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Abstract—Learning-based techniques are increasingly effective
at controlling complex systems. However, most work done so
far has focused on learning control laws for individual tasks.
Simultaneously learning multiple tasks on the same system is
still a largely unaddressed research question. In particular, no
efficient state space exploration schemes have been designed
for multi-task control settings. Using this research gap as our
main motivation, we present an algorithm that approximates the
smallest data set that needs to be collected in order to achieve
high performance across multiple control tasks. By describing
system uncertainty using a probabilistic Gaussian process model,
we are able to quantify the impact of potentially collected data
on each learning-based control law. We then determine the
optimal measurement locations by solving a stochastic optimiza-
tion problem approximately. We show that, under reasonable
assumptions, the approximate solution converges towards the
exact one. Additionally, we provide a numerical illustration of
the proposed algorithm.

Index Terms—Machine learning, information theory and con-
trol, stochastic optimal control, uncertain systems, identification

I. INTRODUCTION

THE success of data-driven techniques in control crucially
depends on the quality of the available training data

set [1]–[3]. In reinforcement learning, this difficulty is tackled
through task-oriented exploration, i.e., by collecting data that
is particularly useful for the given task [2]. However, if
the task changes, e.g., the system is required to follow a
different reference trajectory, then the available data might
be unsuited to learn the corresponding control policy, and
a new exploration phase is necessary. This type of scenario
is addressed by multi-task reinforcement learning approaches,
where policies are sequentially trained for different tasks
in order to achieve good overall performance [4]. However,
multi-task reinforcement learning approaches often do not con-
sider constraint requirements [5]–[9]. Furthermore, if all task-
related exploration requirements are amalgamated into a single
exploration phase, then the number of system interactions
required to obtain good control performance across all tasks
is potentially reduced. This is generally desirable, as system
interactions are often considered costly [10].

System exploration is closely related to the field of optimal
experimental design, where the goal is to collect data max-
imizing information about the underlying system [11]. Most
techniques for system exploration are in this spirit, i.e., they
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aim to achieve a globally accurate model by steering the state
to regions of high model uncertainty [12], [13]. However, this
is intractable for unbounded or very large state spaces, as
it implies prohibitively long exploration periods. Moreover,
certain regions of the state space do not need to be explored
to obtain good control performance. Some methods address
these issues by striving for a locally accurate model [14], albeit
without any performance guarantees after data collection.

Efficiently exploring the state space of a system to gather
data for multiple tasks poses a twofold challenge. Firstly, the
optimal set of hypothetical system measurements needs to
be determined. Secondly, an efficient exploration trajectory
needs to be computed. In this work, we address this dilemma
by proposing an algorithm that provably approximates the
minimal number of hypothetical measurement points needed
to satisfy predefined constraints across different control tasks.
To the best of our knowledge, this is a novel technique. We
use a probabilistic Gaussian process model to quantify model
uncertainty, and measure control performance by computing
the probability of constraint violation. Our algorithm employs
a random sampling-based approximation, which we show to
be exact as the number of samples tends to infinity.

The remainder of this paper is structured as follows. After
a formal problem definition in Section II, the considered
Bayesian model is introduced, in Section III. Section IV
presents the algorithm for approximating the optimal mea-
surement locations, which is the main contribution of our
paper. A numerical illustration, in Section V, is followed by
a conclusion, in Section VI.

II. PROBLEM STATEMENT

We consider a stochastic nonlinear system of the form1

xt+1 = f(xt,ut) + g(xt,ut) +wt

:= f(x̃t) + g(x̃t) +wt,
(1)

where xt ∈ X ⊆ Rdx , ut ∈ U ⊆ Rdu are the system’s states
and control inputs at time step t ∈ N0, respectively. The

1Let R denote the real numbers, R− the negative real numbers, N the
strictly positive integers, and N0 := N ∪ {0} the non-negative integers. For
d ∈ N, N≤d := {1, . . . , d} and N0

≤d
:= N≤d ∪ {0} denote all non-

negative integers smaller or equal to d with and without zero, respectively.
The ceiling operator is denoted by d·e. Boldface lowercase/uppercase letters
denote vectors/matrices. For A,B ∈ Rm×n, [A B] denotes the horizontal
concatenation of A and B, [A]ij denotes the entry in the i-th row and j-
th column of A, and det(A) its determinant. Id denotes the d-dimensional
identity matrix, diag(a1, . . . , ad) a diagonal matrix with entries a1, . . . , ad.
For v,u ∈ Rd, u ≤ v denotes componentwise inequality, and [v]1:i denotes
the first i entries of v. For a set X, 1X(·) denotes its indicator function, and |X|
its cardinality. The uniform distribution on X is denoted U(X). The set of all
finite subsets of X is denoted by Γ(X) := {{xi}i∈N≤n

|n ∈ N0,xi ∈ X}.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/LCSYS.2020.3006279

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



system is perturbed by normally distributed process noise
wt ∼ N (0,Q). The vector x̃t := (xt,ut) ∈ X̃ ⊆ Rdx̃ , where
dx̃ := dx +du, X̃ := X× U, concatenates the state xt and the
control inputs ut. For the sake of simplicity, we assume x0

is fixed and known. However, the presented method extends
to the case where only the probability distribution of x0 is
known. The function f : X̃ → X is known a priori, whereas
g : X̃ → X is an unknown function, for which we assume to
have a probabilistic model. This is discussed in Section III.

Remark 1: Assuming f(·) is known is not a very restrictive
requirement. If, for example, no prior system knowledge is
given, then f(x̃t) = xt or f(x̃t) = 0 can be employed.

We assume to have L ∈ N data-driven control laws uj : X×
Γ(X̃×X)×N→ U, j ∈ N≤L. Their arguments correspond to
the state xt, system measurement data DN := {x̃(i),f(x̃(i))+
g(x̃(i))+w(i)}i∈N≤N

, where N ∈ N, and the time step t. The
system measurements DN are to be collected, e.g., via system
exploration. This type of control law is frequently employed in
learning-based settings [15], [16]. We assume that the control
laws satisfy some regularity conditions with respect to the state
xt, as detailed in the following.

Assumption 1: The control laws uj(·,DN , t) are real
analytic in X for all DN ∈ Γ(X̃× X) and all t ∈ N.

In particular, this implies that the control laws uj(·, ·, ·)
are smooth with respect to the state. This applies for many
commonly used control laws, e.g., PID-controllers and neural
networks with smooth activation functions.

Each control law uj(·, ·, ·) is required to fulfill a different
task, which is expressed as a series of constraints

hjt

(
x̃jt

)
≤ 0, ∀ t ∈ N0

≤H , j ∈ N≤L (2)

over a finite time horizon of H steps. Here hjt : X̃ → RS
are nonlinear constraint functions, S ∈ N denotes the number
of constraints per control law, and x̃jt := (xt,u

j(xt,DN )).
Such constraints are often linear, e.g., in the case of energy
or input saturation constraints, or polynomial, e.g., in the case
of tracking error performance requirements. In this work, we
consider the following, more general case:

Assumption 2: The entries [hjt (·)]i of the functions hjt (·)
are non-constant and real analytic.

Note that Assumption 2 accommodates regions with non-
smooth boundaries, e.g., the intersection of linear constraints.

Remark 2: The proposed method extends straightforwardly
to the more general case where both the horizon H and number
of constraints S are different for each control law. However,
we do not consider this case for notational convenience.

We aim to obtain the smallest possible set of measurement
locations X̃ ∗ :=

{
x̃(i),∗}

i=1,...,N∗ , such that the correspond-
ing data set D∗, if collected and used to design the control
laws uj(·, ·, ·), yields system trajectories that satisfy (2) with
high probability. This is expressed by the chance-constrained
problem

X̃ ∗= arg min
X̃N∈Γ(X̃)

N

s.t. DN =
{
x̃(i),f

(
x̃(i)

)
+ g
(
x̃(i)

)
+w(i)

}
x̃(i)∈X̃N

CN

(
X̃N
)
> 1− δ,

(3)

where

CN

(
X̃N
)

:= P
(
hjt
(
x̃jt
)
≤ 0,∀ t ∈ N0

≤H , j ∈ N≤L
)
, (4)

is the probability of constraint satisfaction given X̃N , which
we require to be bounded from below by 1−δ. Here δ ∈ (0, 1)
is a design parameter that specifies the desired probability of
constraint violation. Here X̃N :=

{
x̃(i)

}
i∈N≤N

denotes the
locations of N system measurements. The probability operator
P(·) describes the probability of an event given process noise
wt and the a priori distribution that we assume for the
unknown function g(·), as discussed in Section III.

Remark 3: Since the system dynamics are unknown, the
measurements in an arbitrary data set DN are hypothetical.
However, by assuming a distribution over g(·), we are able to
determine the impact of measurement locations X̃N on control
performance.

Finding an optimal set X̃ ∗ under uncertainty is generally
impossible without considering further assumptions. Hence,
we restrict ourselves to the case where the controllers are
specified in a way that the desired closed-loop behavior is
achievable:

Assumption 3: The optimization problem (3) is feasible for
a finite X̃ ∗, i.e., |X̃ ∗| =: N∗ <∞.

Furthermore, we assume that the optimal data set is con-
tained within a known compact subset of X:

Assumption 4: There exists a known compact subset X̃∗ ⊂
X̃, such that x̃(i),∗ ∈ X̃∗ for all i ∈ {1, . . . , N∗}.
This does not constitute a very restrictive assumption, since
control tasks are typically restricted to a compact subset of the
state space, i.e., we only require information from a compact
subset to achieve good performance.

III. PROBABILISTIC MODEL

In order to assess how data collected in the future will
potentially affect control performance, we need to quantify
how model uncertainty decreases after new data points have
been added. To this end, we consider hypothetical data points
s̃(1), . . . , s̃(N) ∈ X̃ and system trajectories s̃j0, . . . , s̃

j
H ∈ X̃,

which are drawn from a GP distribution, as explained in the
sequel. For simplicity of exposition, we define a single set
that subsumes both hypothetical data and sampled system
trajectories as

SÑ := {s̃n,f(s̃n) + gs(s̃n) +wn}n∈N0
≤Ñ−1

(5)

where Ñ := N + L(H + 1). Here we use the superscript s
to emphasize that gs(·) is a sample function evaluation, as
opposed to an evaluation of the true function g(·). The first
N elements of SÑ correspond to a hypothetical data set, and
the remaining elements correspond to sample trajectories, i.e.,

s̃n =

{
s̃(dn), n = 0 . . . , N − 1

s̃jntn n = N, . . . , Ñ − 1
(6)

where we reorganize indices as jn := d(n−N +1)/(H+1)e,
dn := n+ 1, and tn := n−N − (jn − 1)(H + 1).

Remark 4: A GP model can be trained using measurement
data from the true system (1). For the sake of notational
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simplicity, we analyze the setting where no prior measurement
data from the true system is available, and show exclusively
how to draw samples from a GP in a recursive fashion.
However, this does not constitute a loss of generality, since
the a posterior GP distribution after training satisfies the
requirements used in this paper [17].

We begin by introducing GPs for the case where dx = 1,
and then describe how they can be generalized to a multivariate
setting. Formally, a GP is a collection of random variables, of
which any finite subset is jointly normally distributed [17]. It
is fully specified by a mean function, which we set to zero
without loss of generality [17], and a positive definite kernel
k : Rdx̃ × Rdx̃ → R. Given a sample data set Sn, a sub-
sequent sample evaluation at an arbitrary augmented state x̃
is normally distributed, i.e., gs(x̃) ∼ N (µn+1(x̃), σ2

n+1(x̃)),
with mean and variance

µn+1 (x̃) :=µ (x̃|Sn) = kT
n (x̃)K−1

n yn, (7)

σ2
n+1(x̃) :=σ2(x̃|Sn) = k(x̃,x̃)−kT

n(x̃)K−1
n kn(x̃), (8)

where [kn(x̃)]i = k(x̃, s̃i), [yn]i = gs(s̃i), and the entries of
the covariance matrix are given by [Kn]ij = k(s̃i, s̃j).

Using (7) and (8), we are able to sample data
sets and system trajectories from the GP distribution
as gs(x̃) := µn+1 (x̃) + σn+1 (x̃) ζ, where ζ ∼ N (0, 1).
If dx > 1, we model each dimension with a separate
GP, i.e., gs(x̃) ∼ N

(
µn(x̃),Σ2

n(x̃)
)
, where [µn(x̃)]d =

µ(x̃|Sd,n), Σn(x̃) = diag
(
σ(x̃|S1,n), . . . , σ(x̃|Sdx,n)

)
,

and the measurement data and samples are separated
for each dimension d ∈ {1, . . . , dx} as Sd,n =
{s̃i, [f(s̃i)]d + [gs(s̃i)]d + [wi]d}i=N0

i−1
. This corresponds to

conditionally independent state transition function entries,
which is a common assumption for multivariate systems [2].

We assume the GP kernel k(·, ·) correctly captures the prior
knowledge about the entries of g(·):

Assumption 5: The entries of g(·) are sampled from a GP
with mean zero and known real analytic kernel k(·, ·).

Assumption 5 effectively assumes a probability distribution
over g(·), specified by the choice of kernel k(·, ·). As k(·, ·)
only encodes high-level properties of g(·), the resulting func-
tion space is generally far richer than in the case of a fixed
model structure with unknown parameters, which is habitual
in system identification [18]. Assumption 5 is frequently used
in practice, e.g., for robotic systems [2]. In particular, it
implies that the expected value of an arbitrary state x̃jt at
time t under control law j is obtained by integrating over
gs(x̃) ∼ N

(
µn(x̃),Σ2

n(x̃)
)
, i.e.,

Eg,w

(
xjt

)
=

∫
X2Ñ

snj,t

Ñ−1∏
i=0

p(ζi)dζi, (9)

where nj,t := N+(j−1)(H+1)+ t, and Eg,w(·) denotes the
expected value with respect to the unknown function g(·) and
the process noise wt. The samples are computed recursively

using

sn+1 =f(s̃n) + µn(s̃n) + [Σn(s̃n) Q] ζn, n+ 1 6= nj,0,

snj,0
=x0, s̃n =

(
sn,u

j(sn,SN , t)
)
, ∀ j ∈ N≤L

Si =
{
s̃n,f(s̃n) + µn(s̃n) + [Σn(s̃n) Q] ζn

}
n∈N0

≤i−1

Here p(ζn) = N (0, I2dx). Note that we require the random
variables ζi to have dimension 2dx in order for the GP
samples gs(s̃n) = µi(s̃n) + Σi(s̃n) [ζn]1:dx

to be uniquely
defined [17].

Since each control law uj(·, ·, ·) is independent given the
training data DN , the probability of constraint satisfaction for
a set of measurement points X̃N is given by

CN

(
X̃N
)

=
Ñ−1∏
n=0

∫
X2

1Rdx̃
−

(
hjntn (s̃n)

)
p
(
s̃n

∣∣∣Sn)dζn. (10)

Here we set 1Rdx̃
−

(hjntn (s̃n)) := 1 for all n ≤ N − 1 for
simplicity of exposition.

As our goal is to find the smallest possible set of mea-
surement points X̃ ∗, it is reasonable to assume that X̃ ∗ does
not contain any measurement locations that provide identical
information. In terms of a GP distribution, this is expressed
as follows.

Assumption 6: Let X̃ ∗ be the minimizer of (3). Then
Σn(x̃(n+1),∗) is invertible for n ∈ N≤N∗−1.

Intuitively, Assumption 6 states that the control performance
does not benefit from performing measurements at the same
location multiple times. This is the case, e.g., if process noise
wt is small compared to g(·). For nondegenerate kernels, e.g.,
the squared-exponential kernel, Assumption 6 implies that the
elements of X̃ ∗ are all different.

IV. TWO STAGE OPTIMIZATION

A. Sampling-Based Approximation

Solving the optimization problem (3) exactly is generally
impossible, since the corresponding chance constraints (4)
are intractable to compute. Hence, we employ a two-stage
approach to approximate a minimizer of (3), which is detailed
in Algorithm 1. First, we fix the size N of the data X̃N , then
minimize a sample average approximation [19] of the chance
constraints (4), given by

CN (X̃N )≈CMN (X̃MN ):=
1

M

M∑
m=1

Ñ−1∏
n=0

1Rdx̃
−

(
hjntn (s̃mn )

)
. (11)

Here s̃mn denotes the m-th sample corresponding to the n-
th entry in SN , and M ∈ N is the total number of sample
sets SmN . If the maximal approximate probability of constraint
satisfaction is lower than the desired bound 1− δ, the number
of data points N is increased and the procedure is repeated.

Remark 5: The main driver of computational complexity in
Algorithm 1 is the inversion of the matrices Kn, required for
the GP mean and variance. In practice, the size of Kn can be
reduced, e.g., by employing sparse GP methods [20].
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Algorithm 1 Data selection for multi-task learning

Input: M , δ, f(·), Q, ζ1
1 , ζ

2
1 , ζ

2
2 , . . .

1: Set N = 0
2: while CMN (X̃MN ) ≤ 1− δ do
3: Set N ← N + 1
4: Solve

X̃MN = arg max
X̃N

CMN (X̃N )

s.t. ∀ m∈N≤M , j∈N≤L, n∈N0
≤Ñ−1

, n+1 6= nj,0

smn+1 =f(s̃mn ) + µmn (s̃mn ) + [Σm
n (s̃mn ) Q] ζmn ,

smnj,0
=x0, s̃mn =

(
smn ,u

j(s̃mn ,SmN , tn)
)

Smn =
{
s̃mi ,f(s̃mi ) + µmi (s̃mi )

+ [Σm
i (s̃mi ) Q] ζmi

}
i∈N≤n

5: end while
6: Set X̃M,∗

N = X̃MN
7: return X̃M,∗

N

B. Theoretical Analysis

We now derive formal guarantees for the approximate
solution X̃MN obtained with Algorithm 1. To this end, we prove
some preliminary results.

Lemma 1: Let dx = 1, let Assumption 6 hold and let Sn be
a sample data set. Furthermore, let σ2

n (·) be the corresponding
posterior covariance and let ujt (·) be a control law that satisfies
Assumption 1. Then σ2

n

(
x,uj(x)

)
6= 0 holds for all x ∈ X

up to a set of measure zero.
Proof: Non-zero real analytic functions are non-zero almost

everywhere, and the concatenation of real analytic functions
is also real analytic [21]. Since uj(·,DN , t) is real ana-
lytic, and σ2

n (·) corresponds to a sum of kernel evaluations,
σ2
n

(
x,uj(x)

)
is a real analytic function of x.

Remark 6: Lemma 1 implies det(Σn(x̃(n+1))) 6= 0 for al-
most every X̃N , hence we are able to search for a minimizer of
(3) using gradient-descent-based approaches. This is illustrated
in Section V.

This enables us to show that the state is on a predefined set
of measure zero with probability zero.

Lemma 2: Let Assumptions 2, 5 and 6 hold, and let X0 ⊂ X
be an arbitrary subset of the state space with measure zero.
Then P(xjt ∈ X0) = 0 holds for all j ∈ N≤L and t ∈ N0

≤H .
Proof: Assume, without loss of generality, that j = 1. We

first prove the result for N = 0, and then discuss how it
extends to an arbitrary N ∈ N. Since N = 0 and j = 1, the
probability that the state lies within an arbitrary set of measure
zero at time step t is given by

P

(
x1
t ∈ X0

)
=

∫
X2t

1X0

(
f(s̃t−1) + µt−1(s̃t−1)

+ [Σt−1(s̃t−1) Q] ζt−1

) t−1∏
i=0

p(ζi)dζi

(12)

As f(s̃t−1) and µt−1(s̃t−1) are constant with respect to ζt−1,
and the measure of X0 is translation-invariant, it suffices to

show ∫
X2

1X0

(
[Σt−1(s̃t−1) Q] ζt−1

)
p(ζt−1)dζt−1

!
= 0

for all t ∈ N0
≤H , which we achieve by induction. For t = 1,∫

X2

1X0

([
Σ0(s̃j0) Q

]
ζ0

)
p(ζ0)dζ0

=

∫
X

(∫
X

1X0
(x) p

(
Σ−1

0 (s̃0)x− ζ′′0
)
Σ−1

0 (s̃j0)dx

)
p(ζ′′0 )dζ′′0

=0,

holds, since 1X0 (x) = 0 for all x ∈ X up to a set of
measure zero. Here we employ the fact that that Σ0(s̃0) =
diag(k(s̃0, s̃0), . . . , k(s̃0, s̃0)) is invertible for all non-zero
kernels, which allows us to integrate using the substitution
x = Σ0(s̃j0)ζ′0 +Qζ′′0 and ζ′0 := [ζi]1:dx

, ζ′′0 := [ζi]dx+1:2dx
.

The expression p(Σ−1
0 (s̃j0)x − ζ′′0 ) corresponds to a normal

distribution with center ζ′′0 and scaling matrix Σ0(s̃j0))−1,
hence it is smooth and integrable with respect to x. Conse-
quently, the result holds for t = 1. Note that, due to Lemma 1,
this implies that Σ1(s̃1) is invertible for almost every ζ0.
Hence, we can assume that Σt−1(s̃t−1) is invertible for a
fixed t−1 and almost every s̃t−1, and we can apply the same
argument as in the case t = 1 to obtain the desired result for an
arbitrary t and j = 1. Due to Assumption 6, the matrix ΣN (·)
is invertible for data sets of size N 6= 0, which enables us to
extend the proof to arbitrary N using the same argument.

This directly yields the following result:
Lemma 3: Let Assumptions 2, 5 and 6 be satisfied. Then

P(hjt (x̃
j
t ) = 0) = 0 holds for all t ∈ N0

≤H , j ∈ N≤L.
Proof: Since [hjt (x̃)]i are real analytic and non-constant by

assumption, [hjt (x̃)]i 6= 0 holds for all i ∈ N≤S and all x̃ ∈ X̃
up to a set of measure zero. By employing Lemma 2 and the
union bound, we obtain

P

(
hjt (x̃

j
t ) = 0

)
≤

⋃
i∈N≤S

P

([
hjt (x̃

j
t )
]
i

= 0

)
= 0.

We now show that the approximations used in Algo-
rithm 1 converge to the true probabilities of constraint sat-
isfaction (10).

Lemma 4: Let Assumptions 1–6 hold, and let X̃∗ be given
as in Assumption 4. Then, for an arbitrary N ∈ N, the
expected value of CN (·) is finite valued and continuously
differentiable on (X̃∗)N , and CMN (·) converges to CN (·) with
probability 1 uniformly in (X̃∗)N as M →∞.

Remark 7: The proofs of Lemma 4 and Theorem 1, which
we state in the following, require Theorem 7.48 and Theorem
5.4 from [19], respectively. Due to space limitations, we do
not include them here. However, to facilitate interpretation, we
enumerate the technical statements in the proofs of Lemma 4
and Theorem 1, such that they correspond to Theorem 7.48
and Theorem 5.4 from [19].

Proof of Lemma 4: We show that CMN (·) satisfies all condi-
tions of [19, Theorem 5.4], enumerated in the sequel as i)-iii),
which directly yields the desired result.
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i) We employ an argument from [19]. Due to Lemma 3, the
functions 1RS

−
(hjt (s̃

m
nj,t

)) are uniquely defined and con-
tinuous for an arbitrary t, j ∈ N and almost every sample
ζmn . Hence, CMN (X̃N ) is continuously differentiable at any
X̃N ∈ (X̃∗)N for almost every sample ζmn .

ii) Since CMN (X̃N ) ≤ 1 and X̃N ∈ (X̃∗)N is compact,
the absolute value of CMN (X̃N ) is upper bounded by an
integrable function on X̃N ∈ (X̃∗)N .

iii) The samples ζmn are i.i.d.
Lemma 5: Let Assumptions 1–6 hold, and let CN (·) be the

probability of constraint satisfaction for a data set of size N .
Let CMN (·) correspond to its sample average approximation,
and let X̃M,∗

N denote the output of Algorithm 1. Then, with
probability 1, for every ε ≥ 0, there exists an Mε, such that
CN (X̃M,∗

N )− C∗N ≤ ε holds for all M ≥Mε.
Proof: We show that the conditions of [19, Theorem 5.4]

are satisfied by CN (·) and CMN (·), which yields the desired
result. In the following, we employ i)-iv) to enumerate the
required conditions, which corresponds to the enumeration in
[19, Theorem 5.4].

i) Due to Assumption 4, (X̃∗)N is non-empty and compact.
ii) Due to Lemma 4, CN (·) is finite valued and continuously

differentiable on (X̃∗)N .
iii) Due to Lemma 4, CM (·) converges to CN (·) with prob-

ability 1 as M →∞, uniformly in (X̃∗)N .
iv) Since we restrict ourselves to the set (X̃∗)N , X̃M,∗

N ∈
(X̃∗)N holds trivially for all M .

We now state the main result of this paper, namely that
Algorithm 1 is able to approximate an optimal solution arbi-
trarily accurately with probability 1 using a high enough but
finite number of random samples M .

Theorem 1: Let Assumptions 1–6 hold, and let X̃M,∗
N denote

the output of Algorithm 1. Then, with probability 1, for every
ε > 0, there exists an Mε, such that CN (X̃M,∗

N ) − C∗ ≤ ε
holds for all M ≥Mε.

Proof: The result holds if the approximate optima
CMN (X̃MN ), N = 1, . . . , N∗, obtained in Line 4 of Algo-
rithm 1 converge uniformly to the true solutions CN (X̃MN ).
Due to Lemma 4, the conditions required by Lemma 5 hold for
every fixed N . Furthermore, since the inequality C∗N∗ < 1−δ
holds strictly, Algorithm 1 returns a solution of size at most
N∗ with probability 1 for M large enough. As the samples
drawn for each problem are i.i.d., we have

P
(

lim
M→∞

CM,∗
N = C∗, lim

M→∞
|X̃MN | = N∗,∀ N ∈ N≤N∗

)
=

N∗∏
N=1

P
(

lim
M→∞

CMN (X̃M,∗
N ) = C∗, lim

M→∞
|X̃MN | = N∗

)
= 1.

In particular, Theorem 1 implies that, for M large enough,
the difference between CM,∗

N and the exact optimal probability
of constraint satisfaction C∗ can be made arbitrarily small.

V. NUMERICAL ILLUSTRATION

We illustrate the proposed approach with a system of the
form given by (1), where f(x̃) = (u1, u2)T,

g(x̃) =

(
x1 + (cos(2πx1)− 1)x2

1
1+exp(−5x1)− 1

2 +cos(πx2)

)
,

and wt ∼ N (0, diag(0.01, 0.01)). Due to its highly nonlinear
dynamics, it is impossible to extrapolate the system’s behavior
from locally collected data. Hence, control tasks that corre-
spond to different portions of the state space require distinct
measurements to achieve good performance.

We assume to know that g(·) depends exclusively on x,
hence we use a GP that takes only the state x as input.
Moreover, we employ a squared-exponential kernel k(·, ·) for
the GP, which is able to approximate a continuous func-
tion arbitrarily accurately on compact sets [22]. We employ
GP-based feedback linearizing control laws uj(x,DN , t) =
−µN,t(x) + xjref(t) with 3 different reference trajectories

x1
ref(t) = 0 (13)

x2
ref(t) =

(
sin(2πt/50) cos(2πt/50)

)T
(14)

x3
ref(t) =

(
2 sin(2πt/25) cos(2πt/100)

)T
. (15)

The GP used to compute the mean µN,t(·) is identical
to the one used to obtain the approximate optimal data set
X̃M,∗
N . Each control law is required to fulfill a single tracking

performance requirement hjt (x) ≤ 0, j = 1, 2, 3 where

hjt (x) = ‖x− xref,j(t)‖2 − ϕ(t), j = 1, 2, (16)

h3
t (x) = |x1| − 5/2, (17)

and ϕ(t) := max{3 exp(−t/5), 0.1}, over a time horizon
of H = 100 steps. We assume that the optimal data set is
contained within X̃∗ = [−3, 3]2, since the control objectives
are restricted to this region. Furthermore, we are given 100
prior measurements taken from random samples of the true
system, which we use to train the GP. The number of samples
used to obtain the approximate optimal data set X̃M,∗

N is set to
M = 100, and the desired probability of constraint violation
is set to δ = 0.01.

In order to solve the approximate optimization problem, we
search for a solution by minimizing the surrogate function

1

M

M∑
m=1

Ñ−1∏
n=0

hjntn (s̃mn )1Rdx̃
−

(
hjntn (s̃mn )

)
,

which enables us to employ gradient-based methods.
We apply the proposed technique 10 times using randomly

sampled starting points x0 ∈ U([−3, 3]2) each time, and
obtain an approximate optimal data set X̃M,∗

N after N ∈
{6, . . . , 12} iterations of Algorithm 1. The approximate prob-
ability of constraint violation as a function of N is shown
in Fig. 1. The prior system measurements, the desired trajec-
tories, and an approximate optimal set X̃M,∗

N obtained after
applying Algorithm 1 can be seen in Fig. 2.

All approximate optimal sets X̃M,∗
N correspond roughly to

points within the circle given by x2
d(t). This result is intuitive,

since this is the region where the desired trajectories specified
by (16) and (17) overlap the most. Moreover, as can be seen in
Fig. 2, the approximate optimal solution X̃M,∗

N lies in regions
that are both unexplored and of interest to the individual
control tasks. However, since we employed a gradient-based
solver to a non-convex problem, sub-optimal solutions are to
be expected. This can also be seen in Fig. 2, where some data
points are close to already available prior data, i.e., a local
minimum was found.
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Fig. 1: Maximal approximate probability of constraint satisfaction
CM

N (X̃M
N ) as a function of data set size N for 10 repetitions of

Algorithm 1. Desired probability of constraint satisfaction 1 − δ is
achieved after N ∈ {6, . . . , 12} iterations of Algorithm 1.
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Fig. 2: Prior measurement data, reference trajectories xref,j(t), and
approximate optimal measurement locations X̃M,∗

N obtained with a
single application of Algorithm 1 using M = 50.

After every completion of Algorithm 1, measurements of the
true system at the approximate optimal set X̃M,∗

N are collected,
and we carry out 100 Monte Carlo simulations of the true
system. This results in no constraint violations except for task
j = 2. However, constraint violations are small, as can be seen
in Fig. 3, which indicates that the proposed method yielded a
good approximate optimal data set X̃M,∗

N .

VI. CONCLUSION AND FUTURE WORK
We have presented an algorithm that approximates the

smallest training set required for achieving high performance
across multiple learning-based control tasks with high proba-
bility. We use a sample-based approximation that approximates
the correct solution arbitrarily well with probability 1 as the
number of samples increases. In a numerical simulation, the
approximate optimal data sets computed with the proposed
method yielded adequate control laws for multiple tasks after.
Extensions of the present paper include investigating the
sample complexity of the proposed algorithm, and using it
to design system exploration approaches.
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