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ABSTRACT: 
 
Glacier is one of the clearest signal of climate change, and its changes have important effects on regional climate and water resources. 
Glacier identification is the basic of glacial changes research. Traditional remote sensing glacier identification methods usually 
perform simple bands calculation based on the spectral characteristics of glacier. The identification results are greatly affected by 
threshold segmentation. In addition, there is a misclassification of water body and glacier. As a simple and efficient semantic 
segmentation network, U-Net has been widely used in many fields of image processing. This paper performs an improved semantic 
segmentation network Deep U-Net for glacier identification using Landsat 8 OLI image as the data source, and compares it with the 
traditional NDSI glacier identification method. The identification results are validated by the glacier label data produced by visual 
interpretation. The results indicate that the proposed method achieves an identification accuracy of 97.27%, which is higher than the 
NDSI glacier identification method. It can effectively exclude the interference of water bodies on glacier identification, and has a 
higher degree of automation. 
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1. INTRODUCTION 

Glaciers are important freshwater resources on the land surface 
and are extremely sensitive to climate changes. Glacier changes 
have important impacts on climate changes, ecology and the 
environment, and water resources. In recent years, the issue of 
global warming has caused great concern worldwide, and 
brought about significant glacial ablation. According to research, 
the contribution of global glacial ablation to sea level rise is 29 
± 13% (Gardner et al., 2013; Ye et al., 2016). The continuous 
rise of sea level could lead to the submersion of some island 
nations and a large number of people will be homeless. As an 
important source of drinking water, glacial ablation also implies 
a severe water crisis (Gao et al., 2019; Pritchard, 2019). 
Therefore, the identification and monitoring of glaciers is of 
great importance in the study of global climate change. 
 
The glacier areas usually have complex topography and are 
difficult to reach. Thus, field monitoring is costly and it is 
difficult to perform large-scale and long-term monitoring. The 
development of remote sensing technology has provided 
accurate and timely data sources for glacier research, making 
timely and large-scale glacier monitoring possible. Glacier 
identification based on remote sensing images is mainly divided 
into visual interpretation and computer-aided interpretation. 
The accuracy of visual interpretation is high, but the 
professional knowledge of the interpreter is required, along with 
heavy workload and time consumption. Computer-aided 
interpretation can quickly obtain wide-range glacier information, 
which has become a research focus in recent years. Common 
computer-aided glacier identification methods include band 

ratio method and Normalized Difference Snow Index method 
(Salomonson, Appel, 2004). Based on the principle that glaciers 
have high reflection in the visible light band and low reflection 
in the near-infrared band, suitable bands are selected for band 
calculation to extract glacier area. These methods are easy to 
operate, but usually need a threshold, which is greatly 
influenced the identification result. Due to the differences of 
glaciers’ types, images spatial resolution, images quality, and 
study areas, the threshold is difficult to adapt to different scenes. 
Moreover, these methods are based on the analysis of one or 
several features of the images, such as spectral features, texture 
features, or geometric features. How to use these features 
comprehensively to analyze the images to improve the accuracy 
of glacier identification is a pending issue. Therefore, the end-
to-end method needs to be used to solve the above problems, so 
that glacier features can be directly learned from the images. 
The deep learning that develop rapidly these years has provided 
a way for end-to-end glacier identification. 
 
Pixel-by-pixel glacier identification can be considered as a 
semantic segmentation problem for two classes. Early 
representative research on semantic segmentation using deep 
learning, proposed the Fully Convolutional Networks (FCN) 
(Long et al., 2015). FCN is mainly implemented through three 
technologies, convolutions, up-sampling and skip-connection. 
In the FCN, the fully connected networks are replaced by the 
convolutional networks, so that the architecture can accept 
images of any size and output segmentation result of the same 
size as the original image to achieve pixel-by-pixel 
classification. Up-sampling is necessary to convert the feature 
map to original size, which is implemented as transposed 
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convolution. The skip-connect layer take advantage of feature 
maps of different pooling layers for up-sampling to optimize the 
output. Many classical semantic segmentation methods based 
on deep learning are proposed based on FCN (Garcia-Garcia et 
al., 2017; Noh, 2015). DeepLab series (Chen et al., 2014; Chen 
et al., 2016; Chen et al., 2017; Chen et al., 2018) introduce the 
atrous convolution, which allows us to enlarge the field of view 
of filters to incorporate larger context. However, the atrous 
convolution makes the networks much more complex. With a 
large amount of weights to be computed, the DeepLab series 
networks are difficult to train, they need lots of training samples 
and will take a long time to fit. U-Net is a simple and efficient 
semantic segmentation network, which is first used in medical 
image processing. U-Net has the similar layers (convolutions, 
up-sampling) to FCN, while it adopts a completely different 
feature fusion method from FCN. U-Net concatenate feature 
maps in channel dimension to form a “thicker” feature map, so 
that it can make use of semantic information from multi-scale.  
Furthermore, due to the simple structure, U-net is very 
adaptable to small sample set. It is appropriate to glacier 
identification that hard to obtain label data. 
 
In this study, Landsat8 OLI images will be used to propose a 
glacier identification method based on an improved semantic 
segmentation network Deep U-Net to perform glacier 
identification automatically, and evaluate the result. Then, 
compare the result with traditional remote sensing NDSI glacier 
identification result. The technical flowchart of this paper is 
shown in Figure 1. 
 

 
Figure 1. Flowchart of this paper 

 
2. STUDY AREA AND DATA 

The study area (Figure 2) is located in the central part of 
Eurasia. It belongs to a warm temperate continental arid climate 
zone with long light duration. Influenced by topography, 
landform and atmospheric circulation, the region has a complex 
and diverse climate, with large annual and daily changes in 
temperature, and less precipitation (Kan et al., 2016). Affected 
by the topography and regional precipitation, the source of each 
river  system is mostly  located in glaciers  and  mountain  snow 

 
Figure 2. Study area (A, C are for training, B is for testing) 

 
ID Path/Row Date 
1 151/34 2018/09/19 
2 151/35 2018/09/19 
3 150/34 2018/09/12 
4 150/35 2018/09/12 
5 149/34 2018/08/20 
6 149/35 2018/08/04 
7 148/35 2018/08/29 

Table 1. The related parameters of Landsat8 OLI images 

 

Band Bandwidth /μm 
1-COASTAL/AEROSOL 0.43-0.45 

2-Blue 0.45-0.51 
3-Green 0.53-0.59 
4-Red 0.64-0.67 
5-NIR 0.85-0.88 

6-SWIR1 1.57-1.65 
7-SWIR2 2.11-2.29 

Table 2. Spectral information table 

 
zones. The rivers usually have great seasonal contrast, floods in 
summer, drought in autumn and winter, and have extreme water 
shortage in spring.  
 
The Landsat8 OLI images, and the vector glacier label data of 
the study area are used in this study. 
 
The landsat8 OLI images are from the U.S. Geological Survey 
website (https://earthexplorer.usgs.gov/). The OLI (Operational 
Land Imager) includes 9 bands. Compared with the previous 
ETM + sensor, the bandwidth has been refined for six of the 
heritage bands. Two new bands are added. For example, the 
bandwidth of OLI Band 5 is adjusted to 0.845-0.885 μm to 
exclude the influence of water vapor absorption at 0.825 μm. 
The Band 1 (blue band, 0.433–0.453 μm) is mainly used for 
coastal zone observation, and the Band 9 (short-wave infrared 
band, 1.360–1.390 μm) is used for cirrus cloud detection (Roy 
et al., 2014). In this study, 7 OLI images are selected. The 
details are shown in the Table 1. After the radiation calibration, 
flaash atmospheric correction, and image mosaic through ENVI 
Classic 5.1, the typical areas A, B, and C (Figure 2) with few 
clouds are selected for research. After preprocessing, the 
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Figure 3. Architecture of the proposed Deep U-Net 

 
Landsat8 OLI images contains 7 bands. The information of 
bands is shown in Table 2. 
 
The vector glacier label data of the study area are produced by 
visual interpretation on the OLI images by professionals. The 
label data are preprocessed in arcgis 10.2. They are unified to 
the same coordinate system as the OLI image, and converted 
into raster data. The pixel size should be same as the 
corresponding OLI image pixel size. The glacier raster data will 
be used as ground true for follow-up research. 
 

3. METHODOLOGY 

3.1 Normalized Difference Snow Index 

Based on the characteristics that glacier has different reflection 
in visible light band and short-wave infrared band, the 
Normalized Difference Snow Index (NDSI) (Hall et al., 1995; 
Salomonson and Appel, 2004) uses these two bands for 
normalization, and highlights the snow-covered parts of the 
image. The NDSI is defined as follows: 
 

r 1
1

G een SWIRNDSI
Green SWIR

−
=

+
                          (1) 

 
Where Green denotes OLI green band 3, SWIR1 denotes OLI 
short-wave infrared band 6. The result of NDSI is between -1 
and 1. A threshold segmentation is performed to change the 
result into a binary map of glacier. 
 
3.2 Glacier Identification From Landsat8 OLI Imagery 
Using Deep U-Net 

3.2.1 Deep U-Net: In this study, an improved fully 
convolutional network, U-Net (Ronneberger, 2015; Feng, 2019) 
was used to perform glacier identification. As a simple and 
efficient semantic segmentation network, U-Net has received 
widespread attention in medical image processing. The network 
has three characteristics, fully convolution, up-sampling and 
skip-connection. As shown in Figure3, the architecture consists 
of a contracting path (left side in Figure 3) and a symmetric 

expanding path (right side). The contracting path repeated apply 
two 3*3 convolutions (stride 1, padding 1), each followed by 
rectified linear unit (ReLU), batch normalization (BN), and a 
2×2 max pooling layer (stride 2) for downsampling. At each 
group of convolutions, we double the number of feature 
channels. The expansive path consists of 5 groups of operations 
for upsampling, which are a 2×2 stride 2 convolution 
(“upconvolution”), a concatenation with the correspondingly 
cropped feature map from the contracting path, and two 3x3 
convolutions which halve the number of feature channels, each 
followed by ReLU and BN. At the last layer of the network, a 
1×1 convolution followed by sigmoid are used to map the 
output feature map into the required number of channels.  
 
The number of weight parameters in the convolution layer has 
nothing to do with the size of the feature map. Therefore, a fully 
convolutional network can accept input images of any size for 
training. At the same time, the GPU can speed up the 
convolution operation, which in turn reduce computing time 
and improve computing efficiency. U-net combines the 
characteristics of Encoder-Decoder structure and skip-connect 
network, and is more elegant. The down-sampling branch 
obtains the high-level semantic features of the image (Zeiler, 
2013), and the up-sampling branch and the skip-connection 
concatenate feature maps in channel dimension to form a 
“thicker” feature map, to make full use of spatial information 
and multi-scale semantic information to output a more accurate 
segmentation result. The U-Net network is relatively simple 
with fewer parameters. It can adapt to small datasets 
(Ronneberger, 2015; Feng, 2019). It is appropriate to glacier 
identification that hard to obtain label data. 
 
3.2.2 Data Processing: We observe the spectral 
characteristics of the glacier, and finally select the band 
combination 6 (R), 5 (G), 2 (B) for experiments. On this fake 
color synthesis image (Figure 4), the glacier information is 
prominent and well distinguished from the clouds. The 
Landsat8 images and the label images of the A and C areas are 
divided into patches with 128 × 128 pixels. The study area has 
fewer glacier pixels than non-glacier pixels. For deep learning 
algorithms, in order to ensure the stability of the training model, 
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the number of positive samples and negative samples should be 
as close as possible. Based on this, images with fewer glacier 
pixels are removed from the dataset, and the dataset is randomly 
divided into training and validation sets in proportion. Due to 
the small size of the dataset, a data argumentation (flip, rotate at 
different angles) is performed on the training samples. Finally, 
there are 4866 pairs of training samples and 80 pairs of 
validation samples (Figure 5).  
 
3.2.3 Implementation: The full implementation is based on 
the Keras (Chollet et al., 2015) library with TensorFlow as its 
backend. All experiments were conducted on a computer with 
Inter(R) Xeon(R) E5-2687W CPU at 3.00 GHz, 16.0-GB RAM 
and NVIDIA GRID RTX8000-8Q (8 GB). With the “Binary-
Entropy” in Keras as loss function. We used the “Adadelta” 
optimization algorithm (Zeiler, 2012) and the “sigmoid” 
activation function. The batch size of the training and validation 
datasets is set to 8 images. Within 50 epochs, the model with 
the highest validation accuracy is saved, and the model is used 
to identify the glacier from the test image. The training process 
takes about 8 hours.  
 
3.3 Evaluation Metrics 

The evaluation criteria are calculated based on a confusion 
matrix shown as Table 3. 
 

  
(a) (b) 

Figure 4. (a) 432-band true color synthesis.  
(b) 652-band fake color synthesis 

 

Images Landsat8 images Label images 

1 

  

2 

  

3 

  
Figure 5. Examples of the training samples 

 
 
 
 

Ground true prediction 
 glacier Non glacier 

Glacier TP FN 
Non glacier FP TN 

Table 3. Confusion matrix 

 
Where TP is true positive that denotes glacier pixels in both 
result and label image. TN is true negative that non-glacier 
pixels are identified as glacier. FP is false positive when non-
glacier pixels are erroneously identified as glacier. While FN is 
false negative which is calculated for pixels are both non-glacier. 
The evaluation criteria are defined as below: 
 

The false alarm rate: FPFA
TP FP

=
+

                 (2) 

The missed alarm rate: FNMA
TP FN

=
+

               (3) 

The overall accuracy: TP TNOA
TP FN TN FP

+
=

+ + +
       (4) 

The Kappa coefficient: 
1

OA PREKC
PRE
−

=
−

             (5) 

( ) ( ) ( ) ( )
( )2

TP FP TP FN FN TN FP TN
PRE

TP FN TN FP
+ × + + + × +

=
+ + +

    (6) 

 

 
Figure 6. Histogram of the NDSI grayscale image 

 

Methods MA 
(%) 

FA 
(%) 

OA 
(%) 

KC 
(%) 

NDSI 
Threshold 

0 13.97 22.21 95.73 79.29 

0.1 16.06 20.36 95.84 79.39 

0.2 17.79 19.40 95.84 79.05 

0.3 19.56 18.57 95.80 78.57 

0.4 21.43 17.92 95.72 77.89 

0.5 23.43 17.42 95.61 77.01 

0.6 25.75 16.99 95.46 75.86 

0.7 28.66 16.68 95.24 74.23 

Deep U-Net 19.49 6.02 97.27 85.22 

Table 4. Accuracy of glacier identification 
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Figure 7. NDSI glacier identification result. (a): original image. (b): identification result 

 

 
Figure 8. Deep U-Net glacier identification result. (a): original image. (b): identification result 

 

4. RESULTS AND ANALYSIS 

After a histogram analysis on the NDSI grayscale image (Figure 
6), and we can see the obvious “double peak”. Thresholds are 
taken at intervals of 0.1 between the two peaks (data value∈[0, 
0.7]) to binarize the NDSI images, and then compute the 
accuracy of segmentation results using these thresholds. The 
results are shown in Table 4. 
 
It can be seen that the missed alarm rate is proportional to the 
thresholds, however the other three are negatively correlated to 
the thresholds. In summary, the glacier identification reaches 
the best result when the threshold is 0.1. Take the segmentation 
map of threshold 0.1 as the NDSI glacier identification result, 
shown in Figure 7.  
 
Glacier identification result using Deep U-Net is shown in the 
Figure 8. The result is "clean", with few broken objects, and 
highly matches with the ground true image. The NDSI glacier 
identification result (Figure 7) has many misclassifications and 
omissions. Comparing areaⅠ, NDSI method misclassifies some 
water bodies as glaciers, while the Deep U-Net method 
performs very well. As for the results of area Ⅱ, it can be seen 
that both methods have a small amount of missing glacier pixels 
and are difficult to identify the shadow area. There are some 
clouds in area Ⅲ, the Deep U-Net method fails to distinguish 
them. 

The accuracy results (Table 4) show that the glacier 
identification from Landsat8 OLI imagery using Deep U-Net 
can get a low false alarm rate of 6.02%, but there are some cases 
of missing detection and some details are lost. This method can 
reach a high overall accuracy of 97.27%, which is higher than 
the traditional NDSI glacier identification results. The 
identification results are basically reliable. 
 

5. DISCUSSION 

Generally speaking, the automatic glacier identification method 
based on Deep U-Net network has higher accuracy than the 
NDSI glacier identification method, but the situation of missing 
detection needs to be improved, especially for some small 
targets, the identification result is worse than the NDSI method. 
Further, the Deep U-Net model can be trained with the NDSI 
image as a channel of the image to verify whether the 
combination of the NDSI method and the Deep U-Net method 
can improve the accuracy of glacier identification, and reduce 
the missed alarm rate of small targets. 
 
The automatic glacier identification method based on Deep U-
Net network can reach a high accuracy in a short time. It can be 
used for large-scale glacier identification, which is helpful to 
the study of the global glaciers distribution. With this method, it 
is also possible to monitor long-term glacier changes, study the 
rule of regional glacier changes, and provide a basis for climate 
and environmental change research. 
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6. CONCLUSION 

For the task of glacier identification, we observe the spectral 
characteristics of the glacier based on the Landsat8 OLI data, 
derive the dominant bands for glacier identification. An 
automatic glacier identification method based on Deep U-Net 
network is proposed, and compared to existing glacier 
identification methods. 
 
On the combined image of Landsat8 OLI bands 6 (R), 5 (G), 2 
(B), the glacier information is prominent, which is conducive to 
the glacier identification. The Normalized Difference Snow 
Index method can generally identify glacial areas on Landsat8 
OLI images, but it will misclassify some water bodies into 
glaciers, and it cannot effectively distinguish shadows and 
clouds. Glacier identification method based on Deep U-Net 
network can well exclude water bodies and shadow areas, but 
the misclassifications of shadows and clouds are still existed. It 
has been proved that this method is efficient and more 
automatic, and has higher accuracy than NDSI method in 
glacier identification in our study area. 
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