
HAL Id: hal-02523442
https://hal.inria.fr/hal-02523442

Submitted on 29 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enhancing microservices architectures using data-driven
service discovery and QoS guarantees

Zeina Houmani, Daniel Balouek-Thomert, Eddy Caron, Manish Parashar

To cite this version:
Zeina Houmani, Daniel Balouek-Thomert, Eddy Caron, Manish Parashar. Enhancing microservices
architectures using data-driven service discovery and QoS guarantees. CCGrid 2020 - 20th IEEE/ACM
International Symposium on Cluster, Cloud and Internet Computing, Nov 2020, Melbourne, Australia.
pp.1-10. �hal-02523442�

https://hal.inria.fr/hal-02523442
https://hal.archives-ouvertes.fr

Enhancing microservices architectures using
data-driven service discovery and QoS guarantees

Zeina Houmani∗†, Daniel Balouek-Thomert †, Eddy Caron∗, Manish Parashar†
∗Inria Avalon team, LIP Laboratory, UMR CNRS - ENS de Lyon - INRIA - UCB Lyon 5668

University of Lyon, France
†Rutgers Discovery Informatics Institute

Rutgers University, NJ, USA

Abstract—Microservices promise the benefits of services with
an efficient granularity using dynamically allocated resources. In
the current evolving architectures, data producers and consumers
are created as decoupled components that support different data
objects and quality of service. Actual implementations of service
meshes lack support for data-driven paradigms, and focus on
goal-based approaches designed to fulfill the general system goal.
This diversity of available components demands the integration
of users requirements and data products into the discovery
mechanism. This paper proposes a data-driven service discovery
framework based on profile matching using data-centric service
descriptions. We have designed and evaluated a microservices
architecture for providing service meshes with a standalone set of
components that manages data profiles and resources allocations
over multiple geographical zones. Moreover, we demonstrated
an adaptation scheme to provide quality of service guarantees.
Evaluation of the implementation on a real life testbed shows
effectiveness of this approach with stable and fluctuating request
incoming rates.

Index Terms—Microservices, data-driven, quality of service,
software architecture, load shedding.

I. INTRODUCTION

MicroServices Architectures (MSA) has gained great popu-
larity in the recent years, exploring benefits of modular, self-
contained components for highly dynamic applications. Each
microservice operates as an independent function, offering
access to its internal logic and data through network interfaces
and defined APIs. MSA are widely used in the industry
for applications where scalability, resiliency, and availability
are required, as is the case for Netflix1 and Uber2 (among
others). Recently, Internet of Things (IoT) [1]–[3] and network
virtualization [4] applications started adopting this paradigm.

MSA are driving the continued evolution of Service Dis-
covery (SD) [5]. Service discovery has a growing importance
as the services providers increase in number and complexity.
In particular, services may have different costs along differ-
ent metric dimensions, and can adapt themselves and their
interactions based on requirements and execution contexts. In
current practice, SD implementations are goal-based, designed
to fulfill the general system goal depending on the user’s
required functionalities. They often consist in letting the client

1Adopting Microservices at Netflix: Lessons for Architectural Design: https:
//www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/

2Service-Oriented Architecture: Scaling the Uber Engineering Codebase As
We Grow:https://eng.uber.com/soa/

discover the location of a provider for the requested service
using its identifiers.

Additionally, emerging Cloud and Edge computing systems
are data-driven. Producers and consumers of data are decou-
pled, using different data formats, resolution and expected
Quality of Service (QoS). This highlights several limitations
of goal-based approaches for service discovery. First, using
approaches built on service identifiers, prevents the discovery
of newly created microservices as well as those that do not
have explicit identifiers. In addition, describing services using
data models based primarily on network information and
identifiers prevents client programs from using microservices
that meet their specific needs. In this context, this paper
addresses the challenges of discovering microservices based
on client’s data object with regards to a guaranteed QoS.

This paper proposes a data-driven SD framework to tackle
these issues. This framework enables the creation of context-
aware microservices architecture, able to allocate resources
and replicate services in a federated environment. On the client
side, it allows the discovery of services according to objects
and data products. On the provider side, it allows for the
integration of third party services with context-aware features.

Additionally, we put an emphasis on implementation and
integration into an existing service mesh project. That requires
the creation of new components to overcome the limitations
of the chosen service mesh.

Our approach builds on a data-driven model for microser-
vices and a peer-to-peer architecture to ensure performance,
resiliency and scalability of application and management ser-
vices. This paper makes the following contributions:

• A data-centric model of microservice.
• A service discovery process based on the client’s data

products and integrated in a data-driven architecture.
• An adaptation scheme to manage processioning based on

given services demands.
• An implementation into the Istio service mesh project [6].
The rest of this paper is organized as follows: Section

II presents targeted applications. Section III presents re-
lated work. Section IV describes our data-driven microservice
model. Section V presents the architecture, while Section VI
presents the algorithms for resource adaptation. Validation is
performed using Istio service mesh in Section VII. Section
VIII concludes the paper and discusses future work.

1

II. MOTIVATION

In traditional MSA, the service discovery mechanism con-
sists of discovering the list of instances that can provide
a functionality already known to the client. In the current
computing landscape, Edge computing and Internet of things
services present temporal, spatial and always-on features. This
implies the ability to provide context-aware services answering
the requests of a massive numbers of objects, sensors and
devices connected to the network, using data products of
different nature along with changing demands.

This work is motivated by applications built in dynamic
environments where developers frequently publish new mi-
croservices but they are not discovered by the users. In addi-
tion, we target systems that deal with heterogeneous services
offering same functionality but with different resolution and
QoS guarantees. These use cases highlight the need for data-
driven discovery approach capable of discovering relevant mi-
croservices dynamically based on client’s data. Such flexibility
is not currently offered in state-of-the-art microservices and
service mesh. Major systems, such as [6] or [7], do not
offer data-driven service discovery support to provide and
guarantee the performance of services. Therefore, the ability
for developers to compare multiple services versions is limited.

In all existing SD software [5], the client that produce the
data and use the discovery process is designed by the same
entity that has developed the consumer services. However in
Edge computing, for example, data and functions are not in the
same location and do not come from the same entities [8]. In
these systems, service discovery is not a guaranteed process.
For this reason, a service discovery independent from data
consumers and data producers became a necessity.

The first use case is an edge-based video analysis system.
This system relies on a deep-learning pipeline distributed
between edge, in-transit and cloud resources [9]. At each
stage of the pipeline, the required service is deployed on
one or more resources according to the number of data
products appearing in each frame. In this system, producers
and consumers are often geographically distributed. Also,
it exists many implementations for the same functionalities,
for example, object detection algorithms have more than 40
possible implementations, such as Yolo detection or exhaustive
search. Each of these implementations makes a different
design choice and consume different resources. Thus, in order
to choose the best implementations for each stage of this deep
learning pipeline, it is necessary to allow for the use of data-
products to discover services and a guarantee of quality to
ensure the timely completion of analyzes.

The second use case is a data streaming framework that
utilizes heterogeneous geo-distributed resources to maintain
application’s quality of service. In this work, adjusting the
service in quality is on the side of the client. With the existing
mapping solution, finding the optimal path may take too much
time if the number of resources increases significantly. In order
to effectively map the workflow stages to the appropriate nodes
in a dynamic architectures, a data-driven SD can be used.

These use cases highlight the need to discover services not
only based on their identifiers, but also with regards to context
and IoT-like features.

III. RELATED WORK

Assigning network addresses manually to services is no
longer possible in the current dynamic microservices architec-
tures. Therefore, three different services discovery strategies
are currently adopted: DNS-based service discovery [10], spe-
cialized service discovery solutions such as Netflix Eureka [11]
and consistent datastores such as Apache Zookeeper [12],
etcd [13] or MySQL [14]. In our approach, we assume users
do not know in advance what microservices are available.
In addition, we aim at using a specific data-centric service
description model to enable a data-driven discovery pro-
cess. Relational/non-relational datastores provide the neces-
sary strategy for such implementation.

As the scale of applications rises, the effort required to man-
age inter-microservices interactions increases, and becomes
an extremely complex task in large-scale architectures. As
Microservices architectures are characterized by their techno-
logical heterogeneity, the integration of libraries into the tech-
nological architecture stack requires additional modifications
depending on each microservice. Service Mesh [15] provides
a viable solution to these challenges. Service Mesh creates
a dedicated infrastructure layer for decoupling inter-service
communication management from the deployed microservices.
This additional layer forms a distributed network of intercon-
nected proxies within the microservices network. Using this
pattern, communications between microservices pass through
the proxy servers deployed in sidecars next to the microser-
vices without the need for any code modification. These prox-
ies are responsible for translating, transmitting, and observing
each network packet that flows to and from a microservice
instance. Since 2016, several major open source platforms
have been created such as Linkerd [16], Conduit [17], Istio [6]
and recently the AWS App mesh project [18]. We chose the
Istio open source project for this work. Istio uses the Envoy
proxy [19] as its data plane which presents more functionalities
than other proxies at this time. Other studies highlight the
performance and extensible features associated to this service
mesh [20], [21].

The quality of service delivered by service-based systems
represents a major concern that needs to be managed. Since
these systems are characterized by their dynamicity and their
continuous changes in requirements, adaptation capabilities
must be implemented in order to maintain system’s objectives
during executions [22]. Different paradigms to achieve adap-
tation have been developed. In this work, we are interested
in self-organizing adaptive approaches SOAS to creates au-
tonomous systems [23]. Self-adaptation systems, introduced
by IBM [24], are able to automatically adapt themselves
by modifying their behavior in response to changes in their
operating environment without any external control [25], [26].
Adaptive systems can usually be implemented in centralized

2

and decentralized way [27]. In our actual architecture, the cen-
tralized approach was used. This approach consist of having
central components that receive data from other components
and take appropriate actions to maintain QoS.

IV. DATA-DRIVEN SERVICE DISCOVERY PROCESS

Service discovery in microservices architectures usually
implements two patterns: client-side service discovery [28]
and server-side service discovery [29]. When implementing
client-side discovery, the client is responsible for initiating
the service discovery process and selecting the desired in-
stances. However, with service-side discovery, an intermediate
component act as middle-man to intercept client requests
and complete the discovery process, while abstracting the
discovery details from the client.

Our approach aims at designing a data-driven service dis-
covery process that allows the matching between data products
and services while using a hybrid service discovery pattern. We
consider two design goals for this approach. First, a data model
that enables the discovery and classification of microservices
deployed in the platform. Second, a communication protocol
that combines the two service discovery patterns. This gives
the client full control over the discovery process while en-
suring an authorized access to registered data. Additionally,
it avoids bottlenecks that could occur in the intermediate
components when an important number of requests enter the
system due to the growing demands for services. This protocol
consists of interactions between the client, the service registry
and the API gateway.

A. Data Model

The main goal of service discovery is to show the clients
the available microservices deployed in the platform. To this
end, each microservice registers in the platform using a data
model to declare its availability for the discovery clients.
This data model usually contains at least a service name and
information about the network location of the service provider.
Consul project [30], for example, use a service description
model that contains network configurations as well as service
identification data such as service name, ID and tag. Some of
these information can be removed but no additional properties
can be added.

However, in a data-driven service discovery, additional
information related to the service performance and the func-
tionality provided should be specified. Listing 1 presents a
microservice description. Input type, input parameters and
measured performance are considered as the main properties in
the microservices profiles that are examined in the data-driven
service discovery process. When a client program initiates the
discovery process, information concerning the properties of
the client’s data must be specified such as the data type, the
data format or the size.

Listing 1: Data model describes functionalities and network
features to match data producers and third-party microservices.
The following sample presents a crop microservice associ-
ated to the type Image.

<A p p l i c a t i o n I D>Crop< / A p p l i c a t i o n I D>
<D e s c r i p t i o n>Thi s s e r v i c e i s t o remove t h e unwanted

a r e a s o f an image< / D e s c r i p t i o n>
<I n s t a n c e V e r s i o n>v1 . 2< / I n s t a n c e V e r s i o n>
<Hostname>s e r v i c e . com< / Hostname>
<Addres s IP>1 0 . 9 6 . 0 . 1 1< / Addre s s IP>
<P o r t>9500< / P o r t>
<S e c u r e P o r t>443< / S e c u r e P o r t>
<P r o t o c o l>h t t p< / P r o t o c o l>
< I n t e r f a c e> / c rop< / I n t e r f a c e>
<S t a t u s>UP< / S t a t u s>
<Inpu tType>image< / I npu tType>
<OutputType>image< / OutputType>
<MaxInput>12< / MaxInput>
<MinInput>1< / MinInput>
<MaxInpu tS ize>50MB< / MaxInpu tS ize>
<MaxPixelDimension>2000 x15000< / MaxPixelDimension>
<I n p u t F o r m a t>

<f o r m a t>PNG< / f o r m a t>
< / I n p u t F o r m a t>
<RPS>100< / RPS>
<Uptime>1567889< / Uptime>
<Heal thCheck> / h e a l t h< / Hea l thCheck>
<P a r a m e t e r s>

<P a r a m e t e r i d =” a reaWid th ”>
<ValueType> i n t< / ValueType>
<D e s c r i p t i o n>Width o f t h e image a r e a t o

e x t r a c t< / D e s c r i p t i o n>
<r e q u i r e d> t r u e< / r e q u i r e d>

< / P a r a m e t e r>
<P a r a m e t e r i d =” f i l e ”>

<ValueType>s t r i n g< / ValueType>
<D e s c r i p t i o n>The l o c a t i o n o f t h e l o c a l / d i s t a n t

i n p u t o b j e c t < / D e s c r i p t i o n>
<r e q u i r e d> t r u e< / r e q u i r e d>

< / P a r a m e t e r>
. . .

< / P a r a m e t e r s>

If these properties match exactly the characteristics of
the object supported by a microservice, its data model is
considered as a matching profile. This profile is then added
to a list and returned to the client as one of the microservices
he can use. However, if a strict matching is considered and
one of these properties differs, the profile is not matched. This
model is extensible, with anticipation to an increasing number
of properties and data types existing within a service mesh.

B. Client-registry communication strategy

The hybrid discovery pattern used in this platform involves
two components during the discovery process: the service
registry and the API Gateway.

The service registry represents a database cluster that
contains the data model of available microservices deployed
in the platform. This database must be highly available in
order to discover existing microservices at any time. As in
our architecture, new instances can be created and destroyed
dynamically, this component must be continuously updated.
When a new service instance is deployed, its data model is
registered in the service registry to declare its availability. This
service description is removed when the microservice is no
longer available. Two different patterns exist to handle the reg-
istration and unregistration of microservices within the service
registry. This process can be done directly (self-registration
pattern) or via an intermediate component called “Registrar”
(third-party registration pattern). In this platform, we use

3

the second pattern since it decouples existing microservices
from the registration process. This helps us deploy platform-
independent microservices that does not need to implement
any registration logic to participate in our platform. More
details about the “Registrar” is provided in Section VI-B.
During service discovery, the service registry is queried by
the discovery clients to find a matching profile with their data
objects. The interaction between the client and the registry
during the discovery process is intercepted by an API gateway.

The API Gateway provides a customized API to apply our
communication strategy. It receives the discovery requests and
contacts the dedicated registry to lookup for functionalities and
microservices according to the client’s objects.

The communication strategy describes two types of re-
quests: “discovery requests” used to lookup services in the
registry and “access requests” sent to benefit from discovered
microservices. Any interaction between the client and the
chosen microservices is direct.

The client initiates the service discovery by sending a
request to the service registry À. Second, the service registry
filters the set of stored microservices and returns to the client
a list containing the names of all the available functionalities
that can be applied to this type of object Á. The client is
in charge of selecting the most suited functionality according
to his own objectives. He specify to the registry the chosen
functionality as well as the details of his data object and quality
requirements Â. These characteristics allow the registry to
create a new list containing the full descriptions of all the
existing microservices in the platform that can offer the desired
functionality and support the client’s object Ã. At this point,
when the client program receives the new list, it has discovered
all the existing microservices and can contact the instance
that seems most appropriate in terms of machine performance,
network performance, requested parameters, etc. Ä. During the
discovery, microservices instances are replicated on run-time
to meet the clients needs. Resources allocation are discussed
later in Section VI.

C. Service discovery implementation

Service mesh tools address inter-services communication
problems. They are fundamentally similar but differ in the
implementation choices. For this reason, we aim to create
a standalone communication strategy that is independent of
the service mesh in use. Our implementation relies on REST
APIs [31] to allow HTTP access. Fig. 1 presents the different
steps of the discovery process.

As a client initiates the service discovery, the interactions
in the system are as follows:

1) The client send a discovery request describing the object’s
characteristics within the query parameters.

i. If no matching functionalities are present in the
system, an HTTP response of status code 204 con-
taining an empty response payload body is returned,
and the discovery process stops.

ii. If a match is found for this specific data object, an
HTTP response of status code 200 OK is returned

Fig. 1: Workflow of the data-driven service discovery initiated
by the client to the API Gateway and service registry.

to indicate that the request has been successfully
completed. This response contains the list of existing
functionalities, their names and descriptions.

2) After receiving the list of functionalities, the client need
to select the desired one. This decision is made on the
client side based on the specific objectives of each client.

3) A second query is sent to the service registry to discover
the available microservices offering the chosen function-
ality. Within the query parameters, additional information
concerning the client’s data and his quality requirements
are specified.

i. If none of the available microservices offers the
desired functionality or support the client’s data, an
HTTP response with status code 204 containing an
empty list is returned.

ii. If a match is found, the system returns the full
registered data models of these microservices in-
stances. The format of the response is presented in
the Listing 2. Additional information might be added
to the response, depending on the data type of the
client’s object. Among the instances details, the client
receives the URL format to use in order to access
these microservices.

4) On the client side, the discovery client will consider the
response time of the returned microservices and other
quality metrics to choose the most appropriate instance
that meets the client’s objectives.

5) Finally, using the returned self-linking URL, the client
interacts directly with the chosen microservice instance.

In the next Section, we integrate this discovery process in
a global data-driven architecture.

Listing 2: Response message associated to the discovery
of a match. The properties describes details of the chosen
functionality.
{
"service": "microservice A",
"description": "description of microservice A",
"inputType": "type",
"inputFormat": "format",
"maxInput": "max objects by request",
"maxInputSize": "max size in MB",
"port": "port",

4

"ip_address": "IP",
"links":
[{
"rel": "self",
"href": http://ip_address:port/{URI}?params

}]
"Response Time" : "",
"User_defined": "",

}

V. DATA-DRIVEN MICROSERVICES ARCHITECTURE

The service discovery process and its integration in a service
mesh, relies on the interaction of several system components
to manage the creation of microservices and the allocation
of resources. As the complexity of service and infrastructure
grows, there is a need to reduce the number of management
services implicated in the discovery process and prevent them
from causing potential degradation of system performance.

To this end, we propose a data-driven architecture with the
following design goals: (i) A single purpose API Gateway
specific for each type of data supported by existing microser-
vices. This implementation design allows the management of
services based on data. (ii) A zone management to allow
clients to discover services in a specific geographical area, and
balance loads between areas. (iii) A peer-to-peer model that
creates an overlay network between the zones. This provides
the ability to discover the resources deployed on several sites.

Communication between clients and microservices is im-
plemented using two main models: General purpose API
backend and Backend For Frontend (BFF). General purpose
API backend provides a single entry point to backend services,
while BFF introduces several entry points for each type of
client. Using this model, the incoming load is shared among
multiple customized gateways tailored to the needs of each
client. This also reduce the possibility of bottleneck within
these entry points.

Our architecture implements a customized BFF model. This
model consists of creating entry points dedicated to each
category of microservice. Each BFF Gateway is linked to a
cluster of service registry to manage the descriptions of mi-
croservices that belong to the same data category. This cluster
is only responsible for storing data models for microservices
managed by this BFF Gateway, such as a cluster of service
registry image managed by the BFF API Gateway image and
independent of the registries of the other categories.

Wide distribution of data consumers and producers in ar-
chitectures such as IoT systems, can lead to an increase in
the system latency which affects the user experience. For this
reason, we use in our system the concept of Regions and
Availability Zones adopted by Amazon EC2 [32]. The Regions
are designed to be completely isolated from each other to
ensure the stability of our system, but the Availability Zones
within a Region are connected together. The resources that
belongs to the same geographical area are linked to the same
Availability Zone within a Region. Each Zone has its own BFF
backends and service registries. It contains a Zone Manager

(ZM) component to manage incoming requests. This compo-
nent, which represents the entry point of our architecture in
each Zone, receives requests from clients located in its zone
and determines to which BFF Gateway these requests should
be forwarded. Once the chosen BFF Gateway has received
the list of available microservices from its dedicated registry,
it sends the results back to the ZM, which in turn passes them
to the clients.

This architecture, presented in the Fig. 2, allows a data-
driven management of deployed microservices. It reduces the
number of transmitted messages in the system by forwarding
the clients requests directly to the appropriate BFF Gateway
and service registry cluster. Moreover, the BFF model adopted
in this architecture aims at reducing the number of requests to
be processed by each API Gateway that has become responsi-
ble for a single category instead of all deployed microservices.
This reduces the bottlenecks within these components and as
a result improves the system performance. In addition, this
architecture avoids the continuous replication of microservices
data models in the entire system by creating separate service
registry clusters dedicated to each data type in every Zone
of the Regions. Besides, this peer-to-peer (P2P) architecture
between the different Zone Managers, creates an evolutionary
system that allows to connect the entry points of all the Zones
by forming a robust system for query processing. The next
section addresses QoS guarantees, a prime concern to ensure
service availability.

Fig. 2: The peer-to-peer model between the Zone Managers
of the same Region for inter-zone connection.

VI. QOS APPROACH

Linking Zones via a P2P network allow client programs to
discover microservices located in any Zone of the Region. The
support of various data types imposes management challenges
to provide QoS while preventing any data type form taking
over Zones resources. We propose an adaptation scheme that
controls deployed microservices by data type as a Data-driven
Microservices Groups (DMG). DMG Image, for example,
represents all the microservices in the Image data category
controlled by the BFF API Gateway Image.

This section presents components designed to support qual-
ity of service and their implementation in an existing service
mesh, Istio.

5

A. Istio service mesh

Istio is an open service mesh built as a platform-independent
software [6]. Istio offers a set of key features that allows
to secure, observe, connect and control microservices across
the service mesh network. It exposes deployed microservices
to outside the platform via an Ingress Gateway component
located at the Edge of the cluster.

Istio works natively with Kubernetes (k8s) [20]. The nodes
of a k8s cluster run a set of application pods that encapsulate
the microservices containers. Each microservice can have one
or more instances called replicas accessible via the network
using an abstraction called service. All existing services are
distributed across one or multiple virtual clusters, called
Namespaces, that create logically isolated environments.

In this work, we aim to create an enhancing microservices
architecture using data-driven SD and QoS guarantees. With
regard to this goal, Istio presents three major limitations.

First, microservices deployed in Istio are not immediately
visible to the client programs outside the platform. To expose
them, there is a need to manually create a set of routing
rules linked to the Ingress Gateway. However, in our dynamic
architecture where new microservices come and go, this is
not efficient. Exposing available microservices to the external
clients and hiding them when they are deleted, must be done
automatically without any external intervention.

Second, when microservices have many replicas, Istio is
responsible for balancing the incoming traffic between them
within the same Namespace. Our architecture manages mi-
croservices by data type as DMG representing namespaces
dedicated to each type. When multiple replicas of a DMG
exist, we need to balance requests between the microservices
instances replicated in different namespaces to ensure control
over the load balancing feature, and prevent inconsistent
workload distribution.

Last, Istio maintains an internal service registry contain-
ing the descriptions of deployed microservices running in
the service mesh that have a specific service entry format.
In addition, Istio offers a Consul adapter as an integrated
registry. As described in Section IV, Consul provides its own
service description format that does not support any additional
properties. The two service registry presented above, use DNS
for SD. This creates the need to modify Istio, and integrate
an alternative service registry that supports our proposed data
model without affecting the data-driven discovery process.

The realisation of these approaches to overcome the lim-
itations of Istio, requires the integration of new compo-
nents: IngressController, designed to automate the creation
and deletion of routing rules À. LoadBalancer to control
sharing incoming requests among DMG replicas Á. And, the
ServiceRegistry that accepts our data model and allow profiles
matching for our data-driven discovery process Â.

B. QoS architecture

Figure 3 represents the new service mesh architecture that
provides the missing functionalities and creates an adaptive
system that take appropriate measures to maintain QoS.

This architecture utilizes the following components:
Registar Service is a customized third-party registration

component that receives microservices data model at startup,
registers them in the database and then deregisters the mi-
croservices at shutdown. This Registrar is the only component
in the platform able to notify the management services when
a new microservice is deployed or removed.

Many third-party registration components already exist to
automate the registration process in containerized platforms
such as Registrator [33] and Joyent [34]. However, they
weren’t useful in our architecture for the reason that they
create services description based on the environment and does
not support predefined data models. Also, they are designed
to work with specific registries such as Consul and etcd [13]
and do not support customized databases.

IngressController Service is a standalone service able to
automatically update Istio’s routing rules. It exposes two http
endpoints to receive notifications from the Registrar Service
when microservices are deployed or removed. It is able to
add/delete routes or destinations for existing routes while
considering Istio’s weighted routing feature.

Loadbalancer Service is a standalone data-driven service
designed to apply load balancing algorithms to share requests
between DMG replicas of a specific data type. It uses by
default a Round Robin algorithm and additional algorithms
can be added as well. It exposes an http endpoint to receive
incoming traffic from the Ingress Gateway and another to
receive notifications from the Registrar Service when new
microservices are added or deleted.

BFF API Gateway Service is a discovery service created
for each data type supported in the platform. This component
described in Section IV-B, sends the client’s data type of each
discovery request to the DMGContoller Service to verify if the
request must be rejected or not.

DMGContoller Service is designed to receive the client’s
data type and check its dedicated DMG to decide whether
any new request for this data type is allowed to proceed the
discovery process. If this data type was overloaded, it triggers
the ScaleUP Service to deal with the overload and demands
the BFF API Gateway Service to reject the request. Otherwise,
the discovery process proceeds normally.

ScaleUP Service is responsible for the “ScaleUP” algo-
rithm, presented later in Section VI-C. It allows the system
to adapt to the incoming requests by creating new DMG
replica for overloaded data types while considering available
resources. It exposes one http endpoint for receiving overload
notifications and interacts with the service registries to add
newly created DMG.

ScaleDOWN Service contains the “ScaleDown” algorithm,
presented in Section VI-C. It is triggered on a given frequency
to check if some DMG replicas are no more needed. If so, it
removes deployed instances and free allocated resources.

C. QoS algorithms

The load in our system is always dynamically changing.
This fickleness can give rise to excessive load that significantly

6

Fig. 3: Overview of the data-driven QoS architecture. It provides operational and adaptation support to control the discovery
and access requests initiated by the clients.

slow down our processing system due to the extreme use of re-
sources. Therefore, one way to avoid running out of resources
is to set a limit to the maximum number of concurrent requests
maxreq that microservices can process. However, our system
contains microservices of different data types that share the
Zone’s resources. Thus, microservices of a specific DMG can
sometimes receive a considerable number of requests. This can
lead the system to reach its maxreq without allowing other
DMG of different data types to process additional requests.

In this data-driven architecture, avoiding a specific data
type from taking over Zone’s resources is done by defining
a rate limiter for each data type and applying resource quota
(CPU, RAM) to every one of these types. On the other hand,
the number and size of data arriving at the microservices is
unknown in advance, the use of a requests rate limiter only can
sometimes lead to a misuse of system resources. For example,
with a limit rate equal to 10 concurrent requests, an application
that accepts only images with dimension less than 2560x1600,
will needs less resources to processes 10 HD grayscale images
with dimension 1280x720, than 10 Widescreen RGB images
with the maximum dimension.

As a consequence, we designed an adaptation scheme
based on three QoS algorithms: ScaleUp, ScaleDown and
Load Shedding. This scheme helps create a system able to
handle traffic spikes with minimal performance degradation.

In addition, it prevents rejecting requests when the rate limiter
is reached but there are still enough resources in the platform.
The details of the algorithms are presented below:

ScaleUp algorithm: it is responsible for adjusting the
capacity of the system when an overload in detected. As
described in Section VI-B, the component responsible for
detecting the overload is the DMGController Service. For each
discovery request, this service is notified to check whether an
action should be done to prevent overload.

When a notification is received, DMGController Service
queries the appropriate service registry (Algorithm 1). It
verifies if the total number of running requests RunnigReq
in all the DMG of this data type exceeds 85 percent of its
rate limiter maxreq. If this threshold is not yet reached, the
discovery request will be processed normally and the client
will discover the existing functionalities. However, if it is
reached, 2 options exist:À if the resource quota specified
for this data type allows the reservation of additional system
resources, the DMGController Service triggers the ScaleUP
Service presented in Section VI-B to create a new DMG
replica. At each creation of a new replica, the maxreq will
be incremented. That increases the capacity of the data type
to process more requests. Á However, if there are no more
free resources for this data type sufficient to replicate a DMG,
the algorithm hides first the overloaded DMG while ensuring

7

Algorithm 1: Adaptive system for processing requests

Data: dataType, dataFormat, quantity
Result: Discover functionalities depending on the data
Microservice discovery(dataType,
dataFormat, quantity)

begin
HandleREQ ← NotifyDMG(dataType);
if HandleREQ == TRUE then

MSlist ← FindServices(dataType,
dataFormat, quantity);

return (MSlist);
else

return(NULL);

Data: dataType
Result: Modifying system capacity based on the load
boolean NotifyDMG(dataType)

begin
nbDMGtype ← countDMG(dataType);
RunningReq ← countREQ(dataType);
maxreq ← countMAX(dataType);
if RunningReq > 85%× maxreq then

if resourceavailable()==TRUE then
DeployNewDMG(dataType);

else
if nbDMGtype > 1 then

DMGname ←
FindOveloadedDMG(dataType);

UpdateDMGstate(DMGname,
“OFF”)

return(FALSE);
else

return(TRUE);

that one replica remains, and then triggers the LoadShedding
algorithm. Hiding a DMG replica prevents it from appearing
to the next discovery requests and decreases the maxreq of
the data type.

ScaleDown algorithm: hiding a DMG simply means
switching its status to “OFF”, but without actually removing
the DMG and releasing the allocated resources. Thus, when
the system hides multiple DMG due to excessive overload,
the allocated resources become all reserved, which prevents
the system from using these resources to deploy new DMG.

This algorithm, applied by the ScaleDOWN Service pre-
sented in Section VI-B, has two responsibilities: À releasing
resources reserved by the hidden DMG after they end their
requests. Á removing the deployed DMG replicas that are no
longer needed. As Algorithm 2 shows, hiding a DMG for a
specific data type requires that the total number of running
requests RunnigReq in all the DMG of this type be less
than 50 percent of the total data type capacity. If this is the

Algorithm 2: Scale down underutilized DMG
Data: maxreq, DMGtype
Result: Remove the useless DMG
Microservice ScaleDownDMG(DMGtype)

begin
nbDMGtype ← countDMG(DMGtype);
RunningReq ← countREQ(DMGtype);
if RunningReq ≤ 50%× maxreq then

if nbDMGtype > 1 then
DMGmin ← selectDMGmin();
UpdateDMGstate(DMGmin,“OFF”);

RemoveInactiveDMG(DMGtype);

case, the DMG which has the fewest number of requests, at
the time when the algorithm is triggered, will be hidden.

LoadShedding algorithm: this algorithm represents a rate
limiting technique. It aims to shed some of the incoming
load so that the system can at least continue to operate
and provide services for a subset of requests, rather than
crashing completely. In our QoS approach, we shed load
in two cases: À when the number of running requests for
a specific data type exceeds the maxreq but there is no
enough free resources (CPU, RAM) in the platform to deploy
a new DMG replica. Á when a new request arrives to the
system and the new deployed DMG is not yet ready to receive
requests. In this case, the load shedding will continue to reject
the incoming requests until the status of the newly deployed
DMG switches to “ON” or the already existing DMG are no
longer overloaded. The component responsible of applying this
algorithm is the DMGController Service.

The use of these algorithms in the service mesh offers our
system the ability to adapt itself to dynamic and heterogeneous
load while effectively using the physical resources of the
platform. In the following section, we present a couple of tests
realised on our platform to show the behavior of the system
to unexpected excessive load.

VII. EVALUATION

In this section, we present the methodology and the results
of a set of tests realised to evaluate the performance of our
data-driven service discovery approach.

A. Methodology

The evaluation of the platform is performed on the large-
scale platform Grid’5000 [35]. It represents a distributed
testbed designed to support experimental-driven research in
parallel and distributed systems. Our experimental setup con-
tains 27 compute nodes of the dahu cluster. Each node is
equipped with 2 x Intel Xeon Gold 6130 processors, 16 cores
per CPU and 192 GiB memory.

We implemented and deploy the architecture presented in
Fig. 3 that includes a service registry cluster with 3 nodes,
7 customized management services as well as Istio’s compo-
nents. The architecture contains one DMG Image containing

8

a set of microservices dedicated to graphics and image pro-
cessing. This DMG reserves a limit of 13 CPU and 23 GB
memory. It has a rate limiter equal to 80 concurrent requests
to control incoming load.

First, we present the variation of the system Response Time
(RT) and the percentage of accepted requests while sending a
stable rate equals to 600 Requests per Second (RPS) during 20
min. Note that the percentage of accepted requests presents the
percentage of discovery requests that were allowed to enter the
platform after the system verified it’s ability to process them.

Second we evaluate the system scalability by presenting the
variation of the number of DMG replicas while sending the
following load distribution: 50 RPS, then 100 RPS and lastly
another 50 RPS. Each rate last for 5 min. The results of these
tests are presented in the following subsection.

B. Results

Fig. 4 shows the variation of the average RT and the
percentage of accepted requests for a stable incoming load.
We can observe 3 different phases.

The first phase shows the baseline of 1 request per second.
It presents a low average response time and a percentage of
accepted request equal to 100%.

We aim to saturate the existing DMG by creating an increase
of the incoming rate to 600 RPS in order to show the system
behavior. When we switch from the baseline to this new rate,
the second phase of the graph shows that the average RT
begins to increase respectively until it reaches a peak of 25
seconds. On parallel, as the existing DMG alone is unable to
process this incoming rate, the system starts shedding load.
As it is shown in the graph, the percentage of accepted
requests fall off rapidly until only 60% of incoming requests
are allowed to enter the platform.

The drop of system performance, triggers the DMGCon-
troller Service that detects a system overload and notifies the
ScaleUP Service which in turn runs our ScaleUp algorithm.
This algorithm replicates the targeted DMG to increase the
system capacity and improve the performance. On parallel,
the DMGController Service runs the LoadShedding algorithm
to prevent requests from blocking the saturated DMG.

As requests continue to arrive, the final phase in the graph
shows a decrease in the average RT. This decrease continues
until it stabilizes around a value close to our baseline. At
the same time, due to the creation of new DMG replica,
the number of accepted requests rises respectively until it
maintains its peak of 100%.

In the second experiment, we switch to a dynamic distribu-
tion of load rather than a stable incoming rate to focus on the
number of DMG replicas.

Fig. 5 shows the variation in the number of DMG replicas
while the incoming rate varies over time following a specific
distribution of the load. We aim with this distribution to show
the system capacity to adjust the number of DMG replicas
according to a load that goes up and down respectively.

At first, since the unique DMG replicas targeted in this
experiment is unable to process more than 80 concurrent

0 200 400 600 800 1000 1200
Time (sec)

0

5

10

15

20

25

Re
sp

on
se

 T
im

e
(s

ec
)

Response Time

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f a
cc

ep
te

d
re

qu
es

ts

% of accepted requests

Fig. 4: With a stable incoming rate, the system’s response
time and the percentage of accepted requests stabilize around
values close to the baseline due to DMG replications

0 200 400 600 800 1000 1200 1400
Time (sec)

0

100

200

300

400

Nu
m

be
r o

f r
eq

ue
st

s

Number of Requests

1

2

3

4

5

6

7

8

Nu
m

be
r o

f r
ep

lic
as

Number of replicas

Fig. 5: With a dynamic incoming rate, the system tune the
number of replicas according to the load.

requests, sending 50 requests each second leads to a system
overload. This triggers the DMGController Service and then
the ScaleUP Service, responsible for the ScaleUp algorithm,
to create multiple new DMG replicas. As the graph shows,
the number of replicas increased rapidly from 1 to 5 DMG
replicas. Similarly, when the number of requests goes from
50 to 100 RPS, the number of replicas continues to increase
slowly while following the variation of incoming rate.

Later, to show how the system reacts if the incoming
rate suddenly falls off, we switched back the number of
incoming requests from 100 to 50 RPS. As the incoming rate
is lower than the capacity of the total number of replicas,
the ScaleDOWN Service triggers the ScaleDown algorithm in
order to free unnecessary DMG. As the graph shows, following
this diminution, the number of replicas decreases respectively
with a variation similar to the incoming rate.

9

VIII. CONCLUSION

Producers and consumers of data are growing continuously
with different QoS requirements and data supported. Keep
using Goal-based service discovery approaches that builds on
specific identifiers to discover services locations, prevent the
discovery of newly published services.

In this paper we presents a standalone data-driven service
discovery framework that allow client programs to discover
the available functionalities and microservices depending on
their data objects, while providing a QoS guarantees. It builds
on a data-centric models to allow matching between data
products requirements and services. In addition, it uses a data-
driven microservices architecture with a peer to peer network
that enables a scalable service discovery with a possibility of
integrating geographical features. This microservices architec-
ture uses a service mesh Istio for inter-service communication
management. It introduces new components to overcome the
service mesh limitations that prevents the creation of a dy-
namic data-driven system able to take appropriate measures
to maintain a QoS.

We have deployed this service mesh data-driven architecture
on a real life testbed. Results show that the platform is
able to adapt and maintain QoS in term of response time
and percentage of accepted requests when receiving incoming
rates that exceed system capacity. In addition, the system is
effectively adapting itself to the incoming load by replicating
a sufficient number of DMG, enough to process the incoming
requests and removing allocated resources when they are no
more needed. As part of our future research, we aim to extend
our data-driven platform to introduce Edge-core placement of
replicas based on data products requirements, and integrate
programmable network services to the data model.

ACKNOWLEDGEMENTS

This research is supported in part by the NSF under grants
numbers OAC 1640834, OAC 1835661, OAC 1835692 and
OCE 1745246 and in other part by LIP Laboratory and ENS
grants.

REFERENCES

[1] Kleanthis Thramboulidis, Danai C. Vachtsevanou, and Alexandros
Solanos. Cyber-physical microservices: An iot-based framework for
manufacturing systems. CoRR, abs/1801.10340, 2018.

[2] Björn Butzin, Frank Golatowski, and Dirk Timmermann. Microservices
approach for the internet of things. In 2016 IEEE 21st International
Conference on Emerging Technologies and Factory Automation (ETFA),
pages 1–6. IEEE, 2016.

[3] Juan-Manuel Fernandez, Ivan Vidal, and Francisco Valera. Enabling
the orchestration of iot slices through edge and cloud microservice
platforms. Sensors, 19(13):2980, 2019.

[4] Darren Gallipeau and Sara Kudrle. Microservices: Building blocks to
new workflows and virtualization. SMPTE Motion Imaging Journal,
127(4):21–31, 2018.

[5] Best service discovery software. https://www.g2.com/categories/service-
discovery. Accessed 03/12/2020.

[6] Istio. https://istio.io/. Accessed 03/12/2020.
[7] Hashicorp consul. https://www.consul.io/mesh.html. Accessed

03/12/2020.

[8] Eduard Gibert Renart, Daniel Balouek-Thomert, and Manish Parashar.
An edge-based framework for enabling data-driven pipelines for iot
systems. In 2019 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), pages 885–894. IEEE, 2019.

[9] M. Ali, A. Anjum, M. U. Yaseen, A. R. Zamani, D. Balouek-Thomert,
O. Rana, and M. Parashar. Edge enhanced deep learning system for
large-scale video stream analytics. In 2018 IEEE 2nd International
Conference on Fog and Edge Computing (ICFEC), pages 1–10, May
2018.

[10] M. Krochmal S. Cheshire. Dns-based service discovery. https://tools.
ietf.org/html/rfc6763, February 2013. Accessed 03/12/2020.

[11] Netflix. Eureka at a glance. https://github.com/Netflix/eureka/wiki/
Eureka-at-a-glance, December 2014. Accessed 03/12/2020.

[12] Welcome to apache zookeeper™. https://zookeeper.apache.org/. Ac-
cessed 03/12/2020.

[13] etcd key-value store. https://etcd.io/. Accessed 03/12/2020.
[14] Mysql. https://www.mysql.com/. Accessed 03/12/2020.
[15] Wubin Li, Yves Lemieux, Jing Gao, Zhuofeng Zhao, and Yanbo Han.

Service mesh: Challenges, state of the art, and future research oppor-
tunities. In 2019 IEEE International Conference on Service-Oriented
System Engineering (SOSE), pages 122–1225. IEEE, 2019.

[16] Linkerd 1 overview. https://linkerd.io/1/overview/. Accessed 03/12/2020.
[17] Linkerd 2 overview. https://linkerd.io/2/overview/. Accessed 03/12/2020.
[18] App mesh: Application-level networking for all your services. https:

//aws.amazon.com/app-mesh/. Accessed 03/12/2020.
[19] Envoy proxy. https://www.envoyproxy.io/. Accessed 03/12/2020.
[20] Sachin Manpathak. Kubernetes service mesh: A comparison of is-

tio, linkerd and consul. https://platform9.com/blog/kubernetes-service-
mesh-a-comparison-of-istio-linkerd-and-consul/, October 2019. Ac-
cessed 03/12/2020.

[21] Christine Hall. What service meshes are, and why istio leads
the pack. https://www.datacenterknowledge.com/open-source/what-
service-meshes-are-and-why-istio-leads-pack, October 2019. Accessed
03/12/2020.

[22] R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola, and G. Tam-
burrelli. Dynamic qos management and optimization in service-based
systems. IEEE Transactions on Software Engineering, 37(3):387–409,
May 2011.

[23] Angelika Musil, Juergen Musil, Danny Weyns, Tomas Bures, Henry
Muccini, and Mohammad Sharaf. Patterns for self-adaptation in cyber-
physical systems. In Multi-disciplinary engineering for cyber-physical
production systems, pages 331–368. Springer, 2017.

[24] Jeffrey O. Kephart and David M. Chess. The vision of autonomic
computing. IEEE Computer, 36:41–50, 2003.

[25] Andreas Niederquell. Self-adaptive systems in organic computing:
Strategies for self-improvement. arXiv preprint arXiv:1808.03519, 2018.

[26] Danny Weyns. Software engineering of self-adaptive systems: an
organised tour and future challenges.

[27] Ahmad A Masoud. Decentralized self-organizing potential field-based
control for individually motivated mobile agents in a cluttered envi-
ronment: A vector-harmonic potential field approach. IEEE Transac-
tions on Systems, Man, and Cybernetics-Part A: Systems and Humans,
37(3):372–390, 2007.

[28] Chris Richardson. Pattern: Client-side service discovery.
https://microservices.io/patterns/client-side-discovery.html. Accessed
03/12/2020.

[29] Chris Richardson. Pattern: Server-side service discovery.
https://microservices.io/patterns/server-side-discovery.html. Accessed
03/12/2020.

[30] Consul data model. https://www.consul.io/docs/agent/services.html. Ac-
cessed 03/12/2020.

[31] Mark Masse. REST API Design Rulebook: Designing Consistent
RESTful Web Service Interfaces. ” O’Reilly Media, Inc.”, 2011.

[32] What is amazon ec2? https://docs.aws.amazon.com/AWSEC2/latest/
UserGuide/concepts.html. Accessed 03/12/2020.

[33] Registrator. https://github.com/gliderlabs/registrator. Accessed
03/12/2020.

[34] Joyent. https://github.com/joyent/containerpilot. Accessed 03/12/2020.
[35] Desprez and al. Adding virtualization capabilities to the grid’5000

testbed. In Ivan I. Ivanov, Marten van Sinderen, Frank Leymann, and
Tony Shan, editors, Cloud Computing and Services Science, pages 3–20,
Cham, 2013. Springer International Publishing.

10

