
MalClassifier: Malware Family Classification Using
Network Flow Sequence Behaviour

Bushra A. AlAhmadi and Ivan Martinovic
Department of Computer Science

University of Oxford, Oxford, United Kingdom
{bushra.alahmadi, ivan.martinovic}@cs.ox.ac.uk

Abstract—Anti-malware vendors receive daily thousands of
potentially malicious binaries to analyse and categorise before
deploying the appropriate defence measure. Considering the
limitations of existing malware analysis and classification meth-
ods, we present MalClassifier, a novel privacy-preserving system
for the automatic analysis and classification of malware using
network flow sequence mining. MalClassifier allows identifying
the malware family behind detected malicious network activity
without requiring access to the infected host or malicious ex-
ecutable reducing overall response time. MalClassifier abstracts
the malware families’ network flow sequence order and semantics
behaviour as an n-flow. By mining and extracting the distinctive
n-flows for each malware family, it automatically generates
network flow sequence behaviour profiles. These profiles are
used as features to build supervised machine learning classifiers
(K-Nearest Neighbour and Random Forest) for malware family
classification. We compute the degree of similarity between a flow
sequence and the extracted profiles using a novel fuzzy similarity
measure that computes the similarity between flows attributes
and the similarity between the order of the flow sequences.
For classifier performance evaluation, we use network traffic
datasets of ransomware and botnets obtaining 96% F-measure for
family classification. MalClassifier is resilient to malware evasion
through flow sequence manipulation, maintaining the classifier’s
high accuracy. Our results demonstrate that this type of network
flow-level sequence analysis is highly effective in malware family
classification, providing insights on reoccurring malware network
flow patterns.

I. INTRODUCTION

Most cyber-attacks leverage malware to perpetrate attacks
that may lead to financial, privacy, and even human life loss.
More than 317 million new variants of malware were observed
in 2014, an estimate of 1 million unique malware each day,
increasing the total number of malware to approximately 1.7
billion [35]. Perhaps the main challenge for anti-malware
vendors is the growing stream of incoming malware samples
due to the use of polymorphic and metamorphic techniques,
allowing the same malware to be modified avoiding detection.
Although the binary classification of an unknown executable
to either malicious or benign (malware detection) is important,
accurately determining which family the malicious executable
belongs to is also a much sought after application [33], [18].

Malware classification determines whether a malicious bi-
nary is a member of a family seen previously, or whether
it is a novel, previously unseen sample requiring further

analysis to understand its behaviour. The number of unique
profiles for malware variants of a family is huge, however,
their malicious behaviour is similar and consistent within the
malware family [34]. Grouping samples into families and
extracting their distinctive behaviour patterns can help security
analysts in understanding the evolution of the various families.
Analysts can then assess the potential damage of a newly dis-
covered sample, prioritise encountered threats, in turn enabling
the development of effective mitigation mechanisms [2]. The
incident response procedure for ransomware is different from
a botnet, and being able to determine the family can speed up
the remediation process.

Existing dynamic analysis tools for malware classification,
such as [26], [29], use a sand-box approach that requires the
existence of the malicious binary and running it in a controlled
environment for classification. Today, more companies are
outsourcing the security management and network monitoring
to companies that offer Security Operations Centre (SOC) as a
service to escape the significant investments and lack of cyber-
security expertise [19], [1]. Although these companies monitor
the client’s systems and networks for signs of malicious
activity, they may not have direct access to the client’s hosts
due to privacy or policy reasons. When malware-infected hosts
are the source of the detected malicious traffic, the analysts
need to negotiate access to the infected host with the client.
Even if access is possible, the time required to negotiate this
and running the executable in a sand-box for classification is
not efficient, particularly in situations where rapid detection
and response is critical. In addition, malware may produce
different behaviours depending on the environment they are
run in, or even may not act at all [18]. Therefore, analysts
need on-the-wire malware classification systems capable of
matching detected malicious network traffic to a malware
family, thus not requiring to access the infected host.

Previous approaches such as [22], [23], [18] proposed sys-
tems for malware classification using network traffic. Perhaps
the most related work to ours is [18] that observes the high-
level network features of malware and applied n-gram doc-
ument analysis for family classification. Our work improves
on [18], by (1) using non-payload features, making our system
privacy aware and robust against encryption; (2) adapting to
malware behaviour changes; (3) not requiring the execution of
the malware in a sand-box, thus performing classification on-
the-wire. Similarly, previous approaches are either not content978-1-5386-4922-0/18/$31.00 c© 2018 IEEE

agnostic, relying on features from payload (e.g. [23], [22]) or
protocol dependent (e.g. cover only HTTP traffic) such as [22].
We compare the related work to ours in detail in Section II.

In this paper, we propose MalClassifier, a novel system
for the automatic extraction of network behavioural charac-
teristics for malware family classification. As malware use
some form of network communication to propagate or contact
their command and control (C&C) servers [24], MalClassifier
derives the network behavioural characteristics for a malware
family, abstracting the malware family’s network behaviour to
a flow sequence profile. MalClassifier is effective in classifying
malicious network flow sequences to a malware family on-the-
wire, thus negating the need for access and sand-box execution
of the malware binary. With the increasing use of encryption
by malware for obfuscation and by hosts for privacy (e.g.
HTTPS), malware classification based on non-content agnostic
systems become challenging. Therefore, MalClassifier uses
non-identifiable high-level network traffic for training the
classifiers, making it resilient to encryption. This also makes
the data required to train the classifiers accessible and easier
to share than full PCAP traces due to privacy concerns. In
designing MalClassifier, we make our approach IP-agnostic,
as sophisticated malware, such as exploit kits, apply dynamic
DNS and Domain Generation Algorithms (DGA) to change
their communications destination [13].

Similar to [17], we apply n-grams to sort network flows
into groups of n consecutive flows (i.e. n-flows). Such a
representation provides granularity to the extracted malware
behaviour. For example, a single failed SMTP flow might be
benign, but multiple consecutive ones exhibit the behaviour
of a bot sending spam. MalClassifier mines n-flows that are
distinctive for each malware family. Such distinctive n-flows
are used as features to train a supervised model capable
of classifying unseen n-flows to the malware family. The
models learn re-occurring network flow patterns that capture
the characteristics of a malware family’s network behaviour.
The contributions of this paper are three-fold:

• We propose a novel fuzzy flow sequence similarity mea-
sure, that calculates the value similarity of two flow
sequences.

• We propose an order sequence similarity measure robust
against malware evasion through flow sequence manipu-
lation.

• We develop a prototype of MalClassifier, and evaluate its
performance using a dataset of malicious network traffic,
achieving more than 95% F-measure for malware family
classification.

II. RELATED WORK

Malware is a constant cyber challenge for organisations, and
the research literature is rich with contributions on its analysis
and classification [9], [7]. We discuss the most relevant contri-
butions that apply a sequencing analysis approach or malware
network flows as features for malware family classification.

Host-based Malware Analysis and Family Classification.
Early malware family classification contributions focused on

classifying malware based on the malware binary content or
sequence of bytes in binary files. For example, the authors
in [14] performed malware family classification using n-grams
of bytecode. However, such content-based approaches require
dissembling the binary, which is a time-consuming process
and vulnerable to malware obfuscation. Dynamic analysis was
applied for malware classification in [20] to construct system
calls behaviour graphs and control flow graph signatures [6].
Bayer et al. in [3] used dynamic analysis to generate malware
behavioural profiles used as features in a clustering algorithm
to group malware based on behaviour. Rieck et al. in [26]
applied dynamic analysis to identify the unique behavioural
features of malware samples and use these features to build
Support Vector Machine (SVM) classifiers that map unknown
samples to known malware families. Similarly, Rieck et al.
in [28] proposed a framework for malware behavioural anal-
ysis, using clustering (to identify novel malware with similar
behaviour) and classification (to assign unknown malware to
these clusters). Although these approaches are effective in
classifying malware by observing its host-level behaviour,
they require access to the binary executable which might not
be possible in certain scenarios. In contrast, MalClassifier
classifies malware based on the network behaviour, requiring
only the high-level network traffic.

Network-based Malware Family Classification. In this
section, we focus on recent contributions in malware fam-
ily classification using network traffic. Malware behavioural
clustering approaches aim to group malware behaviour to
reveal similarities between malware samples that may not be
captured using system-level malware analysis. Perdisci et al.
in [22], proposed a network-level clustering system to derive
HTTP network behaviour similarity of HTTP-based malware
for detection. FIRMA [23] used a similar approach to cluster
and generate network signatures for malware network traffic.

The most directly related work to ours is CHATTER [18].
Such system considers the order of high-level network events
as features and applies n-gram document analysis to produce
the classifier achieving 90% accuracy. The malware network
behaviour profile is represented as fine-grained events, thus
each attribute of a single packet is considered an event.
For example, an inbound packet using TCP on port 80 is
represented as A1 A3 A6, where A1 refers to the inbound
connection event, A3 refers to the TCP protocol usage event,
and A6 refers to the usage of port number 80 event. Instead,
MalClassifier uses a similar approach to [17], using coarse-
grained groups to represent a network behaviour, i.e. A1A3A6
is considered a single event. Therefore, our system is able to
capture behaviours such as SMTP flow followed by another
SMTP flow that might indicate an email spam.

Moreover, the numeric features are mapped into one of
the four quartiles that are pre-determined based on the train-
ing data. However, there is a risk of new malware variants
falling out of the quartiles ranges leading to inaccurate family
classifications. In addition, this abstraction may result in loss
of underlying distinctive behaviour that could have resulted
in more accurate classifications. Instead, MalClassifier uses

Cosine Similarity to compare the similarity of the numeric
features, thus not requiring pre-determined ranges or thresh-
olds.

The main limitation of previous work is their use of payload
features, meaning they are vulnerable to malware obfuscation
through encryption and that they are not privacy-preserving.
In Table I, we compare the beforehand related work to
MalClassifier. Specifically, we identify the data used to train
the classifier, whether the approach is IP and content agnostic,
uses n-grams, and if the approach requires running the sample
in a sandboxed environment. We also identify whether related
work addressed malware evasion through noise injection in
their system design.

Malware Network Flow Detection. MalClassifier is a
malware family classification system, meaning it classifies
malware to a family based on its network behaviour. For
completeness, we discuss malware detection systems that have
applied a similar methodology or have applied network flows
as features for detection. Mekky et al. in [17] used a similar
approach to [18] by first isolating malware traffic from the
benign traffic using Independent Component Analysis (ICA).
However, their approach differs from [18] as they use coarse-
grained groups of network events so that inbound, DNS,
and port number are considered one network event. Similar
to [18], they use a count-based approach for network flow
identification.

Botzilla [27] monitored malware network traffic, specifically
a bots’ communication to the C&C server, in a sandboxed
environment to find patterns and generate network signatures.
Similarly, BotSniffer [12] is a network-based anomaly de-
tection system, focused on detecting C&C network commu-
nication. BotFinder [36] monitors bots’ network traffic in
a controlled environment and generates malware detection
models that can be deployed at network egress points. These
models then detect individual, bot-infected hosts by monitor-
ing their network traffic. BotMiner [10] detects botnet C&C
communications by applying a clustering approach to detect
correlated C&C communications, malicious activities, and it
performs cross-cluster correlation to detect hosts that have
similar malicious activity. Disclosure [5] extracts flow size-
based features, client access patterns, and temporal behaviour
features from netflow communication to detect botnet C&C
communications. The main purpose of these systems is to
detect botnet C&C communications. However, MalClassifier
extracts malware network flow sequence behaviour during its
various infection stages, and classifying unknown traffic to a
malware family based on that sequence behaviour.

Sequential Pattern Mining. Research on extracting rel-
evant patterns between malware samples where the values
are in a sequence format for malware classification is well
established. For example, Santos et al. in [30] used n-grams,
which are sub-strings of a larger string with length n, to
generate file signatures for malware detection. Wressnegger
et al. in [38] studied the applicability of n-grams for anomaly
detection and classification. Mekky et al. in [17] used n-gram
to encode the order of sub-sequences of malware network

TABLE I: Comparison of related work on malware family
classification and MalClassifier against our design goals.

Data C
on

te
nt

-a
gn

os
tic

IP
-a

gn
os

tic

E
va

si
on

R
es

ili
en

cy

U
se

n
-g

ra
m

s

U
se

sa
nd

-b
ox

A
cc

ur
ac

y

Rieck et al. [26] Behavioural reports N N N N Y 80.7%
Rieck et al. [28] Behavioural reports N N N N Y 95%

Perdisci et al. [22] HTTP Traffic N Y N N N N/A
FIRMA [23] Network traffic N N N N N 98.8%

CHATTER [18] Network traffic N Y N Y Y 90%

MalClassifier Bro conn logs Y Y Y Y N 96%

communication events to build malware classification models.
MalClassifier uses a similar approach in representing malware
network communications as a sequence of flows of length n.

III. SYSTEM OVERVIEW

Malware exhibit diverse and complex network traffic be-
haviour. Yet, malware variants of the same family have been
known to have common behavioural patterns reflecting their
origin and purpose [11], [26]. In our system, we aim to exploit
these shared patterns, particularly their network behaviour, for
malware family classification.

MalClassifier can be deployed by security analysts to
understand and classify the behaviour of a malicious exe-
cutable by observing its network flows when access to that
executable itself is not possible. It maps malicious network
flow sequences (n-flows) to a malware family by comparing
these sequences to previously observed malware activity. In
general, MalClassifier operates in three phases as illustrated
in Figure 1.

1) Pre-processing and Sub-Sequence Extraction: Network
traffic of malware variants of malware family y is input
into Bro for network flow reassembly. The assembled
flows are then encoded to a textual sequence. The
sequence is then divided to sub-sequences (n-flows) of
length n.

2) Malware Family Profile Extraction: The Value Similar-
ity of each individual flow in the encoded sequence to
all other flows is computed, in turn the sub-sequence
similarity is determined. The most distinctive flow sub-
sequences (n-flows) are selected as profiles for malware
family y.

3) Training and Building Models: Using the profiles, the
supervised machine learning model is trained for classi-
fying unseen n-flows to a malware family.

A. Design Goals and Requirements

The main limitation of existing malware family classifica-
tion approaches is the need to obtain the malware executable,
run it in a sandbox to classify it to a malware family.
Unfortunately, this timely process hinders its adoption in real-
world application where access to the infected host is not
possible or where a rapid analysis and response is crucial.

Conn.log
Pre-processing

& Sub-
Sequence
Extraction

Machine
Learning

Algorithm
(KNN, RF)Label: Malware

Family

Label: Malware
Family

Network
Behaviour

Profiles

Flow
Sequence
Similarity

(Order + Value
Similarity)

Pre-processing
& Sub-

Sequence
Extraction

Network
Behaviour

Profiles

(a) Training

(b) Classification

n

n

Seq1

Seqn

Seq2

..

Sig1 Sign

s s s s
s s s s
s s s s
s s s s

Seq1

Seqn

Seq2

..

Sig1 Sign

s s s s
s s s s
s s s s
s s s sUnknown

Malicious Traffic

Model

Network Flow
Reassembly

Flow
 Encoding

conn.log

f1

f2

..

fn

Malware m flows

80|tcp|http|1|SF|3|10|2|ShADda|22|4|

Malware
PCAPs for
family y

80|tcp|http|3|S0|13|3|1|ShADda|14|3|

80|tcp|http|28|S1|13|4|3|ShADda|3|3|

53|udp|dns|72|SF|15|2|1|Dd|34|45|

Encoded Sequence

Sub-Sequence
Extraction

Seq1

Seq2
..
Seqn

Sub-sequence (2-flows)

80|tcp|http|1|SF|3|10|2|ShADda|22|4|,
80|tcp|http|3|S0|13|3|1|ShADda|14|3|

80|tcp|http|3|SF|13|3|1|ShADda|14|3|
53|udp|dns|72|SF|15|2|1|Dd|34|45|

 53|udp|dns|72|SF|15|2|1|Dd|34|45|,
 80|tcp|http|28|S1|13|4|3|ShADda|3|3|

1. Pre-processing and Sub-Sequence Extraction n

Flow History Conn_state
f1 ShADda SF
f2 ShADda S0
….
f3 Dd SF
f4 ShADda S1

 Flow orig_bytes .. resp_bytes .. orig_pkts
 f1 1 3 10
 f2 3 13 3
 …
 f3 72 15 12
 f4 28 13 4

f1

fn

f2

..

f0 fn

s s s s
s s s s
s s s s
s s s s

f1

fn

f2

..

f0 fn

s s s s
s s s s
s s s s
s s s s

Seq1

Seqn

Seq2

..

Seq1 Seqn

s s s s
s s s s
s s s s
s s s s

Seq1

Seqn

Seq2

..

Seq1 Seqn

s s s s
s s s s
s s s s
s s s s

Network
Behaviour

Profiles

Binary Similarity

Levenshtein Distance

Cosine Similarity

Flow Value Similarity Malware
Family n-flow

Mining

f1

fn

f2

..

f0 fn

s s s s
s s s s
s s s s
s s s s

Flow dport Protocol Service
f1 80 tcp http
f2 80 tcp http
….
f3 53 udp dns
f4 80 tcp http

Inter-flow Distance

f1

fn

f2

..

f0 fn

s s s s
s s s s
s s s s
s s s s

Flow dport
f1 80
f2 80
….
f3 53
f4 80

2. Profile Extraction 3. Training and Building Models

Malware B 2-flow
Seq1: (80|tcp|http|317|5268|SF|ShADadFf|6|565|7|5556,
 80|tcp|http|1801|15606|SF|ShADadfF|14|2369|18|1633
Seq2: 80|tcp|http|1801|15606|SF|ShADadfF|14|2369|18|16334,
 25|tcp|ssl|5247|1370|S0|ShAdDafF|18|5975|28|456)
Seq3: 25|tcp|ssl|5247|1370|S0|ShAdDafF|18|5975|28|456,
 25|tcp|smtp|761|308|SF|ShAdDafF|10|1169|17|996)

Seq1: (80|tcp|http|367|3547|SF|ShADdfFa|6|615|7|3835,
80|tcp|http|322|464|SF|ShADdfFa|5|530|4|632)
Seq2: (80|tcp|http|322|464|SF|ShADdfFa|5|530|4|632,
25|tcp|ssl|2943|345|S0|1440|S0|ShAdDafF|19|3711|30)
Seq3: (25|tcp|ssl|2943|345|S0|1440|S0|ShAdDafF|19|3711|30,
25|tcp|smtp|1021|308|SF|ShAdDafF|10|1429|17|996)

Malware A 2-flow

Flow Value
Similarity

Example

Fig. 1: MalClassifier System.

To foster its real-world use, we consider this limitation and
the following requirements when designing MalClassifier to
ensure that our system is resilient to malware evasion and
classifies n-flows with a high accuracy. We compare the most
related contributions to MalClassifier, and summarise their
deployment of the identified design goals in Table I.

• IP-agnostic. The system must not use destination IP as a
feature. Malware rapidly changes its (C&C) and deploy
sophisticated domain generation algorithms and domain
shadowing of legitimate domains to evade reputation
filtering.

• Non-privacy invasive. SOC-as-a-service clients require
privacy preserving monitoring and systems that observe
the payload are privacy invasive. Therefore, the system
must not rely on network traffic payload to extract
features. In addition to reducing the storage space, this
makes the system resilient to encryption which sophis-
ticated malware and benign hosts (e.g. HTTPS) use.
Moreover, the non-identifiable network data required for
training the models are accessible, which is critical for
supervised classifier training and for the potential adop-
tion and acceptance of the system at scale.

• Automatically identify distinctive malware network
behaviour. The system must be able to automatically
identify and extract distinctive network behaviour (i.e.,
profiles) of each malware family.

• On-the-wire classification. Obtaining the malicious ex-
ecutable and running it in a sandbox should not be
required. Instead, it should be able to classify malicious
network traffic on-the-wire to a malware family.

• Resilient to malware evasion attacks and adaptability
to malware behaviour changes. The system must be
adaptive to malware evolution and behavioural changes.
Meaning, if the malware network flow behaviour changes
slightly (e.g. change protocol UDP to TCP or increase/de-
crease in size), then the system model should still be able
to classify to the correct malware family. In addition,
the system should be robust against malware evasion
through flow field manipulation by using tamper-resistant
features [4]. Malware may attempt to change the order
sequence of the flows to avoid detection. Thus, the system
should consider flow order deception, and be able to still
classify manipulated sequences with high accuracy.

• High classification accuracy. The classifier must aim
to provide acceptable classification accuracy using only
sub-sequences of network traffic, thus not requiring a
malware’s full packet captures.

IV. MalClassifier DESIGN

Considering the design goals in Section III-A, we discuss
the design of each module of the MalClassifier system in detail
in the following sections.

TABLE II: Description of the fields in conn.log generated by
Bro network monitoring framework and used in MalClassifier.

Field Description

resp port Destination port
proto Transport layer protocol (TCP, UDP)
service Application protocol being sent over the connection.
orig bytes Number of payload bytes the originator sent
resp bytes Number of payload bytes the responder sent
conn state State of the Connection.

13 different states (e.g. connection attempt rejected)
history State history of connections as a string of letters.
orig pkts Number of packets that the originator sent
orig ip bytes Number of IP level bytes that the originator sent
resp pkts Number of packets that the responder sent
resp ip bytes Number of IP level bytes that the responder sent

A. Pre-processing

In order to convert the network flows into a format that can
be applied to sequence mining methods, we first need to pre-
process the data by reassembling and encoding the network
flows.

1) Network Flow Reassembly: Organisations deploy net-
work monitoring systems such as Bro 1, which generates
statistical and behavioural logs about the network communica-
tions, the application level protocols, and exchanged payload
of each network flow. Maintaining full network traces (PCAPs)
requires a huge amount of storage, making it challenging for
organisations to keep full network traces for more than a cou-
ple of days. On the other hand, to investigate security breaches,
whose effects might show up much later, logs may be stored
for a longer period and reduce storage costs. We envision
MalClassifier to be deployed with network monitoring systems
for on-the-wire malware classification.

We note that the Network Flow Reassembly module is only
needed when converting network PCAP traces to Bro conn
logs, and therefore is not needed if the Bro logs are available
or when Bro is applied in the network for network monitoring.

To extract behavioural features from the malware PCAP
traces, we use Bro to reassemble the network flows. A flow
is a sequence of packets from a source host and port to a
destination host/port that is part of a unique TCP/UDP session.
Packets in a flow are either going to (or coming from) the
same destination IP address and port. As input, Bro takes
the captured malware PCAP network traces and generates a
number of logs for each malware sample. These logs include
information that is useful in understanding malware behaviour,
such as C&C communication statistics, DNS queries and fast
fluxing, unusual communications (e.g. unknown protocols) and
port-host scanning. In MalClassifier, we leverage the Bro
conn.log file that shows non-identifiable network flow header
information of TCP/UDP/ICMP connections. Each row in the
log represents an individual flow f and is described by 20
attributes representing the column fields. We use 11 of the
attributes derived from the conn.log and described in Table II.

2) Flow Encoding: For each log x ∈ X , where X is the
set of all Bro conn.log logs for samples of a malware family

1https://www.bro.org

y, we encode the log x to a long sequence of network flows,
E(x) = f1 → f2 → ..→ fi, where fi represents a single flow
in the log x. Formally, we define a flow fi as:
fi :=< resp port, proto, service, orig bytes, resp bytes,

conn state, history, orig pkts, orig ip bytes, resp pkts,
resp bytes >

As we show in Figure 1, the result of the Flow Encoding
module is a textual sequence representation of the flows in the
conn.log of malware samples of a malware y.

3) Flow Sub-Sequence Extraction: We represent the be-
haviour of malware as a sub-sequence of flows. This provides
higher granularity of the captured malware network behaviour.
For example, a single icmp flow does not map to a particular
behaviour, but a sequence of multiple icmp flows represent
a malware performing an icmp scan. To capture the malware
flow-level behaviour, we consider sub-sequences of the mal-
ware network flows of length n, called n-flows as shown in
Figure 1. Therefore, when n = 1, the 1-flow represents a
single network flow, and when n = 2, the bi-flow represents
two consecutive network flows, and so on. This results in a
group of consecutive network flows of length n, that reflect
flow-level behavioural patterns. Such an approach allows us to
capture the network sequence behaviour and extract the unique
sub-sequence (i.e n-flow) profiles.

B. Malware Family Profile Extraction

MalClassifier extracts the malware family’s distinctive net-
work flow sequence behaviour, abstracting that behaviour as
a sequence profile. We discuss below how these profiles are
generated for each malware family. To clarify the different
steps involved in generating the behavioural profiles, we use
a running example. Thus, we show in Figure 1 an example of
the extracted sub-sequences or n-flows (when n = 2) of two
malware samples (Malware A and Malware B).

1) Flow Sequence Similarity: Similarity measures are de-
fined as ‘functions that quantify the extent to which objects
resemble each other, taking as an argument object pair and
return numerical values that are higher as the objects are
alike’ [15]. Choosing the similarity measures relies on the
data nature itself, whether binary, numerical or structured
data (e.g. sequences, trees, graphs). Similarity measures for
binary data are used to determine the presence or absence
of characteristics in the object pair (i.e. pair of flows), thus
take a value 1 if the flow possesses the characteristic, and 0
otherwise. For example, the authors in [18] applied a binary
similarity approach, by counting the number of times the exact
n-gram occurs. We argue that network flows are structured
data, and thus binary similarity are not suitable as they do not
capture the malware underlying network flow semantic.

Instead, MalClassifier applies a fuzzy Value Similarity mea-
sure. Thus, instead of determining is a sub-sequence for
malware A and a sub-sequence for malware B the same?,
fuzzy similarity determines how similar a sub-sequence in
malware A to a sub-sequence in malware B by computing the
degree of similarity. Value Similarity computes the similarity

of each flow fiA in a sub-sequence for Malware A to its
corresponding flow fiB in the sub-sequence for Malware B.

A single flow f is composed of a number of attributes as
we defined in Table II. Each attribute is semantically different
in data type and value distribution, and thus when choosing
a similarity measure the underlying differences between the
attributes need to be considered. For example, history is
represented as a string of characters, where each character has
a meaning and the order of the characters also has a meaning
that should be considered. In contrast, numeric attributes such
as (orig bytes, resp bytes, orig pkts, orig ip bytes, resp pkts,
resp ip bytes), are represented as numeric vectors, thus nu-
meric similarity measures such as Cosine Similarity should
be applied.

Although resp port is a numeric, the underlying meaning
differs from other numeric fields. For example, although the
values of orig bytes = 100 or orig bytes = 99 should be
considered similar, a small difference in resp port does not
indicate a similarity (port 80 for HTTP could be considered
related to port 443 for HTTPS, whilst port 23 being closer
to port 80 is semantically different). Therefore, applying one
similarity measure to all attributes is not sufficient.

We propose a hybrid value similarity measure to determine
the similarity of two flow sequences. Our hybrid approach
takes into account the semantic differences of the flow at-
tributes and applies a similarity measure suitable to each
attribute. In general, we apply four similarity measures, de-
pending on the flow attributes.

We list in the following each similarity measure providing
an example of how the similarity of Seq1 of Malware A and
Seq2 of Malware B shown in Figure 1 is calculated.

• Binary similarity (resp port, protocol, service): The
similarity is 1 if the attribute values are the same,
otherwise 0. Thus, the Binary Similarity in our example
of (f0A ∈ Seq1 : 80|tcp|http, f0B ∈ Seq2 : 80|tcp|http)
and (f1A ∈ Seq1 : 80|tcp|http, f1B ∈ Seq2 : 25|tcp|ssl)
is (1, 0.33) respectively, resulting in an average Binary
Similarity of 0.665.

• Levenshtein Distance [16] (history,conn state): Lev-
enshtein Distance is a fuzzy string similarity measure that
measures the minimum number of modifications required
(insertions, deletions, and substitutions) to change one
string into the other, divided by the maximum length of
the same two strings. It also takes into consideration the
order of the characters in the string. Assuming the cost
of insertion, deletion, and modification is the same (= 1),
then the Levenshtein Distance of making ShADdFa into
ShADadR is 3. The trivial implementation has a runtime
and space complexity of O(nm). The distance value
ranges from [0,100], where 0 indicates a low distance
thus higher similarity and 100 indicates a low similarity.
We scale the distance value to be in the range [0,1] instead
of [0,100].
Using our example, the Levenshtein Distance of (f0A ∈
Seq1 : SF |ShADdFa, f0B ∈ Seq2 : SF |ShADadfF)
and (f1A ∈ Seq1 : SF |ShADdFa, f1B ∈ Seq2 :

S0|ShAdDafF) is (2, 4) respectively, resulting in an
average Levenshtein Distance of 3, scaled to 0.03.

• Cosine Similarity: The numeric attributes of the two
flows are represented as two vectors. Cosine Similarity
measures the similarity of two non-zero vectors by cal-
culating the cosine of the angle between them. Given the
vectors x and y of length n = 6 (number of numeric
attributes), the cosine similarity is represented as:

cos(x,y) =
xy

‖x‖‖y‖
=

∑n
i=1 xiyi√∑n

i=1 (xi)2
√∑n

i=1 (yi)2

(1)
The Cosine Similarity of x = [367, 3547, 6, 615,
7, 3835] ∈ f0A, y=[1801, 15606, 14, 2369, 18, 16334] ∈
f0B is 0.00025. Similarly, the Cosine Similarity of x=
[322, 464, 5, 530, 4, 632] ∈ f1A, y = [5274, 1370, 18,
5975, 28, 456] ∈ f1B is 0.284. Thus, the average Cosine
Similarity for Seq1 and Seq2 is 0.142.

• Inter-flow Distance (resp port): Inter-flow distance cal-
culates the distance between the resp port in every two
consecutive flows of a sub-sequence. This helps identify
malware network behavioural attributes such as perform-
ing a port scan (e.g. when the difference of resp port of
two consecutive flows is 1). To calculate the inter-flow
similarity, we first calculate the distance of resp port in
each consecutive flows in a sub-sequence. For example,
the resp port distance between f0A, f1A ∈ Seq1 is 0,
as the resp port in both flows is the same. However,
the resp port distance between f0B , f1B ∈ Seq1 is 55,
which is the difference between port 80 and port 25. The
inter-flow similarity of Seq1 and Seq2 is the distance of
(0,55), thus is 55.
The Inter-flow distance is normalised to obtain a value
in [0, 1] to define a dissimilarity. The simplest and
most common normalisation method uses a linear trans-
formation, known as feature scaling where η(d) =

d−d min
d max−d min . However, the drawback of applying this
method is that it is sensitive to outliers [15]. Therefore,
to normalise the distance value, we apply another normal-
isation method that overcomes this drawback by defining
parameter Z = (m,M), where m and M are user-
defined values and are interpreted as a tolerance thresh-
old, where ηZ(d) = min(max(d−m

M−m , 0), 1) [15]. Any
distance value d less than min means that there is zero
dissimilarity, thus distinct points (that have a non-zero
distance) could be determined identical. Consequently,
distance values higher than max are considered totally
dissimilar [15]. In our example, we set Z = (10, 100),
resulting in a dissimilarity of 0.5.

We define the hybrid similarity approach in Algorithm 1:
Value Similarity. The Value Similarity function takes as input
two flow sub-sequences, X and Y . For each flow f in sub-
sequence X and Y , we extract the port protocol service,
history state, and numeric attributes, and calculate the
Binary similarity, Levenshtein Distance, and Cosine Similarity,
and Inter-flow Distance consequently. The similarity of the pair

Algorithm 1 Value Similarity
1: procedure VALUE SIMILARITY(X,Y)
2: X ← [x1, x2, ..., xi], where xi = [f0, f2, ..., f10]
3: Y ← [y1, y2, ..., yi], where yi = [f0, f2, ..., f10]
4: attributes← [], attributes of flow in conn.log
5: Sim← []
6: for i in range (0,n) do
7: xi ← X[i]
8: yi ← Y [i]
9: xi+1 ← X[i+ 1]

10: yi+1 ← Y [i+ 1]
11: port prot ser ← (xi[0 : 2], yi[0 : 2])
12: history state← (xi[3 : 4], yi[3 : 4])
13: numeric← (xi[5 :], yi[5 :])
14: if port prot ser[0] == port prot ser[1] then
15: binary = 1
16: else
17: binary = 0
18: ld = 1−LEVENSTEINDISTANCE(history state)
19: cosine = 1−COSINEDISTANCE(numeric)
20: interflow = abs((xi[0]− xi+1[0])− (yi[0]− yi+1[0]))
21: s = w0 binary + w1 ld+ w2 cosine+ w3 interflow
22: Sim.append(s)

return Average(Sim)

Algorithm 2 Order Similarity
1: procedure ORDERSIMILARITY(X ,Y ,n)
2: X ← [x1, x2, ..., xi], where xi = [f0, f2, ..., f10]
3: Y ← [y1, y2, ..., yi], where yi = [f0, f2, ..., f10]
4: n← sequence length
5: if length(X) == 1 then
6: return VALUESIMILARITY(X ,Y)∗ 1

n
7: else
8: s0 = VALUESIMILARITY(X ,Y)∗ length(X)

n
9: s1 = ORDERSIMILARITY(X[1 :],Y [1 :],n)

10: s2 = ORDERSIMILARITY(X[: −1],Y [: −1],n)
11: return Max(s0,s1,s2)

of flows is the sum of the four similarities, each multiplied
by a weight w. The weight w is defined as the number
of attributes that were given to the similarity measure, e.g.
flow sim = 3 binary+2 ld+6 cosine sim+1 inter flow.
The highest possible similarity score using this approach is
12. The weights w could also be used to give importance to
a similarity measure over another.

Using our example, X would be Seq1 and Y is Seq2. The
similarity of Seq1 and Seq2 is calculated as follows:
sim = 3(0.665)+2(1−0.03)+6(1−0.142)+1(1− .5) = 9.5

As Levenshtein Distance, Cosine Similarity, and Inter-
flow Distance are distance measures, we derive the simi-
larity measure through decreasing functions as S(x, y) =
1 − LevenshteinDistance(x, y) and S(x, y) = 1 −
CosineDistance(x, y). Thus the similarity measure is the
complement to 1 of dissimilarity [15].

2) Malware Family n-flow Mining: To extract the network
flow sequence behaviour for a malware family y, we derive
the set S of n-flows of all the network flows in the log x that
belong to the malware family y. We calculate the similarity
sim(i, s) of each n-flow i in a malware sample mj to each
n-flow s in the set S. To calculate the value sim(i, s), we

apply the value similarity measure defined in Section IV-B1.
To reduce memory and processing complexity, we pre-

compute the similarity of each pair of flows in S and store
as a key-value store. Consequently, when determining the
similarity of two n-flows, the similarity of each flow is pre-
computed and is fetched from the key-value store. Therefore,
only unique flow pairs are stored and only the similarity of
new flow pairs are computed.

We are interested in mining the malware family’s network
traffic for the highly frequent n-flows, i.e., flows that occur
in all or the majority of the samples of a malware family.
Therefore, we represent the n-flow i as a vector in a high-
dimensional space, where the elements (features) in the n-flow
vector corresponds to all n-flows of a malware family y.

3) Profile Selection: In order to extract the malware family
profiles, we select the most relevant n-flows (profiles) that
represent that malware family’s network behaviour. For each
malware family, we mine the network flows for all samples of
that malware family, then select n-flows that are significant.
We apply a modified version of class-wise feature selec-
tion approach as proposed in [25]. The class-wise document
frequency is the number of network flows in a malware
family y that contain an n-flow s. We assign each n-flow
a class-dependent weight according to its coverage in the
malware family network traffic (tendency). As we apply a
fuzzy similarity approach, we multiply the average similarity
of an n-flow s in a malware family y to its tendency. We then
select the top k n-flows as profiles for that malware family.

C. Building Malware Family Classification Models

In situations where an analyst detects a malicious network
behaviour and needs to determine its origin, the malware’s
full network traffic may not have been captured. Therefore, to
avoid misclassifying malware binaries as a result of not having
access to its full packet capture, we classify the network n-
flows. This ensures that the malicious binary can be classified
based on a sub-set of its network flow communication, thus
not requiring the malware’s whole network packet capture.

Training. We show in Figure 1 how the classifier is trained
to produce the model used for classification of future unseen
n-flows. To train the classifier, a collection of malicious n-
flows of malware samples M = m1,m2, ...,ml and their cor-
responding malware families Y = y1, y2, ..., yk are required.
Hence, we train a multi-class supervised classifier with the
aim of determining if an n-flow i of a malware sample m
belongs to a malware family y, where the selected profiles S
represent the features in our classifier.

Classification. The trained model is then deployed to clas-
sify unseen n-flows to a family. One of the main design goals
for MalClassifier is resiliency to malware evasion. Malware
authors may try to evade the sequence detection by changing
the order of the flows or injecting noise flows. Therefore, when
deploying the trained model, in addition to calculating the
Value Similarity we also introduce the Order Similarity defined
as Algorithm 2. The Order Similarity algorithm computes the

highest Value Similarity score of all possible sub-sequence in
X and Y .

Using our example, the possible sub-sequences for
X are (f0A), (f0B , f1B), (f1A) and for Y are (f0B),
(f0B , f1B), (f1B), where length(subsequence) <= n.
The Order Similarity computes the Value Similarity
of all possible sub-sequence orders, thus S(f0A, f0B),
S((f0B , f1B), (f0B , f1B)), S(f1A), (f1B)). Then, the Value
Similarity is multiplied by length(X)/n. Thus, the similarity
of the sub-sequence is at its highest when the length of sub-
sequence for X = n, and at its lowest when the length of
sub-sequence X = 1, thus is a single flow.

V. EVALUATION

To evaluate our approach, we implement the system as a
multi-threaded Python application. To accelerate the analysis,
the application uses Python Multiprocessing with separate
threads to calculate the similarity scores for each malware
sample. The experiments were conducted on a 40-core pro-
cessor with 126GB RAM, Centos OS.

A. Dataset

We experiment with a dataset of popular ransomware and
botnets network traces, with a total of 11 malware family
classes. We provide an overview of the malware families in
our datasets in Table III.

Botnets are known to follow a certain infection life-cycle,
sharing similarities in network flow characteristics in each
infection phase [11]. Thus, we evaluate the effectiveness of
our system in determining the unique network flow behaviour
of each botnet family in our dataset, and its accuracy in
classifying botnet network traffic to its family despite the
botnets’ network behaviour similarities. To train our classifier
we used (1) the CTU-13 botnet traffic dataset [8] provided
by the Malware Capture Facility project and (2) current
botnets and ransomware (Miuref, WannaCry, Conficker, Sality,
Notpetya) provided by Stratosphere IPS Project2.

The CTU-13 dataset contains 13 scenarios of botnet network
traffic. The botnet families represented in the dataset employed
various protocols (e.g. IRC, P2P, HTTP and various techniques
(e.g. sending SPAM, DDoS attacks, Fast-Fluxing). Our main
motivation for using this dataset is that real botnet attacks
network traces were captured, providing reliable datasets for
model building. In addition to running all samples on the same
network environment, precautions were taken to ensure that
the full bot network flows were captured and outgoing traffic
was not filtered or rate-limited. This ensures that the data is
clear from artefacts that can affect the classifier performance,
due to how the collection environment was set up. We applied
network flows of scenarios 1 − 13 to train and evaluate the
classification models. We excluded scenario 7 as it did not
contain a sufficient number of flows. We applied only the
malicious flows (C&C and botnet flows) to train the classifier
for malware family classification. For more information about

2https://www.stratosphereips.org/

TABLE III: Description of datasets.

Dataset Family # Samples # Flows # Unique Flows
CTU-13 Murlo 1 37019 422

Rbot 4 46,184,716 1697
Virut 2 358,378 4088
Neris 3 839,077 24895
Menti 1 291,677 160
NSIS.ay 1 30,063 2591

Stratosphere Miuref 7 1867273 17257
IPS Project Sality 1 6,073,775 307,355

WannaCry 7 291,677 330
Conficker 2 323,238 6,300
Notpetya 4 5,424 174

Total 33 56,302,317 365,289

the nature of the dataset scenarios and how it was generated
see [8].

B. Experiments

The aim of the experiments is to (1) determine how ac-
curately we can classify an n-flow to its malware family
using the extracted profiles as features; and (2) determine the
classifiers robustness to malware evasion. In particular, we
plan to explore the following:

Impact of Flow Sequence Similarity. We measure the
effect of applying each similarity approach (Levenshtein Dis-
tance, Cosine Similarity, Binary Similarity, and Inter-flow Dis-
tance), on the classifier performance. This will help determine
which similarity measure has the highest positive influence on
the classification and thus will be assigned a higher weight w,
as discussed in Section IV-B1.

Impact of n-flows. We evaluate the impact of using an n-
flow approach for malware family classification. We separate
the network flows in our dataset into n-flows of length 1
(single flow) to 7 consecutive flows. The aim is to determine
if the malware family classification accuracy improves when
a sequence of flows approach such as n-flows is applied as
opposed to a single flow.

Robustness to Malware Evasion. Malware authors could
attempt to evade detection by changing the malware network
flow behaviour, either by injecting noise packets and changing
the flow sequence order, affecting the numeric attributes in a
flow e.g. sent/received packets. To account for this, we explore
the robustness of the classifiers’ to evasion by evaluating
the classifier’s performance in classifying n-flows when we
randomly shuffle the order of the flows in a sequence.

C. Classifier Design

We build multi-class classifiers that map an unknown net-
work n-flow input as belonging to one malware family.

Classifiers. We apply two supervised machine learning
classifiers, K-Nearest Neighbour (KNN) and Random Forest
(RF). These classifiers were chosen due to their popularity in
text classification using a vectorial representation of features.
KNN is a non-parametric lazy learning algorithm. It simply
assumes that the classification of a sample is similar to other
samples that are nearby in the vector space. Random Forest is
an ensemble classifier that leverages multiple decision trees,

TABLE IV: Example of the selected 2-flows for each malware
family in our dataset.

Family Example 2-flow

Murlo 135.0-tcp-0-0-0-S0-S-2.0-96.0-0.0-0.0
135.0-tcp-0-0-0-S0-S-2.0-96.0-0.0-0.0

Rbot 14.0-icmp-0-0-0-OTH-0-0.0-0.0-0.0-0.0
227.0-icmp-0-0-0-OTH-0-0.0-0.0-0.0-0.0

Virut 80.0-tcp-0-0-0-RSTO-ˆhR-2.0-80.0-1.0-44.0
443.0-tcp-0-0-0-REJ-Sr-2.0-96.0-1.0-40.0

Neris 80.0-tcp-http-318-368-RSTO-ShADadR-10.0-1052.0-3.0-496.0
25.0-tcp-0-0-0-S0-S-2.0-96.0-0.0-0.0

Menti 25.0-tcp-0-0-0-S0-S-4.0-192.0-0.0-0.0
25.0-tcp-0-0-0-S0-S-2.0-96.0-0.0-0.0

NSIS.ay 32234.0-udp-0-103-596-SF-Dd-1.0-131.0-2.0-652.0
31037.0-udp-0-103-596-SF-Dd-1.0-131.0-2.0-652.0

Miuref 5353.0-udp-dns-1599-0-S0-D-36.0-2607.0-0.0-0.0
136.0-icmp-0-0-0-OTH-0-1.0-72.0-0.0-0.0

Sality 80.0-tcp-0-0-0-S0-S-2.0-96.0-0.0-0.0
53.0-udp-dns-30-46-SF-Dd-1.0-58.0-1.0-74.0

WannaCry 445.0-tcp-0-0-0-REJ-Sr-1.0-52.0-1.0-40.0
445.0-tcp-0-0-0-S0-S-1.0-52.0-0.0-0.0

Conficker 3824.0-tcp-0-0-0-RSTOS0-R-2.0-80.0-0.0-0.0
3821.0-tcp-0-0-0-RSTOS0-R-2.0-80.0-0.0-0.0

Notpetya 130.0-icmp-0-0-0-OTH-0-1.0-72.0-0.0-0.0
130.0-icmp-0-0-0-OTH-0-1.0-72.0-0.0-0.0

that are trained using different subsets of the training set, thus
overcoming over-fitting issues of an individual decision tree.

Classifier Features. The extracted flow sequence profiles
for each malware family represent the features in our classi-
fiers. We only use 20% of the n-flows for each malware family
to generate and select (k = 20) behaviour profiles. This is to
ensure that the profile selection does not bias the classifier
estimates, known as feature subset selection bias or selection
bias [31].

Dimensionality Reduction. Due to the sparsity of the
dataset (20 profiles * 11 (Number of classes) = 220 features),
we apply Principle Component Analysis (PCA) [37]. PCA
reduces the dimensionality of the dataset while retaining the
variation present in the dataset, up to the maximum extent.
Thus, the 220 features are transformed to a new set of features,
known as the principal components. We set PCA = 10,
thus reducing the features space to 10 principle components.
We evaluated different values for PCA, and the classifier
performance when we apply PCA = 10 performs almost as
well as when we use all features. The advantage of using PCA
over using all features is the low memory complexity required
to run the machine learning algorithms due to reducing the
dimensions of the features space used by the classifier.

Classifier Performance Measures. To assess the perfor-
mance of the classifiers, we apply 10-fold cross-validation.
Cross-validation removes any bias in the data while maximiz-
ing the number of score computations from a given dataset. As
the CTU-13 datasets consist of only a few PCAPs (executions)
per family, when performing cross-validation we compare the
different executions of the same family.

We employ evaluation measures such as Precision, Re-
call and F-measure to evaluate the classifiers’ performance.
Although these metrics are defined for a binary classifier,
they can be extended for multi-class problems. Each class is

represented by a binary classifier (e.g. One-vs-rest approach),
and we average the binary metric across the set of classes.
We also apply a macro-averaged Precision-Recall curve as an
evaluation metric, which gives equal weight to the classifica-
tion of each label compared to micro-averaging which gives
equal weight to each per-family classification decision.

VI. RESULTS

We discuss in the following our results from the experi-
ments outlined in Section V-B and the impact of the various
system configurations and approaches on the classification
performance.

A. Malware Family Profile Extraction

Our results show that malware of a single family exhibit
network flow sequence regularities that can be used for
malware family classification. We select 20 n-flows for each
malware family using the method described in Section IV-B3.
We illustrate in Table IV an example of the selected 2-flows for
each malware family. Murlo traffic contained sub-sequences
of TCP flows to destination port 135 (Messenger Services).
The flows have a connection state S0, meaning there was
a connection attempt, but no reply. Therefore, the duration
of the flow is 0 and there was no payload. Similarly, Menti
performed a multiple flow connections to destination port
25 (SMTP) and port 21 (FTP). The connection state set to
either RSTO, meaning the connection attempt was rejected
by the destination or S0. However, there was some successful
TCP flow with the exchanged payload. The high number of
outgoing flows to an SMTP port means that the botnet is
sending email spam, a behaviour linked to Menti that is known
to send pharmaceutical and stock-based email spam. Although,
Neris 2-flows show HTTP flows with connection state set to
RST0. This means that the connection was established but
the originator aborted. However, we do see other successful
HTTP connections with connection state SF, meaning normal
establishment and termination. WannaCry is a ransomware
known for sending SMB flows to other victim hosts on the
network. This is captured by the selected 2-flows of TCP flows
with a destination port of 445. Miuref’s 2−flows sequences
were mostly HTTPS flows (port = 443), followed by DSN
requests or DSN requests followed by an ICMP flow.

B. Classifier Performance

Impact of the Value of n in n-flows. We illustrate in
Figure 2 the models’ performance for each value of n. Overall,
the accuracy of the classifiers is at its best using 2-grams
with the KNN classifier and 6-grams with RF classifier. The
classifier accuracy was better when flows were represented as
a sequence (n > 1) rather than individual flows (n = 1). This
shows that malware behaviour is best captured when we look
at sequences of flows. For example, an individual SMTP flow
might not infer a malicious behaviour, or capture the behaviour
of a particular malware class (e.g. Menti), whilst a sequence of
rejected SMTP messages gives confidence of a maliciousness
of the flow sequence.

1 2 3 4 5 6 7
1uPber Rf)lRws (n)

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0
Cl

as
si

fie
r 3

er
fR

rP
an

Fe
 (%

)

.-nearest 1eigKbRur (.11)
5andRP)Rrest (5))

Fig. 2: Average F-measure for Random Forest and KNN
classifiers, n = 1− 7 for n-flows.

Fig. 3: Macro-averaged Precision Recall Curves for each
malware family (Random Forest classifier, n = 5).

When choosing the value of n, the speed of classification
needs to be considered. Although a longer sub-sequence
(higher n) results in a higher classification accuracy, it delays
the classification of the network behaviour to a malware
family. For example, choosing 7-grams requires waiting for
7 consecutive malware network communications to classify
and understand its behaviour, increasing the duration of the
malware execution damage and delaying active remediation.
In situations where the attack implications are severe such as
in ransomware attacks, determining the malware class as soon
as possible is critical for a quick reaction before it reaches the
encryption stage.

Impact of Classification Algorithm. To determine the
most accurate classifier, we measured the performance based
on the machine learning algorithm used. KNN (n = 2)
performed best (F-Measure = 95.74%) with shorter flow
sequences, while RF classifier’s accuracy increased as the
number of flows in the sequence (n-flow) increases, reaching
95.83% when n = 6. To compare the precision and recall
trade-off of the Random Forest classifier, we present the
macro-average Precision-Recall (PR) curve when n = 5 in
Figure 3. We employ macro-average that measures the overall
precision and recall of all the classes to produce the macro-
averaged ROC curves. We build multi-class models, therefore,
averaging the evaluation measures can provide us with a view
of the general classifier performance. The model has an AUC
of 94%, indicating high recall and high precision. Overall, the
classification of all malware families performs well. However,
Notpetya had an AUC of 39%, with a high number of miss-
classifications (42%). We will discuss the reasons for this miss-
classifications and how to improve the classification accuracy
in Section VII.

Impact of Flow Sequence Similarity. We measure the
effect of the four similarity measures (Binary Similarity,
Cosine Similarity, Levenshtein Distance, and Inter-flow Dis-
tance) and their associated flow attributes on the classifier
accuracy. Specifically, we train four Random Forest (RF)

classifiers, each using a similarity measure and a subset of
the flow attributes. For example, we train a classifier using
only resp port, protocol, service, applying only the Binary
Similarity measure. We show the F-measure of each of the
four classifiers (n = 5) per malware class in Figure 4. In the
figure, a malware family with a classifier performance of 400%
indicates that the Binary, Cosine, inter-flow, and Levenshtein
classifiers each had an F-measure of 100%.

The highest performance resulted from the Cosine Simi-
larity classifier, with a 90% F-measure over most malware
classes. Binary Similarity classifier was best for represent-
ing Murlo behaviour with 97.46% F-measure, Miuref with
95.86%, and Rbot with 99.26%. However, the low performance
(11.78%) of the Binary Similarity for WannaCry shows that
the flows’ attributes (resp port, protocol, service) that are
measured using this similarity approach might not be a unique
representative of its behaviour. However, WannaCry’s Inter-
flow Distance classifier had the highest performance (93.59%).
Thus, although the exact matching (i.e. Binary Similarity) of
the res port did not perform well, the average difference
of the res port between flows in the sequence (i.e Inter-
flow Distance) was able to capture that malware family’s
flow sequence behaviour. Levenshtein Distance had the lowest
performance overall, with only having high accuracy with Rbot
97.52%.

C. Robustness to Evasion

Malware authors can attempt to evade sequence detection
by changing the order of the communication flows or even
injecting noise flows. We evaluate the use of the Order
Similarity, introduced in Section IV-B1. We randomly shuffle
the order of the flows in the 5−flows of our malware families
and test the model’s classification performance on the shuffled
n−flows. Change in the order of flows did not affect the
classifier accuracy when applying Order Similarity, retaining
an F-measure of 95.36% for Random Forest Classifier (n = 5).

0enWL CRnILFNer VLruW 1SIS.Dy 5bRW 0LureI SDlLWy 0urlR 1erLV 1RWSeWyD WDnnDCry
0DlwDre)DPLly

0

50

100

150

200

250

300

350

400
Cl

DV
VL

ILe
r 3

er
IR

rP
Dn

Fe
 (%

)
%LnDry SLPLlDrLWy
LevenVhWeLn DLVWDnFe
CRVLne SLPLlDrLWy
InWer-IlRw DLVWDnFe

%LnDry SLPLlDrLWy
LevenVhWeLn DLVWDnFe
CRVLne SLPLlDrLWy
InWer-IlRw DLVWDnFe

Fig. 4: The malware familys’ classification F-measure of the
four Random Forest Classifiers (n = 5), each using one of the
four similarity measures.

VII. DISCUSSION AND FUTURE WORK

We discuss how MalClassifier meets our design goals and
identify potential limitations, suggesting approaches to address
them.

Meeting Design Goals. MalClassifier utilizes non-privacy
invasive features to train and build its models, relying on
packet header information and not requiring deep packet
inspection (i.e. content-agnostic). In addition, all identifiable
header fields such as IP addresses are removed in the network
flow encoding module (i.e. IP-agnostic). As malware is known
to change its behaviour in order to evade detection, MalClassi-
fier applies a fuzzy approach to flow sequence similarity to en-
sure that slight deviations in flow attribute values are detected.
The main challenge in malware classification is obtaining the
required model training datasets. Therefore, MalClassifier uses
only non-identifiable packet headers features making datasets
needed for training and building the models accessible.

MalClassifier achieved a high accuracy for malware family
classification (F-measure ≈ 95.5%), demonstrating the effec-
tiveness of the system in identifying distinctive network n-
flows for each malware family. It is worth noticing that despite
the accuracy of our MalClassifier not improving significantly
over the state-of-the-art, it still provides a high accuracy while
preserving communications privacy and being robust against
encryption. In addition, the classifier performance can be
improved by modifying the profile selection module, as we
will discuss in the next section. MalClassifier classifies n-
flows to a malware family, meaning it only requires a subset of
flows instead of obtaining the full packet trace of the malicious
binary for classification.

Understanding Classifier Errors. We represent the con-
fusion matrix for the Random Forest Classifier (n = 5) in
Figure 5. Each row in the confusion matrix represents the in-
stances of the actual class (i.e. True Label) while each column
represents the instances of the predicted class (i.e. Predicted
Label). The main observation is that 26% of Notpetya 5-flows

where incorrectly classified to Miuref. We identified the miss-
classified Notpetya flows to a sequence of 5 flows of 445-
tcp-0-0-0-S0-S-4-192-0-0. However, such a sequence was not
selected as a profile for Notpetya, whilst a similar 5-flow 443-
tcp-0-0-0-S0-S-1-48-0-0 was selected as a profile for Miuref.
Therefore, the classifier was trained to assign such an n-flow to
Miuref. To improve the classification, n-flows that are shared
by more than one malware family should be identified and
not selected beforehand. This could be done using clustering
approaches, which we consider for future work.

Lessons Learned. The performance of the classifier relies
on the quality of the profiles selected for each malware
family. We introduced a novel method for profile selection that
selects n-flows for each malware family using two metrics:
(1) average similarity score for that sequence; (2) tendency,
the number of times a sequence occurred. In our initial exper-
iments, we noticed that selected flows for a malware family
were all similar, as they all have a high score and similar flow
attribute values except the destination port. Thus, the profile
selection was not capturing the various distinctive behaviour.
Accordingly, we amended the selection process to not include
the destination port field, selecting a distinctive set of profiles
for each malware family. This increased the accuracy of the
classifier by 10%, as the profiles selected represented various
stages of a malware family network behaviour.

We note that for extracting the sequence profiles we only
looked at 20% of the traffic of each malware family. Using
these profiles, we evaluated the classifier performance in clas-
sifying the other 80% of traffic. However, in application, the
profile selection process should consider the various malware
network behaviour stages, to ensure that the selected profiles
capture the malware behaviour in each infection stage.

We measured the classifier performance using each simi-
larity measure used in the Value Similarity. The effect of the
similarity measure on each malware family differs. Although
Cosine Similarity had a positive effect on the classification
accuracy of each malware family, some families were also
highly influenced by the Binary Similarity (e.g. Murlo), and
Inter-flow Distance (e.g. WannaCry). This provides insight on
the similarity measures that have the most positive influence
on the classifier performance, thus can be assigned a higher
weight w as defined in Section IV-B1. Based on the results, we
can assign Cosine Similarity the highest weight, followed by
Inter-flow Distance, Binary Similarity, and finally Levenshtein
Distance.

Malware Evasion. The main challenge in most behavioural-
based malware analysis approaches is malware behaviour
obfuscation and manipulation, known as noise-injection at-
tacks [21]. Although malware evasion by altering the binary
itself might be feasible due to available obfuscation tools, we
believe that the network behaviour is more troublesome to
tamper with. We determine the feasibility of such an evasion
in respect of two associated costs: implementation complexity
and effect on malware utility. The evasion complexity is based
on the ease which the malware author can modify the code
to include the evasion tactic which may result in affecting it’s

Fig. 5: Normalized confusion matrix showing actual classes
vs. predicted classes for the Random Forest Classifier (n = 5).

utility [32]. Malware classification systems that apply super-
vised machine learning approach require continuous training
of new malware variants to adapt to behavioural changes.
However, applying a fuzzy similarity measure allows a degree
of flexibility in malware behavioural change, thus only needs
training on samples of a new malware family. In addition,
MalClassifier adapts to flow sequence order manipulation by
applying the Order Similarity approach.

Limitations and Future Work. We identified that the
reason for the classifier misclassifications was due to the fea-
ture selection not considering similarities of n-flows between
families. Although we discussed how we ensure the selection
of distinctive flows for a malware family, these flows should
also not be similar to selected flows for other families. For
example, Neris, Virut and Sality are all bots that send email
spam, and identifying network flow sequences distinctive for
each family can avoid n-flow misclassifications. Thus, to
improve the profile selection process, we plan to use K-means
clustering to identify flows that are similar in more than one
family, to avoid using these flows as profiles. Moreover, we
plan on identifying the frequent n-flows in benign traffic, to
reduce the false positives.

As a future work, we also aim to measure the evolution of
malware network flow behaviour sequence and determine to
what extent does change the sequence behaviour affect the
classification accuracy. In particular, we will measure how
the network behaviour of malware samples of a family has
changed. Identifying behavioural changes of malware samples
will assist in measuring how MalClassifier classifier performs
against these changes. The capability of classifiers to adapt to
network behavioural changes ensures classifier accuracy for

long periods of time without the need for modifications or
costly re-training.

VIII. CONCLUSION

We present a novel approach for analysing and classifying
network traffic of malware variants based on their network
flow sequence behaviour. Considering the limitations of ex-
isting approaches, we proposed a system that is privacy-
preserving, time efficient, and resilient to malware evasion. We
showed MalClassifier’s effectiveness in identifying frequent
malware network n-flows and its robustness against malware
evasion by flow order alteration. MalClassifier eliminates the
need to have access to the malicious binary. This allows SOC
analysts to classify malicious network flow sequences on-the-
wire, reducing the time and effort required in other dynamic
analysis approaches while maintaining a high classification
accuracy.

IX. ACKNOWLEDGMENTS
Bushra A. AlAhmadi is supported by the Ministry of Higher

Education in the Kingdom of Saudi Arabia, the Saudi Arabian
Cultural Bureau in London, and King Saud University.

REFERENCES

[1] L. Axon, B. Alahmadi, J. Nurse, M. Goldsmith, and S. Creese, “Soni-
fication in security operations centres: what do security practitioners
think?” Internet Society, 2018.

[2] M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian, and
J. Nazario, “Automated classification and analysis of internet malware,”
in International Workshop on Recent Advances in Intrusion Detection.
Springer, 2007, pp. 178–197.

[3] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel, and E. Kirda,
“Scalable, behavior-based malware clustering.” in NDSS, vol. 9. Cite-
seer, 2009, pp. 8–11.

[4] Z. Berkay Celik, R. J. Walls, P. McDaniel, and A. Swami, “Malware
traffic detection using tamper resistant features,” in Military Communi-
cations Conference, MILCOM. IEEE, 2015, pp. 330–335.

[5] L. Bilge, D. Balzarotti, W. Robertson, E. Kirda, and C. Kruegel, “Disclo-
sure: detecting botnet command and control servers through large-scale
netflow analysis,” in Proceedings of the 28th Annual Computer Security
Applications Conference. ACM, 2012, pp. 129–138.

[6] S. Cesare and Y. Xiang, “Classification of malware using structured
control flow,” in Proceedings of the Eighth Australasian Symposium on
Parallel and Distributed Computing - Volume 107, ser. AusPDC ’10.
Darlinghurst, Australia, Australia: Australian Computer Society, Inc.,
2010, pp. 61–70.

[7] E. Gandotra, D. Bansal, and S. Sofat, “Malware analysis and classifica-
tion: A survey,” Journal of Information Security, vol. 2014, 2014.

[8] S. Garcia, M. Grill, J. Stiborek, and A. Zunino, “An empirical compar-
ison of botnet detection methods,” computers & security, vol. 45, pp.
100–123, 2014.

[9] S. Garcı́a, A. Zunino, and M. Campo, “Survey on network-based botnet
detection methods,” Security and Communication Networks, vol. 7, no. 5,
pp. 878–903, 2014.

[10] G. Gu, R. Perdisci, J. Zhang, W. Lee et al., “Botminer: Clustering
analysis of network traffic for protocol-and structure-independent botnet
detection.” in USENIX Security Symposium, vol. 5, no. 2, 2008, pp. 139–
154.

[11] G. Gu, P. A. Porras, V. Yegneswaran, M. W. Fong, and W. Lee,
“Bothunter: Detecting malware infection through ids-driven dialog cor-
relation.” in Usenix Security, vol. 7, 2007, pp. 1–16.

[12] G. Gu, J. Zhang, and W. Lee, “Botsniffer: Detecting botnet command
and control channels in network traffic,” 2008.

[13] F. Howard. (2015, jul) A closer look at the angler exploit kit.
[14] J. Z. Kolter and M. A. Maloof, “Learning to detect malicious executables

in the wild,” in Proceedings of the tenth ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2004, pp.
470–478.

[15] M. Lesot, M. Rifqi, and H. Benhadda, “Similarity measures for binary
and numerical data: a survey,” Int. J. Knowl. Eng. Soft Data Paradigm.,
vol. 1, no. 1, pp. 63–84, Dec. 2009.

[16] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions and reversals,” in Soviet physics doklady, vol. 10, 1966, p. 707.

[17] H. Mekky, A. Mohaisen, and Z.-L. Zhang, “Separation of benign and
malicious network events for accurate malware family classification,” in
Communications and Network Security (CNS), 2015 IEEE Conference
on. IEEE, 2015, pp. 125–133.

[18] A. Mohaisen, A. G. West, A. Mankin, and O. Alrawi, “Chatter: Classify-
ing malware families using system event ordering,” in Communications
and Network Security (CNS). IEEE, 2014, pp. 283–291.

[19] J. Oltsik, “Soc-as-a-service for midmarket and small enterprise organi-
zations,” The Enterprise Strategy Group, Tech. Rep., mar 2015.

[20] Y. Park, D. Reeves, V. Mulukutla, and B. Sundaravel, “Fast malware
classification by automated behavioral graph matching,” in Proceedings
of the Sixth Annual Workshop on Cyber Security and Information
Intelligence Research, ser. CSIIRW ’10. New York, NY, USA: ACM,
2010, pp. 45:1–45:4.

[21] R. Perdisci, D. Dagon, W. Lee, P. Fogla, and M. Sharif, “Misleading
worm signature generators using deliberate noise injection,” in 2006
IEEE Symposium on Security and Privacy (S&P’06). IEEE, 2006, pp.
15–pp.

[22] R. Perdisci, W. Lee, and N. Feamster, “Behavioral clustering of http-
based malware and signature generation using malicious network traces.”
in NSDI, 2010, pp. 391–404.

[23] M. Z. Rafique and J. Caballero, “Firma: Malware clustering and network
signature generation with mixed network behaviors,” in International
Workshop on Recent Advances in Intrusion Detection. Springer, 2013,
pp. 144–163.

[24] M. Z. Rafique, P. Chen, C. Huygens, and W. Joosen, “Evolutionary
algorithms for classification of malware families through different net-
work behaviors,” in Proceedings of the 2014 conference on Genetic and
evolutionary computation. ACM, 2014, pp. 1167–1174.

[25] D. K. S. Reddy and A. K. Pujari, “N-gram analysis for computer virus
detection,” Journal in Computer Virology, vol. 2, no. 3, pp. 231–239,
2006.

[26] K. Rieck, T. Holz, C. Willems, P. Düssel, and P. Laskov, Detection of
Intrusions and Malware, and Vulnerability Assessment: 5th International
Conference, DIMVA 2008, Paris, France, July 10-11, 2008. Proceedings.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, ch. Learning and
Classification of Malware Behavior, pp. 108–125.

[27] K. Rieck, G. Schwenk, T. Limmer, T. Holz, and P. Laskov, “Botzilla:
Detecting the phoning home of malicious software,” in proceedings of
the 2010 ACM Symposium on Applied Computing. ACM, 2010, pp.
1978–1984.

[28] K. Rieck, P. Trinius, C. Willems, and T. Holz, “Automatic analysis
of malware behavior using machine learning,” Journal of Computer
Security, vol. 19, no. 4, pp. 639–668, 2011.

[29] C. Rossow, C. J. Dietrich, H. Bos, L. Cavallaro, M. Van Steen,
F. C. Freiling, and N. Pohlmann, “Sandnet: Network traffic analysis of
malicious software,” in Proceedings of the First Workshop on Building
Analysis Datasets and Gathering Experience Returns for Security.
ACM, 2011, pp. 78–88.

[30] I. Santos, Y. K. Penya, J. Devesa, and P. G. Bringas, “N-grams-based
file signatures for malware detection.” ICEIS (2), vol. 9, pp. 317–320,
2009.

[31] S. K. Singhi and H. Liu, “Feature subset selection bias for classifica-
tion learning,” in Proceedings of the 23rd international conference on
Machine learning. ACM, 2006, pp. 849–856.

[32] E. Stinson and J. C. Mitchell, “Towards systematic evaluation of the
evadability of bot/botnet detection methods.” WOOT, vol. 8, pp. 1–9,
2008.

[33] G. Suarez-Tangil, J. E. Tapiador, P. Peris-Lopez, and J. Blasco, “Den-
droid: A text mining approach to analyzing and classifying code struc-
tures in android malware families,” Expert Systems with Applications,
vol. 41, no. 4, pp. 1104–1117, 2014.

[34] Symantec, “Adaptive Behavior-Based Malware Protection,” Tech. Rep.
[35] ——. (2016) Internet security threat report.
[36] F. Tegeler, X. Fu, G. Vigna, and C. Kruegel, “Botfinder: Finding bots in

network traffic without deep packet inspection,” in Proceedings of the
8th International Conference on Emerging Networking Experiments and
Technologies, ser. CoNEXT ’12. New York, NY, USA: ACM, 2012,
pp. 349–360.

[37] S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,”
Chemometrics and intelligent laboratory systems, vol. 2, no. 1-3, pp.
37–52, 1987.

[38] C. Wressnegger, G. Schwenk, D. Arp, and K. Rieck, “A close look on
n-grams in intrusion detection: anomaly detection vs. classification,” in
Proceedings of the 2013 ACM workshop on Artificial intelligence and
security. ACM, 2013, pp. 67–76.

