function field K over an algebraically

closed ground field k.* We say that the action is rational if there is a pair

of an algebraic group G˚ and a model V of K, both defined over k, such

that (i) G is a subgroup of G˚ and (ii) the action of G is induced by a

rational action of G˚ on V . Thus we are practically thinking of rational

actions of algebraic groups.

At first, we discuss the choice of V . Namely, we fix a group G,

which may be assumed to be algebraic, and a function field K over an

algebraically closed field k such that G is acting rationally on K. Then

there may be many models V of K which satisfy the requirement in the

above definition.

Proposition 1.1. When a V satisfies the requirement, then so does the

derived normal model of V.

The proof is easy.

Proposition 1.2. If a quasi-affine variety V satisfies the requirement,

then there is an affine model V 1 of K which satisfies the requirement.

Proof. Let R be the ring of elements of K which are everywhere regular

on V . Then the rationality of the action of G on V implies that
ř
σPG

pσ f qk

is a finite k-module for every f P RprFsq. Let f1, . . . , fn be elements of R

such that K “ kp f1, . . . , fnq and let g1, . . . , gs be a linearly independent

base of
nř

i“1

ř
σPG

pσ fiqk. Then the affine model V 1 defined by krg1, . . . , gss

is the desired variety. �

*Though many of our discussions can be adapted to the case where k is a ground

ring, we assume that k is an algebraically closed field for the sake of simplicity.
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Proposition 1.3. If an affine variety V satisfies the requirement, then 328

there is a projective model V 1 of K which satisfies the requirement.

Proof. As is seen by the proof above, we may assume that the affine

ring R of V is such that R “ krg1, . . . , gss, where
sř

i“1

gik is a represen-

tation module of G. Then the projective variety V 1 with generic point

p1, g1, . . . , gsq is the desired variety. �

Remark 1.4. In the case above, the action of G is practically that of a

linear group.

It was proved by Kambayashi ([K]) that

Proposition 1.5. If G is a linear group and V is a complete variety, then

there is a projective model V 1 of K which satisfies the requirement (and

such that every element of G defines a linear transformation on V 1).

These results suggest to us the following question.

Question 1.6. Does the rationality of the action of G imply the existence

of a projective model of K which satisfies the requirement? How good

can the singularity of such a model be?

In connection with this question, we raise

Question 1.7. Let G be a connected linear group acting rationally on a

normal abstract variety V . Let L be a linear system on V . Does it follow

that there is a linear system L˚ on V which contains all σLpσ P Gq?

If this question has an affirmative answer, then at least for linear

groups, Question 1.6 has an affirmative answer. Note that Question 1.7

is affirmative if V is complete ([K]).

On the other hand, if there is a quasi-affine variety V which satisfies

the requirement, then for every model V 1 of K satisfying the require-

ment, it is true that the orbit of a generic point of V 1 is quasi-affine.

Thus, even if G is a connected linear algebraic group, if, for instance,

the isotropy group (=stabilizer) of a generic point contains a Borel sub- 329

group of G, then there cannot be any quasi-affine model of K satisfying

the requirement (unless the action of G is trivial). Therefore we raise
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Question 1.8. Assume that the orbit of a generic point of a V is quasi-

affine. Does this imply that there is an affine model of K which satisfies

the requirement ?

2 We observe the subgroup generated by two algebraic groups acting

on a function field. More precisely, let G and H be subgroups of the

automorphism group Autk K of the function field K over the group field

k. We shall show by an example that

Proposition 2.1. Even if G and H are linear algebraic groups, which

are isomorphic to the additive group Ga of k and acting rationally on K,

the subgroup G _ H generated by G and H (in Autk K) may not have

any rational action on K.

Example. Let a and b be non-zero elements of k and let K0, x, y be such

that ax2 ` by2 “ 1, K0 “ kpx, yq and trans. degk K0 “ 1. We assume

here that k is not of characteristic 2. Let pz,wq be a copy of px, yq over

k and let K “ kpx, y, z,wq = (quotient field of kpx, yqb
k

kpz,wq). Set

t “ py ´ wq{px ´ zq. Then K “ kpx, y, tq “ kpz,w, tq. We note the

relation : ˆ
x

y

˙
“ Ft

ˆ
z

w

˙

with

Ft “
1

bt2 ` a

ˆ
bt2 ´ a ´2bt

´2at a ´ bt2

˙
.

Autk K contains the following subgroups G and H :

G “ tσc P Autkpx,yq K|c P k, σct “ t ` cu – Ga,

H “ tτc P Autkpz,wq K|c P K, τct “ t ` cu – Ga.

Autk K has an element ρ such that ρ2 “ 1, ρx “ z, y “ w. Then H “
ρ´1Gρ. G acts rationally on the affine model of K defined by krx, y, ts
and H acts rationally on the affine model of K defined by krz,w, ts.
Thus G and H act rationally on K. For ci P k, we observe the ele-

ment τc1
ρτc2

ρ . . . ρτcρs; let us denote this element by rc1, . . . , css. Then330
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rcs
`

z
w

˘
“ τc

`
x
y

˘
“ Ft`c

`
z
w

˘
Note that if α

`
z
w

˘
“ F˚

t

`
z
w

˘
for α P Aut K

and with F˚
t P GLp2, kptqq, then

prcsαq

ˆ
z

w

˙
“ F˚

t`cFt

ˆ
z

w

˙

Thus, to each rc1, . . . , css there corresponds a matrix in GLp2, kptqq. In

view of this correspondence, one can see easily that the dimension of

the algebraic thick set pρGqn “ ρGρG . . . ρG tends to infinity with n.

Remark 2.2. Similar example is given so that G and H are isomorphic

to the multiplicative group of k, by changing σct “ t ` c and τct “ t ` c

to σct “ ct and τct “ ct respectively.

Now we raise

Question 2.3. Give good conditions for connected algebraic subgroups

G and H of Autk K so that G _ H is algebraic.

3 Let G be an algebraic group acting on a variety V . Then there may

be fixed points of G on V . In particular, if G is linear and if V is com-

plete, then there is at least one fixed point ([B]). The following fact was

noticed by Dr. John Forgarty.

Proposition 3.1. If G is a connected unipotent linear group and if V is a

projective variety, then the set F of fixed points on V is connected. More

generally, if W is a connected closed set in a projective variety and if G

is a connected unipotent linear group which acts rationally on W, then

the set F of fixed points of G on W is connected.

Proof. We shall prove the last statement by induction on dim G. Then

we may assume that dim G “ 1, i.e. G is isomorphic to the additive

group of k. Thus, in the following until we finish the proof of the propo-

sition, we assume that G is the additive group of k and that varieties and

curves are projective ones. �

Lemma 3.2. Under the circumstances, let C be an irreducible curve on

which G acts rationally. If there are two fixed (mutually different) points

on C, then every point of C is a fixed point.
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Proof. G can be imbedded in a projective line L biregularly. Then L331

consists of G and a point. If P P C is not fixed, then C ´ GP is a point,

which is not the case. �

Corollary 3.3. Under the circumstances, let C be a connected reducible

curve on which G acts rationally. Let C1 be an irreducible component

of C. If either there are two points (mutually different) on C1 which are

on some other components of C or there is a fixed point P on C1 which

is not on any other irreducible component of C, then every point of C1 is

fixed.

The proof is easy because (i) since G is connected, every component

of C is G-stable and therefore (ii) every point which is common to some

mutually different irreducible components of C is a fixed point.

Corollary 3.4. Under the circumstances, let C be a connected curve

on which G acts rationally. Then the set F0 of fixed points on C is

connected.

Proof. If C is irreducible, then either F0 consists of a point or F0 “ C,

and the assertion holds good in this case. We assume now that C is

reducible. If P P C is not fixed, then let C1 be the irreducible component

of C which carries P. C1 carries only one fixed point, say Q. Then every

component of C, which has a common point with C1, goes through Q.

Therefore C ´ GP is a connected curve, whose set of fixed points is

F0. Thus we finish the proof by induction on the number of irreducible

components of C.

Now we go back to the proof of Proposition 3.1. Let Wipi “ 1, . . . , nq
be the irreducible components of W. Since G is connected solvable,

Wi X W j contains a fixed point Pi j, unless Wi X W j is empty. If one

knows that every F X Wi is connected, then the existence of Pi j shows

the connectedness of F. Thus we may assume that W is irreducible.

Let P˚ be generic point of W and let P be a point of F. If P˚ is fixed,

then every point of W is fixed, and our assertion is obvious in this case.

Therefore we assume that P˚ is not a fixed point. Let C be the closure of

GP˚. Then C ´ GP˚ consists of a point, say Q˚. Consider a specializa-

tion of pC,Q˚q with reference to P˚ Ñ P: let pC,Q˚, P˚q Ñ pC,Q, Pq332

346



Some Questions on Rational Actions of Groups 347

be such a specialization. The locus D of Q˚ (i.e. the subvariety of W

having Q˚ as its generic point) consists only of fixed points. Q lies on

D X C. By the connectedness theorem, C is connected, whence F X C

is connected by Corollary 3.4. Thus F contains a connected subset con-

taining P and Q˚. Since this is true for every P P F, we complete the

proof. �

On the other hand, it is obvious that

Proposition 3.5. If G is a connected linear algebraic group whose rad-

ical is unipotent, acting on a projective space rationally as a group of

linear transformations, then the set of fixed points forms a linear subva-

riety.

Now our question is

Question 3.6. Find a good theorem including Proposition 3.1 and 3.5.

In connection with this question, we give an example.

Example 3.7. There is a pair of a semi-simple linear algebraic group G

and a connected closed set V in a projective space P such that (i) G acts

rationally on P as a group of linear transformations, (ii) GV “ V , i.e. V

is G-stable and (iii) the set F of fixed points on V is not connected.

The construction of the example. Let n be an arbitrary natural num-

ber and let G “ GLpn`1, kq. Eachσ P G defines a linear transformation

on the projective space P of dimension n ` 2 defined by the matrix

»
–

1 0 0

0 1 0

0 0 σ

fi
fl .

A point pa0, . . . , an`2q is a fixed point if and only if a2 “ . . . “
an`2 “ 0. Let V be the algebraic set defined by X0X1 “ 0. V is a

connected and GV “ V . But V has only two fixed points p1, 0, . . . , 0q
and p0, 1, 0, . . . , 0q.
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4 We assume here that G is a connected linear group acting rationally

on a projective variety V . Let P˚ be a generic point of V and let D˚ be 333

the closure of GP˚. Then we can think of the Chow point Q˚ of D˚. We

raise a question.

Question 4.1. Is the function field K of V purely transcendental over

kpQ˚q? In other words, is D˚ rational (in the strong sense over kpQ˚q?

Since G is linear, it is obvious that K is uni-rational over kpQ˚q.

Proposition 4.2. If G is the additive group of k, then the answer is

affirmative.

Proof. The assertion is obvious if P˚ is a fixed point. In the other case,

D˚ has a unique fixed point, which must be rational over kpQ˚q. There-

fore D˚ must be rational over kpQ˚q. �

5 In this last section, we add some questions related to the Mumford

Conjecture. As was proved by Dr. Seshadri, the Mumford Conjecture on

the rational representation of linear algebraic groups is true for S Lp2, kq.

Let us call a linear algebraic group “semi-reductive” if the statement of

the Mumford Conjecture holds good for the group. Then the following

three propositions are well known.

Proposition 5.1. If a linear algebraic group G is semi-reductive, then

(i) so is every normal subgroup of G and every homomorphic image of G

(by a rational homomorphism) and (ii) the radical of G is a torus group.

Conversely, when N is a normal subgroup of a linear algebraic group

G, if both N and G{N are semi-reductive, then G is semi-reductive.

Proposition 5.2. Finite groups and torus groups are semi-reductive.

Proposition 5.3. If k is of characteristic zero, then a linear algebraic

group G is semi-reductive if and only if its radical is a torus group.

The Mumford Conjecture itself is a hard question. The writer feels

that if the following two questions have affirmative answers, then it may

help our observation on the conjecture.
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Question 5.4. Let G be a connected, semi-simple semi-reductive lin- 334

ear algebraic group. Then its connected algebraic subgroup H is semi-

reductive if the following conditions are satisfied :

(i) H is semi-simple and (ii) G{H is affine.

Question 5.5. Let G be a connected semi-simple algebraic linear group

such that every proper closed normal subgroup is finite. Then there is a

pair of a natural number n and a linear algebraic group G˚ such that (i) G

and G˚ have finite normal subgroups N and N˚ such that G{N “ G˚{N˚

and (ii) G˚ is a subgroup of GLpn, kq and (iii) GLpn, kq{G˚ is affine.

Note that (1) if the Mumford Conjecture has an affirmative answer,

then these two questions have affirmative answers and (2) if these ques-

tions have affirmative answers, then we have only to prove the Mumford

Conjecture for S Lpn, kq for each natural number n.

Added in Proof: Question 0.1 has been answered negatively by K.

R. Nagarajan, Groups acting on noetherian rings, Nieuw Archief voor

Wiskunde (3) XIV (1968), 25-29. (Though his proof contains an error,

the example is good.)
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VECTOR BUNDLES ON CURVES

By M. S. Narasimhan and S. Ramanan*

335

1 Introduction. We shall review ‘in this paper some aspects of the

theory of vector bundles on algebraic curves with particular reference

to the explicit determination of the moduli varieties of vector bundles

of rank 2 on a curve of genus 2 (see [3]). Later we prove, using these

results, the non-existence of (algebraic) Poincaré families parametrised

by non-empty Zariski open subsets of the moduli space of vector bun-

dles of rank 2 and degree 0 on a curve of genus 2 [Theorem, §3]. This

result is of interest in view of the following facts :

(i) there do exist such families when the rank and degree are coprime;

(ii) in general (i.e. even if the degree and rank are not coprime) every

stable point has a neighbourhood in the usual topology parametris-

ing a holomorphic Poincaré family of vector bundles;

(iii) there exists always a Poincaré family of projective bundles para-

metrised by the open set of stable bundles.

The essential point in the proof of the non-existence of Poincaré

families is to show that a certain projective bundle, which arises geo-

metrically in the theory of quadratic complexes, does not come from a

vector bundle. The reduction to the geometric problem is found in §7.

The geometric problem, which is independent of the theory of vector

bundles, is explained in §5 and the solution is found in §8.

The idea of reducing this question to the geometric problem arose

in our discussions with Professor D. Mumford, to whom our warmest

thanks are due.

*Presented by M. S. Narasimhan.
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2 The moduli variety Upn, dq. Let X be a compact Riemann

surface or equivalently a complete non-singular irreducible algebraic

curve defined over C. We shall assume that the genus g of X is ě 2. 336

If Wp‰ 0q is a vector bundle (algebraic) on X we define µpWq to be the

rational number degree W{ rank W. A vector bundle W will be called

stable (resp. semi-stable) if for every proper sub-bundle V of W we

have µpVq ă µpWq (resp. µpVq ď µpWq). D. Mumford proved that

the isomorphism classes of stable bundles of rank n and degree d on

X form a non-singular quasi-projective algebraic variety (of dimension

n2pg ´ 1q ` 1).

A characterisation of stable bundles in terms of irreducible unitary

representations of certain discrete groups was given by M. S. Nara-

simhan and C. S. Seshadri [4]. This result implies that the space of

stable bundles of rank n and degree d is compact if pn, dq “ 1 and that

a vector bundle of degree 0 is stable if and only if it arises from an irre-

ducible unitary representation of the fundamental group of X. Moreover

two such stable bundles are isomorphic if and only if the correspond-

ing unitary representations are equivalent. These results suggest a natu-

ral compactification of the space of stable bundles, namely the space of

bundles given by all unitary representations (not necessarily irreducible)

of a given type.

C. S. Seshari in [7] proved that this natural compactification is a

projective variety. More precisely, Seshadri proved the following. Let

W be a semi-stable vector bundle on X. Then W has a strictly decreasing

filtration

W “ W0 Ą W1 Ą ¨ ¨ ¨ Ą Wn “ p0q

such that, for 1 ď i ď n, Wi{Wi´1 is a stable vector bundle with

µpWi´1{Wiq “ µpWq. Moreover the bundle Gr W “
nÀ

i“1

Wi´1{Wi is

determined by W upto isomorphism. We say that two semi-stable bun-

dles W1 and W2 are S -equivalent if Gr W1 « Gr W2. Obviously two

stable bundles are S -equivalent if and only if they are isomorphic. It

is proved in [7] that there is a unique structure of a normal projective

variety Upn, dq on the set of S -equivalence classes of semi-stable vector
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bundles of rank n and degree d on X such that the following property

holds: if tWtutPT is an algebraic (resp. holomorphic) family of semi-

stable vector bundles of rank n and degree d parametrised by an alge-337

braic (resp. a complex) space T , then the mapping T Ñ Upn, dq sending

t to the S -equivalence class of Wt is a morphism.

Regarding the singularities of the varieties Upn, dq we have the fol-

lowing result [3].

Theorem 2.1. The set of non-singular points of Upn, dq is precisely the

set of stable points in Upn, dq except when g “ 2, n “ 2 and d even.

It is easy to see that the above characterisation breaks down in the

exceptional case. It will follow from the results quoted in §4, that when

g “ 2, d even, the variety Up2, dq is actually non-singular.

Now let L be a line bundle of degree d. Let ULpn, dq be the subspace

of Upn, dq corresponding to vector bundles with the determinantal bun-

dle isomorphic to L. It is easy to see [4, §3] that all stable vector bundles

V in ULpn, dq can be obtained as extensions

0 Ñ E Ñ V Ñ pdet Eq´1 b L Ñ 0,

where E is a suitably chosen vector bundle, depending only on ULpn, dq.

Let U be the Zariski open subset of H1pX,HompL, Eq b det Eq corre-

sponding to stable bundles. Then the natural morphism U Ñ ULpn, dq
given by the universal property has as image the set of stable points of

ULpn, dq. This shows that the varieties ULpn, dq are unirational.

By a refinement of the above, it has been shown that the variety

ULpn, dq is even rational if d ” ˘1pmod nq. The rationality of these

varieties in general is not known.

3 Poincaré families. The next problem in the theory of vector

bundles is the construction of universal (Poincaré) families of bundles

on X parametrised by Upn, dq. The existence of such a universal bundle

is well-known in the case n “ 1.

Definition. Let Ω be a non-empty Zariski open subset of Upn, dq or

ULpn, dq. A Poincaré family of vector bundles on X parametrised by Ω
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is an algebraic vector bundle P on Ω ˆ X such that for any ω P Ω the338

bundle on X obtained by restricting P to ω ˆ X is in the S -equivalence

class ω. The bundle P will be called a Poincaré bundle.

The following theorem has been proved independently by D. Mum-

ford, S. Ramanan and C. S. Seshadri.

Theorem. If n and d are coprime, there is a Poincaré bundle on

Upn, dq ˆ X.

However we prove, in contrast, the

Main Theorem. Let X be a compact Riemann surface of genus 2.

Then there exists no algebraic Poincaré family parametrised by any non-

empty Zariski open subset of Up2, 0q.

The theorem will be proved in §8. In the next sections we recall

some results on vector bundles on a curve of genus 2 which will be used

in the proof.

4 Vector bundles of rank 2 and degree 0 on a curve
of genus 2.

Theorem 4.1. Let X be of genus 2 and S be the space of S -equivalence

classes of semi-stable bundles of rank 2 with trivial determinant on X.

Let J1 be the variety of equivalence classes of line bundles of degree

1 on X and Θ the divisor on J1 defined by the natural imbedding of X

in J1. Then S is canonically isomorphic to the projective space P of

positive divisors on J1 linearly equivalent to 2Θ.

For the proof see [3], §6.

Remarks. (i) The space S is identified with the set of isomorphism

classes of bundles of rank 2 and trivial determinant which are ei-

ther stable or are of the form j ‘ j´1, where j is a line bundle

of degree 0. The space of non-stable bundles in S , which is iso-

morphic to the quotient of the Jacobian J of X by the canonical

involution of J, gets imbedded in P as a Kummer surface.

(ii) This theorem shows in particular that S is non-singular. It fol-

lows easily from this that Up2, 0q is non-singular if g “ 2. In
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fact, Up2, 0q is isomorphic to the variety of positive divisors alge-

braically equivalent to 2Θ, which is a projective bundle over the

Jacobian.

(iii) This theorem suggests a close connection between Up2, 0q and the339

variety of positive divisors on the Jacobian algebraically equiva-

lent to 2Θ, when g is arbitrary. This relationship has been studied

when g “ 3 and will be published elsewhere.

5 Quadratic complexes and related projective bun-
dles. Before stating the next theorem it is convenient to recall certain

notations connected with a quadratic complex of lines in a three dimen-

sional projective space. For more details see [3].

Let R be a four dimensional vector space over C. Then the Grass-

mannian of lines G in the projective space PpRq is naturally embedded

as a quadric in Pp
2
^Rq. Consider the tautological exact sequence

0 Ñ L´1 Ñ R Ñ F Ñ 0

of vector bundles on PpRq where L is the hyperplane bundle on PpRq.

This leads to an exact sequence

0 Ñ F b L´1 Ñ
2
^R Ñ

2
^F Ñ 0.

This induces an injection PpF b L´1q Ñ Pp
2
^Rq ˆ PpRq; the image

is contained in G ˆ PpRq and is the incidence correspondence between

lines and points in PpRq. Consider the diagram

PpF b L´1q

p1

��✡✡
✡✡
✡✡
✡✡
✡✡
✡

p2

��✽
✽✽

✽✽
✽✽

✽✽
✽✽

G PpRq

The map p1 is a fibration with projective lines as fibres, associated to

the universal vector bundle on G. For ω P PpRq, p´1
2

pxq is mapped
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isomorphically by p1 onto a plane contained in G. A quadratic complex

of lines is simply an element of PH0pG,H2q, where H is the restriction

to G of the hyperplane line bundle on Pp
2
^Rq.

A generic quadratic complex in PpRq is a subvariety Q of G defined 340

by equations of the form

$
’’’&
’’’%

6ř
i“1

x2
i

“ 0,

6ř
i“1

λix
2
i

“ 0, λi distinct, λi P C,

with respect to a suitable coordinate system in Pp
2
^Rq, where

6ř
i“1

x2
i

“ 0

defines the Grassmannian. Let Y “ p´1
1

pQq. We then have a diagram

Y

q1



✖✖
✖✖
✖✖
✖✖
✖✖

q2

��✱
✱✱
✱✱
✱✱
✱✱
✱

Q PpRq

where q1 and q2 are surjective. For ω P PpRq, q´1
2

pω is imbedded in the

plane p´1
2

pωq as a conic. A point ω P PpRq where q´1
2

pωq is a singular

conic (i.e. a pair of lines) is called a singular point of the quadratic

complex Q. The locus K of singular points in PpRq is a quartic surface

with 16 nodes viz. a Kummer surface. Thus ifΩ is a Zariski open subset

of PpRq ´ K , the restriction of q2 to q´1
2

pΩq is a projective bundle over

Ω. The geometric problem referred to in the introduction is whether this

projective bundle is associated to an algebraic vector bundle. We shall

show in §8 that this is not the case. In view of the results of §7, this will

prove the main theorem.
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6 Vector bundles of rank 2 and degree 1 on a curve
of genus 2. It has been shown by P. E. Newstead [6] that the space of

stable bundles of rank 2 with determinant isomorphic to a fixed line bun-

dle of degree ´1 on a curve of genus 2, is isomorphic to the intersection

of two quadrics in a 5-dimensional projective space. The following the-

orem, which is proved in [3], is a canonical version of this result which

brings out at the same time the relationship between vector bundles (of341

rank 2) of degree 0 and ´1. This relationship is of importance in the

proof of non-existence of Poincaré families.

Theorem 6.1. (i) Let X be of genus 2 and x a non-Weierstrass point of

X (i.e. a point not fixed by the canonical rational involution on

X). Let S 1,x denote the variety of isomorphism classes of stable

bundles of rank 2 and determinant isomorphic to L´1
x , where Lx

is the line bundle determined by x. Let P be the projective space

defined in Theorem 4.1 and G the Grassmannian of lines in P.

Then S 1,x is canonically isomorphic to the intersection Q of G and

another quadric in the ambient 5-dimensional projective space.

(ii) The quadratic complex Q is generic and the singular locus of Q is

the Kummer surface K in P corresponding to non-stable bundles

in S .

(iii) With the identifications of S with P and S 1,x with Q, the projective

bundle on S ´ K defined by the quadratic complex Q (see §5) is

just the subvariety of S ´K ˆ S 1,x consisting of pairs pw, vq with

H0pX,HompV,Wqq ‰ 0, where V (resp. W) is in the class v (resp.

w).

(i) and (ii) have been explicitly proved in [3], Theorem 4, §9. It has

been proved there that if v P S 1,x and Λv the line in P defined by v, then

a point w P P belongs toΛv if and only if H0pX,HompV,Wqq ‰ 0 where

V(resp. W) is a bundle in the class v(resp. w), (see §9 of [3]). (iii) is

only a restatement of the above.

Remark. One can show that the space of lines on the intersection Q

of the two quadrics is isomorphic to the Jacobian of Xr3, 6s. This result
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is to be compared with the following theorem of D. Mumford and P. E.

Newstead [2]. Let X be of genus g ě 2, and U 1p2, 1q be the subspace

of Up2, 1q consisting of bundles with a fixed determinant. Then the in-

termediary Jacobian of U 1p2, 1q, corresponding to the third cohomology

group of U 1p2, 1q, is isomorphic to the Jacobian of X. The Betti numbers

of U 1p2, 1q are determined in [5].

7 Reduction of the Main Theorem to a geometric
problem.

Lemma 7.1. Let W be a stable bundle of rank 2 and trivial determinant.

Let x P X. Let Ox “ OX{mx be the structure sheaf of x.

(i) If V is a stable bundle of rank 2 and determinant L´1
x and f : V Ñ 342

W a non-zero homomorphism, then we have an exact sequence

0 Ñ V
f

ÝÑ W Ñ Ox Ñ 0.

Moreover dim H0pX,HompV,Wqq ď 1.

(ii) If W Ñ Ox is a non-zero homomorphism, then the kernel is a

locally free sheaf of rank 2, whose associated vector bundle is a

stable bundle with determinant L´1
x .

Proof. (i) It is clear that f must be of maximal rank; for, otherwise

the line sub-bundle of W generated by the image of f would have

degree ě 0, since V is stable. Now the induced map
2
^ f :

2
^V Ñ

2
^W is non-zero and hence can vanish only at x (with multiplicity

1). Hence f is of maximal rank at all points except x and f is

of rank 1 at x. This proves the first part of (i). Now suppose f

and g are two linearly independent homomorphisms from V to

W; choose y P X, y ‰ x, and let fy, gy be the homomorphisms

Vy Ñ Wy induced by f and g on the fibres of V and W at y. Then

there exist λ, µ P C, pλ, µq ‰ p0, 0q such that λ fy ` µgy is not an

isomorphism. Then λ f `µg would be a non-zero homomorphism

V Ñ W which is not of maximal rank at y. This is impossible by

earlier remarks.
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(ii) Let V be the vector bundle determined by the kernel. It is clear

that det V “ L´1
x . To show that V is stable we have only to show

that V contains no line subbundle of degree ě 0. If L were a

line subbundle of V of degree ě 0, there would be a non-zero

homomorphism L Ñ W, which is impossible since W is stable of

degree 0.

Let p : P Ñ Ω ˆ X be a Poincaré bundle on Ω ˆ X, where Ω is

an open subset of S (see Theorem 4.1) consisting of stable points. Let

x P X and let Ox “ OX{mx be the structure sheaf of the point x. Then

the sheaf H ompP, p˚
XOxq on Ω ˆ X is pΩ flat. Moreover, for each

ω P Ω

dim H0pω ˆ X,H ompP, p˚
XOxq|ωˆXq

“ dim H0pω ˆ X,H ompP|ωˆX ,Oxqq

“ dim P˚
pω,xq

“ 2.

Hence by [1], the direct image ppΩq˚ HompP, p˚Oxq is a locally free343

sheaf on Ω and consequently defines a vector bundle E on Ω. �

Proposition 7.1. There is a morphism

PpEq Ñ Ωˆ S 1,x

such that the diagram

PpEq //

��✸
✸✸

✸✸
✸✸

✸✸
✸

Ωˆ S 1,x

��✞✞
✞✞
✞✞
✞✞
✞✞
✞

Ω

is commutative. Moreover this morphism is an isomorphism onto the

subvariety of pairs pW,Vq such that H0pX,HompV,Wqq ‰ 0, V P S 1,x,

W P Ω.

358



Vector Bundles on Curves 359

Proof. Consider on Ω ˆ X the sheaf G “ H ompP, p˚
X

Oxq. Then we

have clearly the canonical isomorphisms

p˚pT b p˚
G q « p˚pTq b G « p˚

Ω
pEq˚ ˆ G ,

where p : PpEq ˆ X Ñ Ω ˆ X is the natural projection and T is the

tautological hyperplane bundle in PpEqˆ X. Moreover, the direct image

of p˚
Ω

pE˚q ˆ G on Ω is isomorphic to E˚ ˆ pΩ˚pG q « E˚ b E. Hence

H0pPpEq ˆ X, pT b p˚G qq « H0pΩ, E˚ b Eq. Hence the canonical

element of H0pΩ,E˚ b Eq (viz. the identity endomorphism of E) gives

rise to an element of H0pPpEqˆ X,Tb p˚G q. In other words, we have a

canonical homomorphism p˚P Ñ p˚
X

pOxq b T of sheaves on PpEq ˆ X.

Consider the commutative diagram

PpEq ˆ X

p

��

// PpEq

p

��
Ωˆ X // Ω

The direct image of T b p˚pG q on PpEq is simply T b p˚pEq, where T 344

also denotes the tautological bundle on PpEq, and the canonical element

in H0pPpEq ˆ X,T b p˚pG qq defined above is given by the tautological

element of H0pPpEq,T b p˚pEqq. From this we see that for f P PpEq,

the restriction of the homomorphism p˚pPq Ñ p˚
X

pOxq b T to f ˆ X

can be described as follows. The restriction of p˚pPq to f ˆ X is the

restriction of P to pp f q ˆ X and hence is a stable vector bundle W with

trivial determinant. Moreover f gives rise to a 1-dimensional subspace

of H0pX,H ompW,Oxqq. Any non-zero element in this 1-dimensional

space gives rise to a surjective homomorphism of p˚P| f ˆ X “ W into

p˚
X

Ox ˆ T| f ˆX « Ox. This homomorphism (upto a non-zero scalar) is

the restriction of the canonical element. In particular it follows that the

canonical homomorphism p˚pPq Ñ p˚
X

pOxqbT is surjective. Moreover

since p˚
X

pOxq b T has a locally free resolution of length 1 we see that

the kernel of the homomorphism p˚pPq Ñ p˚pOxq b T is locally free.

Let F be the vector bundle on PpEq ˆ X associated to the kernel. �
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Lemma 7.2. The restriction of the vector bundle F to f ˆ X, f P PpEq
is a stable vector bundle of rank 2 and determinant L´1

x .

In view of our earlier identification the lemma follows from Lemma

7.1.

We now complete the proof of the proposition. By Lemma 7.2 and

the universal property of S 1,x we have a morphism q : PpEq Ñ S 1,x.

Then the morphism pp, qq : PpEq Ñ Ω ˆ S 1,x satisfies the conditions

of the proposition, in view of Lemma 7.1. The morphism is an isomor-

phism onto the subvariety described in Proposition 7.1, as this subvari-

ety is non-singular by Theorem 6.1.

From Proposition 7.1 and Theorem 6.1 we have immediately the

Corollary. If there is a Poincaré family on an open subset Ω of the

set of stable points in S , then the projective bundle on Ω defined by the

quadratic complex Q “ S 1,x is associated to a vector bundle.

8 Proof of the Main Theorem. Solution of the geo-
metric problem. It is easy to see that if there is a Poincaré family

parametrised by a Zariski open subset of Up2, 0q, there would exist a345

Poincaré family parametrised by a Zariski open subset of the space of

stable points in S . In view of the Corollary of Proposition 7.1, the main

theorem in §3 follows from

Proposition 8.1. With the notation of §5, let Ω be a Zariski open subset

of PpRq ´ K . Let q2 : q´1
2

pΩq Ñ Ω be the projective bundle defined

in §5. Then there is no algebraic vector bundle on Ω to which this

projective bundle is associated.

Proof. If there is such a vector bundle there would exist a Zariski open

set Ω1 of Ω and a section σ over Ω1 of the projective bundle q´1
2

pΩq Ñ
Ω. Let D be the Zariski closure of σpΩ1q in Y . Then D is a divisor

of Y and, since Y is non-singular, D defines a line bundle LD on Y .

The restriction of the first Chern class of LD to a fibre q´1
2

pωq, ω P
Ω1, is the fundamental class of the fibre. On the other hand, we shall

show that every element of H2pY,Zq restricts to an even multiple of
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the fundamental class of q´1
2

pωq in H2pq´1
2

pωq,Zq; this contradiction

would prove the proposition. We have the commutative diagram

H2pPpF b L´1q,Zq

��

// H2pp´1
2

pωq,Zq « H2pP2,Zq

��
H2pY,Zq // H2pq´1

2
pωq,Zq,

with the notation of §5. We first note that the canonical mapping

H2pG,Zq Ñ H2pQ,Zq is an isomorphism, by Lefschetz’s theorem on

hypersurface sections. Moreover since p1 : PpF b L´1q Ñ G (resp.

q : Y Ñ Q) is the projective bundle associated to a vector bundle,

H2pPpF b L´1qZq (resp. H2pY,Zq) is generated by the first Chern class

of the tautological line bundle of the fibration PpF b L´1q Ñ G (resp.

Y Ñ Q) and by p˚
2
pH2pG,Zqq (resp. q˚

2
H2pQ,Zq). Since this tau-

tological line bundle on PpF b L´1q restricts to the tautological line

bundle of the fibration Y Ñ Q and H2pG,Zq Ñ H2pQ,Zq is an iso-

morphism, it follows that H2pPpF ˆ L´1q,Zq Ñ H2pY,Zq is surjec-

tive. Now from the commutativity of the diagram we see that image 346

H2pY,Zq Ñ H2pq´1
2

pωq,Zq is contained in the image

H2pp´1
2

pωq,Zq Ñ H2pq´1
2

pωq,Zq.

But q´1
2

pωq is imbedded in the plane p´1
2

pωq as a conic and hence the

image H2pY,Zq Ñ H2pq´1
2

pωq,Zq consists of even multiples of the fun-

damental class of q´1
2

pωq. �

References
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MUMFORD’S CONJECTURE FOR GLp2q AND

APPLICATIONS

By C. S. Seshadri

In [12], it was shown that on a smooth projective curve X of genus 347

ě 2 over C, there is a natural structure of a normal projective variety on

the isomorphic classes of unitary vector bundles of a fixed rank. This can

also be given a purely algebraic formulation, namely that on the classes

of semi-stable vector bundles of a fixed rank and degree zero, under

a certain equivalence relation, there is a natural structure of a normal

projective variety when X is defined over C. In fact this was used in

[12]. It is then natural to ask whether this algebraic result holds good

in arbitrary characteristic. The main obstacles to extending the proof of

[12] to arbitrary characteristic are as follows:

(1) to carry over the results of Mumford (obtained in characteristic 0)

on quotient spaces of the N-fold product of Grassmannians for the

canonical diagonal action of the full linear group (c.f. §4, Chap.

4, [5]), to arbitrary characteristic, and

(2) to find a substitute for unitary representations which have been

used in [12], mainly to show that the varieties in question are

complete.

It is not hard to see how to set about (2). One has to show that a

certain morphism is proper (see §3, Lemma 2). This is not difficult but

requires some careful analysis and it is an improvement upon some of

the arguments in [12]. The difficulty (1) appears to be more basic. If

Mumford’s conjecture generalizing complete reducibility to reductive

groups in arbitrary characteristic (cf. §1, Def. 3) is solved for all special

linear groups, (1) would follow. In this we have partial success, namely

we solve Mumford’s conjecture for GLp2q, which allows us to solve (1)

for the case of a product of Grassmannians of two planes. Consequently
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the results of [12] carry over to the case of vector bundles of rank 2 in

arbitrary characteristic.

The proof of Mumford’s conjecture for GLp2q is rather elementary348

and we give it in §1. As for applications to vector bundles, only the

solution of (2) above is given in detail (§3, Lemma 2, (3)). The other

points are only sketched and proofs for most of these can be found in

[5] or [12].

The algebraic schemes that we consider are supposed to be defined

over an algebraically closed field K and of finite type over K. The points

of an algebraic scheme are the geometric points in K and the algebraic

groups considered are reduced algebraic group schemes. By a rational

representation of an algebraic group G in a finite dimensional vector

space. V , we mean a homomorphism ρ : G Ñ Aut V of algebraic

groups.

1 Mumford’s conjecture for GLp2q.

Definition 1. An algebraic group G is said to be reductive if it is affine

and rad G (radical of G) is a torus, i.e. a product of multiplication

groups.

Definition 2. An algebraic group G is said to be linearly reductive if it

is affine and every rational representation of G in a finite dimensional

vector space is completely reducible.

It is a classical result of H. Weyl that if the characteristic of the base

field is zero, every reductive group is linearly reductive. A torus group

is easily seen to be linearly reductive in arbitrary characteristic. If the

characteristic p of the base field is not zero, there are not many more

linearly reductive groups other than the torus groups; in fact, there is the

following result due to Nagata: an algebraic group G is linearly reduc-

tive if and only if the connected component G0 of G through identity is

a torus and the order of the finite group G{G0 is prime to p (c.f. [6]).

It is proved easily that an affine algebraic group G is linearly reduc-

tive if and only if any one of the two following properties holds :

(1) for every rational representation of G in a finite dimensional vec-
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tor space V and a one dimensional G-invariant linear subspace V0

of V , there exists a G-invariant linear subspace V1 of V such that 349

V “ V0 ‘ V1;

(2) for every rational representation of G in a finite dimensional vec-

tor space V and a G-invariant point v P V , v ‰ 0, there exists a

G-invariant linear form f on V such that f pvq ‰ 0.

Definition 3. An algebraic group G is said to be geometrically reductive

if it is affine and for every rational representation of G in a finite dimen-

sional vector space V and a G-invariant point v P V, v ‰ 0, there exists

a G-invariant polynomial f on V such that f pvq “ 1 and f p0q “ 0 or,

equivalently, there is a G-invariant homogeneous form f on V such that

f pvq “ 1.

Let G be a geometrically reductive algebraic group acting on an

affine algebraic scheme X (we can even take X to be an arbitrary affine

scheme over the base field K, i.e. not necessarily of finite type over K)

and X1, X2 two G-invariant closed subsets of X such that X1 X X2 is

empty. Then there exists a G-invariant f P ApX “ Spec Aq such that

f pX1q “ 0 and f pX2q “ 1. This is proved easily as follows : there ex-

ists an element g P A (not necessarily G-invariant) such that gpX1q “ 0

and gpX2q “ 1. Now the translates of g by elements of G span a finite-

dimensional G-invariant linear subspace W of A. For every h P W,

hpX1q “ 0 and hpX2q is a constant. We have a canonical rational rep-

resentation of G on W and therefore also on the dual W˚ of W. The

canonical inclusion W Ă A defines a G-morphism φ : X Ñ W˚ of X

into the affine scheme W˚ (to be strict the affine scheme whose set of

geometric points is W˚) and we have φpX1q “ 0 and φpX2q “ w, w ‰ 0.

Now by the geometric reductivity of G, there exists h in the coordinate

ring of W˚ such that hp0q “ 0 and hpwq “ 1. Now if f is the image of

h in A by the canonical homomorphism of the coordinate ring of W˚ in

A, then f has the required properties.

The following statements are proved easily.

(1) G is geometrically reductive if and only if for every rational repre-

sentation of G in a finite-dimensional vector space V and a semi-
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invariant point v P V , v ‰ 0 (i.e. the one-dimensional linear sub-

space of V spanned by v is G-invariant), there is a semi-invariant350

homogenous form f on V such that f pvq “ 1.

(2) G is geometrically reductive if and only if for every rational repre-

sentation of G in a finite-dimensional vector space V , a G-invariant

linear subspace V0 of V of codimension one and X0 an element of

V such that X0 and V0 span V and X0 is G-invariant modulo V0,

there exists a G-invariant F P S mpVq (mth symmetric power) for

some m ě 1, such that F is monic in X0 when F is written with

respect to a basis X0, X1, . . . , Xn P V , Xi P V0, i ě 1.

(3) Let N be a normal algebraic subgroup of an affine algebraic group

G such that N and G{N are geometrically reductive. Then G is

geometrically reductive. In particular, a finite product of geomet-

rically reductive groups is geometrically reductive.

(4) Let G be a reductive group. Then G is geometrically reductive if

and only if G{ rad G is so.

(5) A linearly reductive group is geometrically reductive. A finite

group is geometrically reductive.

The conjecture of Mumford states that a reductive group is geomet-

rically reductive (c.f. Preface, [3]). On the other hand it can be shown

that a geometrically reductive group is necessarily reductive (c.f. [8]).

Theorem 1. The full linear group GLp2q of 2 ˆ 2 matrices is geometri-

cally reductive.

Proof. Let G be an affine algebraic group and ρ, ρ1 rational representa-

tions of G in finite-dimensional vector spaces W, W 1 respectively. Let

φ : W Ñ W 1 be a homomorphism of G-modules and w, w1 semi-

invariant points of W, W 1 respectively such that w1 “ φpwq, w1 ‰ 0.

Now if there is a semi-invariant polynomial f on W 1 such that f pw1q “ 1

and f p0q “ 0, then there is a semi-invariant polynomial g on W such

that gpwq “ 1 and gp0q “ 0; in fact we can take g to be the image of
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f under the canonical homomorphism induced by φ of the coordinate

ring of W 1 into that of W. Using this simple remark, the proof of the 351

geometric reductivity of GLp2q can be divided into the following steps.

(1) It is a well-known fact (c.f. §1, exposé 4, Prop. 4, [2]) that if

G is an affine algebraic group and ρ a rational representation of

G in a finite dimensional vector space W, then the G-module W

can be imbedded as a submodule of An (n-fold direct sum of A),

where A is a submodule of the coordinate ring of G, considered

as a G-module for the regular representation (we should fix the

right or the left regular representation). Thus to prove geometric

reductivity of G, we have only to consider submodules A of the

coordinate ring of G such that there exists a semi-invariant a P A,

a ‰ 0.

(2) Let G “ GLpnq, R the coordinate ring of G and pXi jq, 1 ď i ď n,

1 ď j ď n, the canonical coordinate functions on G. The lin-

ear space generated by Xi j is a G-module and we can identify it

with the G-module Vn “ V ‘ ¨ ¨ ¨ ‘ V (n times), where V is an

n-dimensional vector space and G is represented as Aut V . Let ξ

be the function det |Xi j| and L the 1-dimensional G-submodule of

R spanned by ξ. Now if W is a finite-dimensional linear subspace

of R, there exists an integer m ě 1 such that for any g P W, gξm

is a polynomial in pXi jq. A polynomial in pXi jq can be uniquely

expressed as a sum of multihomogenous forms in the sets of vari-

ables

Y1 “ pX11, X21, . . . , Xn1q, Y2 “ pX12, X22, . . . , Xn2q, . . .

Yn “ pX1n, X2n, . . . , XnnqpYi ´ ith column of pXi jqq.

The space of multihomogenous forms in pXi jq of degree mi in Yi

can be identified with the G-module Wpm1, . . . ,mnq, where

Wpm1, . . . ,mnq “
nà

i“1

S mi pVqpS mi pVq ´ mth
i symmetric power of Vq.

Thus if W is a finite dimensional G-invariant linear subspace of

R, W b Lpmq can be embedded as a G-submodule of a finite direct
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sum of G-modules of the type Wpm1, . . . ,mnq, where Lpmq denotes

the 1-dimensional G-module L b¨ ¨ ¨b L (m times). Thus to prove

the geometric reductivity of GLpnq, it suffices to consider the G-

modules of the form Wpm1, . . . ,mnq such that there is a non-zero352

semi-invariant element in it.

Now it is easy to see that Wpm1, . . . ,mnq has a non-zero semi-inva-

riant element v if and only if m1 “ m2 “ . . . “ mn “ m and then that

v is in the 1-dimensional linear subspace spanned by ξm pξ “ det |Xi j|q.

This is an immediate consequence of the following remarks:

(i) every 1-dimensional G-module (given by a rational representa-

tion) is isomorphic to Lpnq for some n P Z and

(ii) the only G-invariant elements of R are the scalars.

Thus to prove the geometric reductivity of GLpnq, we have only
to consider the G-modules Wpmq,

Wpmq “ Wpm, . . . ,mq “ bS mpVqpn-fold tensor product of S mpVqq

with the semi-invariant element being ξm, ξ “ det |Xi j|.

(iii) Let G “ GLp2q. Let J : Wpmq Ñ S 2mpVq be the canonical homo-

morphism, where for an element f in Wpmq being considered as a

multi-homogeneous polynomial of degree m in Y1 “ pX11, X21q,

Y2 “ pX12, X22q, jp f q is the homogeneous polynomial of degree

2m in two variables obtained by setting Y1 “ Y2. Now j is a

G-homomorphism. Let θm´1 : Wpm ´ 1q Ñ Wpmq be the ho-

momorphism defined by θm´1p f q “ f ξ, f P Wpm ´ 1q. Now

θm´1 is a homomorphism of the underlying S Lp2q modules and it

“differs” from a GLp2q homomorphism only upto a character of

GLp2q. Consider the following sequence

0 Ñ Wpm ´ 1q
θm´1
ÝÝÝÑ Wpmq

j
ÝÑ S 2mpVq Ñ 0. (*)

We claim that this sequence is exact. It is clear that θm´1 is in-

jective. Further the kernel of j consists precisely of those polyno-

mials f in pXi jq which belong to Wpmq and such that f vanishes
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when we set pXi jq to be a singular matrix. Therefore f “ gξ,

which means that ker j “ θm´1Wpm ´ 1q. Now dim Wpmq “
pm ` 1q2, dim Wpm ´ 1q “ m2 and dim S 2mpVq “ p2m ` 1q, so

that dim Wpmq “ dim Wpm ´ 1q ` dim S 2mpVq. From this one

concludes that (*) is exact.

We shall now show that the exact sequence (*) has a “quasi- 353

splitting”, i.e. there is a closed G-invariant subvariety of Wpmq
such that the canonical morphism of this subvariety into S 2mpVq
is surjective and quasi-finite i.e. every fibre under this morphism

consists only of a finite number of points. Let Dm be the subset

of Wpmq consisting of decomposable tensors, i.e. Dm “ t f | f “
g b h, g, h P S mpVqu. Then Dm is obviously a G-invariant subset

of Wpmq. We have a canonical morphism

Ψ : S mpVq ˆ S mpVq Ñ S mpVq b S mpVq “ Wpmq

and Dm “ ΨpS mpVq ˆ S mpVqq. From the fact that Ψ is bilinear,

we see that Dm is the cone over the image of Ψ1, where Ψ1 is the

canonical morphism

Ψ1 : PpS mpVqq ˆ PpS mpVqq Ñ PpWpmqq

induced byΨ, P indicating the associated projective spaces. It fol-

lows now that Dm is a closed G-invariant subvariety of Wpmq. The

morphism j1 : Dm Ñ S 2mpVq induced by j is surjective, because

every homogeneous form in two variables over an algebraically

closed field can be written as a product of linear forms, in partic-

ular as a product of two homogeneous forms of degree m. We see

also easily that j1 : Dm Ñ S 2mpVq is quasi-finite (it can also be

shown without much difficulty that j1 is proper so that j1 is indeed

a finite morphism but we do not make use of it in the sequel). An

element f b g P Dm becomes zero when we set Y1 “ Y2 if and

only if f and g are zero, i.e. we have DmXθm´1pWpm´1qq “ p0q.

(iv) Let G “ GLp2q. We shall now show by induction on m, that

there exists a closed G-invariant subvariety Hm of Wpmq passing
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through 0 and not through ξm. This will imply that GLp2q is geo-

metrically reductive.

For m “ 0, the assertion is trivial. Let Hm´1 be a homogeneous

G-invariant hypersurface of Wpm ´ 1q not passing through ξm´1. Let

Hm be the join of θm´1pHm´1q and Dm, i.e.

Hm “ tλ ` µ|λ P θm´1pHm´1q, µ P Dmu.

We shall now show that Hm is a homogeneous G-invariant hypersurface354

of Wpmq not passing through ξm. It is immediate that ξm is not in Hm for

if ξm “ λ ` µ, λ in θm´1pHm´1q, µ P Dm, then by setting Y1 “ Y2 since

ξm and λ become zero, we conclude that µ becomes zero. As remarked

before, this implies that µ itself is zero so that ξm P θm´1pHm´1q. It

would then follow that ξm´1 P Hm´1, which leads to a contradiction so

that we conclude that ξm is not in Hm. The subset Hm is G-invariant

and also invariant under homothecy. Thus to complete the proof of our

assertion it suffices to show that Hm is closed and of codimension one in

Wpmq. This is an immediate consequence of the following lemma, since

Hm is the join of the two homogeneous subvarieties θm´1pWpm´1qq and

Dm whose common intersection is (0). �

Lemma 1. Let Q1, Q2 be closed subvarieties of a projective space P

such that Q1 X Q2 is empty. Then the join Q of Q1 and Q2 is a closed

subvariety of P and dim Q “ dim Q1 ` dim Q2 ` 1.

Proof of Lemma. Let ∆ be the diagonal in P ˆ P and R “ pP ˆ P ´∆q.

If r “ pp1 p2q, pi P P, let Lprq be the line in P joining p1 and p2. Then

the mapping r Ñ Lprq defines a correspondence between R and P, and

it is seen easily that this is defined by a closed subvariety of RˆP. Since

Q1 X Q2 is empty, we have Q1 ˆ Q2 Ă R. Let Γ1 “ pr´1
1

pQ1 ˆ Q2q, pr1

being the canonical projection of RˆP onto the first factor. Now the join

Q “ pr2pΓ1q, pr2 being the projection of R ˆ P onto the second factor.

Since Q1 ˆ Q2 is complete, it follows that Q is a closed subvariety of P.

We see that dim Q1 ` dim Q2 ď dim Q ď dim Q1 ` dim Q2 ` 1.

Therefore to show that dim Q “ Q dim Q1 ` dim Q2 ` 1, it suffices to
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show that dim Q ě dim Q1 ` dim Q2 ` 1. Since Q1 X Q2 is empty, we

cannot have dim P “ dim Q1`dim Q2. If dim P “ dim Q1`dim Q2`1,

we see that the lemma is true in this case. Suppose then that dim P ą
dim Q1 `dim Q2 `1. Then there is a point p P P which is not in the join

Q of Q1 and Q2. Let us now project Q1 Q2 and Q from p in a hyperplane

H not passing through p. Let Q1
1
, Q1

2
and Q1 be the images of Q1, Q2 and

Q respectively in H. Then Q1
1
, Q1

2
and Q1 are isomorphic to Q1, Q2 and 355

Q respectively. Further Q1
1

X Q1
2

is empty and Q1 is the join of Q1
1

and

Q1
2

in H. This process reduces the dimension of the ambient projective

space by one. By a repetition of this procedure, we are finally reduced

to the case dim P “ dim Q1 ` dim Q2 ` 1, in which case the lemma

is true as remarked before. This completes the proof of the lemma and

consequently the proof of theorem is now complete.

Corollary. A finite product of algebraic groups of the type GLp2q,

S Lp2q or torus group is geometrically reductive.

Remarks. (1) That H is a closed G-invariant subset of codimension

one in Wpmq (in the above proof) can also be done by showing

that the morphism φ : Wpm ´ 1q ˆ Dm Ñ Wpmq, defined by

φpw, dq “ w ` d is a surjective finite morphism. The proof that

dim Q “ dim Q1 ` dim Q2 ` 1 in the above lemma, is due to C.

P. Ramanujam.

(2) In characteristic 2, the geometric reductivity of GLp2q was proved

by Oda (c.f. [9]).

(3) The above proof gives also an analogue of geometric reductivity

of GLp2q over Z and consequently for more general ground rings

as well.

(4) M. S. Raghunathan has pointed out another proof of the exis-

tence of a hypersurface in WpmqpG “ GLp2qq with the required

properties. We have an isomorphism of the GLp2q-modules V

and V˚ (V˚ dual of V). If m “ pα ´ 1, α a positive integer,

p being the characteristic of the ground field, he points out that
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S mpVq « S mpV˚q « pS mpVqq˚ as GLp2q-modules. Therefore in

this case

Wpmq « HompS mpVq, S mpVqq

and then the hypersurface defined by endomorphisms with zero

determinant will have the required properties. Since we can find

arbitrarily large integers of the form pα ´ 1, the existence of the

required hypersurface for arbitrary m follows easily.

2 Quotient spaces.

Definition 4. Let X be an algebraic scheme on which an affine algebraic

group G operates. A morphism φ : X Ñ Y of algebraic schemes is said356

to be a good quotient (of X modulo G) if it has the following properties :

(1) φ is a surjective affine morphism and is G-invariant; (2) φ˚pOXqG “
OY and (3) if X1, X2 are closed G-invariant subsets of X such that X1 X
X2 is empty, then φpX1q, φpX2q are closed and φpX1q X φpX2q is empty.

We say that φ is a good affine quotient if φ is a good quotient and Y is

affine.

The first two conditions are equivalent to the following : φ is sur-

jective and for every affine open subset U of Y , φ´1pUq is affine and

G-invariant and the coordinate ring of U can be identified with the G-

invariant subring of φ´1pUq. We see then that if φ is a good affine quo-

tient, X is also affine. The following properties of good quotients are

proved quite easily.

(1) The property of being a good quotient is local with respect to

the base scheme, i.e. φ is a good quotient if and only if there

is an open covering tUiu of Y such that every Vi “ φ´1pUiq is

G-invariant and the induced morphism φi : Vi Ñ Ui is a good

quotient.

(2) A good quotient is also a categorical quotient, i.e. if ψ : X Ñ Z

is a G-invariant morphism, there is a unique morphism ν : Y Ñ Z

such that ν ˝ φ “ ψ.
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(3) Transitivity properties. Let X be an a one algebraic scheme on

which an affine algebraic group G operates. Let N be a normal

closed subgroup of G and H the affine algebraic group G{N. Sup-

pose that φ1 : X Ñ Y is a good quotient (resp. good affine quo-

tient) of X modulo N. Then we have the following.

(a) The action of G goes down into an action of H on Y .

(b) If φ2 : Y Ñ Z is a good quotient (resp. good affine quotient)

of Y modulo H, then φ2 ˝ φ1 : X Ñ Z is a good quotient

(resp. good affine quotient) of X modulo G.

X
good

//

��✻
✻

✻
✻

✻ Y

��☎☎
☎☎
☎☎
☎☎
☎☎
☎

good

Z

(c) If φ : X Ñ Z is a good quotient (resp. good affine quotient) 357

of X modulo G, there is a canonical morphism φ2 : Y Ñ Z

such that φ “ φ2 ˝ φ1 and φ2 is a good quotient (resp. good

affine quotient of Y modulo H.

X
good

//

��✻
✻✻

✻✻
✻✻

✻✻
✻ Y

��✟✟
✟✟
✟✟
✟✟
✟✟

good

Z

(4) If φ : X Ñ Y is a good quotient (modulo G), Z a normal algebraic

variety on which G operates and j : Z Ñ X a proper, injective

G-morphism, then Z has a good quotient modulo G; in fact it

can be identified with the normalisation of the reduced subvariety

pφ ˝ jqpZq in a suitable finite extension.
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The basic existence theorem on good quotients is the following.

Theorem 2. Let X “ Spec A be an affine algebraic scheme on which a

geometrically reductive algebraic group G operates. Let Y “ Spec AG

(AG invariant subring of A) and φ : X Ñ Y the canonical morphism

induced by AG Ă A. Then φ is a good affine quotient.

For the proof of this theorem, the only non-trivial point is to check

that Y is an algebraic scheme, i.e. AG is an algebra of finite type over

K and this is assured by a theorem of Nagata, namely that if A is a

K-algebra of finite type on which a geometrically reductive group G

operates (rationally), then AG is also a K-algebra of finite type (c.f. Main

theorem, [6]). The other properties for φ to be a good quotient, are

verified quite easily.

Definition 5. Let X be a closed subscheme of the projective space Pn

of dimension n. An action of an affine algebraic group G on X is said

to be linear if it comes from a rational representation of G in the affine

scheme An`1 of dimension pn ` 1q.

The above definition means that we have an action of G on An`1 “
Spec KrX1, . . . , Xn`1s given by a rational representation of G on An`1

and that if a is the graded ideal of KrX1, . . . , Xn`1s defining X, then a is

left invariant by G. We have X “ Proj R, R “ KrX1, . . . , Xn`1s{a. We358

denote by pX the cone over X ppX “ Spec Rq and by (0) the vertex of the

cone pX. The action of G lifts to an action on pX and this action and the

canonical action of Gm on pX (homothecy) commute. We observe that

the canonical morphism p : pX ´ p0q Ñ X is a principal fibre space with

structure group Gm and that p is a good quotient (modulo Gm).

Definition 5. Let X be a closed subscheme of Pn and let there be given a

linear action of an affine algebraic group G on X. A point x P X is said

to be semi-stable if for some px P pX ´ p0q over x, the closure (in pX) of

the G-orbit through px does not pass through p0q. A point x P X is said

to be stable (to be more precise, properly stable) if for some px P pX ´ p0q
over x, the orbit morphism ψpx : G Ñ pX defined by g Ñ px ˝ g is proper.

We denote by Xss (resp. Xs) the set of semi-stable (resp. stable) points

of X.
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We have now the following

Theorem 3. Let X be a closed subscheme of Pn defined by a graded

ideal a of KrX1, . . . , Xn`1s so that X “ Proj R, R “ KrX1, . . . , Xn`1s{a.
Let there be given a linear action of an affine algebraic group G on X,

Y “ Proj RG and φ : X Ñ Y the canonical rational morphism defined

by the inclusion RG Ă R. Suppose that G is geometrically reductive

or, more generally, that the cone pX over X has a good affine quotient

modulo G (c.f. Theorem 1). Then we have the following:

(1) x P Xss if and only if there is a homogeneous G-invariant element

f P R`(R` being the subring of R generated by homogeneous

elements of degree ě 1) such that f pxq ‰ 0 (in particular, Xss is

open in X and φ is defined at x P Xss).

(2) φ : Xss Ñ Y is a good quotient and Y is a projective algebraic

scheme.

(3) Xs is a φ-saturated open subset, i.e. there exists an open subset

Y s of Y such that Xs “ φ´1pY sq and φ : Xs Ñ Y s is a geometric

quotient, i.e. distinct orbits of Xs go into distinct points of Y s.

This theorem is proved quite easily. 359

Let Hp,rpEq denote the Grassmannian of r-dimensional quotient lin-

ear spaces of a p-dimensional vector space E. We have a canonical

immersion of Hp,rpEq in the projective space associated to
p´r
^ E and if

X “ HN
p,rpEq denotes the N-fold product of Hp,rpEq, we have a canon-

ical projective immersion of X, namely the Serge imbedding associated

to the canonical projective imbedding of Hp,rpEq. There is a natural

action of GLpEq “ Aut E on Hp,rpEq and this induces a natural action

(the diagonal action) of GLpEq on HN
p,rpEq. The restriction of this ac-

tion to the subgroup G “ S LpEq is a linear action with respect to the

canonical projective imbedding of X. We denote by Xss (resp. Xs) the

set of semi-stable (resp. stable) points of X with respect to the canonical

projective imbedding of X. Let R be the projective coordinate ring of X,

Y “ Proj RG, pX the cone over X and φ : X Ñ Y the canonical rational

morphism as in Theorem 3 above. Then the result to be applied for the

classification of vector bundles on an algebraic curve is as follows.
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Theorem 4. Let X “ HN
p,rpEq with 1 ď r ď 2. Then for the canonical

action of G “ S LpEq on the cone pX over X, pX has a good affine quotient

modulo G so that by Theorem 3, the rational morphism φ : X Ñ Y has

the properties (1), (2) and (3) of Theorem 3; in particular, φ : Xss Ñ Y

is a good quotient and Y is a projective algebraic scheme.

Further for x P X, x “ tEiu1ďiďN , Ei a quotient linear space of

dimension r of E, x P Xss (resp. Xs) if and only if for every linear sub-

space (resp. proper linear subspace) F of E, if Fi denotes the canonical

image of F in Ei, we have

1
N

Nř
i“1

dim Fi

r
ě

dim F

p
presp. ąq

Indication of proof. Let W be the space of pp ˆ rq matrices. Then we

have canonical commuting operations of GLppq and GLprq on W. Let

WN be the N-fold product of W and σ1 the canonical diagonal action

of GLppq on WN . Let σ be the induced action of S Lppq on WN . We360

have a natural action τ1 of GLprqN on WN . Let H be the subgroup of

GLprqN defined by elements pg1, . . . , gNq such that
Nś

i“1

det gi “ 1 and τ

the restriction of the action τ1 to H. We note that H{pS LprqqN is a torus

group. Therefore H is geometrically reductive since 1 ď r ď 2. Then

in view of Theorem 3 and the transitivity properties of good quotients,

for proving the first part of the theorem, it suffices to show that a good

quotient of WN exists, respectively for the actions of S Lppq and H, and

that the good quotient of WN modulo H can be identified with the cone
pX over X.

WN

good S Lppq

��

H

good
//

good

��❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄
pX

S Lppq

��

p˚q
H

good
// pY
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These last two statements follow easily from the facts that for arbitrary

r (i.e. without assuming 1 ď r ď 2), a good quotient of W modulo the

canonical action of S Lprq exists and that it can be identified with the

cone over Hp,rpEq. These facts can be checked explicitly, using a result

of Igusa that Hp,rpEq is projectively normal (c.f. [4]).

The proof of the last part of the theorem is the same as in §4, Chap.

4, [5] and we remark that for this it is not necessary to suppose that

1 ď r ď 2. It should be noted that our definition of stable and semi-

stable points differs, a priori, from that of [4], when the group is not

geometrically reductive and that the computations of §4, [4] hold in arbi-

trary characteristic for reductive groups provided we take the definition

of stable and semi-stable points in our sense.

3 Vector bundles over a smooth projective curve.
Let X be a smooth projective curve over K. Let us suppose that the

genus g of X is ě 2. By a vector bundle V over X, we mean an algebraic

vector bundle; we denote by dpVq the degree of V and by rpVq the rank 361

of V . We fix a very ample line bundle L on X, let l “ dpLq. If V is a

vector bundle (resp. coherent sheaf) on X, we denote by Vpmq, the vec-

tor bundle (resp. coherent sheaf) V b Lm, where Lm denotes the m-fold

tensor product of L. If F is a coherent sheaf on X, the Hilbert polyno-

mial P “ PpF,mq of F is a polynomial in m with rational coefficients,

defined by

Ppmq “ PpF,mq “ χpFpmqq “ dim H0pFpmqq ´ dim H1pFpmqq. If

F is the coherent sheaf associated to a vector bundle V , we have

Ppmq “ dpVpmqq ´ rpVqpg ´ 1q “ dpVq ` rpVqpml ´ g ` 1q.

We recall that a vector bundle V on X is said to be semi-stable (resp.

stable) if for every sub-bundle W of V (resp. proper sub-bundle W of

V), we have

rpVqdpWq ď rpWqdpVqpresp. rpVqdpWq ă rpWqdpVqq.

Let α be a positive rational number and Spαq the category of semi-

stable vector bundles V on X such that dpVq “ αrpVq. Then Spαq is an

377



378 C. S. Seshadri

abelian category and the Jordan-Hölder theorem holds in this category

(c.f. Prop. 3.1, [12] and Prop. 1, [10]). For V P Spαq, we denote by gr V

the associated graded object; now gr V is a direct sum of stable bundles

W such that dpWq “ αrpWq (we note that gr V is not a well-determined

object of Spαq, it is determined only upto isomorphism). Let Spα, rq be

the sub-category of Spαq consisting of V P Spαq such that rpVq “ r. It

can be proved that Spα, rq is bounded, i.e. there is an algebraic family of

vector bundles on X such that every V P Spα, rq is found in this family

(upto isomorphism). We can then find an integer m such that H0pVpmqq
generates Vpmq and H1pVpmqq “ 0 for all V P Spα, rq. We fix such an

integer m in the sequel. Let E be the trivial vector bundle on X of rank

p “ rpα ` lm ´ g ` 1q.

If V P Spα, rq, then dim H0pVpmqq “ p, Vpmq is a quotient bundle

of E and the Hilbert polynomial P of W “ Vpmq is given by Ppnq “
rpα` lm` ln´g`1q, Pp0q “ p. The Hilbert polynomial is the same for

all Vpmq, V P Spα, rq. Let QpE{Pq “ QuotpE{Pq be the Grothendieck362

scheme of all β : E Ñ F, where F is a coherent sheaf on X; β makes

F a quotient of E and the Hilbert polynomial of F is the above P; then

QpE{Pq is a projective algebraic scheme (c.f. Theorem 3.2, [3]). If

q P QpE{Pq, we denote by Fq the coherent sheaf which is a quotient

of E, represented by q. Let R be the subset of QpE{Pq determined by

points q P QpE{Pq such that (i) Fq is locally free and (ii) the canonical

mapping βq : E Ñ H0pFqq is surjective. If follows easily that for

q P R, βq is indeed an isomorphism and that H1pFqq “ 0. It can be

shown that R is an open, smooth and irreducible subscheme of QpE{Pq
of dimension pp2 ´ 1q ` pr2pg ´ 1q ` 1q invariant under the canonical

operation of Aut E on QpE{Pq and that for q1, q2 P R, Fq1
is isomorphic

to Fq2
if and only if q1, q2 lie in the same orbit under GLpEq “ Aut E

(c.f. §6, [12] and §5 a, [10]). for q P R, Fq is locally free and is therefore

the sheaf of germs of a vector bundle; let Rss (resp. Rs) denote the subset

of R consisting of q such that (the bundle associated to) Fq is semi-stable

(resp. stable). Let n be an ordered set of N distinct points P1, . . . , PN

on X. Let τi : R Ñ Hp,rpEq be the morphism into the Grassmannian of

r-dimensional quotient linear spaces of E (considered canonically as a
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vector space of dimension p), which assigns to q P R, the fibre at Pi of

the vector bundle associated to Fq, considered canonically as a quotient

linear space of E. Let

τ : R Ñ HN
p,rpEq

be the GLpEq-morphism defined by τ “ tτiu1ďiďN . Then we have the

following basic

Lemma 2. Given the category Spα, rq, we can then find an integer m

and an ordered set n of N points on X as above such that the morphism

τ : R Ñ HN
p,rpEq “ Z has the following properties:

(1) τ is injective;

(2) τpRssq Ă Z ss and for q P Rss, τpqq is stable if and only if Fq is a

stable vector bundle;

(3) the induced morphism τ : Rss Ñ Z ss is proper.

Remark. It can indeed be shown that τ : Rss Ñ Z ss is a closed immer- 363

sion for a suitable choice of m and n.

Excepting (3), the other assertions have been proved before (§7,

[12]). We shall now give a proof of (3).

Let R1 be the subset of QpE{Pq consisting of points q P QpE{Pq
such that the corresponding coherent sheaf Fq is locally free. Then R Ă
R1 and R1 is an open subscheme of QpE{Pq invariant under GLpEq (c.f.

Prop. 6.1, [12]). Let n be an ordered set of N points P1, . . . , PN on the

curve X. Let τi : R1 Ñ Hp,rpEq be the morphism (extending the above

τi) into the Grassmannian of r-dimensional quotient linear spaces of E

which assigns to q P R1, the fibre of the vector bundle associated to Fq

at the point Pi, considered canonically as a quotient linear space of E.

Let τ : R1 Ñ HN
p,rpEq be the morphism defined by τ “ tτiu1ďiďN .

We shall now extend the morphism τ : R1 Ñ HN
p,rpEq to a multi-

valued (set) mapping of QpE{Pq into HN
p,rpEq and we shall denote this

extension by Φ “ tΦiu1ďiďN . Suppose now that for q P QpE{Pq, Fq

is not locally free. Then we have Fq “ Vqpmq ‘ Tq, where Tq is a

torsion sheaf and Vq is locally free (this decomposition holds because
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X is a non-singular curve). Suppose that Pi R Support of Tq. We then

define Φipqq P Hp,rpEq as the fibre of the bundle Vqpmq at Pi considered

canonically as a quotient linear space of dimension r of E. Suppose that

Pi P Support of Tq; we then define Φipqq to be any point of Hp,rpEq. We

thus obtain a multivalued (set) mapping Φi : QpE{Pq Ñ Hp,rpEq and

we define Φ “ tΦiu1ďiďN . We claim now that Φi is a morphism in a

neighbourhood of q P QpE{Pq if and only if Pi R Support of Tq. For

this it suffices to show that given q0 P QpE{Pq such that Pi R Support of

Tq0
, there is a neighbourhood U of q0 such that Pi R Support of Tq for

any q in U. We observe that Fq0
is locally free in a neighbourhood of Pi

and therefore if F is the coherent sheaf on X ˆ QpE{Pq, which is a quo-

tient of E and defines the family tFqu, it follows by Lemma 6.1, [12],

that Fq is locally free in a neighbourhood of pPi ˆ q0q P X ˆ QpE{Pq.

From this the existence of a neighbourhood U as required above follows

easily and our claim is proved. It is now immediate that the graph of364

Φi in QpE{Pq ˆ Hp,rpEq is closed and that it contains the closure of the

graph of τi : R1 Ñ Hp,rpEq in QpE{Pq ˆ Hp,rpEq. From this it follows

easily that the graph of Φ in QpE{Pq ˆ HN
p,rpEq contains the closure of

the graph of τ : R1 Ñ HN
p,rpEq in QpE{Pq ˆ Hp,rpEq. Then we claim

that

Claim (A). m and N can be so chosen that for q P QpE{Pq, Φpqq is

semi-stable (resp. stable) if and only if q P Rss (resp. Rs).

Let us first show how (A) implies (3) of Lemma 2. Let us denote

by the same letter Φ, the graph of the multivalued set mapping Φ :

QpE{Pq Ñ HN
p,rpEq. Let Γ be the graph of the morphism τ : Rss Ñ

Hp,rpEqss andΨ the closure of Γ in QpE{PqˆHN
p,rpEq. Now (A) implies

that Φ Ą Ψ and that

ΦX pQpE{Pq ˆ HN
p,rpEqssq “ Γ.

This implies that

ΨX pQpE{Pq ˆ HN
p,rpEqssq “ Γ

since Φ Ą Ψ Ą Γ. Since Ψ is closed, this means that Γ, which by defini-

tion is closed in Rss ˆ HN
p,rpEqss, is also closed in QpE{Pq ˆ HN

p,rpEqss.
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Since QpE{Pq is projective, in particular complete, the canonical pro-

jection of QpE{Pq ˆ HN
p,rpEqss onto HN

p,rpEqss is proper and this implies

that

τ : Rss Ñ HN
p,rpEqss

is proper.

We shall now prove ((A)). In view of (2) of Lemma 2 which has

been proved in §7, [12], it suffices to prove the following:

Claim (B). m and N can be so chosen that for q P QpE{Pq, q R Rss,

Φpqq is not a semi-stable point of HN
p,rpEq.

Let Fprq denote the category of all indecomposable vector bundles

V on X such that rpVq ď r and dpVq ě ´ grpVq. From the fact that the

family of all indecomposable vector bundles on X of a given rank and

degree is bounded (c.f. p. 426, Th. 3, [1]), it is deduced easily that there

is an integer m0 such that for m ě m0, @V P Fprq, H1pVpmqq “ 0 and 365

H0pVpmqq generates Vpmq (i.e. the canonical mapping of H0pVpmqq
onto the fibre of Vpmq at every point of X is surjective). In the following

we fix a positive integer m such that m ě m0.

If q P QpE{Pq, we have Fq “ Vqpmq ‘ Tq, where Tq is a torsion

sheaf and Vq is the coherent sheaf associated to a vector bundle Vq. We

denote by p1 the natural projection of H0pFqq onto H0pVqpmqq. For

proving ((B)), we require the following :

Claim (C). If q R Rss, there is a proper linear subspace K of E (i.e.

K ‰ E, K ‰ p0q) and a sub-bundle Wqpmq of Vqpmq (Wqpmq could

reduce to 0) such that

(i) pp1 ˝ βqqpKq Ă H0pWqpmqq and pp1 ˝ βqqpKq generates Wqpmq
generically (i.e. there is at least one point P of X such that pp1 ˝
βqqpKq generates the fibre of Wqpmq at P; we recall that βq is the

canonical mapping E Ñ H0pFqq) and,

(ii)
rpWqpmqq

dim K
´

r

p
ă 0.

We shall now prove ((C)) and this proof is divided into two cases.
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Case (i) q R R. Suppose that Kerpp1 ˝ βqq ‰ 0. Then we set K “
Kerpp1 ˝ βqq and Wqpmq “ p0q. Then K generates Wqpmq and the

inequality pbq is obviously satisfied.

Suppose then that Kerpp1 ˝ βqq “ 0, i.e. p1 ˝ βq : E Ñ H0pVqpmqq
is injective. Suppose further that for every indecomposable component

Vipmq of Vqpmq, we have

dpViq ě ´ grpViq.

Then by our choice of m, we have H1pVqpmqq “ 0 and H0pVqpmqq
generates Vqpmq. For the torsion sheaf Tq, we have Tqpnq “ Tq for

all n and H1pTqq “ 0. It follows then that H1pFqpnqq “ 0 for every

n ě 0. Then we have Ppnq “ H0pFqpnqq for every n ě 0; in particular

p “ dim H0pFqq. But since p1 ˝ βq : E Ñ H0pVqpmqq is injective and

p “ dim E, we conclude that H0pTqq “ 0. Since Tq is a torsion sheaf,

this implies that Tq “ p0q, i.e. that Fq is locally free. Further it follows366

that βq : E Ñ H0pFqq is an isomorphism so that q P R, which is a

contradiction.

We can therefore suppose that there is at least one indecomposable

component Vipmq of Vqpmq such that

dpViq ă ´grpViq.

Let Vqpmq “ W1pmq ‘ W2pmq such that for every indecomposable com-

ponent Upmq of W1pmq, we have dpUq ě ´grpUq and for every inde-

composable component S pmq of W2pmq, we have dpS q ă ´grpS q. We

note that since Fq is a quotient of E and Fq “ Vqpmq‘Tq, Vqpmq is gen-

erated by its global sections; consequently W1pmq and W2pmq are also

generated respectively by their global sections. If G is a vector bun-

dle on X generated generically by H0pGq, it can be shown easily (c.f.

Lemma 7.2, [12]) that

dim H0pGq ď dpGq ` rpGq

and by applying this it follows easily that

dim H0pW2pmqq ă rpW2qplm ´ g ` 1q.
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We see then that there is a linear subspace K of Ep« H0pEqq such that

pp1 ˝ βqqpKq Ă H0pW1pmqq and

dim K ą p ´ rpW2qplm ´ g ` 1q “ rpW1qplm ´ g ` 1q “
rpW1q

r
p.

This shows that
r

p
ą

rpW1pmqq

dim K
.

Let Wqpmq be the sub-bundle of W1pmq generated generically by K

(through p1 ˝ βq). Then we have

rpWqpmqq

dim K
ă

rpW1pmqq

dim K
.

Therefore, we have
rpWqpmqq

dim K
´

r

p
ă 0.

This proves ((C)) in Case (i).

Case (ii) q P R, q R Rss. We have Fq “ Vqpmq, Vq being not semi- 367

stable. We see easily that there exists a stable sub-bundle Wqpmq
of Vqpmq such that

dpWqq

rpWqq
ą

dpVqq

rpVqq
“ α ą 0.

The bundle Wq is indecomposable and therefore Wq P Fprq. There-

fore by our choice of m, H1pWqpmqq “ 0 and H0pWqpmqq gen-

erates Wqpmq. We have also H1pVqpmqq “ 0 and βq : E Ñ
H0pVqpmqq is an isomorphism. We set K “ H0pWqpmqq. Then by

applying the Riemann-Roch theorem, we get

dim K

rpWqq
“

dpWqpmqq

rpVqq
´ g ` 1 “

dpWqq

rpWqq
` ml ´ g ` 1,

p

r
“

dpVqpmqq

rpVqq
´ pg ´ 1q “

dpVqq

rpVqq
` ml ´ g ` 1.
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Since
dpWqq

rpWqq
ą

dpVqq

rpVqq
, we get

rpWqq

dim K
´

r

p
ă 0. This completes

the proof of ((C)).

We shall now show that ((C)) implies ((B)). Let q P QpE{Pq, q R
Rss. If L is a subspace of E, we denote by Li the canonical image of L

in the quotient linear space of E represented by Φipqq. Let

ρpLq “

1
N

Nř
i“1

dim Li

dim L
´

r

p
.

Then ((B)) would follow if we show that there is a proper subspace K

of E such that ρpKq ă 0 (see the last assertion of Th. 4). Take a proper

linear subspace K of E as provided by ((C)) above. Then we have

ρpKq “
rpWqpmqq

dim K
´

r

p
ă 0.

We have

|µpKq ´ ρpKq| ď
Nÿ

i“1

|rpWqq ´ dim Ki| (a)

since dim K ě 1. Now to estimate the right side, we should consider368

those i for which rpWqq ´ dim Ki could be different from zero. This

could occur for i such that Pi P Support of Tq or Pi R Support of Tq.

Suppose that Pi P Support of Tq and rpWqq ´ dim Ki ‰ 0. Then K does

not generate the fibre of Wqpmq at Pi. The number of distinct points of

X where K does not generate the fibre of Wqpmq is at most dpWqpmqq
(c.f. Lemma 7.1, [12]). From these facts, we deduce that

|µpKq ´ ρpKq| ď
rpdpWqpmqqq ` CardpSupport of Tqq

N
. (b)

Now for Fq “ Vqpmq ‘ Tq, by applying the Riemann-Roch theorem,

we get for sufficiently large n that

dim H0pFqpnqq “ λ ` nrl ` dim H0pTqq ´ rpg ´ 1q
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where dpVqpmqq “ λ ą 0 (λ is positive because Vqpmq is generated by

its global sections). On the other hand, for sufficiently large n,

dim H0pFqpnqq “ Ppnq “ rpα ` lm ` ln ´ g ` 1q.

Therefore we obtain that

dim H0pTqq ` λ “ rpml ` αq. (c)

Since Card (Support of Tq) ď dim H0pTqq and λ ď 0, we get that

CardpSupport of Tqq ď rpml ` αq. (d)

We note that the family of vector bundles tVqpmqu, q P QpE{Pq is

a bounded family. This could be seen as follows. The degree of every

indecomposable component of Vqpmq is positive, in particular, bounded

below, because Vqpmq is generated by global sections. On the other hand

from ((C)) above we see that

λ ` dpVqpmqq ď rpml ` αq,

i.e. the degree of Vqpmq is bounded above. From these facts, it follows

that the degrees of every indecomposable component of Vqpmq are both

bounded below and above. This implies that tVqpmqu is a bounded fam-

ily (c.f. p. 426. Th. 3, [1]). Now Wqpmq is generated generically by

K (through p1 ˝ βq) and therefore by its global sections as well. As we

just saw for the case of Vqpmq, it follows that the degrees of all the inde- 369

composable components of Wqpmq are bounded below. Then since the

family tWqpmqu, q P QpE{Pq is a family of sub-bundles of the bounded

family tVqpmqu, q P QpE{Pq, it can be proved without much difficulty

that the degrees of the indecomposable components of Wqpmq are also

bounded above (c.f. Prop. 11.1, [11]). It follows then, as we just saw

for the case of Vqpmq, that tWqpmqu, q P QpE{Pq, is a bounded family.

In particular, there is an absolute positive constant θ such that

dpWqpmqq ď θ.
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Looking at the inequalities (b), (c), and (d), we get that

|µpKq ´ ρpKq| ď rpθ ` rpml ` αqq.

Suppose that N ě 2p2rpθ ` rpml ` αqq. Then we have

|µpKq ´ ρpKq| ď
1

2p2
.

On the other hand, since dim K ď p and µpKq ă 0, we have

´µpKq “ |µpKq| “

ˇ̌
ˇ̌ r

p
´

rpWqq

dim K

ˇ̌
ˇ̌ ě

1

p2
.

We have

´ρpKq “ ´µpKq ´ pρpKq ´ µpKqq.

Therefore we get

´ρpKq ě ´µpKq ´ |µpKq ´ ρpKq|

which gives

´ρpKq ě
1

p2
´

1

2p2
“

1

2p2
ą 0.

Thus we have proved that if q R Rss and N ě 2p2pθ ` rpml ` αqq, then

there exists a proper linear subspace K of E such that ρpKq ă 0. This

completes the proof of ((B)) and thus (3) of Lemma 2 is proved.

Let us now take in the above lemma r “ 2, i.e. we consider semi-

stable vector bundles V of rank 2 such that α “ dpVq{rpVq. Then Z ss has

a good quotient (modulo S LpEq) and the quotient is in fact a projective

variety (c.f. §2, Theorem 4). Since Rss is a smooth variety, in particular370

normal, then by the properties of good quotients, it follows that Rss has

a good quotient φ : Rss Ñ T modulo GLpEq (equivalently S LpEq or

PGLpEq) such that T is projective. It is checked easily that Rs is non-

empty and that the closures of the GLpEq-orbits through q1, q2 P Rss

intersect if and only if gr Fq1
“ gr Fq2

. It follows then that T can be

identified naturally with the classes of vector bundles in Spα, 2q under
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the equivalence relation V1, V2 P Spα, 2q, V1 „ V2 if and only if gr V1 “
gr V2 and that dim T “ p4g ´ 3q. It can also be seen easily that T has

a weak universal mapping property (coarse moduli scheme in the sense

of Def. 5.6, Chap. 5, [4]). Thus we get the following

Theorem 5. Let Uα be the equivalence classes of semi-stable X of rank

2 and degree 2α under the equivalence relation V1 „ V2 if and only if

gr V1 “ gr V2pα “ 0 or 1
2
q. Then there exists a structure of a normal

projective variety on Uα, uniquely determined by the following proper-

ties:

(1) given an algebraic family of vector bundles tVtu, t P T, of rank 2

and degree 2α on X, parametrized by an algebraic scheme T , the

canonical mapping T Ñ Uα, defined by t Ñ gr Vt is a morphism;

(2) given another structure U 1 on Uα having the property p1q, the

canonical mapping Uα Ñ U 1 is a morphism.

Remark. It can be shown that U is smooth when α “ 1
2
.
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THE UNIPOTENT VARIETY OF A SEMISIMPLE

GROUP

By T. A. Springer

If G is a connected semisimple linear algebraic group over a field 373

of characteristic 0, one easily sees that the variety V of unipotent ele-

ments of V is isomorphic to the variety B of nilpotent elements of its

Lie algebra g; moreover one can choose the isomorphism so as to be

compatible with the canonical actions of G on V and B. In this note

the analogous situation in characteristic p ą 0 will be discussed. We

have to restrict p to be “good” for G (see 0.3). This is not so surprising,

since in “bad” characteristics there are anomalies in the behaviour of

unipotent elements.

Due to technical difficulties, we cannot prove the isomorphism of V

and B for p ą 0, but only a slightly weaker result (Theorem 3.1). This

is, however, sufficient for the applications which are discussed in §4.

0 Notations and recollections.

0.1 k denotes a field, k an algebraic closure of k and ks a separable

closure. p is the characteristic of k.

An algebraic variety V defined over k (or a k-variety) is a scheme

which is of finite type and absolutely reduced over k. Vpkq denotes its

set of k-rational points. We may and shall identify V with Vpkq, or Vpksq.

An algebraic group H defined over k (or a k-group) will mean here

a linear algebraic group, i.e. an affine group scheme, of finite type and

smooth over k. H0 denotes the identity component of H.

The Lie algebra of an algebraic group H will be denoted by the

corresponding German letter h. H acts on h via the adjoint representation

Ad. If x P H, Zpxq denotes the centralizer of x in H, zpxq “ tX P
h|AdpxqX “ Xu the centralizer of x in h. If X P h, ZpXq “ tx P
H|AdpxqX “ Xu is the centralizer of X in H, zpXq its centralizer in h 374
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390 T. A. Springer

and NpXq “ tx P H|AdpxqX P k
˚

Xu its normaliser in H.

0.2 G always denotes a connected semisimple linear algebraic group,

defined over a field k.

Let T be a maximal torus of G, B a Borel subgroup containing T and

U the unipotent part of B. Denote by Σ the set of roots of G with respect

to T . B determines an order on Σ, let Σ` be the set of positive roots. We

denote by r1, . . . , rl the corresponding simple roots. For r P Σ there is

an isomorphism xr of the additive group Ga onto a closed subgroup Gr

of G, such that

t.xrpξq.t
´1 “ xrptrξq pξ P kq,

where tr denotes the value of the character r of T in t P T . U is generated

by the Gr with r ą 0. Gr and G´r generate a subgroup Pr which is

connected semisimple of type A1. Xr P g will denote a nonzero tangent

vector to Gr. We will say that G is simple if Σ is irreducible.

0.3 Let G be simple. Then there is a unique highest root r in Σ, for the

given order. Express r as an integral linear combination of the ri. The

characteristic p of k is called bad for G, if p is a prime number dividing

one of the coefficients in this expression. Otherwise p is called good for

G. If p is good and if moreover p does not divide the order of the centre

of the simply connected covering of G, then p is called very good for G.

p “ 0 is always very good. For the simple types, the bad p ą 0 are:

Al: none; Bl, Cl, Dl : p “ 2; E6, E7, F4, G2 : p “ 2, 3; E8 : p “
2, 3, 5. A good p is very good, unless G is of type Al and p divides l ` 1.

If G is arbitrary, p is defined to be good or very good for G if it is so far

all simple normal subgroups of G.

0.4 x P G is called regular, if dim Zpxq equals rank G. We shall have

to make extensive use of the properties of regular unipotent elements of

G, which are established in [14], [15].

1 The unipotent variety of G. Let VpGq (or V , if no confu-

sion can arise) denote the set of unipotent elements of G. Then VpGq
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is closed in G. We call VpGq the unipotent variety of G. The following 375

result justifies this name.

Proposition 1.1. VpGq is an irreducible closed subvariety of G of di-

mension dim G ´ rank G. G acts on VpGq by inner automorphisms.

VpGq and the action of G on it are defined over k.

Except for the last statement, this contained in ([14], 4.4, p. 131).

We sketch the proof since we have to refer to it later on.

Suppose first that G is quasi-split over k. Let B be a Borel subgroup

of G, which is defined over k. Then U is also defined over k. Consider

the subset W of G{BˆG, consisting of the pgB, xq such that g´1xg P U.

This is a closed subvariety of G{B ˆ G ([5], exp. 6, p. 12, 1.13). It

follows from loc. cit. that W is irreducible and defined over k. V is the

projection of W onto the second factor of G{B ˆ G, let π : W Ñ V

be the corresponding morphism. That V has the asserted dimension is

proved in ([14], loc. cit). G{B being a projective k-variety, π is proper,

defined over k. V is closed in G and defined over k.

Let G act on G{BˆG by ph, pgB, xqq Ñ phgB, hxh´1q. This action is

defined over k, W is stable and π is a G-equivariant k-morphism W ÞÑ V ,

G acting on V as in the statement of the proposition.

If k is arbitrary, G splits over ks (see [2], 8.3 for example). It follows

that V is defined over ks. Since V is clearly stable under Γ “ Galpks{kq,

it is defined over k. W is also defined over k, moreover if s P Γ there

exists gs P Gpksq such that

sB “ gsBg´1
s , sU “ gsUg´1

s .

Define a new action ps,wq ÞÑ sw of Γ on W by spgB, xq “ psg ¨ gsB, sxq.

W is stable under this action of Γ, hence this defines a structure of k-

variety on W, such that the projection π : W Ñ V is a G-equivariant

k-morphism.

If G and G1 are two semisimple k-groups, and f a k-homomorphism,

there exists an induced k-morphism Vp f q : VpGq Ñ VpG1q.

Proposition 1.2.

(i) If f is a separable central isogeny, then Vp f q is an isomorphism,

compatible with the actions of G and G1,
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(ii) VpG ˆ G1q is isomorphic to VpGq ˆ VpG1q as a k-variety, the376

isomorphism being compatible with the actions of G, G1, G ˆ G1.

The proof of Proposition 1.2 is easy.

The following results are essentially contained in [15].

Proposition 1.3.

(i) VpGq is nonsingular in codimension 1;

(ii) VpGq is normal if G is simply connected, or if p does not divide

the order of the centre of the simple connected covering of G.

We may assume k to be algebraically closed. In V we have the open

subvariety O of the regular elements. O is an orbit of G and all its ele-

ments are simple points of V (see [15], 1.2, 1.5 for these statements). (i)

then follows from the fact, proved loc. cit. (6.11 e), that the irreducible

components of V ´ O have codimension ě 2.

If G is simply connected, then by ([15], 6.1, 8.1) V is a complete

intersection in G. The first statement in (ii) then follows from known

normality criteria (e.g. [7], iv, 5.8.6, p. 108) and the second one is a

consequence of 1.2 (i).

We now prove some properties of the proper k-morphism π : W Ñ
V , introduced in the proof of 1.1.

Proposition 1.4. If G is adjoint, then π is birational.

Since a regular unipotent element is contained in exactly one Borel

subgroup, π is bijective on π´1pOq (O denoting as before the variety of

regular elements). 1.4 will then follow, if we show that π is separable

(see e.g. [7], III, 4.3.7, p. 133). We may assume k to be algebraically

closed. Let φ be the morphism G ˆ U Ñ G such that φpg, uq “ gug´1.

From the definition of π it follows that there exists a morphism ψ :

G ˆ U Ñ W such that φ “ π ˝ ψ. To prove the separability of π,

it suffices to prove that in some point a P G ˆ U, the tangent map

pdφqa : T pG ˆ Uqa Ñ T pGqφpaq has image of dimension dim V .

Let u be a regular unipotent element in U. We will take a “ pe, uq.

Identify the tangent space T pG ˆ Uqa with g‘ u (via a right translation
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with pe, uq), identify T pGqφpaq with g. Then pdφqa becomes the homo-

morphism α : g‘uÑ g, which sends pX,Uq into p1 ´ Adpuq´1qX ` U. 377

It follows that αpg‘ uq contains pAdpuq ´ 1qg, which, by ([15], 4.3, p.

58) has dimension equal to dim V . (Since G is adjoint, the z of loc. cit.

is now the zero element). This implies the result.

Remark. By dimensions one finds also that u Ă pAdpuq ´ 1qg.

Proposition 1.5. The fibres of π are connected.

We may assume k to be algebraically closed. In view of the defi-

nition of W this can be stated in another way, namely that, B denoting

some Borel subgroup of G, the fixed point set in G{B of any unipo-

tent element g P G is connected. Identifying G{B with the variety of

Borel subgroups of G, 1.5 can also be interpreted as follows: the closed

subvariety of G{B consisting of the Borel subgroups containing g, is

connected. 1.5 follows, if G is simply connected, from 1.3 (ii) and 1.4

by Zariski’s connectedness theorem (see [7], 4.3.7, p. 133). The gen-

eral case then follows at once, since central isogenies do not affect the

statement.

Another proof of 1.5 was given by J. Tits. Since his method of proof

will be useful in §2, we will reproduce his proof here. We interpret G{B

as the variety of Borel subgroups of G. Let g P B be a unipotent element

of G, let B1 be another Borel subgroup containing g. By Bruhat’s lemma,

B X B1 contains a maximal torus T . Let N be its normalizer and W “
N{T be the Weyl group. For w P W , denote by nw a representative in N.

There exists then w P W such that B1 “ nwBn´1
w . B determines an order

on the root system Σ, let w1, . . . ,wl (l “ rank G) be the reflections in W

defined by the corresponding simple roots. Since the wi generate W , we

can write w as a product w “ wi1 . . .wit . We take t as small as possible.

Put v0 “ 1, vh “ wi1 . . .wihp1 ď h ď tq, Bh “ nvh
Bn´1

vh
, so that B0 “ B,

Bt “ B1. Let Σh denote the set of r P Σ such that r ą 0, vhr ă 0. It is

known that the minimality of t implies that Σh Ă Σh`1 (this follows e.g.

from [5], p. 14-06, lemma). The intersection B0 X Bh is generated by T

and the subgroups Gr (see 0.2) with r R Σh ([5], exp. 13, No. 2). Hence

Bh Ą B0 X Bt “ B X B1, in particular g belongs to all Bh. Let X Ă G{B
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be the variety of Borel subgroups containing g. It suffices to show that378

we can connect Bh and Bh`1 inside X by a projective line.

Put u “ vhwh`1v´1
h

, then Bh`1 “ nuBhn´1
u , moreover u is a reflec-

tion in a simple root for the order on Σ determined by Bh. Changing the

notation, we are reduced to proving that B and B1 are connected inside

X by a projective line, if w is a reflection in a simple root r ą 0. Then let

Pr be the subgroup of G generated by Gr and G´r. Pr is of type A1 and

we may take nw P Pr. One easily checks that hBh´1 Ą B X B1 for all

h P Pr. Pr X B is a Borel subgroup of Pr. Let ψ : Pr{Pr X B Ñ G{B be

the canonical immersion. L “ Pr{Pr X B is a projective line and ψpLq
contains both B and B1. This establishes our assertion.

2 The nilpotent variety of G. We discuss now the Lie algebra

analogues of the results of §1. We recall that an element X P g is called

nilpotent if it is tangent to a unipotent subgroup of G. Equivalently,

X is nilpotent if it is represented by a nilpotent matrix in any matrix

realization of G (see [1], §1, pp. 26-27). Let BpGq (or B) denote the set

of nilpotent elements in g, g being endowed with the obvious structure

of affine space over k. Then V is a closed subset of g.

Proposition 2.1. BpGq is an irreducible closed subvariety of g of di-

mension dim G ´ rank G. G acts on BpGq via the adjoint representation

of G. BpGq and the action of G on it are defined over k.

The proof is similar to that of 1.1. First let G be quasi-split over k.

We use the notations of the proof of 1.1. Instead of W, we consider now

the closed subvarietyW of G{B ˆ g, consisting of the pgB, Xq such that

Adpgq´1X P u. G acts onW by

ph, pgB, Xqq ÞÑ phgB,AdphqXq.

The projection of G{Bˆg onto its second factor induces a G-equivariant

proper morphism τ : W Ñ B. The argument parallels now that of the

proof of 1.1 (see [2], §2, where a similar situation is discussed).

If f : G Ñ G1 is a k-homomorphism of semisimple k-groups, there379

exists an induced k-morphism Bp f q : BpGq Ñ BpG1q (by [2], 3.1).
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Proposition 2.2.

(i) If f is a separable isogeny, then Bp f q is an isomorphism, com-

patible with the actions of G and G1;

(ii) BpG ˆ G1q is isomorphic to BpGq ˆ BpG1q as a k-variety, the

isomorphism being compatible with the actions of the G, G1, G ˆ
G1.

The proof is left to the reader.

1.3 can only be partially extended to B.

Proposition 2.3. Let p be good for G. Then BpGq is nonsingular in

codimension 1.

This will not be needed, so we only indicate briefly how this can be

proved. If p is good, there exist in g regular nilpotent elements (by [14],

5.9 b, p. 138, this is also a consequence of [10], 5.3, p.8). The orbit O

in B of such an element is open and consists of nonsingular points. One

then uses the method of [15] to prove that all irreducible components of

B´O have codimensions at least 2.

It is likely that BpGq is normal if G is simply connected and p is

good. However we are not able to prove this. A proof along the lines

of that of 1.3 would require the analogue of 1.3 (ii). In characteristic 0

this is a result of Kostant ([9]). For a proof of the corresponding fact

in positive characteristics it seems that one needs detailed information

about the ring of G-invariant polynomial functions on g.

If the normality of B were known. Theorem 3.1 could be amelio-

rated and its proof could be simplified.

Proposition 2.4. Suppose that p is very good for G. Then τ : WÑ B is

birational.

The proof is similar to that of 1.4. Instead of results on regular

unipotent elements, one now uses those on regular nilpotent elements of

g, which are discussed in ([14], 4, p. 138).
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Proposition 2.5. The fibres of τ : WÑ B are connected.

A proof based on Zariski’s connectedness theorem, as in 1.5, cannot380

be given here since we cannot use normality ofB. But Tits’ proof works

in the case of B and carries over with some obvious modifications.

3 Relation between V and B. In this number we shall prove

the following theorem.

Theorem 3.1. Suppose that G is simply connected and that p is good

for G. Then there exists a G-equivariant k-morphism f : V Ñ B, which

induces a homeomorphism Vpkq Ñ Bpkq.

The normality ofBwould imply that f is an isomorphism. However

3.1 is already sufficient for the applications we want to make. In char-

acteristic 0, one easily gives a proof of 3.1, using the logarithm in some

matrix realization of G. For the proof we need a number of auxiliary re-

sults. The first three give some rationality results on regular unipotents

and nilpotents.

Proposition 3.2. Suppose that G is adjoint and that p is very good for

G. Let X be a regular nilpotent element of gpkq. Then its centralizer

ZpXq is connected, defined over k and is a k-split unipotent group.

Recall that a connected unipotent k-group is called k-split, if there

exists a composition series of connected k-groups, such that the succes-

sive quotients are k-isomorphic to Ga (see [11], p. 97). That ZpXq is

connected unipotent is proved in ([14], 5.9b, p. 138). Len NpXq be the

normalizer of X in G (see 0.1). Under our assumptions, NpXq is also

defined over k ([10], 6.7, p. 11). Moreover, NpXq is connected. In fact,

if S is a maximal torus of its identity component NpXq0, then for any

g P NpXq, there exists s P S such that AdpgqX “ AdpsqX, whence

NpXq Ă S ¨ ZpXq Ă NpXq0, since ZpXq is connected.

Now NpXq contains a maximal torus S which is defined over k (by

a theorem of Rosenlicht-Grothendieck, see [1]). Define a character a

of S by AdpsqX “ saX. Then a is clearly defined over k; moreover

since ZpXq is unipotent and since NpXq{ZpXq has dimension 1, we have

that dim S “ 1. It follows that S is k-split. S acts on ZpXq by inner381
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automorphisms. We claim that S acts without fixed points. To prove

this, we may assume k algebraically closed, moreover it suffices to prove

that S acts without fixed points on the Lie algebra z of ZpXq ([3], 10.1,

p. 127).

Since all regular nilpotents are conjugate ([14], 5.9c, p. 130), it

suffices to prove the assertion for a particular X. We may take, with the

notations of 0.2, X “
lř

i“1

Xri
(loc. cit. p. 138). Then one may take for

S the subtorus of T , which is the identity component of the intersection

of the kernels of all ri ´ r j. This S acts without fixed points on u, hence

also on z, since z Ă u ([14], 5.3, p. 138). By the conjugacy of maximal

tori, the assertion now follows for an arbitrary maximal torus of NpXq.

S acting without fixed points on ZpXq, it follows that ZpXq is k-split

([2], 9.12). This concludes the proof of 3.2.

The following result generalizes ([13], 4.14, p. 135).

Corollary 3.3. Under the assumptions of 3.2, let Y be another regular

unipotent in gpkq. Then there exists g P Gpkq such that Y “ AdpgqX.

Let P “ tg P G|AdpgqX “ Yu. P is defined over k. This is proved

in the same way as the fact that ZpXq is defined over k ([10], 6.7, p.

11, see [2], 6.13 for a similar situation). P is a principal homogeneous

space of the k-split unipotent group ZpXq, hence P has a k-rational point

g ([13], III-8, Prop. 6), which has the required property.

Proposition 3.4. Suppose that G is quasi-split over k. Then

(i) Gpkq contains a regular unipotent element;

(ii) if p is good, gpkq contains a regular nilpotent element.

Replacing G by its simply connected covering (which is defined over

k) we may assume G to be simply connected. Then we also may assume

G to be simple over k and even absolutely simple ([18], 3.1.2, p. 6).

(i) First assume G is not of type Al (l even). Let B be a Borel sub- 382

group of G which is defined over k. With the notations of 0.2,

we take x “
lś

i“1

xri
pξiq, where the order of the product and the
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ξi P k˚
s are chosen such that x P Gpkq. This is possible, see ([15],

proof of 9.4, p. 72 for a similar situation). If G is of type Al (l

even) a slightly different argument is needed, similar to the one of

(loc. cit. 9.11, p. 74). One could also prove (i) in that case by an

explicit check in case G is a special unitary group.

The proof of (ii) is similar (but simpler). Take as regular nilpotent

X “
lř

i“1

ξiXri
, with suitable ξi P k˚

s . X is regular by ([14], p. 138).

In the next result we shall be dealing with the unipotent part U of a

Borel subgroup of a k-split G, and with its Lie algebra. Notations being

as in 0.2, we have the following formula,

xrpξqxspηqxrpξq
´1xspηq´1 “

ź

i, ją0

xir` jspCi jrsξ
iη jqpξ, η P kq, (19.1)

where r, s P Σ, r ` s ‰ 0. The product is taken over the integral

linear combinations of r, s which are in Σ, and the Ci jrs are integers. We

presuppose a labelling of the roots in taking the product, the labelling

being such that the roots with lower height come first. The height of a

positive root r “
lř

i“1

niprqri is defined as hprq “
ř
i“1

niprq. Now (19.1)

shows that there exists a groupscheme U0 over Z, such that U “ U0ˆ
Z

k.

The same is true for B, so that B “ B0ˆ
Z

k. U0 is isomorphic, as a

scheme, to an affine space over Z, B0 is isomorphic as a scheme to

U0 ˆ G1
m. B0 acts on U0.

For simplicity, we shall identify U0pB0q here with the sets U0pKq
(B0pKq) of points with values in some algebraically closed filed K Ą Z,

likewise for Ga.

Let s be the product of the bad primes for G, let R “ Zs be the

ring of fractions n{skpn P Zq. Put U1 “ U0ˆ
Z

R, B1 “ U0ˆ
Z

R. The

homomorphism xr : Ga Ñ U comes from a homomorphism of group

schemes over Z : Ga Ñ U0, which leads to a homomorphism over383

R : Ga Ñ Ul. The latter one will also be denoted by xr, the image

of xr is also denoted by Gr. Let u1 be the Lie algebra of U1. It is a
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free R-module, having a basis consisting of elements tangent to the Gr.

We denote these basis elements by Xr, as in 0.2. We endow u1 with its

canonical structure of affine space over R.

After these preparations, we can state the next result.

Proposition 3.5. There exists a B1-equivariant isomorphism of R-sche-

mes φ : U1 Ñ u1.

This is proved by exploiting the argument of ([14], pp. 133-134)

used to determine the centralizer of regular unipotent and nilpotent ele-

ments in good characteristics.

Define v P U1pRq by v “
lś

i“1

xri
p1q. Then the argument of loc.

cit. extends to the present case and shows that the centralizer Z of v in

Ul is a closed sub-groupscheme of U1, isomorphic as a scheme to 1-

dimensional affine space over R. Moreover, since Zˆ
R

K is commutative

([8], 5.8, p. 1003) it follows that Z is commutative.

We claim that there is a homomorphism of R-groupschemes ψ :

Ga Ñ Z, such that ψpξq “
ś
r

xrpFrpξqqpξ P lq, where Fr is a poly-

nomial in RrT s such that Fri
“ T p1 ď i ď lq. This can be proved by the

method of ([14], pp. 133-134), defining Fr by induction on the height of

r. It follows, that the Lie algebra z of Z contains an element of the form

X “
ř

rą0

ξrXr, with ξr P R and ξri
“ 1p1 ď i ď lq. Since X is in the Lie

algebra of the commutative group scheme Z, we have AdpZqX “ X.

But the same which has been said above about the centralizer of v

applies to the centralizer Z1 of X: this is also a closed sub-group scheme

of U1, isomorphic to l-dimensional affine space over R (since the argu-

ment of [14] applies also to nilpotent elements like X).

Z1 and Z have the same Krull dimension l ` 1. But since Z1 is a

closed subscheme of Z1, we must have Z “ Z1. Let F be the closed

subscheme of U1 consisting of the
ś
rą0

xrpξrq such that ξri
“ 1 p1 ď i ď

lq. Using again the method of ([14], p. 133) one defines a morphism 384

χ : F Ñ U1, such that χpxqvχpxq´1 “ xpx P Fq.
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Let O be the open subscheme of U1 consisting of the
ś
rą0

xrpξrq such

that ξri
‰ 0p1 ď i ď lq. χ is easily seen to extend to a morphism

χ : O Ñ B1 such that χpxqvχpxq´1 “ xpx P Oq. It follows that O is the

orbit of v under B1. Define a morphism φ : O Ñ u1 by

φpbvb´1q “ AdpbqX pb P B1q. (19.2)

From the preceding remarks it follows that φ is well-defined, moreover

φp
ś
rą0

xrpξrqq is a polynomial function in ξr, ξ
´1
ri

p1 ď i ď lq.

We want to show that φ extends to a morphism φ : U1 Ñ u1,

satisfying (19.2). Now there is a B1ˆ
R

K-equivariant K-morphism φ1 :

U1ˆ
R

K Ñ u1ˆ
R

K given by the logarithm is a suitable matrix realization

of the algebraic group U1ˆ
R

K. φˆ
R

id extends to a B1 ˆ K-equivariant

K-morphism of an open set of U1 ˆ K which contains v into u1 ˆ K.

We have that φ1pvq and φ ˆ idpvq are conjugate in U1pKq (by [14],

5.3, 5.9 c pp. 137-138). But since φ1 is completely determined by φ1pvq,

we have that φˆ id “ Adpbq ˝ φ1, for suitable b P B1pkq. It follows that

φ ˆ id can be extended to all of U1 ˆ K. Hence φ can be extended to a

morphism U1 Ñ u1, as desired.

So we have a B1-equivariant R-morphism φ : U1 Ñ u1, with φpvq “
X. Reversing the roles of U1 and u1, one gets in the same manner a B1-

equivariant R-morphism φ1 : u1 Ñ U1 such that φ1pXq “ v. But then φ

and φ1 are inverses, so that is an isomorphism. This concludes the proof

of 3.5.

Remark. The analogue of 3.5, with R replaced by Z and U1 by U0,

u1 by u0, is false. In fact, this would imply that, over any field, the

centralizer of a regular unipotent element would be connected. This is

not true in bad characteristics ([14], 4.12, p. 134).

We can now prove 3.1. First let G be split over k. We use the nota-

tions of 0.2. From 3.5 we get a B-equivariant k-isomorphism λ : U Ñ u.
Let W, π;W, τ be as in §§1 and 2. Then

θ : pgB, xq Ñ pgB,Adpgqλpg´1xgqq
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defines a G-equivariant k-isomorphism of W onto W. Denote by OV385

the sheaf of local rings on V . Since π and τ are proper, we can apply

Grothendieck’s connectedness theorem ([7], III, 4.3.1, p. 130). Us-

ing 1.3(ii) and 1.4 we find that the direct image π˚pOWq “ OV . Let

W
τ1ÝÑ B1 τ2ÝÑ B be the Stein factorization of τ (loc.cit. p.131). Then

pτ1q˚pOWq “ OB1 and τ1
2

is finite. The definition of B1 ([7], III, p. 131)

shows that G acts on it, and that τ1, τ2 are G-equivariant. V and B

are affine varieties (1.1 and 2.1). Also, since B1 is finite over B, B1 is

affine ([7], III, 4.4.2, p. 136). It follows then from the definition of di-

rect image that the ring of sections ΓpW,OWq is isomorphic to ΓpV,OVq,

likewise that ΓpW,OWq is isomorphic to ΓpB,OB1q, these isomorphisms

being compatible with the canonical actions of G. This is obvious in the

first case, and in the second case it follows again from the definition of

B1. But V and B1 being affine. ΓpV,OVq and ΓpB1,OB1q determine V

and B1 completely. Also, W and W are isomorphic via θ. Putting this

together, we get a G-equivariant k-isomorphism µ : V Ñ B1.

By ([7], III, 4.3.3, p.131), for any x P B, the number of connected

components of τ´1pxq equals the number of points of pτ2q´1pyq. By 2.5

this implies that τ2 is bijective on B1pkq. Then f “ τ2 ˝ µ satisfies the

requirements of 3.1.

Notice that f is not unique, but is completely determined by f pvq,

where v is a given regular unipotent element. We now turn to the case

that G is arbitrary, not necessarily split over k. G being simply con-

nected, we may as well suppose that G is absolutely simple ([10], 3.1.2,

p. 46). We first dispose of the case that G is of type A. Then G is a k-

form of SLn. Now there is, in the case of the split group of type SLn, a

very simple argument to prove 3.1. Identifying in that case G and g with

subsets of a matrix algebra, V becomes the set of unipotent matrices, V

that of nilpotent matrices and we can take f pvq “ v ´ 1.

If we have another k-form G of SLn, then it is obtained from SLn by 386

a twist using a cohomology class in H1pk,Aut SLnq. The corresponding

form g is obtained from sln by the same twist. The above f then clearly

induces an isomorphism V Ñ B having the required properties.

We may now assume G to be absolutely simple, but not of type A.

Then if p is good for G, it is also very good. Suppose that G is quasi-
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split over k. Let g P Gpkq be regular unipotent, let X P gpkq be regular

nilpotent (they exist by 3.4). Since G splits over ks, we have, by the

first part of the proof, a G-equivariant ks-isomorphism f : V Ñ B.

By 3.3 there exists h P Gpksq such that Adphq f 1pvq “ X. But then

f “ f 1 ˝ Adphq is G-equivariant, defined over ks and satisfies s f “ f

for all s P Galpks{kq. Hence f is defined over k. Finally, an arbitrary k-

form G is obtained by an inner twist from a quasi-split k-form G (this is

implicit, for example, in [18], 3). Let f1 have the required properties for

G1. One easily checks then that f1 determines an f having the properties

of 3.1. This concludes the proof of 3.1.

Corollary 3.6. Suppose that G is adjoint and that p is very good for G.

Let x be a regular unipotent element of Gpkq. Then its centralizer Zpxq
is connected, defined over k and is a k-split unipotent group.

Let f be as in 3.1. Then X “ f pxq is a regular nilpotent element in

g. We have Zpxq “ ZpXq. The assertion then follows from 3.2.

Corollary 3.7. Under the assumptions of 3.6, let y be another regular

unipotent element in Gpkq. Then there exists g P Gpkq such that y “
gxg´1.

The proof is similar to that of 3.3.

Remark 3.8. The condition in 3.6 and 3.7 that p be a very good prime

cannot be relaxed. As an example, consider the case where G “ PSL2

and where k is a non-perfect field of characteristic 2. The ring of regular

functions of SL2 being identified to A “ krX,Y,Z,Us{pXU ´ YZ ´ 1q,

that of G is isomorphic to the subring of A generated by the products of

an even number of variables. Hence one can identify PSL2pkq with the387

subgroup of SL2pkq, consisting of the matrices a such that ρa P GL2pkq
for some ρ P k with ρ2 P k˚.

In our situation, let ρ P k, ρ2 P k˚. Then

ˆ
1 1

0 1

˙
and

ˆ
0 ρ

ρ´1 0

˙

are both regular unipotents in PSL2pkq, but it is easily checked that they

are not conjugate by an element of PSL2pkq. On the other hand, if k is

perfect, 3.6 and 3.7 are already true if p is good. But if p is bad, both

3.6 and 3.7 are false (see [14], 4.14, p. 135 for the first statement and
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4.12, p. 134, 4. 15c, p. 136 for the others).

Corollary 3.9. With the notations of 3.1, we have f peq “ O.

For e is the only unipotent element of G in the centre of G and O

is the only nilpotent element of g invariant under AdpGq (the last asser-

tion follows for example, by using the fact that any nilpotent element is

contained in the Lie algebra of a Borel subgroup).

4 Applications. First we give some applications of 3.1 to rational-

ity problems.

Proposition 4.1. Let k be a finite field with q elements. Suppose that

G is simply connected and that p is good for G. Then the number of

nilpotent elements in gpkq is qdim G´rank G.

Steinberg has proved that the number of unipotent elements in Gpkq
is qdim G´rank G ([16], 15.3, p. 98). The assertion then follows from 3.1.

Proposition 4.2. Suppose that p is very good for G. Then the following

conditions are equivalent:

(i) G is anisotropic;

(ii) Gpkq does not contain unipotent elements ‰ e.

We recall that G is called anisotropic, if G does not contain a non-

trivial k-subtorus S , which is k-split, i.e. k-isomorphic to a product of

multiplicative groups.

If Gpkq contains a unipotent ‰ e, then 3.1 and 3.8 imply that gpkq
contains a nilpotent ‰ O. One then argues as in ([10], 6.8, p. 11) to show

that G contains a k-split sub-torus S . Hence (i) ñ (ii). Conversely, if 388

G contains such a subtorus S , then G has a proper parabolic k-subgroup

([3], 4.17, p. 92). Its unipotent radical R is a k-split unipotent group

([3], 3.18, p. 82) and it follows that Rpkq ‰ teu, so that G has a rational

unipotent ‰ e.

For perfect k and good p, 4.2 was proved in ([10], 6.3, p. 10). More

general results were announced in [17].
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Proposition 4.3. Suppose that p is good for G. For any g P G, dim G ´
dim Zpgq is even.

This was conjectured for arbitrary p in ([15], 3.10, p. 56) and is

known to be true in characteristic 0 ([9], Prop. 15, p. 364).

We may assume that k is algebraically closed and G simply con-

nected. Let g “ gsgu be the decomposition of G into its semisimple and

unipotent parts. Since Zpgsq is reductive and of the same rank on G, it

follows readily that dim G ´dim Zpgsq is even. Because Zpgq is the cen-

tralizer of gu in Zpgsq, it follows that it suffices to consider the case that

g is unipotent. Then 3.1 implies, that 4.2 is equivalent to the assertion

that dim G ´ dim ZpXq is even for any nilpotent X P g. But dim ZpXq
equals the dimension of the Lie algebra centralizer zpXq of X ([10], 6.6,

p. 11). So we have to prove that dim g´dim zpXq is even if X is nilpotent

in g. This we do by an adaptation of the method used in characteristic 0

([9], loc. cit.), even for arbitrary X. We use the following lemma.

Lemma 4.4.

(i) Suppose G is simple, not of type An. If p is good for G, there

exists a nondegenerate, symmetric bilinear form F on g, which is

invariant under AdpGq.

(ii) There exists a nondegenerate symmetric bilinear form F on gllpkq,

which is invariant under AdGLlpkq.

Proof of 4.4 (i) If G is of type Bl, Cl, Dl, then p ‰ 2 and we can

represent G as a group of orthogonal or symplectic matrices in

a vector space A, and g by a Lie algebra of skewsymmetric linear

transformations with respect to the corresponding symmetric or

skewsymmetric bilinear form on A. FpX,Yq “ TrpXYq satisfies

then our conditions.

If G is of type E6, E7, E8, F4, G2, the Killing form on g is non-389

degenerate if p is good ([12], p. 551) and can be taken as our

F.

(ii) FpX,Yq “ TrpXYq satisfies our conditions.
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To finish the proof of 4.3, we can assume G to be simple. Let

X P g. First if G is not of type Al, we let F be as in 4.4 (i). con-

sider the skewsymmetric bilinear form F1 on g defined by F1pY,Zq “
FprXYs,Zq. Then zpXq “ tY P g|F1pY,Zq “ 0 for all Y P gu. Since

the rank of F1 is even, dim g´dim zpXq is even, which is what we wanted

to prove. If G is of type Al, we apply the same argument, however not

for sll`1 but for gll`1, using 4.3 (ii).

Proposition 4.5. Suppose that G is adjoint and that p is good for G.

Let g be a unipotent element of G. Then g lies in the identity component

Zpgq0 of its centralizer Zpgq.

Let f : V Ñ B be as in 3.1. Put X “ f pgq, let A “ f ´1pkXq.

Since f is a homeomorphism, this is a closed connected subset of V ,

containing (by 3.8) e and g. Moreover, since ZpXq “ Zpgq, we find

from the G-equivariance of f that A Ă Zpgq. It follows that g P Zpgq0.

Remark. In bad characteristics the assertion of 4.5 is not true ([14],

4.12, p. 134).

The number of unipotent conjugacy classes in G (resp. of nilpotent

conjugacy classes in g) has been proved to be finite in good character-

istics by Richardson ([10], 5.2, 5.3, p. 8). By 3.1, these two numbers

are equal. In characteristic 0, there is a bijection of the set of unipotent

conjugacy classes in G onto the set of conjugacy classes (under inner au-

tomorphisms) of 3-dimensional simple subgroups of G (see e.g. [8], 3.7,

p. 988). Representatitives for the classes of such subgroups are known

(see [6]). In characteristic p ą 0 it is not advisable to work with 3-

dimensional subgroups, one has to deal then directly with the unipotent

elements. We will discuss this in another paper. Here we only want to

point out one consequence of 3.1. We define a unipotent element g P G

to be semi-regular if its centralizer Zpgq is the product of the center of G

with a unipotent group. Regular unipotent elements are semi-regular (as 390

follows from [15], 3.1, 3.2, 3.3, pp. 54-55). The converse, however, fails

already in characteristic 0. In that case, it has been proved by Dynkin

([6], 9.2, p. 169 and 9.3, p. 170) that for G simple semi-regular implies

regular if and only if G is of type Al, Bl, Cl, F4, G2. The result we want

to prove is the following one, which extends ([14], 4.11, p. 134).
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Proposition 4.6. Suppose that G is adjoint and that p is good for G. Let

g be a semi-regular unipotent element of G. Then the centralizer Zpgq is

connected.

By 3.1, Zpgq Ă V is homeomorphic to the variety A of fixed points

of Adpgq in B. We claim that A is the set of fixed points of Adpgq in

the whole of g. For let X P g, AdpgqX “ X. Let X “ Xs ` Xn be the

Jordan decomposition of X([1], 1.3, p. 27), then AdpgqXs “ Xs. But

this means that Xs in the Lie algebra of Zpgq ([10], 6.6, p. 11). Zpgq0

being unipotent, it follows that Xs “ 0. This establishes our claim. It

follows that A is a linear subspace of g, so that it is connected, hence so

is Zpgq.
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BASE CHANGE FOR TWISTED INVERSE IMAGE

OF COHERENT SHEAVES

By Jean-Louis Verdier

393

1 Existence Theorem. Let X{k be a complete smooth algebraic

variety of dimension n over a field k and ωX be the sheaf of differentials

of degree n on X. There exists a canonical morphism:

ż

X{k

: HnpX, ωXq Ñ k,

such that for any quasi-coherent sheaf on X, the induced map:

Extn´ppX; F, ωXq Ñ HppX, Fq˚

(˚means dual over k) is an isomorphism for all p.

Let X Ñ Y be an immersion of schemes which is regular, i.e. de-

fined locally by a regular sequence of n parameters. Let I be the sheaf

of ideals on Y defining X and NX{Y “ p
n
^I{I2q´1 the inverse of the

highest exterior power of the cotangent sheaf. For any quasi-coherent

sheaf F on X and any quasi-coherent sheaf G on Y , there exist canonical

isomorphisms:

Extp´npX; F b
OY

NX{Yq » ExtppY; F,Gq,

for all p.

These two results are special cases of Grothendieck duality theory

developed by Hartshorne in [1].

We use freely the notation of [1] and unless otherwise stated, the

terminology of [1]. The general duality theorem can be summarized as

follows.
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Theorem 1 (Existence Theorem). Let f : X Ñ Y be a proper morphism

of noetherian schemes of finite Krull dimension. There exists an exact

functor

f ! : D`
qcpYq Ñ D`

qcpXq

and a morphism of functors

ż

f

: R f˚ f ! Ñ id

(denoted by Tr f in [1]) such that for any F P DqcpXq and any G P 394

D`
qcpYq the morphism induced by

ş
:

ExtppX; F, f 1pGq Ñ ExtppY : R f˚F,Gq

are isomorphisms for all p.

It should be noted that the pair consisting of the functor f ! and the

morphism of functors
ş

f
is unique up to unique isomorphism. An imme-

diate consequence of the existence theorem is that if X
f

ÝÑ Y and Y
g

ÝÑ Z

are proper morphisms of noetherian schemes of finite Krull dimension,

then there exists a canonical isomorphism f !g! – pg f q!. The functor f !

is called the twisted inverse image functor.

Theorem 1 is proved in a slightly weaker form under somewhat more

restricted hypotheses in ([1], chap. VII). Of course, Hartshorne gives in

[1] an explicit description of the functor f !. However, starting from this

explicit description, the proof of Theorem 1 is rather long and leads to

many verifications of compatibility.

In [1] Appendix, P. Deligne has pointed out that the existence theo-

rem can be proved simply and directly. Using only the existence theo-

rem, he has also proved Corollary 1 below. We would like to show that

the results of [1], except the theory of dualizing and residual complexes,

are easy consequences of the existence theorem.
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410 J.-L. Verdier

2 Base change Theorem.
Theorem 2. Let

X1

f 1

��

g1

// X

f

��
Y 1 g // Y

be a cartesian square of noetherian schemes of finite Krull dimension

where f is proper and g flat. Then the canonical morphism

g1 ˚ f ! Ñ f 1!g˚ (20.1)

is an isomorphism. In particular, the functor f ! is local on Y.395

Let us first indicate some corollaries.

Corollary 1. The functor f ! is local on X in the following sense. Let

UL l

i1

yyttt
ttt

ttt
tt

� r

i2

%%❏❏
❏❏❏

❏❏❏
❏❏❏

X1

f1 %%❏❏
❏❏

❏❏
❏❏

❏❏
❏ X2

f2yyttt
tt
tt
tt
tt

Y

be a commutative diagram, where Y is noetherian of finite Krull dimen-

sion, f1 and f2 are proper and i1 and i2 are open immersions. For any

G in D`
qcpYq, there exists a canonical isomorphism

f !
1G{U » f !

2G{U.

Proof. Using a closure of U in the fiber product X1ˆ
Y

X2 and the iso-

morphisms of composition of twisted inverse images, we are reduced to

study the case X1 “ Y , f1 “ idY . Let us consider the fiber product

U_�

i1

��

X2ˆ
Y

U
_�

P1

��

P2oo U
soo

Y X2

f2oo
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and the section s : U Ñ X2ˆ
Y

Y of the second projection p2 defined

by the open immersion i2 : U ãÑ X2. Since s is an open and closed

immersion, one has a canonical isomorphism s! » s˚. Applying the

base change theorem, we obtain a canonical isomorphism

p!
2i˚1G » p˚

1 f !
2G,

and applying the functor s! » s˚ to both sides we obtain an isomorphism

s! p!
2i˚1G » s˚ p˚

1 f !
2G.

However s! p!
2

is isomorphic to the identity and therefore we have an 396

isomorphism

G{U » f !
2G{U. �

Lemma 1. If G P D`
qcpYq has coherent cohomology, then f !G also

has coherent cohomology. The functor f ! carries direct sums into direct

sums. Let U Ă X
f

ÝÑ Y be an open set in X on which f is of finite flat

dimension (finite tor-dimension in the terminology of [1].) Then if G is

a bounded complex on Y the complex f !G{U is also bounded (actually

the functor G Ñ f !G{U is “way out” in the terminology of [1]).

Proof. Since the statements are local on X and on Y , and since they

are “stable under composition” we are reduced at once to the following

two cases : case (1) f is a closed immersion and case (2) Y is affine,

X “ P1pYq and f is the canonical morphism. In those two cases the

verification is easy. �

Corollary 2. If f : X Ñ Y is of finite flat dimension, then there exists

for any G P Db
qcpYq a canonical isomorphism

f !G
„

ÐÝ f !pOYq
Lâ

OX

L f ˚G.† (2.1)
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If further f !pOYq is of finite flat amplitude, this isomorphism holds for

all G P D`
qcpYq.

Proof. The morphism (2.1) is defined by the universal property of f !

(Theorem 1) and the projection formula (in a form slightly stronger than

II. 5.6 in [1]). To prove that is an isomorphism, the lemma on way out

functors (I.7 in [1]) is used. �

Corollary 3. Let R •

Y
be a dualizing complex on Y (V. 2 in [1]). Then

f !R •

Y
“ R •

X
is a dualizing complex on X. Denote by DY , DX the corre-

sponding dualizing functors in DcpYq and DcpXq respectively. For any

G P D´
c pYq there exists a canonical isomorphism:

f !DYG » DXL f ˚G. (3.1)

In particular, for any G P D`
c pYq, there exists a canonical isomrophism:397

f !G » DXL f ˚DYG. (3.2)

Proof. The first statement is local on Y and on X and is “stable under

composition”. Therefore we are reduced to proving it in the two cases

noted in the proof of Lemma 1. In those cases the verification is easy

(for the case of a closed immersion use V.2.4. in [1]; a similar proof

can be given in the case of the canonical morphism P1pYq Ñ Y). Now

the isomorphism (3.1) is a formal consequence of Theorem 1 and the

projection formula. The isomorphism (3.2) is deduced from (3.1) via

the defining property of a dualizing complex. �

So far we have used Theorem 2 only in the case when g is an open

immersion. We will use Theorem 2 in the case of a smooth morphism g

for the proof of Theorem 3 below.

Proposition 1. Let f : X Ñ Y be a regular immersion, defined locally

by an OY -sequence t1, . . . , tn. The Koszul complex built on t1, . . . , tn

†
LÂ

denotes the total tensor product, i.e. the tensor product in the derived category.
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defines locally an isomorphism

f !pOYq » NX{Yr´ns,

where NX{Y is the inverse of the highest exterior power of the cotangent

sheaf. This isomorphism does not depend on the choice of the parame-

ters t1, . . . , tn and thus defines a canonical global isomorphism.

Proof. See [1], III. 7.2. �

Theorem 3. Let f : X Ñ Y be a proper morphism of noetherian

schemes of finite Krull dimension and U Ă X an open subscheme of

X smooth over Y of relative dimension n. Then, there exists a canonical

isomorphism

f !pOYq{U » ωU{Yrns, †

where ωU{Y is the sheaf of relative differentials of degree n on U.

Proof. Consider the diagram

U
∆ // Uˆ

Y
X

p1

��

p2 // X

f

��
U

f {U // Y

where p1 and p2 are the projections and ∆ the diagonal. Using Theorem 398

2, we have a canonical isomorphism Lp˚
2

f !OY » p!
1
OU and applying

the functor ∆! we get an isomorphism ∆!Lp˚
2

f !OY » ∆! p!
1
OU . But p1∆

is the identity morphism, hence we get ∆!Lp˚
2

f !OY » OU . Using Corol-

lary 2 we obtain ∆!pOUˆ
Y

Xq
LÂ

OU

L∆˚Lp˚
2

f !OY » OU . The morphism

†If A “ pAi, di
A
q is a complex and n an integer, Arns denotes the complex Arnsi “

An`i, di
Arns

“ p´1qndi`n

A
.
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p2∆ : U Ñ X is the canonical injection. Therefore L∆˚Lp˚
2

f !OY »
f !OY{U. Now, using Proposition 1 we obtain an isomorphism :

NU{Uˆ
Y

Xr´ns
Lâ

OU

f !OY{U » OU

However NU{Uˆ
Y

Xr´ns is an invertible sheaf whose inverse is ωU{Y .

Therefore we get an isomorphism

f !OY{U » ωU{Yrns.

Let f : X Ñ Y be a proper and smooth morphism of noethe-

rian schemes with dimpX{Yq “ n. We have an isomorphism f !OY »
ωX{Yrns. Hence the morphism

ş
f

: R f˚ f !OY Ñ OY which defines the

duality in Theorem 1 induces and is uniquely determined by a morphism

denoted once again by

ż

f

: Rn f˚ωX{Y Ñ OY .

It remains to describe this latter morphism. Using the base change the-

orem (see Remark (1) at the end) one sees at once that it is enough to

describe it when Y is the spectrum of a noetherian complete local ring

A. Let Z
i

ÝÑ X be a closed subscheme of X, finite over Y and defined lo-

cally by an OX-sequence. Let g : Z Ñ Y be the composed morphism f i.

The canonical isomorphism of composition of twisted inverse images

i!pωX{Yrnsq “ ExtnOX
pOZ , ωX{Yq » g!OY composed with the integral399 ş

g
: ΓpZ, g!OYq Ñ A determines a morphism called the residue map :

ResZ : ExtnpX; OZ , ωX{Yq Ñ A.

Furthermore the canonical morphism

ExtnpX; OZ , ωX{Yq
mZÝÑ HnpX, ωX{Yq
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is embedded into a commutative diagram:

ExtnpX; OZ , ωX{Yq

mZ

��

ResZ

((PP
PPP

PPP
PPP

PPP
P

HnpX, ωX{Yq

ş
f // A

�

Proposition 2. For any closed subscheme Z of X finite and étale over

Y “ specpAq, which intersects non-trivially all the connected compo-

nents of X, the morphism mZ is surjective.

Proof. Decomposing X into its connected components, we may assume

that X is connected. Using the Stein factorisation of f and the fact that

Y is the spectrum of a complete local ring, we see that the closed fiber

is also connected. By Nakayama’s lemma and the base change property

of the n-th direct image, we are reduced to proving the corresponding

statement when Y “ specpkq where k is a field. By the duality theorem

for f , the map mZ can be interpreted as the canonical map

ΓpZ,OZq˚ Ñ ΓpX,OXq˚

which is the dual of the restriction map

ρ : ΓpX,OXq Ñ ΓpZ,OZq.

(Here, ˚ means the dual over k). However ΓpX,OXq is a field (actually a

separable finite extension of k), and therefore ρ is injective.

Since there is always a subscheme Z of X fulfilling the hypotheses

of Proposition 2, this proposition says in other words that any integral

can be computed by residues.

The residue map ResZ : ExtnpX; OZ , ωX{Yq Ñ A however, is com- 400

pletely described by the residue symbol ([1], III. 9.). Choosing t1, . . . , tn
an OX-sequence of parameters which generate the ideal of Z locally

around a closed point z0 P Z and ω a differential form of degree n on
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X defined in a neighbourhood U of z0, the Koszul complex built over

t1, . . . , tn defines an element

„
ω

t1, . . . , tn


P ExtnpX; OZ , ωX{Yq,

and every element of ExtnpX; OZ , ωX{Yq can be obtained as a sum of

such elements. Applying the residue map we get an element

ResZ

„
ω

t1, . . . , tn


P A

which we denote simply by Resz0

„
ω

t1, . . . , tn


. With the aid of Theo-

rems 1 and 2, it can be shown that this residue symbol has the following

properties.

(R0) The residue symbol is A-linear in ω.

(R1) If si “ Σci jt j then Resz0

„
ω

t1, . . . , tn


“ Resz0

”
detpci jqω
s1,...,sn

ı
.

(R2) The formation of the residue symbol commutes with any base

change.

(R3) If the morphism g : Z Ñ Y is an isomorphism at z0 then

Resz0

„
dt1 ^ . . . ^ dtn

t
k1

1
, . . . , t

kn
n


“ 1 if k1 “ . . . “ kn “ 1,

“ 0 otherwise.

(R4) If ω P ΓpU,ΣtiωX{Yq, then Resz0

„
ω

t1, . . . , tn


“ 0.

It is not difficult to show that there exists only one residue symbol

which possesses the properties (R0) to (R4) [2]. �
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3 Proof of Theorem 2. We keep the notations of Theorem 2.

First we have to make explicit the canonical morphism

g1˚ f ! Ñ f 1!g˚.

There are apparently two ways to define such a morphism.

First Definition. The functor Rg˚ : D`
qcpY 1q Ñ D`

qcpYq is right adjoint 401

to the functor g˚. We have therefore adjunction morphisms denoted

by Φg : id Ñ Rg˚g˚, Ψg : g˚Rg˚ Ñ id. Since g is flat, we have

a base change isomorphism for the total direct image σ : g˚R f˚ Ñ
R f 1

˚g1˚. Taking the right adjoint of both sides we get an isomorphism τ :

Rg1
˚ f 1! „

ÝÑ f !Rg˚. We can define a canonical morphism by composing

the following morphisms :

g1˚ f ! g1˚
f !˝Φg

ÝÝÝÝÝÑ g1˚ f !Rg˚g˚
g1˚˝τ˝g˚

„ÝÝÝÝÝÑ g1˚Rg1
˚ f 1!g˚ Ψg1 ˝ f 1!

g˚

ÝÝÝÝÝÝÑ f 1!g˚.

Second Definition. By Theorem 1, the functor f ! is right adjoint to

the functor R f˚. Therefore we have adjunction morphisms denoted by

cotr f : id Ñ f !R f˚ and
ş

f
: R f˚ f ! Ñ id. We can define a canonical

morphism by composing the following morphisms :

g1˚ f !
cotr f 1 ˝g1˚

f !

ÝÝÝÝÝÝÝÑ f 1!R f 1
˚g1˚ f !

f 1!˝σ˝ f !

„ÝÝÝÝÝÑ f 1!g˚R f˚ f !
f 1!

g˚˝
ş

f
ÝÝÝÝÝÑ f 1!g˚.

Fortunately those definitions yield the same morphism denoted by

cg : g1˚ f ! Ñ f 1!g˚

as a result from a general lemma on adjoint functors. The morphisms

cg verify the usual cocycle property with respect to the composition of

base change. It follows at once that we have only to prove that cg is an

isomorphism in the two following cases : case (1) the morphism g is an

open immersion and case (2) the morphism g is affine.
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Case 1. The Morphism g is an open immersion.

We need the following lemma.

Lemma 2. Let X be a noetherian scheme, i : U Ñ X an open immer-

sion, m a sheaf of ideals on X such that the support of OX{m “ X ´ U.

Then for any G P D`
qcpXq and for any integer p, the canonical mor-

phisms

limÝÑ
n

ExtppX; mn,Gq Ñ HppU,Gq,

limÝÑ
n

E xtppmn,Gq Ñ Rpi˚i˚G,

are isomorphisms.402

Furthermore if F is a complex of sheaves which is bounded above

and which has coherent cohomology then the canonical morhisms

limÝÑ
n

ExtppX; F
Lâ

mn,Gq Ñ ExtppU; F{U,G{Uq

are isomorphisms.

Proof. This is the “derived version” of [1] app. Prop. 4. �

To prove Theorem 2 in that case, we use the first definition of the

canonical morphism cg : g1˚ f ! Ñ f 1!g˚. Since two fo the three mor-

phisms defining cg are isomorphisms, it is enough to prove that the mor-

phism

g1˚ f ! g1˚
f !˝Φg

ÝÝÝÝÝÑ g1˚ f !Rg˚g˚,

is an isomorphism, i.e. to prove that for any G P D`
qcpYq and any open

subset V in X1 the morphism

f ! ˝ Φg : f !G Ñ f !Rg˚g˚G

induces isomorphisms :

w : HppV, f 1Gq
„
ÝÑ HppV, f !Rg˚g˚Gq.
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Let m be a sheaf of ideals on Y such that supppOY{mq “ Y ´ Y 1 and I

a sheaf of ideals on X such that supppOX{Iq “ X ´ V . The canonical

morphism G Ñ Rg˚g˚G factors through

G Ñ R H ompmn,Gq Ñ Rg˚g˚G.†

We have therefore a commutative diagram

limÝÑ
r

ExtppX; Ir, f !Gq

��

u // limÝÑ
r

limÝÑ
n

ExtppX; Ir, f !R H ompmn,Gqq

v

��
limÝÑ

r

ExtppX; Ir, f !Rg˚g˚Gq

��
HppV, f !Gq

W // HppV, f !Rg˚g˚Gq

Since the verticle maps are isomorphisms by Lemma 2, it is enough to 403

show that u and v are isomorphisms. For r fixed however, the map

vn,r : limÝÑ
n

ExtppX; Ir, f !R H ompmn,Gqq ExtppX, Ir, f !Rg˚g˚Gq

is isomorphic, by Theorem 1, to the map

limÝÑ
n

ExtppY; R f˚Ir,R H ompmn,Gqq Ñ ExtppY; R f˚Ir,Rg˚g˚Gq,

which is in turn isomorphic to the map

limÝÑ
n

ExtppY; R f˚Ir
Lâ

mn,Gq Ñ ExtppY; R f˚Ir{Y 1,G{Y 1q.

Since f is proper, the complex R f˚Ir has coherent cohomology. There-

fore by Lemma 2, this latter map is bijective. Hence v is an isomor-

phism.

†R H om is the total derived functor of the functor H om : the sheaf of homomor-

phisms.
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For r and n fixed, the map

ExtppX; Ir, f !Gq Ñ ExtppX; Ir, f !R H ompmn,Gqq

is isomorphic, by Theorem 1, to the map

ExtppY; R f˚Ir,Gq Ñ ExtppY; R f˚Ir,R H ompmn,Gqq,

which is in turn isomorphic to the map

ExtppY; R f˚Ir,Gq Ñ ExtppY; R f˚Ir
Lâ

mn,Gq.

The projection formula, yields an isomorphism

R f˚Ir
Lâ

mn Ñ R f˚pIr
Lâ

L f ˚mnq.

Therefore, once again applying Theorem 1, the map un,r is isomorphic404

to the map

ExtppX; Ir, f !Gq Ñ ExtppX; Ir
Lâ

L f ˚mn, f !Gq,

induced by the canonical morphism L f ˚mn Ñ OX . Going up to the

limit on r, we obtain by Lemma 2 the map

HppV, f !Gq Ñ ExtppV,L f ˚mn{V, f !Vq.

Since V is contained in X1, the complex L f ˚mn{V is canonically iso-

morphic to OX{V and therefore this latter map is bijective. Hence u is

an isomorphism. This concludes the proof of Theorem 2 in Case 1.

Case 2. The morphism g is affine.

First we need two propositions.

Proposition 3 (Local form of Theorem 1). Let X
f

ÝÑ Y be a proper
morphism where Y is noetherian of finite Krull dimension. For any F P
D´

qcpXq and any G P D`
qcpYq the composed morphism

R f˚R H ompF, f !Gq
rR f˚s
ÝÝÝÑ R H ompR f˚F,R f˚ f !Gq

“
ş2

f

ÝÝÑ R H ompR f˚F,Gq
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is an isomorphism. (The morphism rR f˚s is obtained by sheafifying the

functorial morphism)

RHompF, f !Gq Ñ RHompR f˚F,R f˚ f !Gq.

Proof. This is a formal consequence of Theorem 1 and the projection

formula. �

Proposition 4. Let g : Y 1 Ñ Y be a flat morphism where Y is a noethe-

rian, M P D´
c pYq a complex bounded above with coherent cohomology,

N P D`pYq a complex of sheaves which is bounded below. The canoni-

cal morphism

g˚R H ompM,Nq Ñ R H ompg˚M, g˚Nq

is an isomorphism.

Proof. See [1], II. 5.8. �

We now prove Theorem 2 in the second case. We proceed in three

steps.

Step A. Let F be a sheaf on X (not necessarily quasi-coherent). For 405

any G P D`
qcpYq denote by

lgpF,Gq : R f 1
˚R H ompg1˚

F, g1˚
f !Gq Ñ R f 1

˚R H ompg1˚
F, f 1!

g˚Gq

the morphism in DpX1q induced by cg. Then lgpF,Gq is an iso-

morphism whenever F is coherent.

Proof. We have a commutative diagram

R f˚R H ompg1˚F
, g1˚ f !Gq

rR f 1
˚s

��

lgpF,Gq
// R f˚R H ompg1˚F, f 1!g˚Gq

rR f 1
˚s

��
R H ompR f 1

˚g1˚F
,R f 1

˚g1˚ f !Gq
R f 1

˚˝cg //

µ

**❚❚❚❚❚❚❚❚❚❚❚❚
R H ompR f˚g˚F,R f˚ f !g˚Gq

“
ş

f 1 ”

��
R H ompR f 1

˚g1˚F, g˚Gq
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where µ is the only morphism which makes the diagram commutative.

By Proposition 404, we know that the composed vertical morphism on

the right is an isomorphism. Hence it is enough to prove that the com-

posed morphism

R f 1
˚ H ompg1˚F

, g1˚ f !Gq
rR f 1

˚s
// R H ompR f 1

˚g1˚F,R f 1
˚g˚ f !Gq

µ

��
R H ompR f 1

˚g1˚F, g˚Gq

(*)

is an isomorphism.

Using the second definition of cg, it is easily checked that the mor-

phism µ is induced by the composed morphism

R f 1
˚g1˚ f !G

σ˝ f !

ÝÝÑ g˚R f˚ f !G
g˚˝

ş
f

ÝÝÝÑ g˚G.

Using this description of the morphism µ, the Proposition 4 for g and g1406

and the base change isomorphism σ : g˚R f˚ Ñ R f 1
˚g1˚, it can be seen

that the morphism (*) above is isomorphic to the morphism

g˚R f˚R H ompF, f !Gq
g˚˝rR f˚s
ÝÝÝÝÝÑ g˚R H ompR f˚F,R f˚ f !Gq

g˚˝
ş

f
ÝÝÝÑ g˚R H ompR f˚F,Gq,

which is, by Proposition 404, an isomorphism. �

Step B. For any open set V in X, the morphism

lgpOV ,Gq : R f 1
˚R H ompg1˚OV , g

˚ f !Gq

Ñ R f 1
˚R H ompg1˚OV , f !g˚Gq†

is an isomorphism.

†The sheaf OV is the characteristic sheaf of the open set V: the sheaf equal to OX on

V extended by zero outside V .
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Proof. Let m be a sheaf of ideals on X such that supppOX{mq “ X ´ V .

We are going to approximate the sheaf OV by the pro-object mr, r P N.

Since g1 is flat, g1˚m is a sheaf of ideals on X such that supppOX1{g1˚mq “
X1 ´ g1´1pVq. By Lemma 2 we know that for any q P Z, the canonical

morphisms

limÝÑ
r

Extqpg1˚mr, g1˚ f !Gq Ñ Extqpg1˚OV , g
1˚ f !Gq

limÝÑ
r

Extqpg1˚mr, f 1!g˚Gq Ñ Extqpg1˚OV , f 1!g˚Gq

are isomorphisms. Furthermore the space X1 is noetherian; thus the

functor R f˚ commutes with directed limits. Hence the canonical mor-

phisms

limÝÑ
r

Rp f 1
˚ Extqpg1˚mr, f 1!g˚Gq Ñ Rp f 1

˚ Extqpg1˚OV , f !g˚Gq

limÝÑ
r

Rp f 1
˚ Extqpg1˚mr, g1˚ f !Gq Ñ Rp f 1

˚ Extqpg1˚OV , g
1˚ f !Gq

are isomorphisms. Therefore the hypercohomology spectral sequences

show that for any n P Z, the canonical morphisms

limÝÑ
r

H
nR f 1

˚R H ompg1˚mn, f !g˚Gq Ñ H
nR f 1

˚R H ompg1˚OV , f 1!g˚Gq

limÝÑ
r

H
nR f 1

˚R H ompg1˚mn, g˚ f !Gq Ñ H
nR f !

˚R H ompg1˚OV , g
1˚ f !Gq

are isomorphisms. Since for any r the morphism lgpmr,Gq is an isomor- 407

phism (Step A), the morphism lgpOV ,Gq is also an isomorphism. �

Step C. Since g is an affine morphism, the scheme X1 can be covered

by affine open subspaces which are inverse images by g1 of affine

open subspaces of X. Therefore, to show that cg is an isomor-

phism, it is enough to show that for any affine open set V in X and

any n P Z, the maps induced by cg :

Hnpg1´1
pVq, g1˚ f !Gq Ñ Hnpg1´1

pVq, f 1!g˚Gq (**)
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are isomorphisms. Denote by i : g´1pOVq Ñ X1 the open immer-

sion. For any complex of sheaves M on X1 (bounded below) we

have canonical isomorphism

R H ompg1˚pOVq, Mq » Ri˚i˚M.

Applying R f 1
˚ we get an isomorphism

R f 1
˚R H ompg1˚pOVq, Mq

„
ÝÑ R f 1

˚Ri˚i˚M,

and applying the functor RΓpY, q, the derived functor of the

functor global section on Y , we get an isomorphism

RΓpY 1,R f˚R H ompg1˚pOVq, Mqq
„
ÝÑ RΓpY 1,R f˚Ri˚i˚Mq.

The composition of direct image functors yields an isomorphism

RΓpY 1,R f˚Ri˚i˚Mq
„
ÝÑ RΓpg1´1

pVq, Mq;

thus we have an isomorphism

RΓpY 1,R f˚R H ompg1˚pOVq, Mqq
„
ÝÑ RΓpg1´1

pVq, Mq.

Therefore applying RΓpY 1, q to both sides of lgpOV ,Gq, we ob-

tain an isomorphism induced by cg :

RΓpg´1pVq, g1˚ f !Gq
„
ÝÑ RΓpg´1pVq, f 1!g˚Gq,

and taking the n-th cohomology of both complexes we obtain the

morphisms (**) which are hence isomorphisms. This concludes

the proof of Theorem 2.

Remarks. (1) For the sake of simplicity we have not stated Theo-408

rem 2 completely. It should be completed by a description of the

behaviour of the integration map under base change.

(2) One can prove the base change theorem (Theorem 2) when g is a

morphism of finite flat amplitude under an hypothesis of cohomo-

logical transversality, namely: for any couple of points y1 P Y and

x P X such that gpy1q “ f pxq and for any n ą 0 Tor
f pxq
n pOy1 ,Oxq “

0.
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(3) In the context of Étale cohomology, one can prove a base change

theorem for the twisted inverse image by the same method when

g is a smooth morphism, the main point being to have a propo-

sition analogous to Proposition 4 which in the case of g smooth

is a consequence of the base change theorem under smooth mor-

phisms for direct images.
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ZETA-FUNCTIONS AND MELLIN TRANSFORMS

By André Weil

Classically, the concept of Mellin transform serves to relate Dirich-409

let series with automorphic functions. Recent developments indicate

that this seemingly special device lends itself to broad generalizations,

which promise to be of great importance for number-theory and group-

theory. My purpose in this lecture is to discuss a typical example, arising

from a specific number-theoretical problem.

By an A-field, I understand either an algebraic number-field or a

function-field of dimension 1 over a finite filed of constants. Such fields,

also sometimes called “global fields”, are those for which one can build

up a classfield theory and the theory of L-functions; these topics are

treated in my book Basic Number Theory ([3]; henceforth quoted as

BNT), and the notations in that book will be used freely here. In partic-

ular, if k is an A-field, its adele ring and its idele group will be denoted

by kA and by kˆ
A

, respectively; I shall write |z|, instead of |z|A, for the

module of an idele z.

Write M for the free group generated by the finite places of k; this

will be written multiplicatively; it may be identified in an obvious man-

ner with the group Ipkq of the fractional ideals of k, if k is an algebraic

number-field, and with the group Dpkq of the divisors of k, if k is a

function-field (except that Dpkq is written additively). For each finite

place v of k, write pv for the corresponding generator of M; then we

define a morphism µ of kˆ
A

ontoM by assigning, to each idele z “ pzvq,

the element µpzq “ Πp
npvq
v of M, where npvq “ ordpzvq and the prod-

uct is taken over all the finite places of k. If m “ µpzq, we write

|m| “ Π|zv|v, the product being taken over the same places; thus we

have |m| “ Npmq´1 if k is an algebraic number-field, N denoting the

norm of an ideal in the usual sense, and |m| “ q´ degpmq if k is a function-

field, q being the number of elements of the field of constants of k (i.e.,

of the largest finite field in k). We say that m “ Πp
npvq
v is integral if
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npvq ě 0 for all v, and we write M` for the set (or semigroup) of all 410

such elements ofM; clearly |m| ď 1 if m is inM`, and |m| ă 1 if at the

same time m ‰ 1.

By a Dirichlet series belonging to k, we will understand any formal

series L, with complex-valued coefficients, of the form

Lpsq “ Σcpmq|m|s (1)

where the sum is taken over all integral elements m of M, i.e. over all

m P M`. Such series make up a ring (addition and multiplication being

defined formally in the obvious manner); the invertible ones, in that ring,

are those for which the constant term cp1q is not 0. Set-theoretically, one

may identify this ring with the set of all mappingsmÑ cpmq ofM` into

the field C of complex numbers; it will always be understood that such a

mapping, when it arises in connexion with a Dirichlet series, is extended

to m by putting cpmq “ 0 whenever m is not integral. The series (1) is

absolutely convergent in some half-plane Repsq ą σ if and only if there

is α P R such that cpmq “ Op|m|´αq; then it determines a holomorphic

function in that half-plane; this will be so for all the Dirichlet series to

be considered here. However, the knowledge of that function does not

determine the coefficients cpmq uniquely, except when k “ Q, so that

it does not determine the Dirichlet series (1) in the sense in which we

use the word here. A case of particular importance is that in which the

function given by (1) in its half-plane of absolute convergence can be

continued analytically, as a holomorphic or as a meromorphic function,

throughout the whole s-plane; then the latter function is also usually

denoted by Lpsq.

Let v be a finite place of k, and let pv be as above. We will say that

the series L given by (1) is eulerian at v if it can be written in the form

p1 ` c1|pv|s ` ¨ ¨ ¨ ` cm|pv|msq´1 ¨ Σcpmq|m|s,

where the sum in the last factor is taken over all the elements m ofM`

which are disjoint from pv (i.e. which belong to the subgroup of M

generated by the generators of M other than pv). The first factor in the

same product is then called the eulerian factor of L at v. The above 411
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condition can also be expressed by saying that there is a polynomial

PpT q “ 1 ` c1T ` ¨ ¨ ¨ ` cmT m such that, if we expand PpT q´1 in a

power-series
8ř
0

c1
i
T i, we have, whenever m is in M` and disjoint from

pv, cpmpi
vq “ cpmqc1

i
for all i ě 0. We say that L is eulerian if it is so at

all finite places of k.

Let ω be any character or “quasicharacter” of the ideal group kˆ
A

,

trivial on kˆ. It is well known that one can associate with it can eulerian

Dirichlet series

Lps, ωq “
ÿ

ωpmq|m|s “
ź

v

p1 ´ ωppvq|pv|sq´1, (2)

known as the L-series attached to the “Grössencharakter” defined by

ω; its functional equation, which is due to Hecke, is as follows. For

each infinite place w of k, write the quasicharacter ωw induced by ω

on kˆ
w in the form x Ñ x´A|x|sw, with A “ 0 or 1, if kw “ R, and

z Ñ z´Az´Bpzzqsw, with inf pA, Bq “ 0, if kw “ C. Write G1psq “
π´s{2Γps{2q, G2psq “ p2πq1´sΓpsq, Gw “ G1 or G2 according as w is

real or imaginary, and put

Λps, ωq “ Lps, ωq
ź

w

Gwps ` swq,

where the product is taken over the infinite places of k. Define the con-

stant κ “ κpωq and the idele b as in Proposition 14, Chapter VII-7, of

BNT (page 132); we recall that, if d is a “differental idele” (cf. BNT,

page 113) attached to the “basic character” of kA used in the construc-

tion of κpωq, and if f pωq “ p fvq is an idele such that fv is 1 at all infinite

places and all places where ω is unramified, and otherwise has an order

equal to that of the conductor of ω, then we can take b “ f pωqd. That

being so, the functional equation is

Λps, ωq “ κpωq ¨ ωp f pωqdq| f pωqd|s´1{2Λp1 ´ s, ω´1q. (3)

Let now L be again the Dirichlet series defined by (1); with it, we

associate the family of Dirichlet series Lω given by

Lωpsq “
ÿ

cpmqωpmq|m|s (4)
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for all choices of the quasicharacter ω of kˆ
A

{kˆ, ωpmq being as in (2).

Some recent work of mine (c.f. [2]) and some related unpublished work 412

by Langlands and by Jacquet† has shown that the knowledge of the func-

tional equation, not only for L, but also at the same time for “sufficiently

many” of the series Lω provides us with valuable information about L

and its possible relationship to automorphic functions of certain types.

In particular, this is so whenever L is the zeta-function of an elliptic

curve E over k, provided E is such that the functional equations for the

series Lω can effectively be computed. Unfortunately there are not as

many such curves as one could wish; as “experimental material”, I have

been able to use only the following: (a) in characteristic 0, all the curves

E with complex multiplication; their zeta-functions have been obtained

by Deuring; (b) also in characteristic 0, some curves, uniformized by

suitable types of automorphic functions, which can be treated by the

methods of Eichler and Shimura; a typical example is the curve belong-

ing to the congruence subgroup Γ0p11q of the modular group, whose

equation, due to Fricke‡, is Y2 “ 1 ´ 20X ` 56X2 ´ 44X3 (Tate has

observed that it is isogenous to the curve Y2 ´ Y “ X3 ´ X2); (c) in any

characteristic p ě 3, any curve E of the form wY2 “ X3 ` aX2 ` bX ` c

where Y2 “ X3 ` aX2 ` bX ` c is the equation of an elliptic curve E0

over the field of constants k0 of k, and w is in kˆ and not in pkˆq2kˆ
0

. All

these examples exhibit some common features, which can hardly fail to

be significant and will now be described.

For the definition of the zeta-function Lpsq of the elliptic curve E

over k, the reader is referred to [2]; there it is given only for k “ Q,

but in such terms that its extension to the general case is immediate

and requires no comment. It is eulerian. Also the conductor of E is

†That work is still in progress. No attempt will be made here to describe its scope,

but the reader should know that I have freely drawn upon it; my indebtedness will

soon, I hope, be made apparent by their publication. In particular, my definition of the

Mellin transform when k is not totally real is based on Langlands’ more general “local

functional equation” for GL(2, C), even though it is also implicit in some earlier work

of Maass (c.f. [1], pages 79-80).
‡C.f. F. Klein und R. Fricke, Theorie der elliptischen Modulfunktionen, Bd. II,

Leipzig 1892, page 436.
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to be defined as explained in [2]; it is an integral element a of M; we413

will write a “ pavq for an idele such that a “ µpaq and that av “
1 whenever v is not one of the finite places occurring in a. For the

examples quoted above, the zeta-functions are as follows: (a) if E has

complex multiplication, and k1 is the field generated over k by any one

of the complex multiplcations of E, Lpsq is an L-series over k1, with

a “Grössencharakter”, if k1 ‰ k, and the product of two such series if

k1 “ k; (b) for Fricke’s curve belonging to Γ0p11q, Eichler has shown

that the zeta-function is the Mellin transform of the cusp-form belonging

to that same group; the curve’s conductor is 11; (c) in the last example,

let χ be the character belonging to the quadratic extension kpw1{2q of k,

and let qα, qβ be the roots of the zeta-function of the curve E0 over k0;

then the zeta-function of E is Lps ´ α, χqLps ´ β, χq.

In all these examples, one finds that the functional equation for Lω
has a simple form whenever the conductor f “ µp f pωqq of ω is disjoint

from the conductor a of the given curve E, and that it is then as follows.

For each infinite place ω of k, define sw, A, B by means of ω, as ex-

plained above in describing the functional equation (3) for Lps,wq. Put

Gwpsq “ G2ps ` sw ´ Aq if w is real; put Gwpsq “ G2ps ` swq2 if w is

imaginary and A “ B “ 0, and Gwpsq “ G2ps ` swq ¨ G2ps ` sw ´ 1q
if w is imaginary and A ` B ą 0. Put Λωpsq “ Lωpsq ¨ ΠGwpsq, the

product being taken over all the infinite places of k. Call R the number

of such places where A “ 0 (if the place is real) or A “ B “ 0 (if it is

imaginary). Then :

Λωpsq “ ˘p´1qRκpωq2ωpa f pωq2d2q|a f pωq2d2|s´1Λω´1p2 ´ sq, (5)

where the sign ˘ is independent of ω, and notations are as in (3).

For k “ Q, it has been shown in [2] that L must then be the Mellin

transform of a modular form belonging to the congruence subgroup

Γ0paq of the modular group. Our purpose is now to indicate that similar

results hold true in general.

Once for all, we choose a “basic” character ψ of kA, trivial on k

and not on kA, and a “differential idele” d “ pdvq attached to ψ; we

may choose ψ so that dw “ 1 for every infinite place w of k (c.f. BNT,
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Chapter VIII-4, Proposition 12, p. 156; this determines ψ uniquely if k414

is of characteristic 0); we will assume that it has been so chosen.

We write G for GLp2q, so that Gk is GLp2, kq; as usual, we write

then Gv, GA for GLp2, kvq, GLp2, kAq. We identify the center of G with

the “multiplicative group” GLp1q, hence the centers of Gk, Gv, GA with

kˆ, kˆ
v , kˆ

A
, respectively, by the isomorphism z Ñ z ¨ 12. All functions to

be considered on any one of the groups Gv, GA will be understood to be

constant on cosets modulo the center, so that they are actually functions

on the corresponding projective groups. It is nevertheless preferable to

operate in GLp2q, since our results can easily be extended to functions

with the property f pgzq “ f pgqωpzq, where ω is a given character of the

center, and these useful generalizations can best be expressed in terms

of GLp2q. By an automorphic function, we will always understand a

continuous function on GA, left-invariant under Gk (and, as stated above,

invariant under the center kˆ
A

of GA), with values of C or in a vector-

space of finite dimension over C; this general concept will be further

restricted as the need may arise.

For a matrix of the form

ˆ
x y

0 1

˙
, we write px, yq; we write B for the

group of such matrices (and Bk, Bv, BA for the corresponding subgroups

of Gk, Gv, GA). The group B ¨ Gm, with Gm “ GLp1q, consists of

the matrices

ˆ
x y

0 z

˙
, and G{pB ¨ Gmq may be identified in an obvious

manner with the projective line D. In particular, GA{pBA ¨ kˆ
A

q is the

“adelized projective line” DA; it is compact, and its “rational points” (i.e.

the “rational projective line” Dk) are everywhere dense in it. It amounts

to the same to say that Gk ¨ BA ¨ kˆ
A

is dense in GA. Consequently, an

automorphic function on GA is uniquely determined by its values on BA.

Let Φ be such a function; call F the function induced on BA by Φ; F is

left-invariant under Bk, and in particular under p1, ηq for each η P k, so

that, for each x P kˆ
A

, the function y Ñ Fpx, yq on kA can be expanded

in Fourier series on kA{k. Using the basic character ψ, and making use

of the fact that F is also left-invariant under pξ, 0q for all ξ P kˆ, one 415
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finds at once that this Fourier series may be written as

Fpx, yq “ f0pxq `
ÿ

ξPkˆ

f1pξxqψpξyq, (6)

where f0, f1 are the functions on kˆ
A

respectively given by

f0pxq “

ż

kA{k

Fpx, yqdy, f1pxq “

ż

kA{k

Fpx, yqψp´yqdy.

We have f0pξxq “ f0pxq for all ξ P kˆ; we will say that Φ is B-cuspidal

if f0 “ 0.

Conversely, when such a Fourier series is given, the function F de-

fined by it on BA is left-invariant under Bk and may therefore be ex-

tended to a function of Gk ¨ BA ¨ kˆ
A

, left-invariant under Gk (and, as is al-

ways assumed, invariant under kˆ
A

), and the question arises whether this

can be extended by continuity to GA. In order to give a partial answer

to this question, we must first narrow down the kind of automorphic

function which we wish to consider.

We first choose an element a of M`, which will play the role of a

conductor, and, as before, an idele a “ pavq such that a “ µpaq and that

av “ 1 whenever v does not occur in a. Also, write d “ pdvq for the

element pd, 0q of BA, d being the differental idele chosen above. At each

finite place v of k, the group GLp2, rvq “ M2prvqˆ is a maximal compact

subgroup of Gv, consisting of the matrices

ˆ
x y

z t

˙
, with coefficients x,

y, z, t in the maximal compact subring rv of kv, such that |xt ´ yz|v “
1 (i.e. that xt ´ yz is in rˆ

v ); then d´1
v ¨ M2prvqˆ ¨ dv is also such a

subgroup of Gv, consisting of the matrices

ˆ
x d´1

v y

dz
v t

˙
, where x, y,

z, t are as before. We will write Kv for the subgroup of the latter group,

consisting of the matrices of that form with z P avrv; this is a compact

open subgroup of Gv, equal to M2prvqˆ at all the finite places which do

not occur in µpadq. On the other hand, we take for Kw the orthogonal

group Op2q in 2 variables if w is real, and the unitary group Up2q if
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w is imaginary. Then the product K “ ΠKv, taken over all the places

of k, defines a compact subgroup K of GA; it is open in GA if k is of416

characteristic p ą 1, but not otherwise. We have Gv “ Bv ¨ kˆ
v ¨ Kv for

all places v of k, except those occurring in a; consequently, BA ¨ kˆ
A

¨ K
is open in GA.

We also introduce an element a “ pavq of GA, which we define by

putting av “ d´1
v ¨

ˆ
0 ´1

av 0

˙
¨dv for v finite, and aw “ 12 for w infinite.

Clearly Ka “ aK.

The automorphic functions Φ which we wish to consider are to be

right-invariant under Kv for every finite place v of k; thus, if k is of

characteristic p ą 1, they are right-invariant under K, hence locally

constant. Clearly, if Φ has that property, the same is true of the function

Φ1 given by Φ1pgq “ Φpgaq. If k is of characteristic p ą 1, we take our

functions Φ to be complex-valued. If k is a number-field, our purposes

require that they take their values in suitable vector-spaces, that they

transform according to given representations of the groups Kw at the

infinite places w of k, and that, at those places, they satisfy additional

conditions to be described now.

It is well-known that, if kw “ R (resp. C), the “Riemannian sym-

metric space” Gw{kˆ
wKw may be identified with the hyperbolic space of

dimension 2 (resp. 3), i.e. with the Poincaré half-plane (resp. half-

space). This can be done as follows. Let B`
w be the subgroup of Bw

consisting of the matrices b “ pp, yq with p P Rˆ
` (i.e. p P R, p ą 0)

and y P kw. Every element g of Gw can be writeen as g “ bzk with

b P B`
w , z P kˆ

w , k P Kw; here b “ pp, yq, and zk, are uniquely determined

by g. We identify Gw{kˆ
wKw with the Poincaré half-plane (resp. half-

space) Hw “ Rˆ
` ˆ kw by taking, as the canonical mapping of Gw onto

Gw{kˆ
wKw, the mapping φw of Gw onto Hw given by φwpgq “ pp, yq for

g “ bzk, b “ pp, yq as above. The invariant Riemannian metric in Hw is

the one given by ds2 “ p´2pdp2 ` dydyq. On Hw, consider the differen-

tial forms which are left-invariant under B`
w ; a basis for these consists of

the forms α1 “ p´1pdp ` idyq, α2 “ p´1pdp ´ idyq if kw “ R, and of

α1 “ p´1dy, α2 “ p´1dp, α3 “ p´1dy if kw “ C. Writing E1
w for the

vector-space M2,1pCq resp. M3,1pCq of column-vectors (with 2 resp. 3
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rows) over C, we will denote by αw the vector-valued differential form

on Hw, with values in E1
w, whose components are α1, α2 resp. α1, α2,417

α3. One can then describe the action of kˆ
wKw on these forms by writing

αwpφwpzkbqq “ Mwpkαwpbq,

where Mw is a representation of Kw in the space E1
w; for kw “ R, for

instance, this is given by

Mw

ˆˆ
cos θ sin θ

´ sin θ cos θ

˙˙
“

ˆ
e´2iθ 0

0 e2iθ

˙
, Mw

ˆˆ
´1 0

0 1

˙˙
“

ˆ
0 1

1 0

˙
.

A basis for the left-invariant differential forms on Gw which are 0 on

kˆ
wKw is then given by the components of the vector-valued form

βwpgq “ Mwpkq´1αwpφwpgqq

where k is given, as above, by g “ bzk.

Now write Ew for the space of row-vectors M1,2pCq resp. M1,3pCq;

we regard this as the dual space to E1
w, the bilinear form e ¨ e1 being

defined by matrix multiplication for e P Ew, e1 P E1
w. Then, if h is an

Ew-valued function on Gw, h ¨ βw is a complex-valued differential form

on Gw; it is the inverse image under φw of a differential form on Hw

if and only if hpgzkq “ hpgqMwpkq for all g P Gw, z P kˆ
w , k P Kw;

when that is so, h is uniquely determined by its restriction pp, yq Ñ
hpp, yq to B`

w . We will say that h, or its restriction to B`
w , is harmonic

if h ¨ βw is the inverse image under φw of a harmonic differential form

on the Riemannian space Hw, or, what amounts to the same, if h has the

property just stated and if hpp, yq ¨ αw is harmonic on Hw. For kw “
R, this is so if and only if the two components of the vector-valued

function p´1hpp, yq on Hw are respectively holomorphic for the complex

structures defined on Hw by the complex coordinates p˘ iy. We will say

that h is regularly harmonic if it is harmonic and if hpp, yq “ OppNq for

some N when p Ñ `8, uniformly in y on every compact subset of

kw. If h is harmonic, so is g Ñ hpg0gq for every g0 P Gw, since the

Riemannian structure of Hw is invariant under Gw and since the form βw

is left-invariant on Gw. If h is regularly harmonic, so is g Ñ hpb0gq for
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every b0 P B`
w . It is easily seen that there is, up to a constant factor, only

one regularly harmonic function hw such that

hwpp1, yqgq “ ψwpyqhwpgq

for all y P kw, g P Gw; this given by 418

hwpp, yq “ ψwpyqhwppq,

hwppq “ p ¨ pe´2πp, 0q if kw “ R,

hwppq “ p2 ¨ pK1p4πpq,´2iK0p4πpq,K1p4πpqq if kw “ C,

where K0, K1 are the classical Hankel functions*. For any x P kˆ
w , we

write hwpxq instead of hwppx, 0qq.

It is essential to note that hw satisfies a “local functional equation”,

which, following Langlands, we can formulate as follows. Let ω be a

quasicharacter of kˆ
w ; as before, we write it in the form x Ñ x´A|x|s

with A “ 0 or 1, if kw “ R, and z Ñ z´Az´Bpzzqs with infpA, Bq “ 0,

if kw “ C. For kw “ R, put Gwpωq “ G2p1 ` s ´ Aq; for kw “ C,

put Gwpωq “ G2ps ` 1q2 if A “ B “ 0, and Gwpωq “ G2psqG2ps ` 1q
otherwise. Write j for the matrix j “

`
0 1

´1 0

˘
, and put, for g P Gw:

Iωpg, ωq “

ż

k
ˆ
w

hwppz, 0qgqωpzqdˆ
z , (7)

where dˆz is a Haar measure on kˆ
w ; this is convergent for Repsq large.

Then the functional equation is

Gwpωq´1Iwpg, ωq “ p´1qρGwpω´1q´1Iwp j´1g, ω´1q (8)

with ρ “ 1 if kw “ R, or if kw “ C and A “ B “ 0, and ρ “ A ` B if

kw “ C and A ` B ą 0. By (8), we mean that both sides, for given A, B,

g, can be continued analytically, as holomorphic functions of s, over the

whole s-plane, and are then equal. This can of course be verified by a

*Cf. G. N. Watson, A treatise on the theory of Bessel function, 2nd. ed., Cambridge

1952, page 78.
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straightforward calculation for kw “ R. A similar calculation for kw “
C might not be quite so easy. Both cases, however, are included in more

general results of Langlands; moreover, a simple proof for (8) itself in

the case kw “ C, communicated to me by Jacquet, is now available. It

will be noticed that the gamma factors in (8) are essentially the same as419

those occurring in (5).

Now we write k8, kˆ
8, G8, K8, H8, etc., for the products Πkw,

Πkˆ
w , ΠGw, ΠKw, ΠHw, etc., taken over the infinite places of k. We

write E8, E1
8 for the tensor-products bEw, bE1

w, taken over the same

places; these may be regarded as dual to each other. Then β8 “ bβw

is a left-invariant differential form on G8 with values in E1
8; its degree

is equal to the number r of infinite places of k; if h is any function on

G8 with values in E8, h ¨ β8 is then a complex-values differential form

of degree r on G8. We will say that h is harmonic if h ¨ β8 is the

inverse image of a harmonic differential form on H8; writing p “ ppwq,

y “ pywq for elements of pRˆ
`qr and k8, so that pp, yq is an element

of H8, we will say that the harmonic function h is regularly harmonic

if there is N such that hpp, yq “ OppN
w q for each w when pw Ñ `8,

uniformly over compact sets with respect to all variables except pw. Up

to a constant factor, the only regularly harmonic function h8 such that

h8pp1, yqgq “ ψ8pyqh8pgq

for all y P k8, g P G8 is given by h8pgq “ bhwpgwq for g “ pgwq.

We will say that a continuous function Φ on GA, with values in

E8, is a harmonic automorphic function with the conductor a, or, more

briefly, that it is ph, aq-automorphic if it is left-invariant under Gk, invari-

ant under kˆ
A

, right-invariant under Kv for every finite place v of k, and if,

for every g0 P GA, the function on G8 given for g P G8 by g Ñ Φpg0gq
is harmonic; if k is not of characteristic 0, the latter condition is empty,

and we take E8 “ C. The function Φ1 given by Φ1pgq “ Φpgaq is then

also ph, gq-automorphic. For such a function Φ, we shall now consider

more closely the Fourier series defined by (6). As Φ is harmonic on G8

and right-invariant under Kv for every finite v, the same is true of the
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functions

Φ0pgq “

ż

kA{k

Φpp1, yqgqdy,Φ1pgq “

ż

kA{k

Φpp1, yqgqψp´yqdy

whose restrictions to BA are F0px, yq “ f0pxq, F1px, yq “ f1pxqψpyq,

where f0, f1 are as in (6). In particular, for every finite v, F1 is right-

invariant under the group Bv X Kv, hence under all matrices pu, 0q with 420

u P rˆ
v , and all matrices p1, d´1

v zq with z P rv; in view of the definition of

the idele d “ pdvq, the latter fact means that f1pxq “ 0 unless xv P rv for

all finite v, i.e. unless the element m “ µpxq ofM is integral; the former

fact means that f1pxq depends only uponm and upon the components xw

of x at the infinite places w of k. Putting x8 “ pxwq, we can therefore

write f1pxq “ f1pm, x8q, and this is 0 unless m is in M`. For similar

reasons, we can write f0pxq “ f0pm, x8q.

If k is of characteristic p ą 1, this can be written f1pxq “ f1pmq,

f0pxq “ f0pmq. As f1pmq is 0 unless m is in M`, only finitely many

terms of the Fourier series (6) can be ‰ 0 for each px, yq; they are all

0, except possibly f0pxq, if |x| ą 1, since this implies |ξx| ą 1 for all

ξ P kˆ. On the other hand, if k is of characteristic 0, the convergence of

the Fourier series follows from the fact that Φ, being harmonic, must be

analytic in g8 “ pgwq.

Now we add three more conditions for Φ:

(I) Φ should be B-cuspidal, i.e. f0 should be 0.

(II) If k is of characteristic 0, Φ should be regularly harmonic on

G8, when the coordinates gv at the finite places are kept con-

stant. Then the same is true of Φ1; in view of what we have found

above, this implies that f1pm, x8q is a constant scalar multiple of

h8px8q for every m, so that we can write

f1pm, x8q “ cpmqh8px8q,

where cpmq is a complex-valued function onM, equal to 0 outside

M`. In the case of characteristic p ą 1, we write cpmq “ f1pmq.
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(III) We assume that cpmq “ Op|m|´αq for some α; (I) and (II) being

assumed, this implies that Fpx, yq “ Op|x|´1´αq for |x| ď 1,

uniformly in y. Conversely, if Fpx, yq “ Op|x|´βq for |x| ď 1,

uniformly in y, for some β, we have cpmq “ Op|m|´βq.

Clearly (III) amounts to saying that the Dirichlet series (1) with the

coefficients cpmq is absolutely convergent in some half-plane. This may

be regarded as the Mellin transform of Φ. It is more appropriate for our

purposes, however, to use that name for the series

Zpωq “
ÿ

cpmqωpmq, (9)

where ω is a quasicharacter of kˆ
A

{kˆ, and ωpmq is as in (2). For s P C,421

we write ωs for the quasicharacter ωspzq “ |z|s, and, for every qua-

sicharacter ω, we define σ “ σpωq by |ωpzq| “ |z|σ, i.e. |ω| “ ωσ

(where | | in the left-hand side is the ordinary absolute value |t| “ pttq
1
2

for t P C). Then our condition (III) implies that (9) is absolutely conver-

gent for σpωq ą 1 `α. If we replace ω by ω ¨ωs in (9), (9) becomes the

same as the series (4); in other words, the knowledge of the function Z

given by (9) on the set of all the quasi-characters of kˆ
A

{kˆ is equivalent

to that of all the functions given by (4). As before, we define Zpωq by

analytic continuation in the s-plane, whenever possible, when it is not

absolutely convergent.

Conversely, let the coefficients cpmq be given for m P M`; assume

(III), and put cpmq “ 0 outside M`. Let Z be defined by (9); at the

same time, define f1 on kˆ
A

by putting f1pxq “ cpmq with m “ µpxq
if k is of characteristic p ą 1, and f1pxq “ cpmqh8px8q otherwise,

with x8 “ pxwq; put f0pxq “ 0, and define Fpx, yq by the Fourier series

(6), whose convergence follows at once from (III) and the definition of

h8 if k is of characteristic 0, and is obvious otherwise. As we have

said, the question arises now whether F can be extended to a continuous

functionΦ on GA, left-invariant under Gk (and invariant under kˆ
A

); if so,

we may then ask whether this is an ph, aq-automorphic function, which

clearly must then satisfy (I) and (III) and is easily shown to satisfy (II).

In that case we say that Φ and the series Z given by (9) are the Mellin

transforms of each other.
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We are now able to state our main results.

Theorem 1. Let Φ be an ph, aq-automorphic function on GA; let Φ1 be

the ph, aq-automorphic function given by Φ1pgq “ Φpgaq. Assume that

Φ and Φ1 satisfy (I), (II), (III). Call Z the series (9) derived from Φ as

explained above, and Z1 the series similarly derived from Φ1. Then, for

all the quasicharacters ω whose conductor is disjoint from a, we have

ZpωqΠGwpωq “ p´1qr´Rκpωq2ωpa f pωq2d2qZ1pω´1qΠGwpω´1q. (10)

Moreover, if Z is eulerian at any finite place v of k, not occurring in a,

Z1 is also eulerian there, and they have the same eulerian factor at v, 422

which is of the form

p1 ´ c|pv|s ` |pv|1`2sq´1 (11)

with c “ cppvq.

In (10), the two products are taken over the infinite places w of k,

Gw being as in (8); r is the number of such places; κpωq and f pωq are

as in (3) and (5), and R as in (5). Moreover, by (10), we mean that, if

ω ¨ ωs is substituted for ω, both sides can be continued analytically as

holomorphic functions of s in the whole s-plane, bounded in every strip

σ ď Repsq ď σ1, and that they are equal; (10) and similar formulas

should also be understood in that same sense in what follows.

It is worth noting* that, for Z to be eulerian at v in Theorem 1, it is

necessary and sufficient thatΦ should be an eigenfunction of the “Hecke

operator” Tv which maps every function Φ on GA onto the function TvΦ

given by

pTvΦqpgq “

ż

Kv

Φpgk ¨ pπ, 0qqdk,

where dk is a Haar measure in Kv, and π is a prime element of kv. More

precisely, take dk so that the measure of Kv is 1; then, if TvΦ “ λΦ, one

finds, by taking g “ px, yq in the above formula and expressing Φpx, yq
by (6), that Z has the eulerian factor (11) at v, with c “ p1 ` |pv|qλ. We

*I owe this observation to Jacquet.
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also note that here Tv generates the Hecke algebra for Gv, so that Φ is

then an eigenfunction for all the operators in that algebra.

Theorem 2. Let a series Z be given by (9), and let Z1 be a similar

series; assume that both satisfy (III). Let s be a finite set of finite places

of k, containing all the places which occur in a. Assume that Z, Z1

are eulerian at every finite place of k outside s, with the same eulerian

factor of the form (11); also, assume (10), in the sense explained above,

for all the quasicharacters ω whose conductor is disjoint from s. Then

there is an ph, aq-automorphic functionΦ on GA, satisfying (I), (II), (III),423

such that Z and Z1 are the Mellin transforms of Φ, and of the function

Φ1pgq “ Φpgaq, respectively.

There is no doubt that the assumptions in Theorem 2 are much more

stringent than they need be. For k “ Q, it has been found in [2] that

the eulerian property is not required at all; in the general case, it might

perhaps be enough to postulate it at some suitable finite set of places.

For k “ Q, the functional equation has to be assumed only for a rather

restricted set of characters (those mentioned in [2], Satz 2), or even for a

finite set of characters, depending upon a, when a is given (since Hecke’s

group Γ0pAq is finitely generated). It seems quite possible that some

such results may be true in general. One will also observe that, for

k “ Q, Theorems 1 and 2 correspond merely to the case ǫ “ 1 of the

results obtained in [2]; there is no difficulty in extending them so as to

cover the case where ǫ is arbitrary; then, if they apply to two series Z,

Z1, and to the conductor a, they also apply to any pair Z1, Z1
1

given by

Z1pωq “ Zpχωq, Z1
1
pωq “ Z1pχ´1ωq, where χ is any quasicharacter

whose conductor fpχq is disjoint from a; the conductor for the latter pair

is a1 “ afpχq2. Leaving those topics aside, we shall not sketch briefly

the proof the Theorems 1 and 2.

Consider first the question raised by Theorem 2. Starting from the

series Z, we construct a function F on BA by means of (6) as explained

above; we construct F1 similarly, starting from Z1. For these to be the

restrictions to BA of two ph, aq-automorphic functions Φ, Φ1 related to

each other by Φ1pgq “ Φpgaq, it is obviously necessary that one should

have Fpbq “ F1pb1qM8pk8q, with M8 “ bMw, whenever b “ jb1kza
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with j “
`

0 1
´1 0

˘
P Gk, k “ pkvq P K, z P kˆ

A
. By using the fact that Gk

is the union of Bk ¨ kˆ and of Bk jBk ¨ kˆ, one shows that this condition

is sufficient. Clearly, it is not affected if one restricts b, b1 to a subset

B of BA containing a full set of representatives of the right cosets in BA

modulo BA X K. For B, we choose the set consisting of the elements

px f d, xeq with x P kˆ
A

, f “ p fvq P kˆ
A

, e “ pevq P kA, with f and

e restricted as follows. For each infinite place w, we take fw ą 0 and

f 2
w ` ewew “ 1. For each finite place v, we take fv, ev in rv, with fv ‰ 0 424

and supp| fv|v, |ev|vq “ 1. Then we call f “ µp f q the conductor of the

element b “ px f d, xeq of B. Take two such elements b “ px f d, xeq,

b1 “ px1 f 1d, x1e1q, such that b “ jb1kza with k P K, z P kˆ
A

; it is easily

seen that they must have the same conductor f, and that this is disjoint

from a; moreover, when x, f , e are given, one may choose x1, f 1, e1, k,

z so that f 1 “ f , that e1, k, z are uniquely determined in terms of f and

e, and that x1 “ ax´1. Therefore the condition to be fulfilled can be

written as

Fpx f d, xeq “ F1pax´1 f d, ax´1e1qM8pk8q, (12)

with e1 uniquely determined in terms of f , e, and k8 in terms of f8, e8.

Actually, one finds that it is enough, for Φ and Φ1 to exist as required,

that this should be so when f is disjoint, not merely from a, but from

any fixed set s of places, containing a, provided it is finite, or at least

provided its complement is “not too small” in a suitable sense. We must

now seek to express (12) in terms of the original series Z, Z1.

In order to do this, we multiply (12) with an arbitrary quasi-character

ω, and write formally the integrals of both sides over kˆ
A

{kˆ. This, taken

literally, is meaningless, since it leads to divergent integrals; leaving this

aspect aside for the moment, we note first that, if we replace F in the

left-hand side by the Fourier series which defines it, that side may be

formally rewritten as

ÿ
cpmq

ż
h8px8qψpxe f ´1d´1qωpx f ´1d´1qdˆx, (13)

where dˆx is the Haar measure in kˆ
A

, and the integral, in the term corre-

sponding to m, is taken over the subset of kˆ
A

determined by µpxq “ m;
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this is a coset of the kernel of µ, i.e. of the open subgroup kˆ
8 ˆ Πrˆ

v

of kˆ
A

. These integrals are easily calculated (by means of Proposition

14, Chapter VII-7, of BNT, page 132) in terms of the product J “
ΠIwpp1, ewq, ωwq, where the Iw are as defined in (7); they converge for

σpωq large enough. One sees at once that they are 0 for all m unless the

conductor fpωq of ω divides f “ µp f q. If fpωq “ f, one finds that (13)

is no other than J ¨ Zpωq, up to a simple scalar factor. A similar formal

calculation for the right-hand side of (12) transforms it into the product425

of a scalar factor, of an integral similar to J, and of Z1pω´1q; comparing

both sides and taking (8) into account, one gets the functional equation

(10), for which we will now write Epωq. If we do not assume fpωq “ f,
but merely f “ fpωqf1 with f1 P M`, the same procedure leads to a

similar equation E1pωq connecting two Dirichlet series Z1pωq, Z1
1
pωq

whose coefficients depend only upon f1 and the coefficients of Z and of

Z1, respectively.

If k is of characteristic p ą 1, there is no difficulty in replacing the

above formal argument by a correct proof. The same can be achieved

for characteristic 0 by a straightforward application of Hecke’s lemma

(c.f. [2], page 149). The conclusion in both cases is that the validity

of the equations E1pωq for all divisors f1 of f and all quasicharacters

ω with the conductor ff´1
1

is necessary and sufficient for (12) to hold

for all e and all x, when f is given. This proves Theorem 1 except for

the last part, which one obtains easily by comparing the equations Epωq
and E1pωq for f1 “ pv when the eulerian property is postulated for Z

at v. On the other hand, we see now, in view of what was said above,

that, when Z and Z1 are given, Φ and Φ1 exist as required provided the

functional equations Epωq, E1pωq are satisfied whenever fpωq and f1 are

both disjoint from the given set s. If one assumes that Z, Z1 are eulerian

at each one of the places occurring in f1, with an eulerian factor of the

form (11), one finds that Z1pωq, Z1
1
pωq differ from Zpωq, Z1pωq only by

an “elementary” factor and that E1pωq is a consequence of Epωq. This

proves Theorem 2.

Examples for Dirichlet series satisfying the conditions in Theorem 2

are given, as we have seen, by the zeta-functions of elliptic curves (tak-

ing Zpωq “ Lωp1q, Z1pωq “ ˘Lωp1q, where Lpsq is the zeta-function)
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in the cases (a), (b), (c) where these can be effectively computed; other

similar examples, not arising from elliptic curves, can easily be con-

structed, as Hecke L-functions over quadratic extensions of k, or prod-

ucts of two such functions over k. Jacquet has pointed out that, when

Z is a product of two Hecke L-functions, the automorphic function Φ is

an Eisenstein series; this is the case in example (c), and in (a) when k 426

contains the complex multiplications of the curve E; it cannot happen

(according to [2], Satz 2) when k “ Q.

If k is a number-field with r infinite places, and if the zeta-function

of an elliptic curve E over k satisfies the assumptions in Theorem 2, that

theorem associates with it the differential form Φ ¨ β8 of degree r; since

it is locally constant with respect to the coordinates at the finite places, it

may be regarded as a harmonic differential form of degree r on the union

of a certain finite number of copies (depending on the class-number of k)

of the Riemannian symmetric space H8 belonging to G8. For k “ Q,

some examples suggest that the periods of that form may be no other

than those of the differential form of the first kind belonging to E. In

the general case, one can at least hope to discover a relation between

the periods of Φ ¨ β8 and those of the differential form of the first kind

on E and on its conjugates over Q. When k is of characteristic p ą 1,

however, Φ is a scalar complex-valued function on the discrete space

GkzGA{Kkˆ
A

, and it seems hard even to imagine a connexion between

this and the curve E, closer than the one given by the definitoin of Φ in

terms of Z.

443



444 J.-L. Verdier

References

[1] H. Maass : Automorphe Funktionen von mehreren Veränderlichen

und Dirichletsche Reihen, Hamb. Abh. Bd. 16, Heft 3-4 (1949), 72-

100.
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