
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.3035181, IEEE
Access

VOLUME XX, 2017 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

Dynamic Energy Efficient Resource Allocation
Strategy for Load Balancing in Fog Environment

Anees ur Rehman1, Zulfiqar Ahmad1, Ali Imran Jehangiri1, Mohammed
Alaa Ala’anzy*,2, Mohamed Othman*,2,3, Arif Iqbal Umar1, Jamil Ahmad1
1Department of Information Technology, Hazara University, Mansehra, KPK, Pakistan

(aneesawan19@gmail.com, zulfiqarahmad@hu.edu.pk, ali_imran@hu.edu.pk, arifiqbalumar@yahoo.com, jamil@ieee.org)
2Department of Communication Technology and Networks, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
3Laboratory of Computational Science and Mathematical Physics, Institute of Mathematical Research (INSPEM), Universiti Putra Malaysia (UPM),

Serdang 43400, Malaysia

*Corresponding Authors: Mohammed Alaa Ala’anzy (m.alanzy.cs@gmail.com) and Mohamed Othman (mothman@upm.edu.my)

This work is supported by Universiti Putra Malaysia and the Ministry of Education Malaysia, (UPM journal publication fund 9001103).

ABSTRACT The Internet of Things is a flexible, emerging technology and an innovative development of the

environmental trend. It is a large and complex network of devices in which fog computing plays a growing

role in order to handle the information flow of such large and complex networks. Influence of their activities

on carbon emissions and energy costs in unlimited results. Dynamic and efficient load balancing technology

can be used to improve overall performance and reduce energy consumption. Load can be transferred or shared

between computer nodes through load balancing technology. Therefore, the design of energy-efficient load

balancing solutions for edge and fog environments has become the main focus. In this research work, we have

proposed Dynamic Energy Efficient Resource Allocation (DEER) strategy for balancing the load in fog

computing environments. In the presented strategy, initially the user submits tasks for execution to the Tasks

Manager. Resource Information Provider registers resources from Cloud Data Centres. The information about

the tasks and resources are then submitted to the Resource Scheduler. The resource scheduler arranges the

available resources in descending order as per their utilization. The resource engine after receiving the

information of tasks and resources from the resource scheduler assigns tasks to the resources as per ordered

list. During execution of tasks, the information about the status of the resources is also sent to the Resource

Load Manager and Resource Power Manager. The Resource Power Manager manages the power consumption

through the resource On/Off mechanism. After successful execution of tasks, the resource engine returns the

result to the user. Simulation results reveal that the presented strategy is an efficient resource allocation scheme

for balancing load in fog environments to minimize the energy consumption and computation cost by 8.67 %

and 16.77 % as compared with existing DRAM scheme.

INDEX TERMS: Internet of Things; load balancing; fog computing; energy efficiency; resource

management.

I. INTRODUCTION

The “Internet of Things” (IoT) is a flexible, emerging

technology and is one of the most advanced environmental

trends in which over 50 billion things (e.g. sensors, mobile

devices, and other computer nodes) are linked to the

Internet by 2020 [3-5, 10]. Fog computing will play an

increasing role in managing the information flow of such

large and complex networks [2, 13]. The effect of their

activities on carbon emissions and related costs of energy

has unlimited consequences. Fog computing is a next level

of cloud computing that provides applications and service

to the network edge in a decentralized paradigm [1, 8, 17].

It is an IoT and edge computing platform [18-19].

Centralized and geo-distributed computing nodes allocate

resources to IoT applications [38-40]. Choosing the

appropriate computing node for each request is the

responsibility of the resource scheduler and managers [47-

50]. The computing nodes may be overloaded or under-

loaded after assigning the tasks [7, 11]. Dynamic and

efficient load balancing techniques can be used to increase

overall performance and reduce energy consumption.

Because “high-performance cloud infrastructure”

consumes large amounts of energy, and eliminates carbon

and heat emissions in the environment, green cloud

mailto:jamil@ieee.org

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.3035181, IEEE
Access

VOLUME XX, 2017 2

measures focus on efficient use of “cloud computing

infrastructure” and minimizing power consumption [12,

42]. Consider the bulk of power consumption in a data

center comes from computing processes, disk access,

networking and cooling needs. Increase of power

consumption in data centers contributes to higher

operational costs as well as it has a severe impact on the

environment [9, 25]. Therefore, energy saving techniques

have become necessary because of their environmental and

economic benefits [51]. In addition, it is easy to understand

the relationship between workload style behaviour and

random changes [37, 41]. The load can be transferred or

shared between the computer nodes in load balancing

techniques [20-24, 29]. The design of energy-efficient load

balancing solutions for the edge-fog environment has

therefore been focused.
In [6], a “Dynamic Resource Allocation Strategy”

(DRAM) for balancing the load in fog computing is

presented. The major objective of the paper is to obtain

high load balancing in the fog and cloud platforms

regarding all kinds of computing nodes. The DRAM

procedure consists of four key steps, i.e. (a) partition fog

operation, (b) spare node storage detection, (c) Dynamic

source allocation for fog web subsets, and (d) globally

allocation of resources based load-balancing. Although the

DRAM strategy obtains great load balancing for all kinds

of computer nodes in cloud and fog environments,

however, the main issues of fog environment and cloud

infrastructure were not considered by the researchers as

energy usage and computing prices.
In our work we systematically inquired and solved the

above mentioned challenges by presenting Dynamic

Energy Efficient Resource Allocation (DEER) strategy for

balancing the load in fog environment. In the presented

strategy, initially the user submits tasks for execution to the

Tasks Manager. Resource Information Provider register

resources from Cloud Data Centers. The information about

the tasks and resources are then submitted to the Resource

Scheduler. The resource scheduler arranges the available

resources in descending order as per their utilization. The

resource engine after receiving the information of tasks and

resources from the resource scheduler assigns tasks to the

resources as per ordered list. During execution of tasks, the

information about the status of the resources is also sent to

the Resource Load Manager and Resource Power Manager.

The Resource Power Manager manages the power

consumption through the resource On/Off mechanism.
The main contributions of the proposed work are as

follows:
 We have presented Dynamic Energy

Efficient Resource Allocation (DEER)

strategy for energy efficient resource

scheduling and load balancing in cloud

computing.
 In the proposed DEER strategy, the user will

submit “n” numbers of tasks to Task

Manager. It is assumed that for each task, the

computational cost and energy consumption

is predefined on the basis of the instructions

that it contains.
 The Resource Information Provider (RIP)

will register the “n” number of resources. It is

also assumed that for each resource, the

computational cost and energy consumption

is predefined for each task on the basis of

instructions contained in that task.

 The Resource Scheduler obtains information

about the tasks from Tasks Manager. The

tasks are sorted according to computational

cost and energy consumption in ascending

order S1<S2<S3... Sn.

 The Resource Scheduler obtains information

about the resources from RIP. The available

resources are sorted according to

computational cost and energy consumption

in descending order R1>R2>R3... Rn.

 The Resource Scheduler transmits the tasks

and resource information to the Resource

Engine.

 The Resource Engine assigns tasks to the

resources as per sorted lists and starts

execution and also shares the status of tasks

and resources with Resource Load Manager.
 The Resource Load Manager examines the

resource status during task execution, which

transfers this status to the Resource Power

Manager.
 The Resource Power Manager manages the

resource on / off power status based on

resource load status.
 The Resource Engine will compile the result

and send the results to the user after

successful execution of tasks.
The assumptions taken in the proposed work in respect of

information about the tasks and resources are reasonable in

reality. Because in cloud computing the resources in the

form of virtual machines have predefined configurations

for execution of tasks (since task is combination of multiple

instructions) in terms of MIPS (Million Instructions Per

Second), computational cost and energy consumption [26].

Rest of the paper is organized as follows: Section 2 presents

the related work. Section 3 provides the system design and

model. Section 4 presents evaluation methods including

simulation tool, application modelling and performance

evaluation parameters. Section 5 presents experimental

setup, results and discussion. Finally, section 6 concludes

the paper.

II. RELATED WORK

The related work is reviewed in respect of cloud

computing, fog computing, IoT applications, load

balancing and simulation tools used for cloud and fog

computing environments.
Cloud computing helps to control the next paradigm data

centers and allows cloud deal earners to rent data center

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.3035181, IEEE
Access

VOLUME XX, 2017 3

resources based on client QoS (Quality of Service) criteria

to deploy applications. Cloud applications have various

requirements for composition, deployment and

configuration. Measuring the performance of policies with

respect to resource allocation and task scheduling schemes

in more detail in cloud paradigm for various services

models and applications under different loads, energy

efficiency (heat dissipation, power consumption) and

device size is a challenge to tackle [27]. Fog computing as

a “distributed computing paradigm” extending to the

corner of the web the facilities provided by the cloud. It

allows the smooth use of cloud and corner incomes

together with its own organization. It facilitates computer,

networking and memory facilities administration and

programming among data centers and end devices. Fog

computing involves essentially parts of an application

executing in the cloud and between last opinions. Sand the

cloud devices, i.e. smart gateway sand routers [26]. Fog

computing supports movement, diversity of asset and

device, cloud interplay, and distributed information

analytics to meet applications necessities that need low

potential with large and dense geographic distribution. Fog

computing benefits from both corner and cloud

computing–while benefiting from the close proximity of

edge devices to endpoints, it also leverages cloud resource

scalability on demand [26].
In recent years, many smart devices and things, like

wearable IoT devices, smartphone, manufacturing and

office things, have been furnished with devices that can

detect physical data in the environment in real time [30].

The implementation of the “Internet of Things” (IoT) is a

concept according to which many smart instruments are

linked via the Internet and supported by information

analysis. Many IoT requests have been carefully read to

advance everyday life, including smart conveyance, smart

fitness, smart towns, and smart house [30]. Due to the large

amount and speed of data flows produced by IoT devices,

the cloud, which provides common and efficient computer

resources, is an intelligent “head” for processing and

storage of large data produced by spread IoT devices [31-

32]. However, since the data stream produced by IoT

devices is transmitted to a cloud data center via the Internet,

the transmitted data can consume a large amount of

bandwidth and power in the central network [33]. In

contrast, remote clouds are often far from IoT nodes, so

data flow delays may be too large, definitely for several

responsive IoT applications [34]. So, we can reduce the

load on traffic in the core network by using fog nodes that

deliver computer devices to IoT devices and IoT

manipulators [35-36]. In order to resolve the problem of

balancing the load in fog environment [14], a dispersed IoT

device association LoAd Balancing (LAB) strategy was

developed that allocates IoT devices to the corresponding

BS (Base Station) / Fog nodes to minimize the delay of all

data streams. The BS constantly evaluates the traffic load

and computational load in the circuit and sends the

information. At the same time, for IoT devices, the

corresponding BS can be selected at each repetition based

on the assessed traffic load and the computational load of

the BS / Fog node. In addition, it was shown that the

proposed algorithm is convergent and efficient. In [6], a

“Dynamic Resource Allocation Strategy” (DRAM) for

balancing load in fog environments is presented. The major

objective of the paper is to obtain maximum load balancing

in the fog and cloud platforms for all kinds of computing

nodes. The DRAM procedure consists of four key steps,

i.e. (a) partition fog operation, (b) spare node storage

detection, (c) Dynamic source allocation for fog web

subsets, and (d) globally allocation of resources based load-

balancing. Although the DRAM strategy obtains maximum

load balancing for all kinds of computer nodes in cloud and

fog platforms, however, the main issues of fog

environment and cloud infrastructure were not considered

by the researchers as energy usage and computing prices.

In [43], a GATS (Geography-Aware Task Scheduling)

strategy was presented that schedules tasks geographically

by considering spatial difference in green data centers.

GATS adopts one of a queue model for analysis of green

data centers. A random process was used with general

process distribution for modeling of arriving process. The

proposed strategy GATS collectively considers and utilizes

spatial differences of several aspects such as the price of

grid, active irradiation area of solar panels, solar radiation,

on-site air density, maximum servers available in each

green data center, wind speed, and rotor area of wind

turbines. GATS was an optimal task scheduling strategy

that solved the interior point method. GATS also optimally

determines the allocation of tasks of all scheduled

applications. Similarly, in [44], a dynamic mechanism was

presented for allocation of heterogeneous resources on

requests to various applications. The proposed mechanism

was specifically designed for VCDC (virtualized cloud

data center. The proposed approach utilizes as possible as

minimum number of virtual machines to accommodate the

current demand. The authors also tried to solve the problem

of overhead between revenue and energy cost of VCDC.

In order to solve the issues of latency, deadline, availability

of resources and bandwidth in fog environment, RTES

(Real-Time Efficient Scheduling) strategy was presented in

[45]. The major aim of the proposed RTES was to balance

the load efficiently using the bandwidth available in fog

environment. In [46], a simple Tabu search mechanism for

load balancing optimally between the cloud and fog nodes

was presented. The major aim of the proposed Tabu search

mechanism is to compute and process the tasks received

online.

In [15], a method of dynamic load balancing using a fog

computer distributed system was proposed in which fog

nodes can transfer computing tasks to neighboring nodes

with available queue space based on the distribution of

computing power and demand for tasks. Typically, load

balancing procedures are based on an index or load index

that produce an estimate of the node’s workload relative to

the global average. As such the said load catalog is used to

identify load imbalances if the load catalog of one node is

significantly upper or lesser than the load catalog of other

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.3035181, IEEE
Access

VOLUME XX, 2017 4

nodes. This shows that the CPU queue length is

information about the remaining resource and can be used

as the corresponding time-sharing workstation load index.

In [35], a strategy was introduced for a multi-agent

organization that implements the dynamic planning of

smart devices. The Energy Internet model is based on the

vertical setup of four main subsystems, namely, the

architecture proposed in [36]: in which there are various

levels i.e., perception level, network level, fog level and

control level. The ultimate goal is to create a customizable

power system that can perform intelligent energy planning

in real time. The “CloudSim” [26] toolkit majorly supports

modeling and building one or more practical technologies

such as (VMs) over a “Data Center” simulated node, jobs,

and then mapping them to appropriate VMs. Then it also

permits several data center recreation to qualify a

federation study and related VM migration policies for

consistency and automatic application scaling [27]. New

cloud claims, such as public web, business applications,

game portals game portals scientific workflows, and

content delivery, all work at maximum level of

architecture. Real usage format of various real-world

scenarios change over time and in most cases are

unpredictable. These applications impose various

requirements on the value of the package (QoS) depending

on the user's time and interactive mode (online / offline).
In [27-28], basic CloudSim class abstraction enhanced and

contributed to develop the iFogSim fog simulation

environment. A simulation-based approach to testing the

behavior of cloud computing systems and applications

offers significant advantages, because cloud developers

can fix quality bottlenecks before actually deploying the

cloud for commercial use. Table 1 shows the brief

summary of related work.

Table 1: An Overview of related work

III. SYSTEM DESIGN AND MODEL

We have presented a Dynamic Energy Efficient Resource

Allocation (DEER) Strategy for Load Balancing in Fog

Environment. It is an effective load balancing scheme that

allocates resources to the user on the bases of energy

consumption and computational cost.
The proposed DEER strategy as shown in Figure 1 is work

with following steps:

Reference Techniques
Evaluations

Platform
Energy

efficiency
Computational

Cost
Features Limitation

[6] DRAM CloudSim
Dynamically balanced

load
Not energy

efficient

[14] LAB
Mathemati

cal
Modeling

“Allocates IoT devices
to the corresponding

Fog nodes to minimize
the delay”

Not energy
efficient

[15]
Delay

minimizing
policy

Event
Driven

Simulation

“Fog-to-fog
communication to
reduce the service

delay by sharing load”

The proposed
work considers

only latency
parameter

[35]

Resource-
efficient

edge
computing

Real world
modeling

Managed resources for
emerging intelligent IoT

applications

Resource
management

only

[36]

“A multi-
agent based
flexible IoT

edge
computing

architecture
”

Real world
modeling

Provide a flexible multi-
agent edge computing

architecture

Limited to the
extent of

architecture

[43] GATS

Trae-driven
simulation

with
realistic

data

Schedule tasks
geographically by

considering spatial
difference in green

data centers

Task
transmission

time as
overhead was

not considered

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.3035181, IEEE
Access

VOLUME XX, 2017 5

1) The user will submit “n” numbers of

tasks to Task Manager. It is assumed that

for each task, the computational cost and

energy consumption is predefined on the

basis of the instructions that it contains.
2) The Resource Information Provider

(RIP) will register the “n” number of

resources. It is also assumed that for each

resource, the computational cost and

energy consumption is predefined for

each task on the basis of instructions

contained in that task.
3) The Resource Scheduler obtains

information about the tasks from Tasks

Manager. The tasks are sorted according

to computational cost and energy

consumption in ascending order

S1<S2<S3... Sn.
4) The Resource Scheduler obtains

information about the resources from

RIP. The available resources are sorted

according to computational cost and

energy consumption in descending order

R1>R2>R3... Rn.
5) The Resource Scheduler transmits the

tasks and resource information to the

Resource Engine.
6) The Resource Engine assigns tasks to the

resources as per sorted lists and starts

execution and also shares the status of

tasks and resources with Resource Load

Manager.
7) The Resource Load Manager examines

the resource status during task execution,

which transfers this status to the

Resource Power Manager.
8) Based on resource load status, the

Resource Power Manager manages the

resource on / off power status.
9) After successful execution of tasks, the

Resource Engine will compile the result

and send the results to the user.

Figure 1: DEER Strategy

As reflected from Figure 1, in the proposed Dynamic

Energy Efficient Resource Allocation (DEER) strategy,

initially the user submits tasks for execution to the Tasks

Manager. Resource Information Provider register

resources from Cloud Data Centers. The information about

the tasks and resources are then submitted to the Resource

Scheduler. The resource scheduler arranges the available

resources in descending order as per their utilization. The

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.3035181, IEEE
Access

VOLUME XX, 2017 6

resource engine after receiving the information of tasks and

resources from the resource scheduler assigns tasks to the

resources as per ordered list. During execution of tasks, the

information about the status of the resources is also sent to

the Resource Load Manager and Resource Power Manager.

The Resource Power Manager manages the power

consumption through the resource On/Off mechanism.

After successful execution of tasks, the resource engine

returns the result to the user.

a. COMPONENTS OF DEER

STRATEGY

The DEER strategy has following components:

i. USER

User is an entity that will submit tasks for execution. One

or more users can submit tasks at the same time.

ii. TASK MANAGER

Tasks Manager collects the tasks from the user and then

submits to Resource Scheduler for scheduling purpose. It is

the responsibility of the Task Manager to check the validity

of submitted tasks. Task Manager also maintains the

information of tasks regarding computational cost and energy

consumption.

iii. RESOURCE INFORMATION

PROVIDER

Resource Information Provider (RIP) not only registers the

resources but also provides the information about available

resources. The information also contains the computational

cost and power consumption of the available resources.

iv. RESOURCE SCHEDULER

Resource Scheduler obtains information about the tasks from

Task Manager and resource from Resource Information

Provider. Then Resource Scheduler sorts the submitted tasks

according to computational cost and energy consumption in

ascending order S1<S2<S3... Sn. Similarly, the Resource

Scheduler sorts the available resources according to

computational cost and energy consumption in descending

order R1>R2>R3... Rn. Then the Resource Scheduler

transmits the tasks and resource information to the Resource

Engine.

v. RESOURCE ENGINE

Resource Engine takes information about the resources and

tasks from Resource Scheduler. The Resource Engine then

assigns tasks to the resources as per sorted lists and starts

execution. Resource Engine also shares the status of tasks and

resources with Resource Load Manager. After successful

completion of tasks, the Resource Engine also returns the

results to the user.

vi. RESOURCE LOAD

MANAGER

The responsibility of Resource Load Manager is to examine

the resource status during task execution. After examining the

status, it is transferred to the Resource Power Manager.

vii. RESOURCE POWER

MANAGER

Resource Power Manager on reception of status regarding the

resources, manages the power through resource on / off

power status.

b. PSEUDO CODE FOR PROPOSED

DEER STRATEGY

The pseudo code for proposed DEER strategy is given

below.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.3035181, IEEE
Access

VOLUME XX, 2017 7

Algorithm 1 shows the overall procedure of DEER

Strategy. Initially the user submits tasks for execution to

the Tasks Manager. Resource Information Provider register

resources from Cloud Data Centers. The information about

the tasks and resources are then submitted to the Resource

Scheduler. The resource scheduler arranges the available

resources in descending order as per their utilization. The

resource engine after receiving the information of tasks and

resources from the resource scheduler assigns tasks to the

resources as per ordered list. During execution of tasks, the

information about the status of the resources is also sent to

the Resource Load Manager and Resource Power Manager.

The Resource Power Manager manages the power

consumption through the resource On/Off mechanism.

After successful execution of tasks, the resource engine

returns the result to the user.

The proposed DEER strategy is an efficient and novel

scheduling and load balancing approach. As to the best of

our knowledge and reflected from literature review, none

of the existing work specially work done in [6], have

considered the main problem of fog environment and cloud

infrastructure as energy usage and computing price.

Whereas, in our proposed work, it is systematically

inquired and solved by presenting Dynamic Energy

Efficient Resource Allocation (DEER) strategy for

balancing the load in fog environment. Moreover, the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.3035181, IEEE
Access

VOLUME XX, 2017 8

complexity of the proposed algorithm is linear as in the

proposed algorithm two separate “for loops” are used. The

first “for loop” is used for scheduling and load balancing

purposes, while the second one is used for minimization of

energy consumption. The runtime overhead of the

proposed algorithm DEER is O(n) and the same is better

than the existing DRAM algorithm which is O(n2). It is

because of that in the proposed algorithm two separate

linear “for loops” are used, while in the existing algorithm

nested “for loop” is being used. Therefore, the proposed

algorithm has linear time complexity, while that of the

existing one has quadratic time complexity.

The overhead of the proposed algorithm is sorting of all the

resources on the basis of their usage and it is because of

efficient utilization of resources. The same overhead is

negligible in respect of the proposed algorithm as the

proposed algorithm initially sorts the available resources

and then the algorithm works dynamically. Whenever a

new resource comes to the sorted pool of resources it will

be placed at its proper location dynamically.

IV. EVALUATION METHODS

This section provides comprehensive details on simulation

toolkit and application modeling.

a. SIMULATION TOOL

To enable modeling and establish fog and cloud computing

scenarios, we have used CloudSim [26]. It quantifies the

performance of resource management policies in cloud

environments for various application and service models

under different load, energy performance, and size of

systems. It is also capable of creating multiple nodes/VMs

and data centers. It provides “modeling and simulation of

cloud computing infrastructure at large scale”, including a

single physical computing node based data center. It is a

standalone platform for “modeling data centers,

scheduling, service brokers, and allocations schemes” [26-

27].

The proposed work is simulation based work, in which the

cloud computing simulator i.e., CloudSim [26] is used to

evaluate the presented strategy DEER. Since, the

significance of proposed work is evaluated through

simulation on the basis of existing and most relevant

published work DRAM [6], in which the similar CloudSim

configurations were used. However, in the future we will

test the proposed model with a real testbed and real

datasets, while currently we are testing our algorithm using

the existing algorithm datasets to prove the superior within

the same datasets.

b. APPLICATION MODELLING

In our work, we conducted a simulation in cloud computing

simulator i.e., CloudSim [26] to evaluate the proposed

strategy DEER. The intermediate “computing nodes” and

the edge “computing nodes” are simulated as two

“computing data centers”. The fog resources implemented

three kinds of computing nodes, i.e., (a) “the edge

computing node”, (b) “the intermediate node”, and (c) the

Processing Machines (PMs). The number of resources for

each type of computing node contained in the four various

datasets comprising 500, 1000, 1500 and 2000 fog

resources. For example, when the number of fog services

is 1000, “there are 324 fog services that need edge

computing nodes, 353 fog services that need intermediate

computing nodes, and 323 fog services that need PMs in

the remote cloud for resource response”. The results of the

proposed DEER strategy is then compared with the

existing published work DRAM [6].

c. PERFORMANCE EVALUATION

PARAMETERS

We have used “energy consumption and computational

cost as performance evaluation parameters”. The detail

description of each parameter is given below:

i. ENERGY CONSUMPTION

Energy consumption is the total power consumed by the

resources on execution of submitted tasks [16]. It is

calculated in joules. Energy consumption of presented and

existing strategies has been calculated with the help of Eq.

(4.1).

𝐸𝑛𝑒𝑟𝑔𝑦𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑

= ∑ 𝐸𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑖𝑜𝑛(𝑖)

𝑛

𝑖=1

+ 𝐸𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛(𝑖) + 𝐸𝑠𝑒𝑛𝑠𝑖𝑛𝑔(𝑖) 𝐸𝑞. (1)
From equation 1, it reflects that the total energy/power

consumption is the sum of energy consumption on

transmission, execution and sensing the each individual

task.

ii. COMPUTATIONAL COST

Computational cost is the total cost consumed by the

resources on execution of submitted tasks [16]. It is

calculated in dollars. Computational cost of proposed and

existing strategies has been calculated with the help of Eq.

(2).

𝐶𝑜𝑠𝑡𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 = ∑ 𝑀𝐼𝑃𝑆

𝑛

𝑖=1

 𝐻𝑂𝑆𝑇 (𝑖)

× 𝑇𝑖𝑚𝑒𝐹𝑟𝑎𝑚𝑒 𝐻𝑂𝑆𝑇 (𝑖) × 𝐶𝑜𝑠𝑡 𝐻𝑂𝑆𝑇 (𝑖) 𝐸𝑞. (2)

From equation 2, it is clear that the cost of computation is

the sum of cost of MIPS for each host, time frame occupied

by each host and the computational cost of each individual

host.

V. EXPERIMENT SETUP

The cloud computing simulator i.e., CloudSim [26] is used

to evaluate the presented strategy DEER. The algorithm

parameters are computed/selected based on fog and cloud

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.3035181, IEEE
Access

VOLUME XX, 2017 9

computing environment. The intermediate “computing

nodes” and the edge “computing nodes” are simulated as

two “computing data centers”. The fog resources

implemented three kinds of computing nodes, i.e., the edge

“computing node”, the intermediate node, and the

“Processing Machines (PMs)”. The number of resources

for each type of computing node contained in the four

various datasets comprising 500, 1000, 1500 and 2000 fog

resources. For example, “when the number of fog services

is 1000, there are 324 fog services that need edge

computing nodes, 353 fog services that need intermediate

computing nodes, and 323 fog services that need PMs in

the remote cloud for resource response”. It is because of

that the significance of proposed work is evaluated through

simulation on the basis of existing and most relevant

published work DRAM [6]. Similarly, we considered the

evaluation parameters as energy consumption and

computational cost because our main objective is to reduce

energy consumption and computational cost. The setting of

evaluation parameters are made based on cloud and fog

computing environment [26] and the same were evaluated

through equation 1 and 2 [16].

a. RESULTS AND DISCUSSION

The number of resources for each kind of computing node

consists of 4 different datasets containing 500, 1000, 1500

and 2000 fog resources. Our objective is to evaluate the

performance evaluation parameters in terms of nodes

variation, while the number of tasks remains constant. We

have considered simulation time as 24 hours and one user

is simulated. We evaluate each performance evaluation

parameter repeatedly and take the average values with

graphical analysis.

i. ENERGY CONSUMPTION

The energy consumption of proposed strategy i.e. DEER is

269862.1 Joule for 500 nodes, 525555.89 Joule for 1000

nodes, 772671.25 Joule for 1500 nodes and 1002513.97

Joule for 2000 nodes. Whereas, energy consumption of

existing strategy i.e. DRAM is 294000.17 Joule for 500

nodes, 568594.17 Joule for 1000 nodes, 852921.67 Joule

for 1500 nodes and 1099242.23 Joule for 2000 nodes.

The results for proposed policy compared with existing

policy in terms of energy consumption are plotted in Figure

2, which reflects that the proposed strategy i.e. DEER

consumed 8.67% less energy as compared with the existing

DRAM strategy.

Figure 2: Energy Consumption of proposed DEER strategy compared with existing DRAM strategy

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3035181, IEEE Access

VOLUME XX, 2017 10

As reflected from Figure 2, the proposed DEER strategy

consumed 8.67% less energy as compared with the existing

DRAM strategy. It is because of that the proposed work not

only balanced the load dynamically but also efficiently

managed the resources through Power On/Off mechanism.

ii. COMPUTATIONAL COST

The computational cost of proposed strategy i.e. DEER is

19050 dollars for 500 nodes, 34155 dollars for 1000 nodes,

51195 dollars for 1500 nodes and 72810 dollars for 2000

nodes. Whereas, the computational cost of existing strategy

i.e. DRAM is 24045 dollars for 500 nodes, 42435 dollars for

1000 nodes, 67740 dollars for 1500 nodes and 78705 dollars

for 2000 nodes.

The results for proposed policy compared with existing

policy in terms of computational cost are plotted in Figure 3,

which shows that the proposed strategy i.e. DEER consumed

16.77% less computational cost as compared with the

existing DRAM strategy

.

Figure 3: Computational Cost of proposed DEER strategy compared with existing DRAM strategy

As reflected from Figure 3, the proposed DEER strategy

consumed 16.77% less computational cost as compared with

the existing DRAM strategy. It is because of that the

proposed work not only balanced the load dynamically but

also efficiently managed the resources through Power

On/Off mechanism.

VI. CONCLUSION

In this research work, we have proposed Dynamic Energy

Efficient Resource Allocation (DEER) strategy for balancing

load in fog environments. In the proposed strategy, initially

the user submits tasks for execution to the Tasks Manager.

Resource Information Provider register resources from

Cloud Data Centers. The information about the tasks and

resources are then submitted to the Resource Scheduler. The

resource scheduler arranges the available resources in

descending order as per their utilization. The resource engine

after receiving the information of tasks and resources from

the resource scheduler assigns tasks to the resources as per

ordered list. During execution of tasks, the information about

the status of the resources is also sent to the Resource Load

Manager and Resource Power Manager. The Resource

Power Manager manages the power consumption through

the resource On/Off mechanism. After successful execution

of tasks, the resource engine returns the result to the user.

Simulation was performed in CloudSim simulation

environment and the results of proposed DEER strategy is

compared with existing DRAM strategy. Simulation results

show that the proposed strategy is an efficient resource

allocation strategy for load balancing in fog environments in

order to reduce the energy consumption and computation

cost by 8.67% and 16.77%.
In future work, we intend to propose fault-tolerant based

dynamic energy-efficient resource allocation strategy in fog

environments.

Acknowledgement: We would like to thank Universiti Putra

Malaysia and the Ministry of Education Malaysia for

supporting our work.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3035181, IEEE Access

VOLUME XX, 2017 11

REFERENCES

[1] Velte, T., Velte, A., & Elsenpeter, R. (2009). Cloud

computing, a practical approach. McGraw-Hill,

Inc.

[2] Stojmenovic, I., & Wen, S. (2014, September). The

fog computing paradigm: Scenarios and security

issues. In 2014 federated conference on computer

science and information systems (pp. 1-8). IEEE.

[3] Khan, R., Khan, S. U., Zaheer, R., & Khan, S.

(2012, December). Future internet: the internet of

things architecture, possible applications and key

challenges. In 2012 10th international conference

on frontiers of information technology (pp. 257-

260). IEEE.

[4] Lee, I., & Lee, K. (2015). The Internet of Things

(IoT): Applications, investments, and challenges

for enterprises. Business Horizons, 58(4), 431-440.

[5] Hendricks, Drew. "The Trouble with the Internet of

Things." London Data store. Greater London

Authority. Retrieved 10 (2015).

[6] Xu, Xiaolong, et al. "Dynamic resource allocation

for load balancing in fog environment." Wireless

Communications and Mobile Computing 2018

(2018).

[7] Kong, Yan, Minjie Zhang, and Dayong Ye. "A

belief propagation-based method for task allocation

in open and dynamic cloud

environments." Knowledge-Based Systems 115

(2017): 123-132.

[8] Sarkar, Subhadeep, Subarna Chatterjee, and

SudipMisra. "Assessment of the Suitability of Fog

Computing in the Context of Internet of

Things." IEEE Transactions on Cloud

Computing 6.1 (2015): 46-59.

[9] Peng, Kai, et al. "Link importance evaluation of

data center network based on maximum

flow." Journal of Internet Technology 18.1 (2017):

23-31.

[10] Luo, Entao, et al. "Privacyprotector: Privacy-

protected patient data collection in IoT-based

healthcare systems." IEEE Communications

Magazine 56.2 (2018): 163-168.

[11] Li, Peng, Shengli Zhao, and Runchu Zhang. "A

cluster analysis selection strategy for supersaturated

designs." Computational Statistics & Data

Analysis 54.6 (2010): 1605-1612.

[12] Tian, Guo-Liang, Mingqiu Wang, and Lixin Song.

"Variable selection in the high-dimensional

continuous generalized linear model with current

status data." Journal of Applied Statistics 41.3

(2014): 467-483.

[13] Baek, Jung-yeon, et al. "Managing Fog Networks

using Reinforcement Learning Based Load

Balancing Algorithm." arXiv preprint

arXiv:1901.10023 (2019).

[14] Fan, Qiang, and Nirwan Ansari. "Towards

workload balancing in fog computing empowered

IoT." IEEE Transactions on Network Science and

Engineering (2018).

[15] Yousefpour, A., Ishigaki, G., & Jue, J. P. (2017,

June). Fog computing: Towards minimizing delay

in the internet of things. In 2017 IEEE international

conference on edge computing (EDGE) (pp. 17-24).

IEEE.

[16] Mustafa, S., Nazir, B., Hayat, A., & Madani, S. A.

(2015). Resource management in cloud computing:

Taxonomy, prospects, and challenges. Computers

& Electrical Engineering, 47, 186-203.

[17] Bonomi, Flavio, Rodolfo Milito, Preethi Natarajan,

et al. Fog Computing : A Platform for Internet of

Things and Analytics. pp. 169–86,

doi:10.1007/978-3-319-05029-4.

[18] Bonomi, Flavio, Rodolfo Milito, Jiang Zhu, et al.

Fog Computing and Its Role in the Internet of

Things. no. March, 2014, pp. 2–5,

doi:10.1145/2342509.2342513.

[19] Puthal, Deepak, et al. Secure and Sustainable Load

Balancing of Edge Datacenters in Fog Computing.

no. May, 2018,

doi:10.1109/MCOM.2018.1700795.

[20] Qian, Chen. SDLB : A Scalable and Dynamic

Software Load Balancer for Fog and Mobile Edge

Computing. pp. 55–60.

[21] Vaquero, Luis M., et al. Finding Your Way in the

Fog : Towards a Comprehensive Definition of Fog

Computing Abstract : Finding Your Way in the

Fog : Towards a Comprehensive Definition of Fog

Computing. 2014.

[22] Sharma, S., & Saini, H. (2019). A novel four-tier

architecture for delay aware scheduling and load

balancing in fog environment. Sustainable

Computing: Informatics and Systems, 24, 100355.

[23] Wan, Jiafu, et al. Fog Computing for Energy-Aware

Load Balancing and Scheduling in Smart Factory.

Vol. 14, no. 10, 2018, pp. 4548–56,

doi:10.1109/TII.2018.2818932.

[24] Baccarelli, Enzo, et al. “Fog of Everything :

Energy-Efficient Networked Computing

Architectures , Research Challenges , and a Case

Study.” IEEE Access, vol. 5, IEEE, 2017, pp. 9882–

910, doi:10.1109/ACCESS.2017.2702013.

[25] Gia, Tuan Nguyen, et al. Fog Computing in Body

Sensor Networks : An Energy Efficient Approach

Fog Computing in Body Sensor Networks : An

Energy Efficient Approach. no. January, 2015.

[26] Buyya, Rajkumar, et al. “Modeling and Simulation

of Scalable Cloud Computing Environments and

the Cloudsim Toolkit: Challenges and

Opportunities.” Proceedings of the 2009

International Conference on High Performance

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3035181, IEEE Access

VOLUME XX, 2017 12

Computing and Simulation, HPCS 2009, 2009, pp.

1–11, doi:10.1109/HPCSIM.2009.5192685.

[27] Gupta, Harshit, et al. “IFogSim: A Toolkit for

Modeling and Simulation of Resource Management

Techniques in the Internet of Things, Edge and Fog

Computing Environments.” Software - Practice

and Experience, vol. 47, no. 9, 2017, pp. 1275–96,

doi:10.1002/spe.2509.

[28] Mahmud, Redowan, and Rajkumar Buyya.

“Modeling and Simulation of Fog and Edge

Computing Environments Using IFogSim Toolkit.”

Fog and Edge Computing, 2019, pp. 433–65,

doi:10.1002/9781119525080.ch17.

[29] Mostinckx, Stijn, et al. “Mirror-Based Reflection in

Ambienttalk.” Software - Practice and Experience,

vol. 39, no. 7, 2009, pp. 661–9

[30] S. S. Roy, D. Puthal, S. Sharma, S. P. Mohanty, and

A. Y. Zomaya, “Building a sustainable Internet of

Things: Energy-efficient routing using low-power

sensors will meet the need,” IEEE Consumer

Electronics Magazine, vol. 7, no. 2, pp. 42–49,

March 2018.

[31] W. Bao, D. Yuan, Z. Yang, S. Wang, W. Li, B. B.

Zhou, and A. Y. Zomaya, “Follow me fog: Toward

seamless handover timing schemes in a fog

computing environment,” IEEE Communications

Magazine, vol. 55, no. 11, pp. 72–78, Nov. 2017.

[32] H.-L. Truong and S. Dustdar, “Principles for

engineering IoT cloud systems,” IEEE Cloud

Computing, vol. 2, no. 2, pp. 68–76, 2015.

[33] L. Wang and R. Ranjan, “Processing distributed

internet of things data in clouds,” IEEE Cloud

Computing, vol. 2, no. 1, pp. 76–80, 2015.

 [34] M. Ogura and V. M. Preciado, “Stability of

spreading processes over time-varying large-scale

networks,” IEEE Transactions on Network Science

and Engineering, vol. 3, no. 1, pp. 44–57, Jan 2016.

 [35] X. Chen, Q. Shi, L. Yang, and J. Xu, “Thriftyedge:

Resourceefficient edge computing for intelligent

IoT applications,” IEEE Network, vol. 32, no. 1, pp.

61–65, Jan 2018.

 [36] T. Suganuma, T. Oide, S. Kitagami, K. Sugawara,

and N. Shiratori, “Multiagent-based flexible edge

computing architecture for IoT,” IEEE Network,

vol. 32, no. 1, pp. 16–23, Jan 2018.

[37] Thilagavathi, N., Dharani, D. D., Sasilekha, R.,

Suruliandi, V., & Uthariaraj, V. R. (2019). Energy

Efficient Load Balancing in Cloud Data Center

Using Clustering Technique. International Journal

of Intelligent Information Technologies

(IJIIT), 15(1), 84-100.

[38] Sookhak, M., Yu, F. R., Khan, M. K., Xiang, Y., &

Buyya, R. (2017). Attribute-based data access

control in mobile cloud computing: Taxonomy and

open issues. Future Generation Computer

Systems, 72, 273-287.

[39] Mahmud, R., Kotagiri, R., & Buyya, R. (2018). Fog

computing: A taxonomy, survey and future

directions. In Internet of everything (pp. 103-130).

Springer, Singapore.

[40] Ray, P. P. (2018). A survey on Internet of Things

architectures. Journal of King Saud University-

Computer and Information Sciences, 30(3), 291-

319.

[41] Mishra, S. K., Sahoo, B., & Parida, P. P. (2020).

Load balancing in cloud computing: a big

picture. Journal of King Saud University-Computer

and Information Sciences, 32(2), 149-158.

[42] Botta, A., De Donato, W., Persico, V., & Pescapé,

A. (2016). Integration of cloud computing and

internet of things: a survey. Future generation

computer systems, 56, 684-700.

[43] Yuan, H., Bi, J., & Zhou, M. (2020). Geography-

Aware Task Scheduling for Profit Maximization in

Distributed Green Data Centers. IEEE Transactions

on Cloud Computing.

[44] Bi, J., Yuan, H., Tan, W., Zhou, M., Fan, Y., Zhang,

J., & Li, J. (2015). Application-aware dynamic fine-

grained resource provisioning in a virtualized cloud

data center. IEEE Transactions on Automation

Science and Engineering, 14(2), 1172-1184.

[45] Verma, M., Bhardwaj, N., & Yadav, A. K. (2016).

Real time efficient scheduling algorithm for load

balancing in fog computing environment. Int. J. Inf.

Technol. Comput. Sci, 8(4), 1-10.

[46] Téllez, N., Jimeno, M., Salazar, A., & Nino-Ruiz,

E. (2018). A tabu search method for load balancing

in fog computing. Int. J. Artif. Intell, 16(2).

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3035181, IEEE Access

VOLUME XX, 2017 13

[47] Yuan, H., & Zhou, M. (2020). Profit-Maximized

Collaborative Computation Offloading and
Resource Allocation in Distributed Cloud and
Edge Computing Systems. IEEE Transactions
on Automation Science and Engineering.

[48] Yuan, H., Zhou, M., Liu, Q., & Abusorrah, A.
(2020). Fine-grained resource provisioning
and task scheduling for heterogeneous
applications in distributed green
clouds. IEEE/CAA Journal of Automatica
Sinica, 7(5), 1380-1393.

[49] Anglano, C., Canonico, M., & Guazzone, M.
(2018, June). Profit-aware resource
management for edge computing systems.
In Proceedings of the 1st International
Workshop on Edge Systems, Analytics and
Networking (pp. 25-30).

[50] Bitam, S., Zeadally, S., & Mellouk, A. (2018).
Fog computing job scheduling optimization
based on bees swarm. Enterprise Information
Systems, 12(4), 373-397.

[51] Yuan, H., Liu, H., Bi, J., & Zhou, M. (2020).
Revenue and Energy Cost-Optimized
Biobjective Task Scheduling for Green Cloud
Data Centers. IEEE Transactions on
Automation Science and Engineering.

Anees ur Rehman is MS

Scholar at Department of

Information Technology Hazara

University Mansehra, KPK,

Pakistan. His research interest is

Fog computing, Cloud

computing, high Performance

Computing, and Internet of

Things.

Zulfiqar Ahmad is currently

pursuing a PhD in Computer Science

at Department of Information

Technology, Hazara University,

Mansehra, KPK, Pakistan. He has

received his MSc (Computer

Science) degree with distinction from

Hazara University Mansehra in 2012

and MS (CS) degree from

COMSATS University, Abbottabad,

KPK, Pakistan in 2016. His research interest is Fog

computing, Cloud computing, high performance computing,

and Scientific Workflows execution and management.

Ali Imran Jehangiri is

a lecturer in the Department

of Information Technology,

Hazara Universtiy, Mansehra,

Pakistan. He graduated from

Bergische University

Wuppertal Germany in 2010.

He received Ph.D. degree in

Computer Science from the

Georg-August-Univesity

Goettingen, Germany in 2015. He gained industrial

experience with Service Computing working as research

assistant at GWDG. He is involved in research activities

dealing with parallel, Grid computing, Cloud computing and

Big data. He is author of several publications in international

journals, and conferences.

Mohammed Alaa Ala'anzy

Received his Master's degree in

computer science from University

Putra Malaysia, in 2017.

He is currently pursuing a Ph.D. with

the Faculty of Computer Science and

Information Technology, University

Putra Malaysia. His current research interests include cloud

computing, green computing, load balancing, task

scheduling, and fog computing. He has authored several high

reputed journal/conference papers and a reviewer in

Scientific.Net journal.

https://www.scientific.net/

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3035181, IEEE Access

VOLUME XX, 2017 14

Mohamed Othman

Received his Ph.D. (Hons.) from the

National University of Malaysia. He

is currently a Professor in computer

science with the Department of

Communication Technology and

Networks, Universiti Putra Malaysia

(UPM). Prior to that he was Deputy

Director of the Information Development and

Communication Centre, where he was in charge of the

UMPNet network campus, uSport Wireless Communication

Project, and the UPM Data Center. He is also an associate

researcher and a Coordinator of high-speed machines with

the Laboratory of Computational Science and Informatics,

Institute of Mathematical Science, UPM. In 2017, he

received an Honorary Professorship from SILKWAY

International University (formerly known as South

Kazakhstan Pedagogical University), Shymkent,

Kazakhstan, and was also a Visiting Professor with South

Kazakhstan State University, Shymkent, and the L. N.

Gumilyov Eurasian National University, Astana,

Kazakhstan. He has published more than 300 International

journals and 330 proceeding papers. His main research

interests are computer networks, parallel and distributed

computing, high speed interconnection networks, network

design and management (network security, wireless and

traffic monitoring), consensus in IoT, and mathematical

models in scientific computing. He is a senior member of

IEEE, and a Life Member of the Malaysian National

Computer Confederation, and the Malaysian Mathematical

Society. He was awarded the Best PhD thesis in 2000 by

Sime Darby Malaysia and the Malaysian Mathematical

Science Society. He has also filed six Malaysian, one

Japanese, one South Korean, and three U.S. patents.

Arif Iqbal Umar earned his

MSc (Computer Science)

degree from University of

Peshawar Pakistan and PhD

(Computer Science) degree

from BeiHang University

(BUAA) Beijing P.R. China.

His research interests include

Data Mining, Machine

Learning, Information

Retrieval, Digital Image

Processing, Computer

Networks Security and Sensor Networks. He has supervised

07 PhD candidates and 34 MS candidates. He is author of

more than 70 research publications in the leading research

journals and conferences. He has at his credit 27 years’

experience of teaching, research, planning and academic

management. He is working as Associate Professor of

Computer Science in the department of Information

Technology Hazara University Mansehra. He is leading the

Department as Head. arifiqbalumar@Yahoo.com &

drarif@hu.edu.pk

Jamil Ahmad (Senior

Member, IEEE) received

the M.Sc. degree in information

technology from the University

of Warwick, U.K., the M.Sc.

degree in computer science from

the University of Peshawar, and

the Ph.D. degree in artificial

neural network from the

Department of Electrical and Electronics Engineering,

King’s College London, U.K. He is currently holding the

position of the Vice Chancellor at the Hazara University

Khyber Pakhtunkhwa, Pakistan. He is a Fellow of the British

Computer Society, a Chartered Engineer (CEng), and a

member of IET and ACM. He received grants for his

research and academic projects from various organizations,

including the National Information and Communication

Technology (ICT) Research and Development Fund,

Pakistan, the HEC-British Council Linkage Program, and the

U.K. Government under PMI 2 Program. He was a recipient

of the Charles Wallace Pakistan Trust Visiting Fellowship,

U.K., from 2012 to 2013, and the International Visiting

Leadership Program (IVLP) Fellowship, from August 2007

to September 2007, USA.

mailto:arifiqbalumar@Yahoo.com
mailto:drarif@hu.edu.pk

