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ABSTRACT In zinc hydrometallurgy, the traditional multi-metal ion detection method is manual off-line
detection, which is cumbersome and has a long detection period. In order to realize simple, real-time, and
accurate on-line detection, an adaptive signal enhancement algorithm combined with partial least squares
regression is proposed for on-line detection of multi-metal ions by Ultraviolet-visible spectroscopy. First,
according to the different scale characteristics of signal and noise in wavelet decomposition, the proposed
signal enhancement algorithm can adaptively set the initial threshold, step size, and quantization ratio
information using the magnitude of the signal and noise wavelet coefficients. Then, by increasing the
threshold, the noise wavelet coefficient is set to zero and the signal wavelet coefficient is retained. When the
sum of the wavelet coefficients slowly changes and tends to be stable, the optimal threshold parameter of each
layer can be determined. Finally, the proposed adaptive algorithm is used for spectral signal preprocessing,
and partial least squares regression is used for spectral signal modeling analysis. The simulation results
showed that the proposed adaptive algorithm was superior to other denoising algorithms and had a better
denoising effect under different noise backgrounds. The experimental results showed that the proposed
adaptive algorithm combinedwith partial least squares regression was suitable for on-line detection of copper
and cobalt in zinc hydrometallurgy, allowing it to have many applications.

INDEX TERMS Zinc hydrometallurgy, signal enhancement algorithm, partial least squares, on-line detec-
tion, optimal threshold parameter, ultraviolet-visible spectroscopy.

I. INTRODUCTION
In the zinc hydrometallurgical purification process, zinc sul-
fate solution contains a large amount of zinc and various trace
impurity ions [1]–[3]. Excessive presence of impurity ions
will cause burning plates in the electrolysis process, which
seriously affects production efficiency and wastes energy [4].
During production, the detection of impurity ions is mainly
done by manual off-line analysis, which has the effect of
adjusting blindness and detecting lag, affecting the stability
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of production and the quality of products [5]. Therefore, it is
urgent to realize on-line detection of impurity ions in the zinc
hydrometallurgical purification process.

Ultraviolet-visible (UV–vis) spectroscopy for metal ion
detection has the advantages of fast detection speed, low cost,
no secondary pollution, and on-line in-situ measurement, so it
has been widely used in recent years [6]–[14]. Compared
to large spectrophotometers, the micro fiber spectrometer is
modular, compact and intelligent, and is suitable for rapid on-
line detection of impurity ions in the zinc hydrometallurgical
purification process [15], [16]. However, in the quantitative
analysis of micro fiber spectrometers, random noise caused
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by the internal optical systems, light sources, detectors, elec-
tronic components, circuit design and other factors in the
micro fiber spectrometer seriously affect the accuracy of
quantitative analysis [17]–[21]. Therefore, before model pre-
diction of the spectral data, it is necessary to perform signal
enhancement preprocessing on the spectral data to effectively
filter out noise and improve the precision and accuracy of the
UV-vis spectral analysis.

There has been extensive research into how to effectively
eliminate noise from signals, and many denoising methods
have been designed, but there are some limitations. Although
the motion smoothing method is simple, it causes signal
distortion easily. The Fourier transform filtering method is
characterized by analyzing the signal spectrum, but when
useful signals and the noise spectrum overlap, the signal
denoising effect is not good. The Wiener filter method is
only applicable to static processes. It is very difficult to
establish an accurate state equation with the Kalman filtering
method because it is necessary to understand the motion
law of the system [22]–[25]. As a typical time and fre-
quency analysis method, wavelet transform is widely used
in the field of digital signal processing and is especially
suitable for analyzing and processing non-stationary spectral
signals. Because wavelet analysis has the characteristics of
multi-resolution, low entropy, and de-correlation, a denois-
ing algorithm based on wavelet analysis is superior to the
traditional denoising algorithm [26]–[29]. The denois-
ing methods based on wavelet transform mainly include
the threshold denoising method, modulus maxima denois-
ing method, coefficient correlation denoising method and
wavelet tree denoisingmethod [30]–[34]. At present, themost
commonly used method of wavelet analysis in engineering is
the wavelet threshold denoising method, which includes the
hard threshold method and the soft threshold method, but the
disadvantage of both methods is that the threshold is constant
at each decomposition scale [35]–[38].

In order to solve the problem of the wavelet threshold
denoising method, an adaptive threshold denoising method is
proposed for signal enhancement preprocessing to improve
the accuracy of quantitative analysis based on UV-vis spec-
troscopy. According to the different scale characteristics of
signal and noise in the wavelet decomposition, the pro-
posed adaptive threshold algorithm can set the initial thresh-
old, step size, and quantization ratio information using
the magnitude of the signal and noise wavelet coefficients
and iteratively search the optimal threshold parameter. The
simulation results showed that the proposed adaptive algo-
rithm was superior to other denoising algorithms and
had a better denoising effect under different noise back-
grounds. The experimental results showed that the proposed
adaptive enhancement algorithm effectively eliminated noise
and improved the linear correlation coefficients of cop-
per and cobalt. Compared to the results of a partial
least squares regression without spectral data pretreat-
ment, the proposed signal enhancement algorithm combined
with partial least squares regression significantly improved

the precision and accuracy of the spectral quantitative
analysis.

The remainder of the paper is organized as follows:
In Section II, the adaptive threshold denoising method is pro-
posed. In Section III, we describe the simulation data, exper-
imental spectral signal and optic spectrometer. In Section IV,
we first discuss the selection of wavelet basis and decompo-
sition level and then determine the optimal parameters for
the adaptive threshold method. Next, the adaptive threshold
method is applied to process the simulation data and experi-
mental spectral data. Finally, the adaptive threshold algorithm
combined with the partial least squares regression method is
used to detect the concentration of copper and cobalt in a
mixed solution. In Section V, some concluding remarks are
provided.

II. THEORY
A. WAVELET TRANSFORM
Wavelet analysis has many characteristics such as multi-
resolution, low entropy and de-correlation. It is widely used
in image processing, speech analysis, signal processing and
pattern recognition. Wavelet transform is commonly used to
study signal dynamics or local feature information through
multi-scale analysis.

Mallat has proposed a fast algorithm for wavelet decompo-
sition and reconstruction based on multi-resolution analysis.
The algorithm greatly reduces the computational complexity
of the wavelet transform, which is beneficial to real-time
signal processing in engineering applications. The Mallat
algorithm is expressed as follows:

cj+1,k =
∑
n∈Z

cj,n}n−2k ,

dj+1,k =
∑
n∈Z

cj,nḡn−2k ,
k ∈ Z , (1)

where j is the decomposition level, g represents the high pass
filter of the wavelet function, h represents the low pass filter
of the scaling function, } and ḡ represent the conjugate of h
and g, respectively, and dj,k and cj,k correspond to the detail
coefficients and the approximate coefficients, respectively.
According to Eq. (1), as long as the filters h and g are known;
from the original signal c0,n, all approximate coefficients and
detail coefficients can be calculated. Similarly, the original
signal c0,n can be reconstructed by the approximate and detail
coefficients. The reconstruction formula is expressed as:

cj,k =
∑
n∈Z

cj+1,nhk−2n +
∑
n∈Z

dj+1,ngk−2n k ∈ Z, (2)

B. DENOISING
Presently, the noise removed from the spectral signal by
wavelet transform mainly uses the threshold denoising
method, which includes the hard threshold method and the
soft threshold method. The general denoising procedure is
described as follows:
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FIGURE 1. The flowchart for the adaptive threshold algorithm.

1) Decompose: Select a wavelet and decomposition layer
and obtain the wavelet coefficients of the noisy signal at each
layer.

2) Threshold denoising: Choose a threshold limit at each
level, and apply the soft or hard threshold denoising method
to remove the noise.

3) Reconstruct: Reconstructed signal is obtained by inverse
wavelet transform to realize denoising of the noisy signal.

In these 3 steps, it is difficult to know how to select the
threshold and threshold function, and these choices affect the
overall efficacy of denoising.

C. ADAPTIVE THRESHOLD DENOISING METHOD
In traditional wavelet threshold denoisingmethods, the thresh-
old T is fixed at each decomposition level, defined as:

T = σ
√
2InN , (3)

where N is the signal length and σ denotes the standard
deviation of the noise. The traditional threshold denoising
method can eliminate most of the noise and is widely used
in engineering applications, but it has limitations. Since the
threshold of each layer is fixed, the signal and noise have
different scale characteristics at different decomposition lev-
els. If the threshold is small, a large amount of noise is
retained, resulting in a poor denoising effect. If the threshold
is large, it is easy to remove some useful signals as noise,
resulting in distortion of the reconstructed signal. Therefore,
an adaptive threshold denoising method is proposed in this
paper to reasonably set the threshold.

The basic idea of the adaptive threshold algorithm is that
the wavelet coefficients corresponding to the signal have

larger amplitudes, but their number is smaller; the wavelet
coefficients corresponding to the noise are uniformly dis-
tributed, and their number is larger, but the amplitude is small.
Based on the above theory, if the original signal is decom-
posed into M layers by wavelet transform, each layer sets
the initial threshold and step size according to the signal and
noise wavelet coefficients, and then the wavelet coefficient
whose absolute value is less than the threshold is set to zero.
When the threshold is increased step by step, the sum of the
wavelet coefficients will decrease rapidly at the beginning
(the wavelet coefficient of the noise is set to zero), and when
the threshold is further increased, the sum of the wavelet
coefficients changes slowly and tends to be stable. At this
time, if the relative difference of the sum of the wavelet coef-
ficients between two adjacent thresholds is less than a custom
parameter, the search is stopped and the optimal threshold of
this layer is obtained. Then, the optimal threshold of the next
layer is found until the thresholds of all M layers are obtained.
The flowchart for the adaptive threshold algorithm is shown
in Fig. 1.

The adaptive threshold method involves three main related
parameters: Tj is the initial threshold at the j layer; tj is the
step size at the j layer; k is the custom parameter. Tj and tj are
defined as follows:

Tj = min(|dj|), (4)

tj =
[
max(

∣∣dj∣∣)−min(
∣∣dj∣∣)] /N , (5)

where dj represents the wavelet detail coefficient at the j layer
and N denotes signal length.

k is a custom parameter, ranging from 0 to 0.1. The value of
k is very critical, and to some extent it is related to the quality
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FIGURE 2. Simulated (a) original signal and (b) noisy signal.

of the signal denoising. If the value of k is too small, the
low-frequency sub-band will lose some of the signal wavelet
coefficients after thresholding, which will cause distortion of
the reconstructed signal. If the value of k is too large, the low-
frequency sub-band will still have more noise wavelet coef-
ficients after thresholding, which will impact the denoising
effect.

Another key issue in the threshold denoising method is
the threshold function. The common threshold functions are
the hard and soft threshold functions. The hard threshold
function is discontinuous at the threshold and may generate
a Gibbs oscillation. The soft threshold function is continu-
ous, but it has a constant deviation between the decomposed
wavelet coefficient and the quantized wavelet coefficient,
which results in some distortion of the reconstructed signal.
To overcome the drawbacks of traditional threshold func-
tions, a threshold function with one adjustment parameter is
defined as:

wj,k =

sign(wj,k )
(∣∣wj,k ∣∣− 2T

1+α
(T2−w2j,k)

)
, |wj,k | ≥ T

0, |wj,k | < T ,
(6)

where α is in the range 0 to 1. This proposed threshold
function preserves the advantages of the above methods and
overcomes their disadvantages, which effectively eliminates
the noise and preserves some important features of the useful
signal.

III. EXPERIMENTAL
A. SIMULATED DATA
Simulation data is used to select the α and k parameters of the
adaptive threshold algorithm and compare the performance
of the adaptive method with other denoising methods. The
pure signal uses the dynamic ‘‘bumps’’ signal provided by
Matlab software, and then adds noise with a signal-to-noise
ratio (SNR) of 15db. The original signal and the noisy signal
are shown in Fig. 2.

B. EXPERIMENTAL SPECTRAL SIGNAL
In a 25 mL calibration flask, we added 7.5 mL of acetic
acid-sodium acetate buffer solution (pH=5.5), 5.0 mL of
nitroso-R salt solution, a high concentration zinc standard

FIGURE 3. SNR with different wavelet bases.

solution, and a series of different concentrations of copper
and cobalt standard solutions. Then, the mixture was diluted
with distilled water to standard scale. A blank solution was
prepared in the same manner as the reference. The solution
to be tested and the reference solution were placed in a 1 cm
cuvette and scanned in the range of 350 to 600 nm using
an ATP5001 fiber spectrometer. The linear detection range
was 0.5–5 mg/L for copper and 0.3–3 mg/L for cobalt. All
measured spectra were the average of 5 replicates.

C. APPARATUS
An ATP5001 optic spectrometer (Xiamen Optosky Photonics
Instrument Ltd., China) was used to measure the spectral sig-
nal. The ATP5001 spectrometer is a high performance refrig-
erated micro optical fiber spectrometer, which uses a 2048×
64 pixel refrigerated linear CCD. The CCD adopted semi-
conductor refrigeration technology, which greatly reduced
the noise of the sensor, obtained an excellent signal-to-noise
ratio, and improved the measurement reliability. A Dell per-
sonal computer was used to control the spectrometer and
collect data via Optosky software.

IV. RESULTS AND DISCUSSION
A. SELECTION OF THE WAVELET BASIS
In engineering applications, a very important issue in wavelet
analysis is the choice of the wavelet basis, because using
different wavelet bases to analyze the same problem produces
different results. Wavelet basis plays an important role in the
threshold denoising method. For a noisy signal, the choice of
wavelet basis directly affects the performance of the denois-
ing. Thus, it is necessary to choose a suitable wavelet basis
for denoising. In general, the choice of wavelet basis requires
consideration of four factors: compact support, orthogonality,
symmetry and vanishingmoment. In order to obtain a suitable
wavelet basis, according to Ref [34] and Ref [35], the Sym
wavelet basis, Bior wavelet basis, Db wavelet basis and
Coif wavelet basis are used to process the simulated noisy
signal, as shown in Fig. 3.

As can be seen from Fig. 3, the signal-to-noise ratio
(SNR) of the denoised signal using the Db wavelet basis was

VOLUME 8, 2020 16003



F. Zhou et al.: Signal Enhancement Algorithm for On-Line Detection of Multi-Metal Ions Based on UV–vis Spectroscopy

FIGURE 4. SNR with different Db wavelets.

consistently better than other wavelet bases in different
decomposition levels. Therefore, the Db wavelet basis was
selected for denoising in the next simulation.

B. DETERMINATION OF THE DECOMPOSITION LEVEL
The wavelet decomposition level is also very critical in
wavelet analysis. If the decomposition level is too small,
the noise information of some high-frequency domain is
decomposed into the low-frequency domain, which will
affect the noise reduction performance. If the decomposition
layer is too large, the high-frequency domain will contain
some detail coefficients of the low-frequency domain, which
will result in some distortion of the reconstructed signal.
Thus, it is important to choose a suitable decomposition
level for threshold denoising. In order to get the optimum
decomposition level, we used Db2, Db3, Db4, Db5, and
Db6 wavelets to process the noisy signal and set the decom-
position level from 2 to 8, as shown in Fig. 4.

The SNR of the denoised signal with the Db4 wavelet
was better than others and reached to 28.6 dB in the fifth
level. Thus, we selected the Db4 wavelet and the fifth-level
decomposition for subsequent analysis.

C. DETERMINING THE PARAMETERS OF THE ADAPTIVE
THRESHOLD METHOD
In the proposed adaptive threshold method, parameter α of
the threshold function and parameter k of the threshold quan-
tization have a great impact on the denoising performance.
Parameter α can be flexibly adjusted to select the threshold
function. When parameter α is approximately 0, the thresh-
old function approximates the soft threshold function. When
parameter α is close to 1, the threshold function approxi-
mates the hard threshold function. Therefore, parameter α
is selectable in the range 0 to 1. The k parameter is used
to determine the optimal threshold, ranging from 0 to 0.1.
We used the Db4 wavelet to decompose the simulated noisy
signal in 5 layers, and set different parameters α and k by the
proposed adaptive threshold method. Fig. 5 shows the root
mean square error (RMSE) of the denoised signal using the
proposed method with different parameters α and k .
It can be seen from Fig. 5 that the RMSE was at the min-

imum when α was 0.56 and k was 0.023, indicating that the

FIGURE 5. The RMSE of the denoised signal using the proposed method
with different parameters α and k .

FIGURE 6. Reconstructed signal by different denoising methods.
(a) Savitzky-Golay method. (b) Fourier transform method. (c) Soft
threshold method. (d) Hard threshold method. (e) Adaptive threshold
method.

proposed adaptive threshold method under these parameters
had the best denoising effect.

D. NOISE ELIMINATION IN THE SIMULATED DATA
The denoising performance of the adaptive threshold
method was compared with that of other denoising meth-
ods. Fig. 1 shows the original ‘bumps’ signal and the
noisy ‘bumps’ signal with a signal-to-noise ratio of 15db.
Fig.6 shows the denoised signal by different denoising
methods. In Fig. 6(a), the reconstructed signal using the
Savitzky-Golay method retained a large amount of noise,
and the denoising effect was noticeably poor. In Fig. 6(b),
the reconstructed signal using the Fourier transform method
still retained some noise, and the denoising effect needed
to be further improved. In Fig. 6(c), the reconstructed sig-
nal using the soft threshold method was relatively smooth,
but there was some distortion at the peak of the signal.
In Fig. 6(d), the reconstructed signal using the hard threshold
method preserved the peak characteristic information of the
signal, but had glitch noise, which is due to the Gibbs oscilla-
tion phenomenon caused by the discontinuity of the threshold
function at the threshold. In Fig. 6(e), the reconstructed sig-
nal using the adaptive threshold method not only preserved
the peak characteristics of the signal, but also had a better
denoising effect.
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TABLE 1. The calculation results of the de-noised signal by different methods.

To further explain the effectiveness of the adaptive thresh-
old method, the original signal was added to different sizes
of random noise and the SNR was 5, 15, and 25 dB, respec-
tively.We calculated the SNR and RMSE of the reconstructed
signal by different denoising methods and the results are
shown in Table 1. Compared with other methods, the pro-
posed adaptive threshold method had the smallest RMSE
and the highest SNR with different amounts of noise. Thus,
the results strongly indicate that the proposed method has
a better denoising performance than the other denoising
methods.

E. SIGNAL ENHANCEMENT FOR EXPERIMENTAL
SPECTRA
The proposed adaptive threshold method was applied to an
experimental UV–vis spectral signal. Fig. 7(a) shows a set of
UV-vis absorption spectra of copper (Cu) in the wavelength
range of 350–600 nm with a 20 g/L high concentration zinc
solution as a reference; the concentration of copper ranged
from 0.5 to 5.0 mg/L. Fig. 7(b) shows a set of UV-vis absorp-
tion spectra of cobalt (Co) under the same conditions, the
concentration of cobalt ranges from 0.3 to 3 mg/L. It can
be seen from Fig. 7(a) and Fig. 7(b) that noise seriously
interfered with the spectral signals of copper and cobalt in the
wavelength range of 350–470 nm and that they had low sen-
sitivity. If the spectral signal was directly modelled without
signal enhancement preprocessing, the precision and accu-
racy of the quantitative analysis would be seriously affected.
Fig. 7(c) and Fig. 7(d) show the denoising signals for cop-
per and cobalt by the proposed method, respectively. These
figures indicated that the noise was completely eliminated,
the denoised signals were smooth, and the spectral shape was
consistent with what was expected.

In order to evaluate the linearity of the copper and cobalt
spectral signals before and after pretreatment, the max-
imum absorbance of copper (at 492.34 nm) and cobalt
(at 499.67 nm) and the corresponding copper and cobalt
concentrations were selected to construct calibration curves,
as shown in Fig. 8. Fig. 8(a) and Fig. 8(b) show the calibration
curves of the noisy experimental spectral signals of copper
and cobalt. Fig. 8(c) and Fig. 8(d) show the calibration curves
of copper and cobalt obtained by preprocessing the spec-
tral signal with the proposed threshold method. Obviously,
from Fig. 8(c) and Fig. 8(d), the proposed signal enhance-
ment algorithm improves the linearity of the copper and

FIGURE 7. Experimental spectral signal and its enhanced signal
preprocessed by the proposed method. (a) Spectral signal of copper.
(b) Spectral signal of cobalt. (c) The enhanced signal for copper. (d) The
enhanced signal for cobalt.

FIGURE 8. The calibration curves of copper and cobalt before and after
pretreatment. (a) Calibration curve of experimental spectral signal of
copper. (b) Calibration curve of experimental spectral signal of cobalt.
(c) Calibration curve of copper preprocessed by the proposed threshold
method. (d) Calibration curve of cobalt preprocessed by the proposed
threshold method.

cobalt ions. Table 2 shows the linear regression equations
and regression coefficients for copper and cobalt at different
wavelengths. It can be seen from Table 2 that the linear cor-
relation coefficients of copper and cobalt after pretreatment
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TABLE 2. The linear regression equations and regression coefficients of copper and cobalt before and after pretreatment at different wavelengths.

TABLE 3. The predicted results of copper and cobalt in the zinc sulfate solution by PLS and SEA–PLS methods.

were significantly improved at different wavelengths, and
the linear correlation coefficients were higher than 0.99 at
some wavelengths. Therefore, the proposed wavelet adap-
tive threshold method is suitable for pre-processing before
spectral data modelling, which can significantly enhance
the spectral signal and improve the accuracy of modelling
detection.

F. DETERMINATION OF COPPER AND COBALT BY
SIGNAL ENHANCEMENT ALGORITHM
COMBINED WITH PLS METHOD
In order to evaluate the performance of PLS (partial least
squares) and the SEA–PLS (signal enhancement algorithm
combined with partial least squares), 10 sets of mixed solu-
tions containing different proportions of copper and cobalt
were prepared, in which the zinc concentration was fixed
at 20g/L as a reference. The predicted concentrations of
copper and cobalt in the zinc sulfate solution by PLS and
SEA–PLS methods are shown in Table 3. As can be seen
from Table 3, the prediction performance of the SEA–PLS
method was far superior to the PLS method. Using the
calibration model by SEA–PLS, the root-mean-square error

FIGURE 9. Predicted and actual concentrations of copper and cobalt in
high concentration zinc solution. (a) Copper. (b) Cobalt.

of prediction values (RMSEP) for copper and cobalt were
0.107 and 0.086, respectively; the average relative deviations
of copper and cobalt were 3.216% and 2.655%, respectively,
which meets actual production requirements.

The predicted and actual concentrations of copper and
cobalt are shown in Fig. 9. As can be seen from Fig. 9,
the predicted concentration was very close to the actual con-
centration. The correlation coefficients (R2) of the predicted
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and actual values for copper and cobalt were 0.9967 and
0.9985, respectively. The obtained results indicated that the
proposed method is suitable for online detection of copper
and cobalt in the zinc hydrometallurgy, and it can be used for
more applications.

V. CONCLUSION
In the zinc hydrometallurgy purification process, excessive
presence of copper and cobalt impurity ions will cause
burning plates in the electrolysis process, which seriously
affects production efficiency and wastes energy. At present,
the detection method of multi-metal ions is mainly man-
ual off-line detection, which is cumbersome and has a long
detection period. Therefore, it is urgent to realize simple,
real-time and accurate online detection of trace ions of copper
and cobalt in zinc hydrometallurgy. Ultraviolet-visible spec-
troscopy for the detection of metal ions has the advantages
of fast detection speed, low cost, no secondary pollution and
online in-situ measurement, and has been widely used in
online detection in recent years. However, in the quantitative
analysis of Ultraviolet-visible spectroscopy, random noise
caused by internal optical systems, light sources, detectors,
electronic components, circuit design and other factors in
the microfiber spectrometer can seriously affect the accuracy
of quantitative spectral analysis. In this paper, an adaptive
signal enhancement algorithm combined with the partial least
squares modeling method was successfully applied to the
online determination of copper and cobalt in zinc sulfate solu-
tion by UV-vis spectroscopy. The work reported here is an
effective attempt for on-line detection of trace impurity ions
in zinc hydrometallurgy, and the proposed adaptive threshold
method can be generalized and be applicable to other spectral
signals such as infrared spectra, Raman spectra, and more.
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