
OpenBSD Kernel Internals
The Hitchhiker's Guide

Vladimir Kirillov
proger@uaoug.org.ua

$osys: sys.tex,v 1.43 2009/07/31 22:38:22 proger Exp $

Why?

Security paranoia makes me want to know what's happening inside

Want to learn system programming on a good free example

Want to be able to help the project some day
(so why not start studying and tell everybody to make it easier for such
subsequest tries?)

I'm keen on OpenBSD and system programming

Chicks dig OpenBSD (-:

Vladimir Kirillov OpenBSD Kernel Internals

Introduction

Vladimir Kirillov OpenBSD Kernel Internals

Operating system kernel overview

Foundation component of the OS

Multitasking kernel responsibilities

Managing the system resources:

cpu time
memory
peripherals

Access mediation between user-level software and hardware as an
abstraction layer

Communication facilities

Providing basic security and protection

Vladimir Kirillov OpenBSD Kernel Internals

OpenBSD Kernel

Vladimir Kirillov OpenBSD Kernel Internals

OpenBSD kernel

Inherits 4.4BSD (and NetBSD) Unix kernel architecture

Monolithic (big, fast, easy to maintain, everything is in one address space)
(with LKM(4) support)

Provides the interface to software via system calls

Supports plenties of HW architectures by separating
the code to MD and MI parts

Has integrated strong crypto(9) framework which is used (almost)
everywhere

Vladimir Kirillov OpenBSD Kernel Internals

Source tree layout

/sys/ (MACHINE_ARCH=i386)

kern

main kernel subroutines (clock_, exec_, init_, kern_, sched_, subr_,

sys_, syscalls.master, tty_, uipc_, vfs_, vnode_)

sys

kernel-wide include interfaces

lib

kernel libraries (libc (libkern), libsa, libz)

dev

device drivers

dev/ic

bus-independent device drivers code

{dev/$bus,arch/i386/$bus}

$bus driver code

{net*,altq}

network stacks, pf code

uvm

UVM virtual memory subsystem

Vladimir Kirillov OpenBSD Kernel Internals

Source tree layout (continued)

/sys/ (MACHINE_ARCH=i386)

{isofs,miscfs/*,msdosfs,nfs,nnpfs,ntfs,ufs/{ext2fs,ffs,mfs,ufs}}

�lesystems

crypto

crypto framework implementation

ddb

kernel debugger

compat

other UNIXes compatibility interfaces

arch/i386

i386 MD kernel code

{arch/i386/stand,stand}

bootloaders: mbr(8), biosboot(8), boot(8), depend on libsa

arch/i386/include

MD include interfaces (referenced as #include <machine/$file.h>

{arch/i386/conf,conf}

kernel con�gurations and params sources

Vladimir Kirillov OpenBSD Kernel Internals

Con�guration

config(8)

uses config(8)-syntax based kernel con�guration

uses files.conf(5)-based �le lists for Make�le generation

generates header �les for kernel use

generates device lists �les (ioconf.c) for autoconf(9) framework

Files (MACHINE_ARCH=i386)

conf/files

arch/i386/conf/files.i386

dev/$bus/files.$bus

find /sys | egrep 'files.*'

more later

Vladimir Kirillov OpenBSD Kernel Internals

Kernel Organization

Vladimir Kirillov OpenBSD Kernel Internals

Kernel organization (system services)

MD

timer, system clock handling,
process and descriptor
management

memory management

descriptor operations

�lesystem

terminal handling

IPC (sockets)

networking

MI

low-level startup actions

trap/fault handling

low-level runtime context
manipulation

hardware con�guration and
initialization

runtime support for I/O hardware

Vladimir Kirillov OpenBSD Kernel Internals

Kernel organization (runtime)

kernel (runtime)

bot tom hal f

interrupts

global
data structures

workqs

top half

system calls
traps

Top half

works in a process context

runs on a per-process kernel stack
in process address space

can block to wait for resources

Bottom half

runs on kernel stack in kernel
address space

controls top half behaviour with
clock interrupts

Vladimir Kirillov OpenBSD Kernel Internals

System entry points

Hardware interrupt

arise from external events (devices)

asynchonous, not related to process

served by �bottom half� of the kernel

i386: handlers are installed in and chosen by IDT, programmed into APIC
or PIC

Hardware trap

appear synchronous to process in the result of process actions
(e.g.: division by zero, page fault)

i386: trap handler is installed in IDT (�rst 20 entries)
asm handlers are in locore.s, which perform initial handling and calling
trap(struct trapframe)

Vladimir Kirillov OpenBSD Kernel Internals

System entry points (continued)

Software trap

implemented either as hw-generated interrupt or �ag (checked on each
priviledge level drop)

used by system to force the scheduling of events (deferred interrupts)

special case of software trap - a system call

All kernel entries require machine state saving before processing

Vladimir Kirillov OpenBSD Kernel Internals

System calls
a way for process to perform privileged system actions
served in kernel top half (using the per-process kernel stack)
appear synchronous to process

Implementation (i386)

called by pushing arguments onto the stack, syscall number to %eax and
triggering int $0x80

(performed by libc routines, syscalls appear to user as libc functions)

IDTVEC(syscall) routine (locore.s) saves machine state and passes to
syscall(struct trapframe) function

syscall() function performs checks, copies arguments to kernel space,
picks a system call entry from sysent[] table and calls the handler
if a syscall() gets interrupted by a signal/trap � it may result in syscall restart or

exiting with EINTR

on error: libc routine sets errno on error and returns -1

on success: libc routine returns either 0 or return value,
process continues execution

Vladimir Kirillov OpenBSD Kernel Internals

System calls implementation � kernel
sys/systm.h

/* system call handlers prototype */

typedef int sy_call_t(struct proc *, void *, register_t *);

/* system call table */

extern struct sysent {

short sy_narg; /* number of args */

short sy_argsize; /* total size of arguments */

int sy_flags;

sy_call_t *sy_call; /* implementing function */

} sysent[];

example: creating a new syscall �call�

kern/syscalls.master

310 STD { int sys_call(int arg); }

kern/makesyscalls.sh regenerates header �les by creating arguments
structure, prototypes for libc and rebuilds system call table

Vladimir Kirillov OpenBSD Kernel Internals

System calls implementation � kernel (continued)

kern/init_sysent.c: primary syscall table

struct sysent sysent[] = {
/* ... */
{ 1, sizeof(struct sys_call_args), 0,

sys_call }, /* 310 = call */
};

sys/syscallargs.h

struct sys_call_args {
syscallarg(int) arg;

};

syscall source code

int
sys_call(struct proc *p, void *v, register_t *retval)
{

struct sys_call_args *uap = v;
if (SCARG(uap, arg) == 0)

return (EAGAIN);
printf("sys_call(arg=%d): pid %u\n", SCARG(uap, arg), p->p_pid);
return (0);

}

Vladimir Kirillov OpenBSD Kernel Internals

System calls implementation � libc

Hooking syscall into libc

1 install syscall headers regenerated by syscalls.master from /sys/sys to
/usr/include/sys

or make includes

2 add stub syscall object �lename to ${ASM} variable to
src/lib/libc/sys/Makefile.inc

e.g. ASM+= call.o

3 rebuild libc, the syscall symbols object �le will be created and linked into
libc:

${ASM}: ${LIBCSRCDIR}/arch/${MACHINE_ARCH}/SYS.h /usr/include/sys/syscall.h

printf '#include "SYS.h"\nRSYSCALL(${.PREFIX})\n' | \

${CPP} ${CFLAGS:M-ID*} ${AINC} | ${AS} -o ${.TARGET}.o

${LD} -x -r ${.TARGET}.o -o ${.TARGET}

rm -f ${.TARGET}.o

Vladimir Kirillov OpenBSD Kernel Internals

System calls implementation � libc (continued)

Syscall binding object

proger src/lib/libc 0 % nm obj/call.o
U __cerror

00000006 T _thread_sys_call
00000006 W call

proger src/lib/libc 0 % objdump -S obj/call.o

obj/call.o: file format elf32-i386

Disassembly of section .text:

00000000 <_thread_sys_call-0x6>:
0: e9 fc ff ff ff jmp 1 <_thread_sys_call-0x5>
5: 90 nop

00000006 <_thread_sys_call>:
6: b8 36 01 00 00 mov $0x136,%eax
b: cd 80 int $0x80
d: 72 f1 jb 0 <_thread_sys_call-0x6>
f: c3 ret

debug: option SYSCALL_DEBUG

reference: syscall(9)

Vladimir Kirillov OpenBSD Kernel Internals

Clock handling

clock is the most frequent hardware interrupt source

tc_init(9) is the generic MI framework for MD timecounter handling

the main system timecounter is handled via hardclock(9) which is
interrupted hz * ncpu times per second
hardclock(9) is used to update system time, control process timers and
launch other timers if needed

other clock handling functions are statclock(), softclock(),

schedclock()

softclock() is called as software interrupt, processes timeout(9) queue

Vladimir Kirillov OpenBSD Kernel Internals

Software interrupts

used to handle deferred interrupt tasks in level queues

three levels: softclock, softnet, softtty

executed on each acceptable priviledge level drop

application example: timeout_set(9)

task deferring can be also achieved via workqs (workq_create(9)) which
allows executing a task in process context (processed by a kernel thread)

Vladimir Kirillov OpenBSD Kernel Internals

Synchronisation

Interrupt priority level: spl(9)

Process-context read/write locks: rwlock(9)

Inter-CPU mutexes: mutex(9)

Legacy locking interfaces: lockmgr(9)

Vladimir Kirillov OpenBSD Kernel Internals

Process Management

Vladimir Kirillov OpenBSD Kernel Internals

Process management
De�nitions

process
a thread of control within it's own address space

thread
a thread of control sharing the address space with another control
thread

process context
everything used by the kernel in providing services for the process
(process data structues)

process control block
current execution state of a process, de�ned by machine architecture

context switch
switching among processes in an e�ort to share CPU(s) resources

task (i386)
a unit of work that a processor can dispatch, execute, and suspend,
can be used to execute a program, a task or process, an
operating-system service utility, an interrupt or exception handler, or a
kernel or executive utility

Vladimir Kirillov OpenBSD Kernel Internals

Process data structures
/sys/sys/proc.h

/sys/arch/i386/include/proc.h

struct process

threads (TAILQ of struct proc)

owner credentials

limits

struct proc

pid / pgid / sid

VM space (struct vmspace)

FD table

scheduling information

process state

signal state / actions

MD state information (struct mdproc)

user structure (struct user)

Vladimir Kirillov OpenBSD Kernel Internals

Process data structures (continued)

/sys/sys/user.h

/sys/arch/i386/include/pcb.h

struct user

process control block (struct pcb)

resource accounting and statistics

core dump information

tracing information

structure sharing is done with refrence counting

Vladimir Kirillov OpenBSD Kernel Internals

Essential process management-related syscalls

parent parent

child child zombie

wait4(2)

execve(2) exit(2)

fork(2) / rfork(2)
 vfork(2)

Vladimir Kirillov OpenBSD Kernel Internals

Process creation

syscalls: fork(2) / vfork(2) / rfork(2)

(implemented via fork1(9))

achieved via copying parent process data structures, including address space

new execution program image is loaded via execve(2) / exect(2)

syscalls

Vladimir Kirillov OpenBSD Kernel Internals

fork1(9)

check process count limits

allocate process data structures

zero/copy process data structures �elds

init process timeouts

call uvm_fork(9) function to share/copy virtual address space

call cpu_fork() to create PCB and make child ready to run

init process timers (virttimer/proftimer)

update stats (uvmexp)

pick PID for process

hook new process into scheduler, pick a run queue and cpu

initialize tracing if needed

Vladimir Kirillov OpenBSD Kernel Internals

Kernel threads

special case of a process: runned in system with kernel privileges, linked
into kernel executable

always cloned from process 0 (swapper)

share memory map, limits

have a copy of FD table

can not be swapped (kernel memory is wired)

do not receive broadcast/group signals

created using kthread_create(9)

implemented via fork1(9)

Vladimir Kirillov OpenBSD Kernel Internals

Process state
Process control block (PCB)

represented by struct pcb in struct user

contains MD process state data (i386):

TSS - task state segment data, keeps track of segments of 3 PLs, GPRs, LDT,
CRs
FPU status
I/O bitmap
VM86 mode �ags, etc

i.e. de�nes process context for switching

struct proc p_stat values

#define SIDL 1 /* Process being created by fork. */

#define SRUN 2 /* Currently runnable. */

#define SSLEEP 3 /* Sleeping on an address. */

#define SSTOP 4 /* Process debugging or suspension. */

#define SZOMB 5 /* Awaiting collection by parent. */

#define SDEAD 6 /* Process is almost a zombie. */

#define SONPROC 7 /* Process is currently on a CPU. */

Vladimir Kirillov OpenBSD Kernel Internals

Scheduling

relies on clock:
hardclock():

statclock() gets called if no other timer for it
roundrobin() gets called every hz / 10 ticks (100 ms for now (hz =

1000)) to call need_resched() (which toggles AST for preempt())

statclock():

p->p_cpticks get increased
so are other process tick stats
schedclock() gets called to adjust process priority
active processes get higher priority

process priority is calculated in resetpriority():

newpriority = PUSER + p->p_estcpu + NICE_WEIGHT * (p->p_nice - NZERO);

p->p_usrpri = min(newpriority, MAXPRI);

priority a�ects the run queue the process is put into

process may be either in sleep queue or in run queue according to its status
(waiting for resources or ready to run respectively)

Vladimir Kirillov OpenBSD Kernel Internals

Scheduler queues

Run queues

each CPU has SCHED_NQS (32) run queues

the queue for the process is picked according to priority
int queue = p->p_priority >> 2;

de�ned as a TAILQ array for each struct schedstate_percpu

Sleep queue

de�ned as a global TAILQ array (TABLESIZE = 128, used for hashing wait
channel pointers to speed up the lookup)

handled by tsleep(9)/wakeup(9)

the process is put back on run queue on wakeup

Vladimir Kirillov OpenBSD Kernel Internals

Context switching
Context switch cases

forced - AST in user mode in result of spending the process time slice

voluntary - calling yield() (sched_yield() syscall)

involuntary - in result of getting into sleep queue after calling tsleep(9)

mi_switch()

implements the machine-independent prelude to context switch

counts resource usage stats

chooses next process (sched_chooseproc())

performs cpu_switchto()

cpu_switchto()

MD function of context switch (implemented in locore.s on i386)

saves old process PCB, loads new and starts rolling

Vladimir Kirillov OpenBSD Kernel Internals

Threading
pthreads

user-level N:1 threding implementation

POSIX standard

uses user-level scheduler implemented on top of per-process timers
(ITIMER_VIRTUAL/SIGVTALRM, ITIMER_PROF/SIGPROF, setitimer(2))

makes no use of SMP for threads

when one thread waits for resources � others block

rthreads

kernel-level 1:1 threading implementation

based on rfork(RFTHREAD) system call

system scheduler handles each thread

removes all pthreads limitations

librthread is binary compatible to libpthreads

currently in development
Vladimir Kirillov OpenBSD Kernel Internals

Signals

designed as hardware interrupts for software

allow process to respond to asynchronous external events

higher-level psignal(9) is used to post signals

sent to process via MD routine sendsig()

immediately save process exec frame
run handler from signal table
process handles signal if possible and calls sigreturn(), which restores
normal execution

Vladimir Kirillov OpenBSD Kernel Internals

Tracing and debugging
ktrace(2)

option KTRACE

enables kernel trace logging for processes

trace is written to a �le, may be controlled via ktrace(1), kdump(1)

tools

ptrace(2)

option PTRACE

allows one process (the tracing process) to control another (the traced
process)

most of the time, the traced process runs normally, but when it receives a
signal (sigaction(2)), it stops

the tracing process is expected to notice this via wait(2) or the delivery
of a SIGCHLD signal

e.g. gdb(1) is implemented via ptrace(2)

Vladimir Kirillov OpenBSD Kernel Internals

Memory Management

Vladimir Kirillov OpenBSD Kernel Internals

Physical memory management (i386)

the memory that the processor addresses on its bus is called physical
memory

physical memory is organized as a sequence of 8-bit bytes

each byte is assigned a unique address, called a physical address

OpenBSD kernel does not address physical memory directly, it uses
segmented memory model with paging

Vladimir Kirillov OpenBSD Kernel Internals

Physical memory management (i386) �
de�nitions

linear address space
processor's addressable memory space

segment
smaller protected address space; each program can be assigned
its own set of segments

logical address (far pointer)
consists of a segment selector and an o�set; used to locate a byte
in a particular segment

linear address space
segment base address plus the logical address o�set

paging
technique used to store and retrieve data from secondary storage
for use in main memory; used in implementing virtual memory;
transparent to program execution

Vladimir Kirillov OpenBSD Kernel Internals

Physical memory management (i386) � scheme

Vladimir Kirillov OpenBSD Kernel Internals

Virtual memory

each process gets its own address
space
(which in fact may be physically
fragmented or even over�ow on to
disk storage)

used to organize memory
protection between processes

allows mapping of either �les or
devices into virtual

each virtual address is converted to
physical in hardware
(using Memory Management
Unit)

Vladimir Kirillov OpenBSD Kernel Internals

Memory management in OpenBSD

Vladimir Kirillov OpenBSD Kernel Internals

PMAP (i386)

the lower layer of VM system

describes a process' 4GB virtual
address space

maintains VA<->PA mappings

can be viewed as a big array of
mapping entries that are indexed
by virtual address to produce a
physical address and �ags
(�ags describe the page's
protection, whether the page has
been referenced or modi�ed, etc)

pmap(9)

Vladimir Kirillov OpenBSD Kernel Internals

PMAP data structures (i386)

struct pmap

describes an address space of a thread

struct pv_entry

describes <PMAP, VA> mapping for PA

struct pv_head

points to a list of struct pv_entry, which describes all <PMAP,
VA> pairs for one page

struct pv_page / struct pv_page_info

struct pv_entry's are allocated out of struct pv_page

Vladimir Kirillov OpenBSD Kernel Internals

UVM

the upper level of VM system

manages VA<->object mappings
(object can be either anonymous mapping, �le or device)

handles page faults

designed as an evolution of old BSD VM system to eliminate its limitations
while retaining its positive design aspects:

MD-MI separation
copy-on-write technique
several data structures

new data movement techniques:

page loanout (process<->process)
page transfer (kernel<->process)
map entry passing (process<->process)

implemented with �ne-grained locking which is good for SMP systems

Vladimir Kirillov OpenBSD Kernel Internals

UVM data structures

Vladimir Kirillov OpenBSD Kernel Internals

Page faults
hardware trap caused by MMU when no physical memory page is mapped
at starting memory address

process accesses an unmapped/improperly mapped memory in its VA space
processor MMU generates #PF trap
MD routine asks MMU to provide VA, which triggered PF and access type
MI uvm_fault() routine gets called

VM system lookups mappings at that address
if the mapping is invalid/access control error -> send SIGSEGV

otherwise fault in the page into physical memory and continue process
execution

uvm_fault()

look up faulting address' map entry;

if (data is in amap layer) { /* case 1 */

handle any copy-on-write processing;

map page and return success;

} else if (data is in uvm_object layer) { /* case 2 */

handle any copy-on-write processing;

map page and return success;

} else { /* missing data */

return error;

}

Vladimir Kirillov OpenBSD Kernel Internals

Kernel memory management

UVM routines: uvm_km_* (see uvm(9))

malloc(9) - generic memory allocator (like malloc(3)), implemented on
top uvm_km_* functions, with statistics support
void *malloc(unsigned long size, int type, int flags);

pool(9) - resource pool manager; provides management of pools of
�xed-sized areas of memory. Resource pools set aside an amount of
memory for exclusive use by the resource pool owner.

extent(9) - provides management of areas of memory or other
enumerable spaces (such as I/O ports)
(implemented on top of pool(9))

mbuf(9) - bu�er management for networking

Debugging tricks

option UVMHIST

option UVMHIST_PRINT

Vladimir Kirillov OpenBSD Kernel Internals

Process VM space layout (i386)

Vladimir Kirillov OpenBSD Kernel Internals

Memory management interfaces in userspace

System calls

void *mmap(void *addr, size_t len, int prot, int flags, int fd, off_t offset);
int msync(void *addr, size_t len, int flags);
int munmap(void *addr, size_t len);
int mprotect(void *addr, size_t len, int prot);
int madvise(void *addr, size_t len, int behav);
int mlock(void *addr, size_t len); /* mlockall(int flags) */
int munlock(void *addr, size_t len);/* munlockall(void) */
int minherit(void *addr, size_t len, int inherit);
int mincore(void *addr, size_t len, char *vec);
void *mquery(void *addr, size_t len, int prot, int flags, int fd, off_t offset);

libc malloc(3) is implemented via mmap(2)

Vladimir Kirillov OpenBSD Kernel Internals

Kernel Bootstrap

(i386)

Vladimir Kirillov OpenBSD Kernel Internals

mbr(8)

locates in �rst 512 bytes of hard disk

gets loaded by BIOS at 0000:7C00

relocates to 07A0:0000 (chainloading)

scans partition table for the �rst active one

reads PBR (OpenBSD: biosboot(8)) to memory

ljmp

written in assembler

relies on BIOS routines

works in real addressing mode

/sys/arch/i386/stand/mbr/mbr.S

Vladimir Kirillov OpenBSD Kernel Internals

biosboot(8)

written in assembler

relies on BIOS routines

works in real addressing mode

capable of reading ELF boot(8) binary from FFS partition while aware of
its position (patched by installboot(8))

/sys/arch/i386/stand/biosboot/biosboot.S

/sys/arch/i386/stand/installboot/installboot.c

Vladimir Kirillov OpenBSD Kernel Internals

boot(8)

responsible of setuping protected mode environment

does basic devices probing and memory detection, a20 gate activation

supports interactive con�guration + boot.conf(8)

uncompresses kernel image and copies it into memory

passes device probing information and arguments to the kernel

ljmp!

/sys/lib/libsa/

/sys/stand/boot/

/sys/arch/i386/stand/libsa/

/sys/arch/i386/stand/boot/

Vladimir Kirillov OpenBSD Kernel Internals

In kernel: locore.s

processor detection

creating bootstrap kernel virtual address space, initializing initial paging
support
(kernel should be relocated to KERNBASE (0xd00000000), so it is mapped
twice �rst)

setup new stack for process 0 and future kernel startup

wire 386 chip for unix operation: init386()

call main()

/sys/arch/i386/i386/locore.s

Vladimir Kirillov OpenBSD Kernel Internals

machdep.c: init386()

enumerate processor address spaces with extent(9): ioport_ex,
iomem_ex

create new bootstrap GDT

create IDT and hook trap handlers

if system has isa(4) call isa_defaultirq() to program PIC (i8259)

initialize console

bootstrap pmap / count physical memory

init ddb / kgdb; throw into ddb if asked

init soft interrupts

/sys/arch/i386/i386/machdep.c

Vladimir Kirillov OpenBSD Kernel Internals

init_main.c: main()
initialize timeouts

init autoconf structures

init UVM

init disk

init tty

cpu_startup(): init dmesg bu�er, �ll cpu0 data structures, start �rst rt clock

drop into UKC if requested in boot(8)

init IPC goo: sockets, pipes, mbufs

init �ledescriptors

�ll in process 0 (�swapper�) context and data structures

init scheduler

init workqs

cpu_configure(): run devices autocon�guration

init nfs/vfs

init clocks

init SysV features (shm, msg queues, semaphores)

con�gure/attach pseudo devices (like pf or crypto)

Vladimir Kirillov OpenBSD Kernel Internals

init_main.c: main() (continued)

init networking

init exec feature

start scheduler

fork init(8) process (call start_init() which will tsleep(9) until everything
else is con�gured

create deferred kthreads

wait until autocon�guration �nished

mount root

start other generic kernel threads (pagedaemon, reaper, etc)

boot application processors

wakeup init thread

enter uvm_scheduler as main swapper (proc0) job

/sys/kern/init_main.c

Vladimir Kirillov OpenBSD Kernel Internals

Driver architecture

autoconf(9): driver framework

Vladimir Kirillov OpenBSD Kernel Internals

autoconf(9) by example

mainbus(4)

de�nition: /sys/arch/i386/conf/files.i386
define mainbus {apid = -1}
device mainbus: isabus, eisabus, pcibus, mainbus
attach mainbus at root
file arch/i386/i386/mainbus.c mainbus

con�guration: /sys/arch/i386/conf/GENERIC
mainbus0 at root

Autocon�guration data structures: /sys/sys/device.h
Autocon�guration subroutines: /sys/kern/subr_autoconf.c

Vladimir Kirillov OpenBSD Kernel Internals

autoconf(9) by example (continued)

mainbus(4)

driver structures: /sys/arch/i386/i386/mainbus.c

struct cfattach mainbus_ca = {

sizeof(struct device), mainbus_match, mainbus_attach

};

struct cfdriver mainbus_cd = {

NULL, "mainbus", DV_DULL

};

attach rountine should scan for children devices and install interrupt
handlers/etc jobs

Vladimir Kirillov OpenBSD Kernel Internals

Kernel frameworks (subsystems)

buses: PCI/USB/SBUS/ISA/SDMMC/I2C/GPIO/...

device classes: SCSI/ATA

networking layers:
net/netinet/netinet6/net80211/netbt/netatalk/netnatm/netmpls

highlevel driver-hooking frameworks:

wscons(4): input and display abstracting/multiplexing
drm(4): direct rendering management
bio(4): kernel block I/O storage abstraction
tty(4): terminal handling
sensors (sensor_attach(9): device status sensors
audio(9): framework for audio drivers
radio(9): sound/video tuners
ifmedia(4): handling network interface options

interfacing to a kernel subsystem normally takes the form of �lling out a
few structures and perhaps callbacks in attach code then using provided
functions.

Vladimir Kirillov OpenBSD Kernel Internals

Exploring and debugging

man -k

*DEBUG macros / hidden compile options
(like UVMHIST, BIOS_DEBUG etc)

ddb / kgdb

serial console

*stat userland tools

cool text editor (vim) + ctags (cd /sys/arch/i386; make tags)

grep / ack

Google

OpenBSD mailing lists

while true; do cd /usr/src; cvs up; done

Vladimir Kirillov OpenBSD Kernel Internals

Thanks to:

The OpenBSD Project

ATMNIS for OpenKyiv organization

Sergey Prysiazhnyi for helping and guiding

My friends for support

My girlfriend for drawing a Pu�y on my 1st slide

Future work: practice

Thank You

