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1. Introduction

Hyperbolic geometry was created in the first half of the nineteenth century

in the midst of attempts to understand Euclid’s axiomatic basis for geometry.

It is one type of non-Euclidean geometry, that is, a geometry that discards one

of Euclid’s axioms. Einstein and Minkowski found in non-Euclidean geometry a
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geometric basis for the understanding of physical time and space. In the early

part of the twentieth century every serious student of mathematics and physics

studied non-Euclidean geometry. This has not been true of the mathematicians

and physicists of our generation. Nevertheless with the passage of time it has

become more and more apparent that the negatively curved geometries, of which

hyperbolic non-Euclidean geometry is the prototype, are the generic forms of ge-

ometry. They have profound applications to the study of complex variables, to

the topology of two- and three-dimensional manifolds, to the study of finitely

presented infinite groups, to physics, and to other disparate fields of mathemat-

ics. A working knowledge of hyperbolic geometry has become a prerequisite for

workers in these fields.

These notes are intended as a relatively quick introduction to hyperbolic ge-

ometry. They review the wonderful history of non-Euclidean geometry. They

give five different analytic models for and several combinatorial approximations

to non-Euclidean geometry by means of which the reader can develop an intu-

ition for the behavior of this geometry. They develop a number of the properties

of this geometry that are particularly important in topology and group theory.

They indicate some of the fundamental problems being approached by means of

non-Euclidean geometry in topology and group theory.

Volumes have been written on non-Euclidean geometry, which the reader

must consult for more exhaustive information. We recommend [Iversen 1993]

for starters, and [Benedetti and Petronio 1992; Thurston 1997; Ratcliffe 1994]

for more advanced readers. The latter has a particularly comprehensive bibliog-

raphy.

2. The Origins of Hyperbolic Geometry

Except for Euclid’s five fundamental postulates of plane geometry, which we

paraphrase from [Kline 1972], most of the following historical material is taken

from Felix Klein’s book [1928]. Here are Euclid’s postulates in contemporary

language (compare [Euclid 1926]):

1. Each pair of points can be joined by one and only one straight line segment.

2. Any straight line segment can be indefinitely extended in either direction.

3. There is exactly one circle of any given radius with any given center.

4. All right angles are congruent to one another.

5. If a straight line falling on two straight lines makes the interior angles on

the same side less than two right angles, the two straight lines, if extended

indefinitely, meet on that side on which the angles are less than two right

angles.

Of these five postulates, the fifth is by far the most complicated and unnatural.

Given the first four, the fifth postulate can easily be seen to be equivalent to the
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following parallel postulate, which explains why the expressions “Euclid’s fifth

postulate” and “the parallel parallel” are often used interchangeably:

5′. Given a line and a point not on it, there is exactly one line going through

the given point that is parallel to the given line.

For two thousand years mathematicians attempted to deduce the fifth postulate

from the four simpler postulates. In each case one reduced the proof of the

fifth postulate to the conjunction of the first four postulates with an additional

natural postulate that, in fact, proved to be equivalent to the fifth:

Proclus (ca. 400 a.d.) used as additional postulate the assumption that the

points at constant distance from a given line on one side form a straight line.

The Englishman John Wallis (1616–1703) used the assumption that to every

triangle there is a similar triangle of each given size.

The Italian Girolamo Saccheri (1667–1733) considered quadrilaterals with two

base angles equal to a right angle and with vertical sides having equal length and

deduced consequences from the (non-Euclidean) possibility that the remaining

two angles were not right angles.

Johann Heinrich Lambert (1728–1777) proceeded in a similar fashion and

wrote an extensive work on the subject, posthumously published in 1786.

Göttingen mathematician Kästner (1719–1800) directed a thesis of student

Klügel (1739–1812), which considered approximately thirty proof attempts for

the parallel postulate.

Decisive progress came in the nineteenth century, when mathematicians aban-

doned the effort to find a contradiction in the denial of the fifth postulate and

instead worked out carefully and completely the consequences of such a denial.

It was found that a coherent theory arises if instead one assumes that

Given a line and a point not on it, there is more than one line going through

the given point that is parallel to the given line.

This postulate is to hyperbolic geometry as the parallel postulate 5′ is to Eu-

clidean geometry.

Unusual consequences of this change came to be recognized as fundamental

and surprising properties of non-Euclidean geometry: equidistant curves on ei-

ther side of a straight line were in fact not straight but curved; similar triangles

were congruent; angle sums in a triangle were not equal to π, and so forth.

That the parallel postulate fails in the models of non-Euclidean geometry

that we shall give will be apparent to the reader. The unusual properties of non-

Euclidean geometry that we have mentioned will all be worked out in Section 13,

entitled “Curious facts about hyperbolic space”.

History has associated five names with this enterprise, those of three profes-

sional mathematicians and two amateurs.

The amateurs were jurist Schweikart and his nephew Taurinus (1794–1874).

By 1816 Schweikart had developed, in his spare time, an “astral geometry” that
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was independent of the fifth postulate. His nephew Taurinus had attained a

non-Euclidean hyperbolic geometry by the year 1824.

The professionals were Carl Friedrich Gauss (1777–1855), Nikolăı Ivanovich

Lobachevskĭı (1793–1856), and János (or Johann) Bolyai (1802–1860). From

the papers of his estate it is apparent that Gauss had considered the parallel

postulate extensively during his youth and at least by the year 1817 had a clear

picture of non-Euclidean geometry. The only indications he gave of his knowledge

were small comments in his correspondence. Having satisfied his own curiosity,

he was not interested in defending the concept in the controversy that was sure

to accompany its announcement. Bolyai’s father Fárkás (or Wolfgang) (1775–

1856) was a student friend of Gauss and remained in correspondence with him

throughout his life. Fárkás devoted much of his life’s effort unsuccessfully to

the proof of the parallel postulate and consequently tried to turn his son away

from its study. Nevertheless, János attacked the problem with vigor and had

constructed the foundations of hyperbolic geometry by the year 1823. His work

appeared in 1832 or 1833 as an appendix to a textbook written by his father.

Lobachevskĭı also developed a non-Euclidean geometry extensively and was, in

fact, the first to publish his findings, in 1829. See [Lobachevskĭı 1898; Bolyai

and Bolyai 1913].

Gauss, the Bolyais, and Lobachevskĭı developed non-Euclidean geometry ax-

iomatically on a synthetic basis. They had neither an analytic understanding

nor an analytic model of non-Euclidean geometry. They did not prove the

consistency of their geometries. They instead satisfied themselves with the

conviction they attained by extensive exploration in non-Euclidean geometry

where theorem after theorem fit consistently with what they had discovered to

date. Lobachevskĭı developed a non-Euclidean trigonometry that paralleled the

trigonometric formulas of Euclidean geometry. He argued for the consistency

based on the consistency of his analytic formulas.

The basis necessary for an analytic study of hyperbolic non-Euclidean geom-

etry was laid by Leonhard Euler, Gaspard Monge, and Gauss in their studies

of curved surfaces. In 1837 Lobachevskĭı suggested that curved surfaces of con-

stant negative curvature might represent non-Euclidean geometry. Two years

later, working independently and largely in ignorance of Lobachevskĭı’s work,

yet publishing in the same journal, Minding made an extensive study of surfaces

of constant curvature and verified Lobachevskĭı suggestion. Bernhard Riemann

(1826–1866), in his vast generalization [Riemann 1854] of curved surfaces to the

study of what are now called Riemannian manifolds, recognized all of these rela-

tionships and, in fact, to some extent used them as a springboard for his studies.

All of the connections among these subjects were particularly pointed out by Eu-

genio Beltrami in 1868. This analytic work provided specific analytic models for

non-Euclidean geometry and established the fact that non-Euclidean geometry

was precisely as consistent as Euclidean geometry itself.
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We shall consider in this exposition five of the most famous of the analytic

models of hyperbolic geometry. Three are conformal models associated with the

name of Henri Poincaré. A conformal model is one for which the metric is a

point-by-point scaling of the Euclidean metric. Poincaré discovered his models

in the process of defining and understanding Fuchsian, Kleinian, and general

automorphic functions of a single complex variable. The story is one of the most

famous and fascinating stories about discovery and the work of the subconscious

mind in all of science. We quote from [Poincaré 1908]:

For fifteen days I strove to prove that there could not be any functions like

those I have since called Fuchsian functions. I was then very ignorant; every

day I seated myself at my work table, stayed an hour or two, tried a great

number of combinations and reached no results. One evening, contrary

to my custom, I drank black coffee and could not sleep. Ideas rose in

crowds; I felt them collide until pairs interlocked, so to speak, making a

stable combination. By the next morning I had established the existence

of a class of Fuchsian functions, those which come from the hypergeometric

series; I had only to write out the results, which took but a few hours.

Then I wanted to represent these functions by the quotient of two series;

this idea was perfectly conscious and deliberate, the analogy with elliptic

functions guided me. I asked myself what properties these series must have

if they existed, and I succeeded without difficulty in forming the series I

have called theta-Fuchsian.

Just at this time I left Caen, where I was then living, to go on a geological

excursion under the auspices of the school of mines. The changes of travel

made me forget my mathematical work. Having reached Coutances, we

entered an omnibus to go some place or other. At the moment when I put

my foot on the step the idea came to me, without anything in my former

thoughts seeming to have paved the way for it, that the transformations I

had used to define the Fuchsian functions were identical with those of non-

Euclidean geometry. I did not verify the idea; I should not have had time,

as, upon taking my seat in the omnibus, I went on with a conversation

already commenced, but I felt a perfect certainty. On my return to Caen,

for conscience’ sake I verified the result at my leisure.

3. Why Call it Hyperbolic Geometry?

The non-Euclidean geometry of Gauss, Lobachevskĭı, and Bolyai is usually

called hyperbolic geometry because of one of its very natural analytic models.

We describe that model here.

Classically, space and time were considered as independent quantities; an

event could be given coordinates (x1, . . . , xn+1) ∈ � n+1 , with the coordinate

xn+1 representing time, and the only reasonable metric was the Euclidean metric

with the positive definite square-norm x2
1 + · · · + x2

n+1.
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x

x′

hyperbolic space

light cone

projective identification x = x′

Figure 1. Minkowski space.

Relativity changed all that; in flat space-time geometry the speed of light

should be constant as viewed from any inertial reference frame. The Minkowski

model for space-time geometry is again
� n+1 but with the indefinite norm x2

1 +

· · · + x2
n − x2

n+1 defining distance. The light cone is defined as the set of points

of norm 0. For points (x1, . . . , xn, xn+1) on the light cone, the Euclidean space-

distance

(x2
1 + · · · + x2

n)1/2

from the origin is equal to the time xn+1 from the origin; this equality expresses

the constant speed of light starting at the origin.

These norms have associated inner products, denoted · for the Euclidean inner

product and ∗ for the non-Euclidean.

If we consider the set of points at constant squared distance from the origin, we

obtain in the Euclidean case the spheres of various radii and in Minkowski space

hyperboloids of one or two sheets. We may thus define the unit n-dimensional

sphere in Euclidean space
� n+1 by the formula Sn = {x ∈ � n+1 : x · x = 1}

and n-dimensional hyperbolic space by the formula {x ∈ � n+1 : x ∗ x = −1}.
Thus hyperbolic space is a hyperboloid of two sheets that may be thought of as a

“sphere” of squared radius −1 or of radius i =
√
−1; hence the name hyperbolic

geometry. See Figure 1.

Usually we deal only with one of the two sheets of the hyperboloid or identify

the two sheets projectively.
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general path

p(t) = (x(t), y(t))

p′(t)

path of speed 1

p′(t) = (− sin t, cos t)

p(t) = (cos t, sin t)

k = 1
t = arc length

Figure 2. The circle S1.

4. Understanding the One-Dimensional Case

The key to understanding hyperbolic spaceHn and its intrinsic metric coming

from the indefinite Minkowski inner product ∗ is to first understand the case

n = 1. We argue by analogy with the Euclidean case and prepare the analogy

by recalling the familiar Euclidean case of the circle S1.

Let p : (−∞,∞) → S1 be a smooth path with p(0) = (1, 0). If we write

in coordinates p(t) = (x(t), y(t)) where x2 + y2 = 1, then differentiating this

equation we find

2x(t)x′(t) + 2y(t)y′(t) = 0,

or in other words p(t) · p′(t) = 0. That is, the velocity vector p′(t) is Euclidean-

perpendicular to the position vector p(t). In particular we may write p′(t) =

k(t)(−y(t), x(t)), since the tangent space to S1 at p(t) is one-dimensional and

(−y(t), x(t)) is Euclidean-perpendicular to p = (x, y). See Figure 2.

If we assume in addition that p(t) has constant speed 1, then

1 = |p′(t)| = |k(t)|
√

(−y)2 + x2 = |k(t)|,

and so k ≡ ±1. Taking k ≡ 1, we see that p = (x, y) travels around the unit circle

in the Euclidean plane at constant speed 1. Consequently we may by definition

identify t with Euclidean arclength on the unit circle, x = x(t) with cos t and

y = y(t) with sin t, and we see that we have given a complete proof of the fact

from beginning calculus that the derivative of the cosine is minus the sine and

that the derivative of the sine is the cosine, a proof that is conceptually simpler

than the proofs usually given in class.

In formulas, taking k = 1, we have shown that x and y (the cosine and sine)

satisfy the system of differential equations

x′(t) = −y(t), y′(t) = x(t),

with initial conditions x(0) = 1, y(0) = 0. We then need only apply some

elementary method such as the method of undetermined coefficients to easily
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discover the classical power series for the sine and cosine:

cos t = 1 − t2/2! + t4/4!− · · · ,
sin t = t− t3/3! + t5/5!− · · · .

The hyperbolic calculation in H1 requires only a new starting point (0, 1)

instead of (1, 0), the replacement of S1 by H1, the replacement of the Euclidean

inner product · by the hyperbolic inner product ∗, an occasional replacement

of +1 by −1, the replacement of Euclidean arclength by hyperbolic arclength,

the replacement of cosine by hyperbolic sine, and the replacement of sine by the

hyperbolic cosine. Here is the calculation.

Let p : (−∞,∞) → H1 be a smooth path with p(0) = (0, 1). If we write

in coordinates p(t) = (x(t), y(t)) where x2 − y2 = −1, then differentiating this

equation we find

2x(t)x′(t) − 2y(t)y′(t) = 0;

in other words p(t) ∗ p′(t) = 0. That is, the velocity vector p′(t) is hyperbolic-

perpendicular to the position vector p(t). In particular we may write p′(t) =

k(t)(y(t), x(t)), since the tangent space to H1 at p(t) is one-dimensional and the

vector (y(t), x(t)) is hyperbolic-perpendicular to p = (x, y). See Figure 3.

If we assume in addition that p(t) has constant speed 1, then 1 = |p′(t)| =

|k(t)|
√

y2 − x2 = |k(t)|, and so k ≡ ±1. Taking k ≡ 1, we see that p = (x, y)

travels to the right along the “unit” hyperbola in the Minkowski plane at constant

hyperbolic speed 1. Consequently we may by definition identify t with hyperbolic

arclength on the unit hyperbolaH1, x = x(t) with sinh t and y = y(t) with cosh t,

and we see that we have given a complete proof of the fact from beginning

calculus that the derivative of the hyperbolic cosine is the hyperbolic sine and

that the derivative of the hyperbolic sine is the hyperbolic cosine, a proof that

is conceptually simpler than the proofs usually given in class.

p(t) = (cosh t, sinh t)

p′(t) = (cosh t, sinh t)

H1

Figure 3. The hyperbolic line H1.
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In formulas, taking k = 1, we have shown that x and y (the hyperbolic sine

and cosine) satisfy the system of differential equations

x′(t) = y(t), y′(t) = x(t),

with initial conditions x(0) = 0, y(0) = 1. We then need only apply some

elementary method such as the method of undetermined coefficients to easily

discover the classical power series for the hyperbolic sine and cosine:

cosh t = 1 + t2/2! + t4/4! + · · · ,
sinh t = t+ t3/3! + t5/5! + · · · .

It seems to us a shame that these analogies, being as easy as they are, are

seldom developed in calculus classes. The reason of course is that the analogies

become forced if one is not willing to leave the familiar Euclidean plane for the

unfamiliar Minkowski plane.

Note the remarkable fact that our calculation showed that a nonzero tangent

vector toH1 has positive square norm with respect to the indefinite inner product

∗; that is, the indefinite inner product on the Minkowski plane restricts to a

positive definite inner product on hyperbolic one-space. We shall find that the

analogous result is true in higher dimensions and that the formulas we have

calculated for hyperbolic length in dimension one apply in the higher-dimensional

setting as well.

5. Generalizing to Higher Dimensions

In higher dimensions, Hn sits inside
� n+1 as a hyperboloid. If p : (−∞,∞) →

Hn again describes a smooth path, then from the defining equations we still have

p(t)∗p′(t) = 0. By taking paths in any direction running through the point p(t),

we see that the tangent vectors to Hn at p(t) form the hyperbolic orthogonal

complement to the vector p(t) (vectors are hyperbolically orthogonal if their

inner product with respect to ∗ is 0).

We can show that the form ∗ restricted to the tangent space is positive definite

in either of two instructive ways.

The first method uses the Cauchy–Schwarz inequality (x · y)2 ≤ (x · x)(y · y).
Suppose that p = (p̂, pn+1) is in Hn and x = (x̂, xn+1) 6= 0 is in the tangent

space of Hn at p, where p̂, x̂ ∈ � n . If xn+1 = 0, then x∗x = x ·x. Hence x∗x > 0

if xn+1 = 0, so we may assume that xn+1 6= 0. Then 0 = x∗p = x̂ · p̂−xn+1pn+1,

and −1 = p ∗ p = p̂ · p̂− p2
n+1. Hence, Cauchy–Schwarz gives

(x̂ · x̂)(p̂ · p̂) ≥ (x̂ · p̂)2 = (xn+1pn+1)
2 = x2

n+1(p̂ · p̂+ 1).

Therefore, (x ∗ x)(p̂ · p̂) ≥ x2
n+1, which implies x ∗ x > 0 if x 6= 0.

The second method analyzes the inner product ∗ algebraically. (For complete

details, see [Weyl 1919], for example.) Take a basis p, p1, . . . , pn for
� n+1 where

p is the point of interest in Hn and the remaining vectors span the n-dimensional
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tangent space to Hn at p. Now apply the Gram–Schmidt orthogonalization pro-

cess to this basis. Since p ∗ p = −1 by the defining equation for Hn, the vector

p, being already a unit vector, is unchanged by the process and the remainder of

the resulting basis spans the orthogonal complement of p, which is the tangent

space to Hn at p. Since the inner product ∗ is nondegenerate, the resulting ma-

trix is diagonal with entries of ±1 on the diagonal, one of the −1’s corresponding

to the vector p. By Sylvester’s theorem of inertia, the number of +1’s and −1’s

on the diagonal is an invariant of the inner product (the number of 1’s is the

dimension of the largest subspace on which the metric is positive definite). But

with the standard basis for
� n+1 , there is exactly one −1 on the diagonal and

the remaining entries are +1. Hence the same is true of our basis. Thus the

matrix of the inner product when restricted to our tangent space is the identity

matrix of order n; that is, the restriction of the metric to the tangent space is

positive definite.

Thus the inner product ∗ restricted to Hn defines a genuine Riemannian

metric on Hn.

6. Rudiments of Riemannian Geometry

Our analytic models of hyperbolic geometry will all be differentiable manifolds

with a Riemannian metric.

One first defines a Riemannian metric and associated geometric notions on

Euclidean space. A Riemannian metric ds2 on Euclidean space
� n is a function

that assigns at each point p ∈ � n a positive definite symmetric inner product on

the tangent space at p, this inner product varying differentiably with the point

p. Given this inner product, it is possible to define any number of standard

geometric notions such as the length |x| of a vector x, where |x|2 = x·x, the angle

θ between two vectors x and y, where cos θ = (x ·y)/(|x| · |y|), the length element

ds =
√
ds2, and the area element dA, where dA is calculated as follows: if x1, . . . ,

xn are the standard coordinates on
� n , then ds2 has the form

∑

i,j gij dxi dxj ,

and the matrix (gij) depends differentiably on x and is positive definite and

symmetric. Let
√

|g| denote the square root of the determinant of (gij). Then

dA =
√

|g| dx1 dx2 · · · dxn. If f :
� k → � n is a differentiable map, one can

define the pullback f∗(ds2) by the formula

f∗(ds2)(v, w) = ds2(Df(v), Df(w))

where v and w are tangent vectors at a point u of
� k and Df is the derivative

map that takes tangent vectors at u to tangent vectors at x = f(u). One can

also calculate the pullback formally by replacing gij(x) with x ∈ � n by gij ◦f(u),

where u ∈ � k and f(u) = x, and replacing dxi by
∑

j(∂fi/∂uj)duj . One can
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p∗(ds)

ds

p(b)

p(a)

ba

�
p

ds =

� b

a

p∗(ds)

Figure 4. The length of a path.

calculate the length of a path p : [a, b] → � n by integrating ds over p:

∫

p

ds =

∫ b

a

p∗(ds).

See Figure 4. The Riemannian distance d(p, q) between two points p and q in
� n is defined as the infimum of path length over all paths joining p and q.

Finally, one generalizes all of these notions to manifolds by requiring the

existence of a Riemannian metric on each coordinate chart with these metrics

being invariant under pullback on transition functions connecting these charts;

that is, if ds21 is the Riemannian metric on chart one and if ds22 is the Riemannian

metric on chart two and if f is a transition function connecting these two charts,

then f∗(ds22) = ds21. The standard change of variables formulas from calculus

show that path lengths and areas are invariant under chart change.

7. Five Models of Hyperbolic Space

We describe here five analytic models of hyperbolic space. The theory of

hyperbolic geometry could be built in a unified way within a single model, but

with several models it is as if one were able to turn the object that is hyperbolic

space about in one’s hands so as to see it first from above, then from the side,

and finally from beneath or within; each view supplies its own natural intuitions.

Each model has its own metric, geodesics, isometries, and so on. Here are our

mnemonic names for the five models:

H, the Half-space model.

I, the Interior of the disk model.

J, the Jemisphere model (pronounce the J as in Spanish).

K, the Klein model.

L, the ’Loid model (short for hyperboloid).
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H

L

J

K k

l

j

i

h

(0, 0)(−1, 0)

(0,−1)

I

Figure 5. The five analytic models and their connecting isometries. The points

h ∈ H, i ∈ I, j ∈ J , k ∈ K, and l ∈ L can be thought of as the same point in

(synthetic) hyperbolic space.

Each model is defined on a different subset of
� n+1 , called its domain; for

n = 1 these sets are schematically indicated in Figure 5, which can also be

regarded as a cross section of the picture in higher dimensions. Here are the

definitions of the five domains:

H = {(1, x2, . . . , xn+1) : xn+1 > 0};
I = {(x1, . . . , xn, 0) : x2

1 + · · · + x2
n < 1};

J = {(x1, . . . , xn+1) : x2
1 + · · · + x2

n+1 = 1 and xn+1 > 0};
K = {(x1, . . . , xn, 1) : x2

1 + · · · + x2
n < 1};

L = {(x1, . . . , xn, xn+1) : x2
1 + · · · + x2

n − x2
n+1 = −1 and xn+1 > 0}.
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The associated Riemannian metrics ds2 that complete the analytic description

of the five models are:

ds2H =
dx2

2 + · · · + dx2
n+1

x2
n+1

;

ds2I = 4
dx2

1 + · · · + dx2
n

(1 − x2
1 − · · · − x2

n)2
;

ds2J =
dx2

1 + · · · + dx2
n+1

x2
n+1

;

ds2K =
dx2

1 + · · · + dx2
n

(1 − x2
1 − · · · − x2

n)
+

(x1 dx1 + · · · + xn dxn)2

(1 − x2
1 − · · · − x2

n)2
;

ds2L = dx2
1 + · · · + dx2

n − dx2
n+1.

To see that these five models are isometrically equivalent, we need to describe

isometries among them. We use J as the central model and describe for each of

the others a simple map to or from J .

The map α : J → H is central projection from the point (−1, 0, . . . , 0):

α : J → H, (x1, . . . , xn+1) 7→ (1, 2x2/(x1 + 1), . . . , 2xn+1/(x1 + 1)).

The map β : J → I is central projection from (0, . . . , 0,−1):

β : J → I, (x1, . . . , xn+1) 7→ (x1/(xn+1 + 1), . . . , xn/(xn+1 + 1), 0).

The map γ : K → J is vertical projection:

γ : K → J, (x1, . . . , xn, 1) 7→
(

x1, . . . , xn,
√

1 − x2
1 − · · · − x2

n

)

.

The map δ : L→ J is central projection from (0, . . . , 0,−1):

δ : L→ J, (x1, . . . , xn+1) 7→ (x1/xn+1, . . . , xn/xn+1, 1/xn+1).

Each map can be used in the standard way to pull back the Riemannian metric

from the target domain to the source domain and to verify thereby that the maps

are isometries. Among the twenty possible connecting maps among our models,

we have chosen the four for which we find the calculation of the metric pullback

easiest. It is worth noting that the metric on the Klein model K, which has

always struck us as particularly ugly and unintuitive, takes on obvious meaning

and structure relative to the metric on J from which it naturally derives via

the connecting map γ : K → J . We perform here two of the four pullback

calculations as examples and recommend that the reader undertake the other

two.

Here is the calculation that shows that α∗(ds2H ) = ds2J . Set

y2 = 2x2/(x1 + 1), . . . , yn+1 = 2xn+1/(x1 + 1).

Then

dyi =
2

x1 + 1
(dxi −

xi

x1 + 1
dx1).
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Since x2
1 + · · · + x2

n+1 = 1,

x1 dx1 = −(x2 dx2 + · · · + xn+1 dxn+1)

and

x2
2 + · · · + x2

n+1 = 1 − x2
1.

These equalities justify the following simple calculation:

α∗(ds2H) =
1

y2
n+1

(dy2
2 + · · ·+dy2

n+1)

=
(x1 +1)2

4x2
n+1

4

(x1 +1)2

( n+1
∑

i=2

dx2
i −

2dx1

x1 +1

n+1
∑

i=2

xi dxi +
dx2

1

(x1 +1)2

n+1
∑

i=2

x2
i

)

=
1

x2
n+1

( n+1
∑

i=2

dx2
i +

2

(x1 +1)
·x1 dx

2
1 +

dx2
1

(x1 +1)2
(1−x2

1)

)

=
1

x2
n+1

n+1
∑

i=1

dx2
i

= ds2J .

Here is the calculation that shows that γ∗(ds2J ) = ds2K . Set y1 = x1, . . . ,

yn = xn, and y2
n+1 = 1 − y2

1 − · · · − y2
n = 1 − x2

1 − · · · − x2
n. Then dyi = dxi for

i = 1, . . . , n and yn+1 dyn+1 = −(x1 dx1 + · · · + xn dxn). Thus

γ∗(ds2J ) =
1

y2
n+1

(dy2
1 + · · · + dy2

n) +
1

y2
n+1

dy2
n+1

=
1

(1 − x2
1 − · · · − x2

n)
(dx2

1 + · · · + dx2
n) +

(x1 dx1 + · · · + xn dxn)2

(1 − x2
1 − · · · − x2

n)2

= ds2K .

The other two pullback computations are comparable.

8. Stereographic Projection

In order to understand the relationships among these models, it is helpful to

understand the geometric properties of the connecting maps. Two of them are

central or stereographic projection from a sphere to a plane. In this section we

develop some important properties of stereographic projection. We begin with

the definition and then establish the important properties that stereographic

projection preserves angles and takes spheres to planes or spheres. We give a

geometric proof in dimension three and an analytic proof in general.

Definition. Let Sn denote a sphere of dimension n in Euclidean (n + 1)-

dimensional space
� n+1 . Let P denote a plane tangent to the sphere Sn at the

point S, which we think of as the south pole of Sn. Let N denote the point of

Sn opposite S, a point that we think of as the north pole of Sn. If x is any point
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of Sn \{N}, there is a unique point π(x) of P on the line that contains N and x.

It is called the stereographic projection from x into P . See Figure 6. Note that

π has a natural extension, also denoted by π, which takes all of
� n+1 except for

the plane {x : xn+1 = 1} into P .

Theorem 8.1 (Conformality, or the preservation of angles). Let

Sn ⊂ � n+1 , P , S, N , and π (extended) be as in the definition. Then π preserves

angles between curves in Sn\{N}. Furthermore, if x ∈ Sn\{N,S} and if T = xy

is a line segment tangent to Sn at x, then the angles π(x)xy and xπ(x)π(y) are

either equal or complementary whenever π(y) is defined .

Proof. We first give the analytic proof in arbitrary dimensions that π preserves

angles between curves in Sn \ {N}.
We may clearly normalize everything so that Sn is in fact the unit sphere

in
� n+1 , S is the point with coordinates (0, . . . , 0,−1), N is the point with

coordinates (0, . . . , 0, 1), P is the plane xn+1 = −1, and π : Sn → P is given by

the formula π(x) = (y1, . . . , yn,−1), where

yi =
−2

xn+1 − 1
xi.

We take the Euclidean metric ds2 = dy2
1 + · · ·+ dy2

n on P and pull it back to

a metric π∗(ds2) on Sn. The pullback of dyi is the form

−2

xn+1 − 1

(

dxi −
xi

xn+1 − 1
dxn+1

)

.

•

• •

•

P ′′

P

N

S

x

α

α

α

π(x)

P ′

α

Figure 6. Stereographic projection.
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Q
P ′

P q

r

p

p′

β
β

Figure 7. The angles qpr and qp′r.

Because x ∈ Sn, we have the two equations

x2
1 + · · · + x2

n + x2
n+1 = 1

and

x1 dx1 + · · · + xn dxn + xn+1 dxn+1 = 0.

From these equations it is easy to deduce that

π∗(ds2) =
4

(xn+1 − 1)2
(dx2

1 + · · · + dx2
n + dx2

n+1);

the calculation is essentially identical with one that we have performed above. We

conclude that at each point the pullback of the Euclidean metric on P is a positive

multiple of the Euclidean metric on Sn. Since multiplying distances in a tangent

space by a positive constant does not change angles, the map π : Sn \ {N} → P

preserves angles.

For the second assertion of the theorem we give a geometric proof that, in the

special case of dimension n+ 1 = 3, also gives an alternative geometric proof of

the fact that we have just proved analytically. This proof is taken from [Hilbert

and Cohn-Vossen 1932].

In preparation we consider two planes P and P ′ of dimension n in Euclidean

(n+ 1)-space
� n+1 that intersect in a plane Q of dimension n− 1. We then pick

points p ∈ P , q ∈ Q, and p′ ∈ P ′ such that the line segments pq and p′q are of

equal length and are at right angles to Q.

As can be seen in Figure 7, if r ∈ Q, the angles qpr and qp′r are equal.

Similarly, the angles p′pr and pp′r are equal.

To prove the second assertion of the theorem, first note that the case in which

the line M containing x and y misses P follows by continuity from the case in

which M meets P . So suppose that M meets P . Note that π maps the points of

M for which π is defined to the line containing π(x) and π(y). This implies that

we may assume that y ∈ P . See Figure 6. Now for the plane P of the obvious

assertion we take the plane P tangent to the sphere Sn at the south pole S. For
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the plane P ′ of the obvious assertion we take the plane tangent to Sn at x. For

the points p′ ∈ P ′ and p ∈ P we take, respectively, the points p = π(x) ∈ P and

p′ = x ∈ P ′. For the plane Q we take the intersection of P and P ′. For the point

r we take y. Now the assertion that the angles p′pr and pp′r are equal proves

the second assertion of the theorem.

In dimension three, the obvious fact that the angles qpr and qp′r are equal

shows that π preserves the angle between any given curve and certain reference

tangent directions, namely pq and p′q. Since the tangent space is, in this dimen-

sion only, two-dimensional, preserving angle with reference tangent directions is

enough to ensure preservation of angle in general. �

Theorem 8.2 (Preservation of spheres). Assume the setting of the previous

theorem. If C is a sphere (C for circle) in Sn that passes through the north pole

N of Sn and has dimension c, then the image π(C) ⊂ P is a plane in P of

dimension c. If on the other hand C misses N , then the image π(C) is a sphere

in P of dimension c.

Proof. If N ∈ C, then the proof is easy; indeed C is contained in a unique

plane P ′ of dimension c+1, and the image π(C) is the intersection of P ′ and P ,

a c-dimensional plane.

If, on the other hand, C misses N , we argue as follows. We assume all

normalized as in the analytic portion of the proof of the previous theorem so

that Sn is the unit sphere. We can deal with the case where C is a union of

great circles by continuity if we manage to prove the theorem in all other cases.

Consequently, we may assume that the vector subspace of
� n+1 spanned by the

vectors in C has dimension c + 2. We lose no generality in assuming that it is

all of
� n+1 (that is, c = n− 1).

The tangent spaces to Sn at the points of C define a conical envelope with

cone point y; one easy way to find y is to consider the two-dimensional plane R

containing N and two antipodal points r and r′ of C, and to consider the two

tangent lines t(r) to C ∩ R at r and t(r′) to C ∩ R at r′; then y is the point at

which t(r) and t(r′) meet. See Figure 8. By continuity we may assume that π(y)

is defined.

We assert that π(y) is equidistant from the points of π(C), from which the

reader may deduce that π(C) is a sphere centered at π(y). By continuity it

suffices to prove that π(y) is equidistant from the points of π(C) \ S. Here

is the argument that proves the assertion. Let x ∈ C \ S, and consider the

two-dimensional plane containing N , x, and y. In this plane there is a point

x′ on the line through x and N such that the line segment yx′ is parallel to

the segment π(y)π(x); that is, the angles N π(x)π(y) and N x′ y are equal. By

the final assertion of Theorem 8.1, the angles π(y)π(x)x and y x π(x) are either

equal or complementary. Thus the triangle xyx′ is isosceles so that sides xy and

x′y are equal. Thus considering proportions in the similar triangles N x′ y and



76 J. W. CANNON, W. J. FLOYD, R. KENYON, AND W. R. PARRY

•

•

•

←

←

N

C

Sn

y

P

π(C)

π(y)

Figure 8. Stereographic projection maps spheres to spheres.

N π(x)π(y), we have the equalities

d(π(x), π(y)) =
d(N, π(y))

d(N, y)
d(x′, y) =

d(N, π(y))

d(N, y)
d(x, y).

Of course, the fraction is a constant since N , y, and π(y) do not depend on x;

and the distance d(x, y) is also a constant since x ∈ C, C is a sphere, and y is

the center of the tangent cone of C. We conclude that the distance d(π(x), π(y))

is constant. �

Definition. Let Sn denote a sphere of dimension n in
� n+1 with north pole N

and south pole S as above. Let P denote a plane through the center of Sn and

orthogonal to the line through N and S. If x is any point of Sn\{N}, then there

is a unique point π′(x) of P on the line that contains N and x. This defines a

map π′ : Sn \ {N} → P , stereographic projection from Sn \ {N} to P .

Theorem 8.3. The map π′ preserves angles between curves in Sn \ {N}, and

π′ maps spheres to planes or spheres .

Proof. We normalize so that Sn is the unit sphere in
� n+1 , N = (0, . . . , 0, 1),

and S = (0, . . . , 0,−1). From the proof of Theorem 8.1 we have for every x ∈
Sn \ {N} that π(x) = (y1, . . . , yn,−1), where

yi =
−2

xn+1 − 1
xi.

In the same way π′(x) = (y′1, . . . , y
′
n,−1), where

y′i =
−1

xn+1 − 1
xi =

yi

2
.

Thus π′ is the composition of π with a translation and a dilation. Since π

preserves angles and maps spheres to planes or spheres, so does π′. �
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Figure 9. The retraction principle.

9. Geodesics

Having established formulas for the hyperbolic metric in our five analytic

models and having developed the fundamental properties of stereographic pro-

jection, it is possible to find the straight lines or geodesics in our five models

with a minimal amount of effort. Though geodesics can be found by solving

differential equations, we shall not do so. Rather, we establish the existence of

one geodesic in the half-space model by means of what we call the retraction

principle. Then we deduce the nature of all other geodesics by means of simple

symmetry properties of the hyperbolic metrics. Here are the details. We learned

this argument from Bill Thurston.

Theorem 9.1 (The retraction principle). Suppose that X is a Riemannian

manifold , that C : (a, b) → X is an embedding of an interval (a, b) in X , and

that there is a retraction r : X → image(C) that is distance-reducing in the sense

that , if one restricts the metric of X to image(C) and pulls this metric back via

r to obtain a new metric on all of X , then at each point the pullback metric is

less than or equal to the original metric on X . Then the image of C contains a

shortest path (geodesic) between each pair of its points .

The proof is left as an exercise. (Take an arbitrary path between two points of

the image and show that the retraction of that path is at least as short as the

original path. See Figure 9.)

Theorem 9.2 (Existence of a fundamental geodesic in hyperbolic

space). In the half-space model of hyperbolic space, all vertical lines are geodesic.

Such a line is the unique shortest path between any pair of points on it .

Proof. Let C : (0,∞) → H , where C(t) = (1, x2, . . . , xn, t) ∈ H and where the

numbers x2, . . . , xn are fixed constants; that is, C is an arbitrary vertical line

in H .

Define a retraction r : H → image(C) by the formula

r(1, x′1, . . . , x
′
n, t) = (1, x1, . . . , xn, t).
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Figure 10. A fundamental hyperbolic geodesic and a distance-reducing retraction

See Figure 10. The original hyperbolic metric was ds2 = (dx2
2+· · ·+dx2

n+1)/x
2
n+1.

The pullback metric is dx2
n+1/x

2
n+1. Thus, by the retraction principle, the image

of C contains a shortest path between each pair of its points.

It remains only to show that there is only one shortest path between any pair

of points on the image of C. If one were to start with an arbitrary path between

two points of the image of C that does not in fact stay in the image of C, then at

some point the path is not vertical; hence the pullback metric is actually smaller

than the original metric at that point since the original metric involves some dx2
i

with i 6= n+ 1. Thus the retraction is actually strictly shorter than the original

path. It is clear that there is only one shortest path between two points of the

image that stays in the image. �

Theorem 9.3 (Classification of geodesics in H). The geodesics in the

half-space model H of hyperbolic space are precisely the vertical lines in H and the

Euclidean metric semicircles whose endpoints lie in and intersect the boundary

{(1, x2, . . . , xn, 0)} of hyperbolic space H orthogonally .

Proof. See Figure 11 for the two types of geodesics. We need to make the

following observations:

•

• •

H

∂H

vertical

semicircular

Figure 11. The two types of geodesics in H.
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•••

•
•

p

q

p′ q′r

Figure 12. Finding the hyperbolic geodesic between points ofH not on a vertical line.

(1) Euclidean isometries of H that take the boundary {(1, x2, . . . , xn, 0)} of H

to itself are hyperbolic isometries of H . Similarly, the transformations of H that

take (1, x1, . . . , xn, t) to (1, rx1, . . . , rxn, rt) with r > 0 are hyperbolic isometries.

(Proof by direct, easy calculation.)

(2) Euclidean isometries of J are hyperbolic isometries of J . (Proof by direct,

easy calculation.)

(3) If p and q are arbitrary points of H , and if p and q do not lie on a vertical

line, then there is a unique boundary-orthogonal semicircle that contains p and q.

Indeed, to find the center of the semicircle, take the Euclidean segment joining

p and q and extend its Euclidean perpendicular bisector in the vertical plane

containing p and q until it touches the boundary of H . See Figure 12.

(4) If C and C ′ are any two boundary-orthogonal semicircles in H , then there

is a hyperbolic isometry taking C onto C ′. (The proof is an easy application of

(1) above.)

We now complete the proof of the theorem as follows. By the previous the-

orem and (1), all vertical lines in H are geodesic and hyperbolically equivalent,

and each contains the unique shortest path between each pair of its points. Now

map the vertical line in H with infinite endpoint (1, 0, . . . , 0) into J via the con-

necting stereographic projection. Then the image is a great semicircle. Rotate

J , a hyperbolic isometry by (2), so that the center of the stereographic pro-

jection is not an infinite endpoint of the image. Return the rotated semicircle

to H via stereographic projection. See Figure 13. By the theorems on stereo-

graphic projection, the image is a boundary-orthogonal semicircle in H . Since

it is the image under a composition of isometries of a geodesic, this boundary-

orthogonal semicircle is a geodesic. But all boundary-orthogonal semicircles in

H are hyperbolically equivalent by (4) above. Hence each is a geodesic. Since

there is a unique geodesic joining any two points of a vertical line, we find that

there is a unique geodesic joining any two points of H (see (3)). This completes

the proof of the theorem. �
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•
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H
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M ′

M ′ = semicircular rotate of α−1(M)

vertical geodesic M

α(M ′) = semicircular
image of M ′

semicircle α−1(M)

Figure 13. Geodesics in H.

By Theorems 8.1 and 8.2, the boundary-orthogonal semicircles in J correspond

precisely to the boundary-orthogonal semicircles and vertical lines in H . Hence

the geodesics in J are the boundary-orthogonal semicircles in J .

By Theorem 8.3, the boundary-orthogonal semicircles in J correspond to the

diameters and boundary-orthogonal circular segments in I . Hence the diameters

and boundary-orthogonal circular segments in I are the geodesics in I . See

Figure 14.

The boundary-orthogonal semicircles in J clearly correspond under vertical

projection to straight line segments in K. Hence the latter are the geodesics in

K. See Figure 15.

The straight line segments in K clearly correspond under central projection

from the origin to the intersections with L of two-dimensional vector subspaces

of
� n+1 with L; hence the latter are the geodesics of L. See Figure 16.

10. Isometries and Distances in the Hyperboloid Model

We begin our study of the isometries of hyperbolic space with the hyperboloid

model L where all isometries, as we shall see, are restrictions of linear maps of
� n+1 .

Definition. A linear isometry f : L→ L of L is the restriction to L of a linear

map F :
� n+1 → � n+1 that preserves the hyperbolic inner product ∗ (that is,
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I

I

J

c

(0, 0,−1)

c = tip of tangent cone to J

center of circle in I

Figure 14. Geodesics in I and J and their stereographic relationship.

↑
↑

J

K

straight line projection in K

semicircle in J

Figure 15. Geodesics in J and K.

 •

←
←

straight line geodesic in K

origin

K

L intersection of plane with L

Figure 16. Geodesics in K and L.
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for each pair v and w of vectors from
� n+1 , Fv ∗ Fw = v ∗ w) and that takes

the upper sheet of the hyperboloid L into itself.

Definition. A Riemannian isometry f : L → L of L is a diffeomorphism of L

that preserves the Riemannian metric (that is, f ∗(ds2) = ds2).

Definition. A topological isometry f : L → L of L is a homeomorphism of L

that preserves the Riemannian distance between each pair of points of L (that

is, if d is the Riemannian distance function and if x and y are points of L, then

d(f(x), f(y)) = d(x, y)).

Theorem 10.1. A square matrix M with columns m1, . . . , mn, mn+1 induces

a linear isometry of L if and only if the following two conditions are satisfied .

1. For each pair of indices i and j, we have mi ∗mj = ei ∗ ej , where e1, . . . , en,

en+1 is the standard basis for
� n+1 .

2. The last entry of the last column mn+1 is positive.

Condition 1 is satisfied if and only if M is invertible with M−1 = JM tJ , where

J is the diagonal matrix with diagonal entries J11 = · · · = Jnn = −Jn+1,n+1 = 1.

Proof. Let J denote the diagonal matrix with diagonal entries J11 = · · · =

Jnn = −Jn+1,n+1 = 1. Then for each x, y ∈ � n+1 , x∗y = xtJy. ThusMx∗My =

xtM tJMy. Consequently, M preserves ∗ if and only if M tJM = J ; but the ij

entry of M tJM is mi ∗mj while that of J is ei ∗ ej . Thus M preserves ∗ if and

only if condition 1 of the theorem is satisfied. Since J is invertible, condition 1

implies that M is also invertible and that it takes the hyperboloid of two sheets,

of which L is the upper sheet, homeomorphically onto itself. Condition 2 is then

just the statement that the image of en+1 lies in L, that is, that M takes the

upper sheet L of the hyperboloid onto itself.

Finally, the equality M−1 = JM tJ is clearly equivalent to the equality

M tJM = J since J−1 = J . �

Theorem 10.2. A map f : L → L that satisfies any of the three definitions of

isometry—linear , Riemannian, or topological—satisfies the other two as well .

Proof. We first prove the two easy implications, linear ⇒ Riemannian ⇒
topological, then connect the hyperbolic inner product x ∗ y with Riemannian

distance d(x, y) in preparation for the more difficult implication, topological ⇒
linear.

Linear isometry ⇒ Riemannian isometry: Let F :
� n+1 → � n+1 be a linear

map that preserves the hyperbolic inner product ∗ and takes the upper sheet L

of the hyperboloid of two sheets into itself and thereby induces a linear isometry

f : L→ L. The Riemannian metric ds2 is at each point x of L simply a function

of two variables that takes as input two tangent vectors v and w at x and delivers

as output the hyperbolic inner product v ∗ w. We calculate the pullback metric
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f∗(ds2) in the following manner:

f∗(ds2)(v, w) = ds2(Df(v), Df(w)) = ds2(DF (v), DF (w))

= ds2(F (v), F (w)) = F (v) ∗ F (w) = v ∗ w = ds2(v, w).

We conclude that f∗(ds2) = ds2, so that f is a Riemannian isometry.

Riemannian isometry ⇒ topological isometry: Riemannian distance is calculated

by integrating the Riemannian metric. Since a Riemannian isometry preserves

the integrand, it preserves the integral as well.

Lemma. If a, b ∈ L, then a ∗ b = − cosh(d(a, b)).

Proof. Let t denote the Riemannian distance d(a, b) between a and b. One

obtains this distance by integrating the Riemannian metric along the unique

geodesic path joining a and b, or, since this integral is invariant under linear

isometry, one can translate a and b to a standard position in L as follows and

then perform the integration. Let m1 be the unit tangent vector at a in the

direction of the geodesic from a to b. Let mn+1 = a. By the Gram–Schmidt

orthonormalization process from elementary linear algebra we may extend the

orthonormal set {m1,mn+1} to an orthonormal basis m1, . . . , mn, mn+1 for
� n+1 ; that is, mi ∗mj = ei ∗ ej . By Theorem 10.1, the matrix M with columns

m1, . . . , mn, mn+1 gives a linear isometry of L as does its inverse M−1. The

inverse takes a to en+1 and takes the two-dimensional subspace spanned by a

and b to the space P spanned by e1 and en+1. The intersection of P with L is one

branch of a standard hyperbola that passes through M−1(a) and M−1(b) and

is the unique hyperbolic geodesic through those two points. Since M−1(a) =

(0, . . . , 0, 1) and since t = d(a, b) = d(M−1(a),M−1(b)), we may assume that

M−1(b) = (sinh(t), . . . , 0, cosh(t)). (See Section 4.) Thus we may calculate:

a ∗ b = M−1(a) ∗M−1(b) = (0, . . . , 0, 1) ∗ (sinh(t), . . . , 0, cosh(t))

= − cosh(t) = − cosh(d(a, b)). �

Topological isometry ⇒ linear isometry: Let f : L → L denote a topological

isometry. Let v1, . . . , vn, vn+1 denote a basis for
� n+1 such that each vi lies in

L. Let F denote the linear map that takes vi to f(vi) for each i. We claim that

F preserves ∗; to see this, write ei =
∑

j aijvj and compute:

F (ei) ∗ F (ej) =
∑

k,l

aikajlf(vk) ∗ f(vl)

=
∑

k,l

aikajl(− cosh(d(f(vk), f(vl))))

=
∑

k,l

aikajl(− cosh(d(vk , vl))) = ei ∗ ej .

Moreover, F agrees with f on L. To prove this, it suffices to replace f by F−1◦f ,

so that we can assume f(vi) = vi; then we must prove that f = id, which we
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can do by showing f(x) ∗ ei = x ∗ ei for each x ∈ L and for each index i. Here is

the calculation:

f(x) ∗ ei = f(x) ∗
∑

j

aijvj =
∑

j

aij(f(x) ∗ f(vj))

=
∑

j

aij(− cosh(d(f(x), f(vj))))

=
∑

j

aij(− cosh(d(x, vj))) = x ∗ ei. �

11. The Space at Infinity

It is apparent from all of our analytic models with the possible exception of

the hyperboloid model L that there is a natural space at infinity. In the half-

space model H it is the bounding plane of dimension n− 1 that we compactify

by adding one additional point; we visualize the additional point as residing at

the top of the collection of vertical geodesics in H . In the disk model I , in the

hemisphere model J , and in the Klein model K it is the bounding (n−1)-sphere.

If we reinterpret the hyperboloid model as lying in projective space (each point

of L is represented by the unique one-dimensional vector subspace of
� n+1 that

contains that point), then the space at infinity becomes apparent in that model

as well: it consists of those lines that lie in the light cone {x ∈ � n+1 : x∗x = 0}.
Furthermore, it is apparent that not only the models but also the unions of

those models with their spaces at infinity correspond homeomorphically under

our transformations connecting the models. That is, the space at infinity is a

sphere of dimension n− 1 and the union of the model with the space at infinity

is a ball of dimension n.

Having analyzed the isometries of the hyperboloid model, we see that each

isometry of L actually extends naturally not only to the space at infinity but to

the entirety of projective n-space. That is, each linear mapping of
� n+1 defines

a continuous mapping of projective n-space P n.

12. The Geometric Classification of Isometries

We recall from the previous sections that every isometry f of L extends to a

linear homeomorphism F of
� n+1 , hence upon passage to projective space P n

induces a homeomorphism f ∪f∞ : L∪∂L→ L∪∂L of the ball that is the union

of hyperbolic space L and its space ∂L at infinity. Every continuous map from

a ball to itself has a fixed point by the Brouwer fixed point theorem. There is a

very useful and beautiful geometric classification of the isometries of hyperbolic

space that refers to the fixed points of this extended map. Our analysis of these

maps requires that we be able to normalize them to some extent by moving given

fixed points into a standard position. To that end we note that we have already

shown how to move any point in L and nonzero tangent vector at that point
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so that the point is at en+1 and the tangent points in the direction of e1. As a

consequence we can move any pair of points in L ∪ ∂L so that they lie in any

given geodesic; and by conjugation we find that we may assume that any pair of

fixed points of an isometry lies in a given geodesic. Indeed, let f be an isometry

with fixed point x, let g be an isometry that takes x into a geodesic line L, and

note that g(x) is a fixed point of gfg−1. Here are the three possible cases.

The elliptic case occurs when the extended map has a fixed point in L itself:

conjugating by a linear isometry of L, we may assume that the isometry f :

L → L fixes the point en+1 = (0, . . . , 0, 1). Let F :
� n+1 → � n+1 be the linear

extension of f . The representing matrix M has as last column mn+1 the vector

en+1. The remaining columns must be ∗-orthogonal to mn+1, hence Euclidean

or ·-orthogonal to en+1. On the orthogonal complement of en+1, the hyperbolic

and the Euclidean inner products coincide. Hence the remaining columns form

not only a hyperbolic orthonormal basis but also a Euclidean orthonormal basis.

We conclude that the matrix M defining F is actually Euclidean orthogonal. We

call such a transformation of hyperbolic space elliptic.

The hyperbolic case occurs when the extended map has no fixed point in L itself

but has two fixed points at infinity: we examine this transformation in the half-

space model H for hyperbolic space. We ignore the initial constant coordinate

1 in H and identify H with the half-space {x = (x1, . . . , xn) ∈ � n : xn > 0}.
Conjugating by an isometry, we may assume that the fixed points of the map f

of H ∪ ∂H are the infinite endpoints of the hyperbolic geodesic (0, . . . , t), where

t > 0. Let (0, . . . , k) denote the image under f of (0, . . . , 1). Then (1/k) · f is

an isometry that fixes every point of the hyperbolic geodesic (0, . . . , t). By the

previous paragraph, the transformation (1/k) ·f is an orthogonal transformation

O. It follows easily that f(x) = k O(x), the composite of a Euclidean orthogonal

transformation O, which preserves the boundary plane at infinity and which

is simultaneously a hyperbolic isometry, with the hyperbolic translation x 7→
kx along the geodesic (0, . . . , t). Such a transformation is called hyperbolic or

loxodromic. The invariant geodesic (0, . . . , t) is called the axis of the hyperbolic

transformation. See Figure 17. Often one preserves the name hyperbolic for the

case where the orthogonal transformation is trivial and the name loxodromic for

the case where the orthogonal transformation is nontrivial.

The parabolic case occurs when the extended map has only one fixed point and

that fixed point is at infinity: we examine this transformation in the half-space

model H for hyperbolic space. We may assume that the fixed point of the map

f of H ∪ ∂H is the upper infinite endpoint of the hyperbolic geodesic (0, . . . , t),

where t > 0. The transformation g : x 7→ f(x) − f((0, . . . , 0)) fixes both ends

of the same geodesic. Hence g may be written as a composite x 7→ k O(x)

where k > 0 and O have the significance described in the previous paragraph.

Thus f(x) = k O(x) + v, where k > 0, O is Euclidean orthogonal preserving the

boundary plane of H , and v = f((0, . . . , 0)) is a constant vector. We claim that
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H

∂H

origin

M vertical geodesic

rotational component (Euclidean rotation)

translation distance (multiplication by k > 0)

Figure 17. Hyperbolic or loxodromic isometry.

k = 1 so that f is a Euclidean isometry preserving the boundary plane of H ;

such a map, without fixed points in the boundary plane, is called parabolic. If

k 6= 1, we claim that f has another fixed point. We find such a fixed point in the

following way. The fixed point will be a solution of the equation (I − kO)x = v.

The eigenvalues of I − kO have the form 1 − kλ, where λ is an eigenvalue of

O. Since O is orthogonal, its eigenvalues have absolute value 1. Hence if k 6= 1,

then I − kO is invertible, and the equation (I − kO)x = v does indeed have a

solution.

13. Curious Facts about Hyperbolic Space

Fact 1. In the three conformal models for hyperbolic space, hyperbolic spheres

are also Euclidean spheres ; however , Euclidean and hyperbolic sphere centers

need not coincide.

Proof. We work in the hemisphere model J for hyperbolic space and consider

the point p = (0, . . . , 0, 1) ∈ J . The Riemannian metric ds2J is clearly rotationally

symmetric around p so that a hyperbolic sphere centered at p is a Euclidean

sphere.

We project such a sphere from J into the half-space model H for hyperbolic

space via stereographic projection. See Figure 18. Since stereographic projection

takes spheres that miss the projection point to spheres in H , we see that there

is one point of H , namely the image of p, about which hyperbolic spheres are

Euclidean spheres. But this point can be taken to any other point of H by a

composition of Euclidean translations and Euclidean similarities that are hyper-

bolic isometries as well. Since these Euclidean transformations preserve both the

class of hyperbolic spheres and the class of Euclidean spheres, we see that the

hyperbolic spheres centered at each point of H are also Euclidean spheres.

We project this entire class of spheres back into J and from thence into I by

stereographic projections that preserve this class of Euclidean (and hyperbolic)
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•

•

H

∂HJ

π(C)

π(p)

p
C

Figure 18. The projection of a sphere from J to H. C is both a Euclidean and

a hyperbolic sphere; π(p) is the hyperbolic center of the circle π(C).

spheres. We conclude that all hyperbolic spheres in these three models are also

Euclidean spheres, and conversely.

Finally, we give a geometric construction for the hyperbolic center of a Eu-

clidean sphere S in the half-space model H . See Figure 19. Draw the vertical

geodesic line M through the center of S until it meets the plane at infinity at

some point p. Draw a tangent line to S from p meeting S at a tangency point

q. Draw the circle C through q that is centered at p and lies in the same plane

as M . The circle C then meets the line M at the hyperbolic center of S (proof,

an exercise for the reader). Note that this center is not the Euclidean center

of S. �

←

•

• ←
←•

H

M

hyperbolic center
Euclidean centerhyperbolic diameter

∂H

Figure 19. Constructing the hyperbolic center of a circle
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H
C

pr

∂H

envelope = equidistant curve

hyperbolic equidistant curve
is Euclidean straight line

M= vertical geodesic line

Figure 20. Equidistant curves in H.

Fact 2. In the hyperbolic plane, the two curves at distance r on either side of

a straight line are not straight .

Proof. We can use the preceding result to analyze the curves equidistant from

a hyperbolic geodesic in the hyperbolic plane. We work in the half-space model

H ⊂ � 2 of the two-dimensional hyperbolic plane and take as geodesic line the

vertical line M that passes through the origin of
� 2 . Put a hyperbolic circle C

of hyperbolic radius r about a point p of M . Then we obtain the set of all such

circles centered at points of M by multiplying C by all possible positive scalars.

The union of these spheres t · C is a cone, or angle, D of which the origin is the

vertex and whose central axis is M . The envelope or boundary of this cone or

angle is a pair of Euclidean straight lines, the very equidistant lines in which we

are interested. See Figure 20. Since these straight lines are not vertical, they are

not hyperbolic straight lines. �

Fact 3. Triangles in hyperbolic space have angle sum less than π; in fact , the

area of a triangle with angles α, β, and γ is π − α − β − γ (the Gauss–Bonnet

theorem). Given three angles α, β, and γ whose sum is less than π, there is one

and only one triangle up to congruence having those angles . Consequently , there

are no nontrivial similarities of hyperbolic space.

Proof. Any triangle in hyperbolic space lies in a two-dimensional hyperbolic

plane. Hence we may work in the half-space model H for the hyperbolic plane.

Assume that we are given a triangle ∆ = pqr with angles α, β, and γ. We may

arrange via an isometry of hyperbolic space that the side pq lies in the unit circle.

Then by a hyperbolic isometry of hyperbolic space that has the unit circle as its

invariant axis and translates along the unit circle we may arrange that the side

pr points vertically upward. The resulting picture is in Figure 21.
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π − γ

∞∞

γ
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α

α

β′
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∂H

H

q

r

p

Figure 21. The Gauss–Bonnet theorem.

We note that the triangle ∆ = pqr is the difference of two ideal triangles pq∞
and rq∞. (“Ideal” means that at least one vertex is at infinity.) We first prove

the Gauss–Bonnet theorem for such an ideal triangle, then deduce the desired

formula by taking a difference.

The element of area is dA = dx dy/y2. It is easy to verify that the area of

pq∞ is therefore

∫

pq∞
dA =

∫ x=cos(π−α)

x=cos(β+β′)

dx

∫ y=∞

y=
√

1−x2

dy

y2
.

Straightforward evaluation leads to the value π − α − β − β ′ for the integral.

Similar evaluation gives the value π − (π − γ) − β′ for the area of rq∞. The

difference of these two values is π − α − β − γ as claimed. This proves the

Gauss–Bonnet theorem.

We now construct a triangle with given angles. Suppose therefore that three

angles α, β, and γ are given whose sum is less than π, a necessary restriction in

view of the Gauss–Bonnet theorem. Pick a model of the hyperbolic plane, say

the disk model I . Pick a pair Q and R of geodesic rays (radii) from the origin p

meeting at the Euclidean (= hyperbolic) angle of α. See Figure 22. Note that

any pair of geodesic rays meeting at angle α is congruent to this pair. Pick points

q and r on these rays and consider the triangle pqr. Let β ′ denote the angle at q

and let γ′ denote the angle at r. Let A′ denote the area of the triangle pqr. We

will complete the construction by showing that there is a unique choice for q on

Q and for r on R such that β′ = β and γ′ = γ. The argument will be variational.

We first consider the effect of fixing a value of q and letting r vary from ∞
to p along R. At ∞, the angle γ ′ is 0. At (near) p the angle γ ′ is (almost)

π − α. As r moves inward toward p along R, both β′ and A′ clearly decrease

monotonically. Hence, by the Gauss–Bonnet theorem, γ ′ = π − α − β′ − A′

increases monotonically. In particular, there is a unique point r(q) at which
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p = origin

q

rQ R

∞

∞

α

β′

γ′

Figure 22. Constructing a triangle with angles α, β, and γ, with α+ β+ γ < π

γ′ = γ. Now fix q, fix r at r(q), and move inward along Q from q to a point q′.

Note that the angle of pq′r at r is smaller than the angle γ, which is the angle

of pqr at r. We conclude that r(q′) must be closer to p than is r(q). That is, as

q moves inward toward p, so also does r(q). We conclude that the areas of the

triangles pqr(q) decrease monotonically as q moves inward along Q toward p.

We are ready for the final variational argument. We work with the triangles

pqr(q). We start with q at ∞ and note that the area A′ is equal to π−α−0−γ >
π − α− β − γ. We move q inward along Q, and consequently move r(q) inward

along R, until q reaches p and A′ = 0 < π−α−β− γ. As noted in the previous

paragraph, the area A′ decreases monotonically. Hence there is a unique value

of q at which the area is π − α − β − γ. At that value of q the angle β ′ must

equal β by the Gauss–Bonnet theorem. �

Fact 4. If ∆ = pqr is a triangle in hyperbolic space, and if x is a point of the

side pq, then there is a point y ∈ pr∪ qr such that the hyperbolic distance d(x, y)

is less than ln(1 +
√

2); that is , triangles in hyperbolic space are uniformly thin.

Proof. We need two observations. First, if P and Q are two vertical geodesics

in the half-space model H for hyperbolic space, and if a point p moves monoton-

ically downward along P , then the distance d(p,Q) increases monotonically to

infinity. See Figure 23. Second, if p and q are two points on the same boundary-

orthogonal semicircle (geodesic) in H , say on the unit circle with coordinates

p = (cos(φ), sin(φ)) and q = (cos(θ), sin(θ)) with θ > φ, then the hyperbolic

distance between the two is given by the formula

d(p, q) =

∫ θ

φ

dψ

sin(ψ)
= ln

sin(ψ)

1 + cos(ψ)

∣

∣

∣

∣

θ

φ

.

See Figure 24. Actually, the radius of the semicircle is irrelevant because scaling

is a hyperbolic isometry. Only the beginning and ending angles are important.

We are now ready for the proof that triangles are thin. Let ∆ = pqr denote

a triangle in the hyperbolic plane. We view ∆ in the half-space model of the
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←d(p,Q)

d(p,Q)

d(p,Q)

p

PQ

H

∂H

hyperbolic equidistant curve

Figure 23. The monotonicity of d(p,Q).

hyperbolic plane. We may assume that the side pq lies in the unit circle with p to

the left of q, and we may assume that the side pr is vertical with r above p. We

assume a point x ∈ pq given. See Figure 25. We want to find an upper bound for

the distance d(x, pr ∪ qr). The following operations simply expand the triangle

∆ and hence increase the distance that we want to bound above. First we may

move r upward until it moves to ∞. We may then slide p leftward along the unit

circle until it meets infinity at p′ = −1. We may then slide q rightward along the

unit circle until it meets infinity at q′ = 1. We now have an ideal triangle p′q′∞
with x ∈ p′q′. See Figure 26. The pair of sides p′q′ and p′∞ are congruent as a

pair to a pair of vertical geodesics (simply move p′ to ∞ by an isometry of H).

Hence as we move x toward q′, the distance d(x, p′∞) increases monotonically.

Similarly, as we move x toward p′, the distance d(x, q′∞) increases monotonically.

We conclude that the maximum distance to p′∞∪ q′∞ is realized when x is at

the topmost point of the unit circle. The distances to the two vertical geodesics

p′∞ and q′∞ are then equal and the shortest path is realized by a boundary-

orthogonal semicircle that passes through x and meets, say, p′∞ orthogonally (if

it did not meet orthogonally, then a shortcut near the vertical geodesic would

reduce the length of the path). It is clear from the geometry that this shortest

•

•
••

• geodesic

geodesic

p

p′q

q′

φπ − θ

d(p, q) = d(p′, q′) =

�
geodesic

ds =

� θ

φ

dψ

sinψ

Figure 24. The formula for d(p, q).
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x′x

q′
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p′

P ′
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H

Figure 25. Triangles are thin. Figure 26. The ideal triangle p′q′∞.

path travels through the angle interval [π/4, π/2] in going from x to the vertical

geodesic p′∞. Hence, by our calculation above, the distance between the point

and the opposite sides is

ln
sin(π/2)

1 + cos(π/2)
− ln

sin(π/4)

1 + cos(π/4)
= ln

(

1 +
√

2
)

= 0.88 . . . .

We conclude that triangles are uniformly thin, as claimed. �

Fact 5. For a circular disk in the hyperbolic plane, the ratio of area to cir-

cumference is less than 1 and approaches 1 as the radius approaches infinity .

That is , almost the entire area of the disk lies very close to the circular edge of

the disk . Both area and circumference are exponential functions of hyperbolic

radius .

Proof. We do our calculations in the disk model I of the hyperbolic plane.

The Riemannian metric is, as we recall,

ds2I = 4(dx2
1 + · · · + dx2

n)/(1 − x2
1 − · · ·x2

n)2.

We are considering the case n = 2. Using polar coordinates (see Section 6) we

can easily compute the distance element along a radial arc, namely

ds = 2
dr

1 − r2
,

while the area element is

dA =
4

(1 − r2)2
r dr dθ.

We fix a Euclidean radius R with associated circular disk centered at the origin

in I and calculate the hyperbolic radius ρ, area A, and circumference C (see



HYPERBOLIC GEOMETRY 93

••

I

C

A

ρ
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Figure 27. The hyperbolic radius ρ, the area A, and the circumference C.

Figure 27):

ρ =

∫ R

0

2
dr

1 − r2
= ln

1 +R

1 −R
;

A =

∫ 2π

θ=0

∫ R

r=0

4

(1 − r2)2
r dr dθ =

4πR2

1 −R2
;

C =

∫ 2π

θ=0

2R

1 −R2
dθ =

4πR

1 −R2
.

Therefore

R =
eρ − 1

eρ + 1
=

cosh ρ− 1

sinh ρ
;

A = 2π(cosh ρ− 1) = 2π
(

ρ2

2!
+
ρ4

4!
+ · · ·

)

≈ πρ2 for small ρ;

C = 2π sinh ρ = 2π
(

ρ+
ρ3

3!
+
ρ5

5!
+ · · ·

)

≈ 2πρ for small ρ.

Note that the formulas are approximately the Euclidean formulas for small ρ.

This is apparent in the half-space model if one works near a point at unit Eu-

clidean distance above the bounding plane; for at such a point the Euclidean

and hyperbolic metrics coincide, both for areas and lengths. �

Fact 6. In the half-space model H of hyperbolic space, if S is a sphere centered

at a point at infinity x ∈ ∂H , then inversion in the sphere S induces a hyperbolic

isometry of H that interchanges the inside and outside of S in H .

Proof. Consider a Euclidean sphere S centered at a point p of the bounding

plane at infinity. Let x be an arbitrary point of H , and let M be the Euclidean

straight line through p and x. There is a unique point x′ ∈ M ∩ H on the

opposite side of S such that the two Euclidean straight line segments x(S ∩M)

and x′(S∩M) have the same hyperbolic length. See Figure 28. The points x and

x′ are said to be mirror images of one another with respect to S. We claim that
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Figure 28. Inversion in S.

the map of H that interchanges all of the inverse pairs x and x′ is a hyperbolic

isometry. We call this map inversion in S.

Note that all such spheres S are congruent via hyperbolic isometries that are

Euclidean similarities. Inversion is clearly invariant under such isometries. We

shall make use of this fact both in giving formulas for inversion and in proving

that inversion is a hyperbolic isometry.

Though our proof will make no use of formulas, we nevertheless describe

inversion in S by means of a formula. We lose no generality in assuming that

S is centered at the origin of Euclidean space. If S has radius r and if x has

length t, then multiplication of H by the positive constant r/t is a hyperbolic

isometry that takes M onto itself and takes x to the point M ∩ S. A second

multiplication by r/t takes the Euclidean segment x(M ∩S) to a segment of the

same hyperbolic length on the opposite side of S, hence takes M ∩S to x′. That

is, x′ = (r/t)2x.

We now prove that inversion is a hyperbolic isometry. For that purpose

we consider the hemisphere model J for hyperbolic space. Consider the n-

dimensional plane P = {x ∈ � n+1 : x1 = 0} through the origin of
� n+1 that

is parallel to the half-space model H = {x ∈ � n+1 : x1 = 1} of hyperbolic

space. See Figure 29. This plane intersects the hemisphere model J in one half

of a sphere of dimension n − 1, which we denote by S ′. The entire model J is

filled by circular segments that begin at the point (−1, 0, . . . , 0), end at the point

(1, 0, . . . , 0), and intersect S ′ at right angles. The hyperbolic metric ds2J is clearly

symmetric with respect to the plane P and its intersection S ′ with J . Euclidean

reflection in that plane therefore induces a hyperbolic isometry of J that takes a

point on any of our circular segments to the point on the same circular segment

but on the opposite side of S ′. The symmetry of the hyperbolic metric clearly

implies that the hyperbolic length of the two corresponding circular segments

joining the point and its image to S ′ have the same hyperbolic length.

Now map J to H by stereographic projection. Then S ′ goes to one of our

admissible spheres S ∩ H and our circular segments go to the family of lines

M through the origin. We see therefore that our hyperbolic reflection isometry
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Figure 29. Inversion is a hyperbolic isometry.

of J goes precisely to our inversion of H in the sphere S. This completes the

proof. �

14. The Sixth Model

We now turn to yet another model of the hyperbolic plane. This sixth model

is only a combinatorial approximation to the half-space model, rather than a

model in the sense of the other five. Consider the (infinite) family of “squares”

sitting in the half-plane model, part of which is shown in Figure 30. This family

is the image of the unit square, with vertical and horizontal sides and whose

lower left corner is at (0, 1), under the maps p 7→ 2j
(

p+ (k, 0)
)

with (j, k) ∈ � 2.

Since horizontal translation and homotheties are hyperbolic isometries in H ,

each “square” is isometric to every other square. (We’ve called them squares

even though in the hyperbolic metric they bear no resemblance to squares.)

Moving around in this family of squares is essentially like moving around in

the hyperbolic plane. The advantage of the squares is that you can see combi-

natorially many of the aspects of hyperbolic space.
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Figure 30. The sixth model and a random walk in the dual graph.

For example, note that a random walk on the dual graph will tend almost

surely to infinity: from inside any square, the probability of exiting downwards

is twice as great as the probability of exiting upwards.

Let p and q be vertices of the dual graph. Then one geodesic from p to q is

gotten by taking a a path as in Figure 31, which rises initially straight upwards,

goes horizontally a length at most 5, and then descends to q. More generally,

let γ be a geodesic from p to q. Then there exists a geodesic δ from p to q that

rises initially straight upwards, goes horizontally a length at most 5, and then

descends to q in such a way that the distance from any vertex of γ is at most

one from some vertex of δ, and vice versa.

Another aspect of the hyperbolic plane that can be illustrated in this model

is the “thin triangles” property. Given that we understand what geodesics look

like from the previous paragraph, we first consider only a triangle with geodesic

sides as in Figure 32.

The combinatorial lengths of the bottom two horizontal arcs are at most 5.

Since the combinatorial length divides by approximately 2 as you ascend one level

up, it follows that the combinatorial vertical distance from the middle horizontal

arc to the top horizontal arc is at most 3. Hence it follows that every point

on one side of the triangle is within distance at most 8 of the union of the two

opposite sides of the triangle. Thus triangles in this model are said to be 8-thin.

(In hyperbolic space, we saw that triangles are log
(

1 +
√

2
)

-thin in this sense.)

A consequence of the thin triangles property in a metric space is the exponen-

tial divergence of geodesics. Consider once again the half-space model H . Recall

that a hyperbolic sphere (the set of points at a fixed distance from a point) is in

fact also a Euclidean sphere.
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••
qp

Figure 31. A geodesic in the dual graph.

•
•

• p

q

r

≤ 3

≤ 5

≤ 5

Figure 32. A triangle with geodesic sides.
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H

∂H

Figure 33. A taxicab path. Integrate with respect to ds = � dx2 + dy2/y to

find the taxicab distance.

As in the proof of Fact 5 in Section 13, the area of a disk of radius rh is

Ah = 2π(cosh(rh) − 1),

whereas the length of the boundary of a disk of radius rh is 2πsinh(rh). For

large rh, these are both quite close to πerh , so in particular we see that the

circumference is exponential in the radius. This phenomenon will be known as

the exponential explosion, and is true in any metric space satisfying the thin

triangles condition.

Before we go on, we leave the reader with two exercises.

Exercise 1. Take a “taxicab” metric on H2 in which the allowed paths are

polygonal paths that have horizontal or vertical edges. See Figure 33. Analyze

the geodesics in this new metric, and prove the thin triangles property.

Exercise 2. Generalize the previous exercise to H3: let the allowed paths

be polygonal paths that are vertical (in the z-direction) or horizontal (lie par-

allel to the xy-plane). Define the length of a horizontal line segment to be

max{∆x,∆y}/z.

15. Why Study Hyperbolic Geometry?

Hyperbolic geometry and its geometric insights have application in diverse

areas of mathematics. The next three sections informally introduce some of

those applications. The material is intended to be skimmed, since the reader

may be unfamiliar with some of the prerequisite background material.

Hyperbolic geometry arises in three main areas:

(i) Complex variables and conformal mappings. In fact, work on automorphic

functions was Poincaré’s original motivation for defining hyperbolic space; see

the quotation on page 63.

(ii) Topology (of three-manifolds in particular). More on this later regarding

Thurston’s surprising geometrization conjecture.

(iii) Group theory, in particular combinatorial group theory à la Gromov.
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Historically, hyperbolic geometry lies at the center of a triangle around which

revolve these three topics. See Figure 34. By using hard theorems in one domain

and hard connections between domains, one can prove surprising results.

One such example is the Mostow rigidity theorem [1973], which we quote here

in its simplest, lowest-dimensional form, for oriented, connected, compact three-

dimensional manifolds. To state the theorem we need a definition: a hyperbolic

structure on an n-dimensional manifold M is a Riemannian metric on M such

that the universal covering space of M is isometric to hyperbolic space Hn.

Theorem 15.1. Suppose the three-manifolds M1 and M2 having hyperbolic

structures are homotopy equivalent . Then M1 and M2 are in fact isometric.

Hyperbolic
geometry

Complex variables
Conformal mapping

Topology

Group theory

Isometric linear
fractional transformations

Uniformization
Automorphic forms

Thurston’s
geometrization

Mostow
rigidity

Manifolds of
constant curvature

Negatively
curved groups

Isometry
groups

Kleinian
groups

Fundamental
groups

Riemann surfaces

Figure 34. Connections between hyperbolic geometry and the three areas.
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Here is a very abbreviated outline of the proof. There is an approximate metric

correspondence between the universal covering space of M1, as realized by hyper-

bolic space H3, and the fundamental group π1(M1), as realized geometrically by

its Cayley group graph. Likewise the universal cover of M2 and the Cayley graph

of π1(M2) are approximately isometric. The isomorphism between the funda-

mental groups π1(M1) and π1(M2) relates the two Cayley graphs metrically, and

consequently gives an approximate geometric mapping from H3, viewed as one

universal cover, back to H3 itself, viewed as the other universal cover. This map-

ping relates the actions of the two groups on their universal covers with enough

precision that it matches their actions on the two-sphere at infinity homeomor-

phically. It remains to prove that this correspondence at infinity is not only

homeomorphic but exactly conformal; the proof uses the theory of quasiconfor-

mal mappings and ergodicity of the group actions on the two-sphere at infinity.

When the most general theorem is proved, the details fill a book.

A corollary to this result is that the hyperbolic structure on a three-manifold

is a topological invariant. Consequently, so also are hyperbolic volume, lengths

of geodesics, etc.

The proof of Mostow Rigidity suggests that many important properties of

hyperbolic geometry are retained by spaces that only approximate hyperbolic

geometry. The case in point involves the Cayley graphs of the fundamental

groups, which are only one-dimensional and are not even manifolds, yet give a

good approximation to three-dimensional hyperbolic geometry in the large. We

shall return to this point when we describe Gromov’s word-hyperbolic groups.

But first we make precise the notion of spaces that are metrically comparable in

the large, or quasi-isometric. We start by recalling some definitions.

A group action of a group G on a space X is a map α : G×X → X , denoted

α(g, x) = g(x), such that 1(x) = x for all x ∈ X , and (g1g2)(x) = g1(g2(x)) for

all g1, g2 ∈ G and x ∈ X . In other words, α is a homomorphism from G into

Homeo(X).

A geometry is a path metric space in which metric balls are compact.

A geometric action of a group G on a geometry X is a group action that

satisfies the following conditions:

(i) G acts by isometries of X .

(ii) The action is properly discontinuous; that is, for every compact set Y ⊂ X ,

the set {g ∈ G : g(Y ) ∩ Y 6= � } has finite cardinality.

(iii) The quotient X/G = {xG : x ∈ X} is compact in the quotient topology.

Two geometries X1, X2 are quasi-isometric if there exist (not necessarily contin-

uous) functions R : X1 → X2, S : X2 → X1 and a positive real number M such

that

(i) S ◦R : X1 → X1 and R ◦ S : X2 → X2 are within M of the identities.

(ii) For all x1, y1 ∈ X1, d(R(x1), R(y1)) ≤Md(x1, y1) +M and likewise for X2.
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Theorem 15.2 (Quasi-isometry Theorem). If a group G acts geometrically

on geometries X1 and X2, then X1 and X2 are quasi-isometric.

Here are some exercises to challenge your understanding of these concepts.

Exercise 3. Let G = � 2, let X1 be the Cayley graph of G with standard

generators, and let X2 =
� 2 . Show that X1 and X2 are quasi-isometric.

Exercise 4. If G acts geometrically on any geometry, then G is finitely gener-

ated.

Exercise 5. (Harder) If G acts geometrically on any simply connected geome-

try, then G is finitely presented.

Exercise 6. (Harder) If G acts geometrically on any n-connected geometry,

then G has a K(G, 1) with finite (n+ 1)-skeleton.

(For proofs of 2, 3, and 4, see [Cannon 1991].)

The Gromov–Rips thin triangles condition. The most important approxi-

mate metric property of hyperbolic geometry is the thin triangles condition: let

δ be a nonnegative constant; geodesic triangles in a path-metric space X are

δ-thin if each point on each side of each geodesic triangle in X lies within δ of

the union of the other two sides of the triangle. A group is negatively curved (in

the large) or word-hyperbolic if it is finitely generated, and with respect to some

finite generating set, there is a nonnegative constant δ such that all of the geo-

desic triangles of the Cayley graph of the group are δ-thin. Gromov has outlined

a beautiful theory of negatively curved groups, and many mathematicians have

helped to work out the details.

Many of the results are suggested directly by the classical case of hyperbolic

geometry and the Kleinian groups which act geometrically on hyperbolic geom-

etry.

We shall outline only one aspect of the Gromov program, namely the space

at infinity.

The space at infinity. We have already noted that for each of our models

H, I, J,K,L, there is a natural space at infinity: in the model I , for example, it

is the unit (n− 1)-sphere that bounds I . This space at infinity can be seen from

within the models themselves, as we indicated in the outline of Mostow’s proof

and in more detail now explain.

To each point “at infinity”, there is a family of geodesic rays within the model

that “meet” at the given point at infinity in a well-defined sense. Namely, define a

point at infinity as an equivalence class of geodesic rays, any two being equivalent

if they are asymptotically near one another (remain within a bounded distance

of one another). See Figure 35. We let S∞ denote the set of such equivalence

classes and call it the space at infinity.

We can define an intrinsic topology on the space at infinity as follows: given a

single geodesic ray, the orthogonal complement at a point on the ray determines
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H

∂H

Figure 35. Geodesics with a common endpoint at infinity.

a hyperplane that bounds two hyperbolic half-spaces of hyperbolic space. One of

these two half-spaces, the one containing the terminal subray of our ray, cuts off

a disk on the sphere at infinity, and determines thereby a basic or fundamental

neighborhood of the endpoint of the geodesic ray. See Figure 36. It is easy to see

that this topology is invariant under hyperbolic isometries, and that the group

of isometries acts as homeomorphisms of S∞.

Gromov [1987] has shown that an analogous space at infinity can always be

defined for a space where triangles are uniformly thin. Though his construction is

not exactly analogous to what we have just described, it is nevertheless possible

to obtain exactly the Gromov space by a construction that is exactly analogous

to what we have described [Cannon 1991]. In particular, one may define geodesic

rays and equivalent rays, also half-spaces and fundamental “disks” at infinity.

See Figure 37.

A special property of the classical spaces at infinity is that hyperbolic isome-

tries act on the space at infinity not only as homeomorphisms but also as confor-

mal mappings. This can be seen from the conformal models simply by the fact

that the isometries preserve spheres in the ambient space
� n+1 , and so preserve

spheres on S∞. The same is true of Gromov boundaries only in a weak sense.

For a deeper understanding of negatively curved groups and the related word-

hyperbolic group, the reader should turn to the expository articles [Alonso et al.

•

↑
•

H

S

p

∂H

geodesic ray

half-space H2

half-space H1

disk at ∞

Figure 36. The disk at ∞ determined by a ray p and a point on that ray. S is

the hyperbolic orthogonal complement to p.
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•

•

←

←

↓
combinatorial disk at ∞

combinatorial
orthogonal
complement

combinatorial space at ∞

combinatorial
geodesic ray

Figure 37. The combinatorial analogue.

1991; Cannon 1991; Coornaert, Delzant, and Papadopoulos 1990; Ghys and de la

Harpe 1990] and Swenson’s Ph.D. thesis [1993].

16. When Does a Manifold Have a Hyperbolic Structure?

Deciding when a manifold has a hyperbolic structure is a difficult problem.

Much work has been done on this problem, and there are several hyperbolization

conjectures and theorems. Let M be a closed (compact, without boundary)

three-manifold. If M is hyperbolic, it is known that its fundamental group

π1(M) satisfies these conditions:

• It is infinite.

• It does not contain a � ⊕ � .

• It is not a free product.

Thurston’s hyperbolization conjecture is that the converse is also true: these three

conditions are also sufficient for M to be hyperbolic. Thurston has proved this

under some additional assumptions.

We now describe one of several programs attempting to prove the hyperboliza-

tion conjecture. This program involves at various stages all the connections of

Figure 34; in fact one can trace the line of proof in a spiral fashion around the

diagram in Figure 34. We start in the upper right corner.

The first step, Mosher’s weak hyperbolization conjecture [Mosher 1995; Mosher

and Oertel ≥ 1997] states that if G = π1(M) satisfies the above three conditions,

then it has thin triangles (by which we mean that its Cayley graph Γ(G) for some

choice of generators has the thin triangles property). This brings us from topol-

ogy into the domain of combinatorial group theory.
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Note that in a group G with the thin triangles property you can define the

space at infinity ∂G, whose points are equivalence classes of geodesics (in Γ(G))

staying a bounded distance apart.

Assuming additionally that π1(M) has boundary homeomorphic to S2, we

attempt to equip this sphere with a conformal structure on which π1(M) acts

uniformly quasiconformally. This would bring the problem into the domain of

conformal mappings.

We would then apply a result of Sullivan and Tukia to conclude that the group

acts conformally for another conformal structure, quasiconformally equivalent to

this one.

Conformal self-maps of S2 extend to hyperbolic isometries of H3 (in the disk

model I). This would then give us, by taking the quotient, a hyperbolic manifold

(actually, an orbifold) M ′ homotopy equivalent to M .

Gabai and collaborators [Gabai 1994a; Gabai 1994b; Gabai, Meyerhoff, and

Thurston 1996] are extending Mostow rigidity to show that a three-manifold

homotopy equivalent to a hyperbolic three-manifold M ′ is in fact homeomorphic

to M ′.

So this would complete the program. Unfortunately many gaps remain to be

bridged.

Our current focus is on the construction of a conformal structure assuming

π1(M) has thin triangles and the space at infinity is homeomorphic to S2. We

have the following theorem (the converse of what we’d like to prove):

Theorem 16.1. Suppose a group G acts geometrically on H3. Then:

1. G is finitely generated .

2. Γ = Γ(G) (the Cayley graph for some choice of generators) has thin triangles .

3. ∂Γ ∼= S2.

Conjecture 16.2. The converse holds .

Here is the intuition behind parts 2 and 3 in Theorem 16.1. The group G acts

geometrically on Γ and on H3. By the quasi-isometry theorem, H3 and Γ are

quasi-isometric.

Consequently, the image in H3 of a geodesic in Γ looks “in the large” like a

geodesic with a linear factor of inefficiency. To avoid exponential inefficiency, it

must stay within a bounded distance of some genuine geodesic.

Any triangle in Γ will map to a thin triangle in H3, and hence is thin itself,

which proves condition 2. Condition 3 is established similarly.

To understand the difficulty in proving the conjecture, we have to appreciate

the difference between constant and variable negative sectional curvature.

Consider the following example, which illustrates a variable negative curvature

space. In the spaceK3 = {(x, y, z) : z > 0}, consider the paths that are piecewise

vertical (in the z-direction) or horizontal (parallel to the xy-plane). Use the met-
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ric length element |dz|/z for vertical paths, and the metric max{|dx|/za, |dy|/zb}
(where a, b > 0 are constants) for horizontal paths.

This metric is analogous to the Riemannian metric

ds2 =
dx2

z2a
+
dy2

z2b
+
dz2

z2
,

but the calculations are simpler. Note that the latter reduces to the hyperbolic

metric when a = b = 1.

In a plane parallel to the xz-plane our metric is analogous to

dx2

z2a
+
dz2

z2
,

which, under the change of variables X = ax, Z = za, yields the metric

1

a2

dX2 + dZ2

Z2
;

the latter is a scaled version of the hyperbolic metric. A similar formula holds for

the planes parallel to the yz plane. If a 6= b then these two sectional curvatures

are indeed different.

It is not hard to figure out what the geodesics in K3 look like. A shortest

(piecewise horizontal and vertical) curve joining two points p1 = (x1, y1, z1) and

p2 = (x2, y2, z2) goes straight up from p1 to some height z3, then goes horizontally

and straight in the plane z = z3 until it is above p2, and then goes straight down

to p2. Since the length of such a path is

`(z3) = log(z3/z1) + log(z3/z2) + max{|x1 − x2|z−a
3 , |y1 − y2|z−b

3 },

we can then find the optimal z3 by differentiating and considering the various

cases.

Consider a geodesic line of the form p(t) = (x1, y1, z1e
−t). The half space

specified by that line and the point p(0) turns out to be the box

B =
{

(x, y, z) : |x− x1| <
2zb

1

b
, |y − y1| <

2za
1

a
, 0 < z < z1

}

.

The footprint of this half-space on the space at infinity is the rectangle

{

(x, y) : |x− x1| < 2
zb
1

b
, |y − y1| < 2

za
1

a

}

,

whose aspect ratio is azb−a
1 /b. These aspect ratios are not bounded, so the half

spaces do not induce any reasonable conformal structure at infinity.

Note that the isometries of K3 include horizontal translations and maps of

the form (x, y, z) → (vax, vby, vz). The latter map acts linearly on the space at

infinity. However, for large v, the quasiconformal distortion is unbounded (when

a 6= b).
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17. How to Get Analytic Coordinates at Infinity?

The previous example suggests that the task of finding analytic coordinates

on S2 for which the group acts uniformly quasiconformally may be difficult.

Among the uncountably many quasiconformality classes of conformal structures

on a topological S2, one must select (the unique) one on which the group acts

uniformly quasiconformally.

In order to accomplish this task, one needs to work with whatever structure

on the sphere is a priori provided by the group. Let v0 be the vertex of Γ

corresponding to the identity of G. Fix some positive integer n. Consider the

collection of all combinatorially defined half-spaces defined by any geodesic ray

starting at v0 and the vertex on the ray at distance n from v0 [Cannon 1991].

These half-spaces cut off combinatorial “disks” at infinity and thereby give a

finite covering of S2. In the appropriate conformal structure on S2 (if it exists),

the sets in this cover are approximately round [Cannon and Swenson ≥ 1997].

Hence we should think of this cover as providing a sort of “discrete conformal

structure” on S2.

The uniformization theorem for S2 says that any conformal structure on S2 is

equivalent to the standard Riemann sphere. Hence, once a conformal structure

is constructed, analytic coordinates exist. This suggests that one should look

for discrete generalizations of uniformization theorems, and in particular, of the

Riemann mapping theorem.

The Riemann mapping theorem is a theorem about conformal mappings, and

conformality is usually defined in terms of analytic derivatives. In the absence

of a priori analytic coordinates, any discrete Riemann mapping theorem can-

not begin with a well-defined notion of analytic derivative. Fortunately, there

are variational formulations of the Riemann mapping theorem that avoid the

mention of derivatives. One is based on extremal length.

Consider a quadrilateral Q in the plane � . This is just a closed topological

disk with four distinct points marked on the boundary. These marked points

partition the boundary of the disk into four arcs, denoted a, b, c, d in Figure 38.

Consider metrics on Q that are conformal to the metric that Q inherits from the

plane. Conformal changes of metric are determined by positive weight functions

m : Q→ (0,∞) that one should view as point-by-point scalings of the Euclidean

metric. With such a weight function m one can define (weighted) lengths of

paths γ by

`m(γ) =

∫

γ

m |dz|

and (weighted) total areas by

am =

∫

Q

m2 dz dz̄.
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•

•
•

•

γ

Q

a

b

c

d

Figure 38. A quadrilateral Q.

Let dm be the distance in the weighted metric between the edges a and c of Q.

It turns out that there is an essentially unique weight functionm0 that maximizes

the ratio d2
m/am, and (Q, dm0

) is isometric with a rectangle. (Actually, m0 is

unique up to a positive scalar multiple and a.e. equivalence. Here we take m0 to

be the continuous representative in its a.e. equivalence class.) The maximal ratio

d2
m0
/am0

is also called the extremal length from a to c. It may be interpreted

as the resistance to the flow of electricity between a and c if the quadrilateral is

interpreted as a conducting metal plate.

This approach provides a uniformization theorem that does not resort to

derivatives. It also has a discrete counterpart. (See Figure 39. For more in-

formation, see [Cannon 1994; Cannon, Floyd, and Parry 1994].)

A finite covering C = {Cj} of a quadrilateral or annulus Q′ provides us with

a discrete extremal length. In this discrete setting, a weight function is just an

assignment of a nonnegative number m(Cj) to each set Cj in the covering. A

length of a path γ in Q can be defined as just the sum of m(Cj) over all Cj ∈ C

that intersect γ, and the area of m is defined as the sum of m(Cj)
2 over all sets

Cj ∈ C. We can then solve a discrete version of the extremal length problem on

Q′, and use the solution to define an “approximate conformal structure”.

This technique can be applied to find a conformal structure on S2 = ∂G, if

it exists: the half-spaces defined by G as n increases define a nested sequence of

covers Cn of S2; we get a sequence of “finite” conformal structures that must

converge, in the appropriate sense, to a genuine quasiconformal structure if one

exists.

In this respect, we close with the following theorem.

Theorem 17.1 (Cannon, Floyd, Parry). There exists an invariant con-

formal structure on S2 if and only if the sequence of covers Cn satisfies the

following : for every x ∈ S2 and for every neighborhood U of x, there is an

annulus Q whose closure lies in U \ {x} and that separates x from S2 \ U , such

that the discrete extremal lengths between the boundary components of Q with

respect to the sequence of covers Cn are bounded away from 0.
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Gauss, Carl Friedrich, 62
Gauss–Bonnet theorem, 88–90
geodesic, 77

existence of, 77
in disk model, 80
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(type of metric space), 100
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group
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H, 69
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applications of, 59, 98
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sine, 66, 67, 98
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model, 71, 84
in projective space, 84

hyperboloid model, 69
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I, 69
ideal triangle, 89, 91
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indefinite

inner product, see Minkowski inner
product
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space at, 84, 85, 87, 91, 93, 101, 104
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and Riemannian metric, 68
Euclidean, 64–66, 85
hyperbolic, see Minkowski inner prod-
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interior angle, 60
interior of the disk model, see disk model
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isometric manifolds, 99
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between models, 71
classification of –ies, 84
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Euclidean, 86
fixed points, 84
hyperbolic, 86
in hyperboloid model, 80
linear, 80
Riemannian, 82
topological, 82

Iversen, Birger, 60

J , 69
Jemisphere model, see hemisphere model

K, 69
Kästner, Abraham Gotthelf, 61
Klügel, Georg Simon, 61
Klein model, 69, 71, 72, 84

geodesics, 80
Klein, Felix, 60
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L, 69
Lambert, Johann Heinrich, 61
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element, 68, 92
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of vector, 68

light cone, 64
line, see also geodesic
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linear
isometry, 80, 82–84

conditions for, 82
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Riemannian, 69
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orthogonal

complement, 67, 68, 78, 85, 101, 102
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Papadopoulos, Athanase, 103
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denial of, 61
Parry, Walter R., 107
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Poincaré, Henri, 63, 98
pole, 73
positive definite

inner product, 67, 68
postulate

–s of Euclidean geometry, 60
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central, 71
stereographic, 72, 74, 76, 86
vertical, 71

projective
identification, 64
space, 84

properly discontinuous, 100
pullback, 68, 71, 72, 77

under stereographic projection, 73

quadrilateral, 61, 106
quasi-isometry, 100

theorem, 101, 104
quasiconformal, 100, 104, 106, 107

radius, 60, 88, 90, 94
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Ratcliffe, John G., 60
ray, 101
reflection, 94
relativity, 64
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retraction, 78

principle, 77
Riemann mapping theorem, 106
Riemann, Georg Friedrich Bernhard, 62
Riemannian

distance, 82, 83
isometry, 82, 83
manifold, 62, 69
metric, 68, 82, 83

of models, 71
right angle, 60
Rips, Eliyahu, 101
rudiments, 68

S∞, 101
Saccheri, Girolamo, 61
Schweikart, 61
segment, see line
shortest path, see also geodesic, 77–79
similarity of triangles, 61
sine, 65

hyperbolic, 66, 67, 98
south pole, 73
space at infinity, see infinity
space-time, 60, 63, 64
sphere

–s, preservation under stereographic
projection, 76

–s, preserved under stereographic pro-
jection, 75

center of, 87
Euclidean, 64, 86, 87, 93, 96
hyperbolic, 86
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stereographic
projection, 72, 74, 76, 86, 94

straight line, see line
Sullivan, Dennis, 104
surfaces of constant negative curvature, 62
Swenson, Eric L., 103, 106

Sylvester’s theorem, 68
synthetic development, 62

tangent vector, 65–67
Taurinus, 61
taxicab geometry, 98
teaching of calculus, 65, 67
theta-Fuchsian functions, 63
thin triangles condition, 90, 98, 101–103
Thurston, Nathaniel J., 104
Thurston, William P., 60, 77, 98, 103
time

and space, see space-time
topological

invariant, 100
isometry, 82, 83

topology, 60, 98
triangle

area of, 88
geodesic, 101
ideal, 89, 91
similar, 61
sum of angles, 61, 88
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with specified angles, 90

trigonometry, 62
Tukia, Pekka, 104

uniformization theorem, 106, 107
unit

circle, 65
hyperbola, 66
sphere, 64

universal cover, 100
upper half-space, see half-space

variable curvature, 104
velocity, 65, 66
vertical

geodesic, 78, 84, 88, 91
projection, 71

volume, 100

Wallis, John, 61
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hyperbolization conjecture, 103
weight function, 106
Weyl, Hermann, 67
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