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Abstract

Background Ontologies are widely used throughout the biomedical domain. These ontologies
formally represent the classes and relations assumed to exist within a domain. As scientific domains
are deeply interlinked, so too are their representations. While individual ontologies can be tested for
consistency and coherency using automated reasoning methods, systematically combining ontologies
of multiple domains together may reveal previously hidden contradictions.

Results We developed a method that tests for hidden unsatisfiabilities in an ontology that arise
when combined with other ontologies. For this purpose, we combine sets of ontologies and use
automated reasoning to determine whether unsatisfiable classes are present. We test the mutual
consistency of the OBO Foundry and the OBO ontologies and find that the combined OBO Foundry
gives rise to at least 636 unsatisfiable classes, while the OBO ontologies give rise to more than
300,000 unsatisfiable classes.

We design and implement a novel algorithm that can determine justifications for contradictions
across extremely large and complicated ontologies, and use these justifications to semi-automatically
repair ontologies by identifying the minimal set of axioms that, when removed, result in a consistent
and coherent set of ontologies. We applied our algorithm to each combination of OBO ontologies
that resulted in unsatisfiable classes.

Conclusions We identified a large set of hidden unsatisfiability across a broad range of
biomedical ontologies, and we find that this large set of unsatisfiable classes is the result of a
relatively small amount of axiomatic disagreements. Our results show that hidden unsatisfiability is
a serious problem in ontology interoperability; however, our results also provide a way towards more
consistent ontologies by addressing the issues we identified.

Introduction 1

Ontologies are used to describe and organise domain knowledge in the biomedical sciences. 2

Ontologies use classes to characterise the kinds of things that exist within a domain as well as 3
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axioms that provide constraints for these classes and conditions that must be satisfied within the 4

domain. Most ontologies in biology are domain-specific and focus on a single domain. Creating 5

ontologies that reference and extend other biomedical ontologies is common practice, as it promotes 6

a unified understanding of the biomedical domain by defining terms and groups of terms in the 7

context of their relationships with classes from related domains, and in the common context of 8

higher level domains. Reusing the formalised knowledge from other domain ontologies also enables 9

the reuse of expertise from ontology developers in other domains. 10

The majority of biomedical ontologies are now being developed in the Web Ontology Language 11

(OWL) [1], a formal model-theoretic language based on description logics [2]. OWL ontologies enable 12

the use of automated reasoners, which in turn enable the deductive inference of knowledge implied 13

by the explicit assertions made in the ontologies. Furthermore, these inferences can be examined to 14

determine whether an ontology’s classes are satisfiable, and whether an ontology is consistent. A 15

class is satisfiable if it can have an instance, and is unsatisfiable if it contains a contradiction such 16

that an instance of the class would force any model of the ontology to contain a logical contradiction; 17

an ontology is inconsistent if it contains at least one instance of a logical contradiction. Unsatisfiable 18

classes and inconsistencies arise most frequently by violation of a disjointness axiom. For example, if 19

an ontology contains an axiom asserting that a disease and a phenotype are disjoint, then any class 20

that is a subclass of both disease and phenotype is unsatisfiable. An ontology which contains any 21

instances of an unsatisfiable class is inconsistent, while an ontology which contains any unsatisfiable 22

classes is termed incoherent. 23

Automated reasoners can also be used to generate explanations for an unsatisfiability. An 24

explanation is a small set of axioms which are sufficient to reproduce the contradiction. An 25

explanation can be used to diagnose the cause of the class becoming unsatisfiable. 26

The Open Biomedical Ontologies (OBO) Foundry is a collection of ontologies that use a shared 27

set of design principles, and encourages re-use of terms amongst them [3]. The ontologies are built 28

using the framework provided by common upper-level ontology, the Basic Formal Ontology 29

(BFO) [4], and include many large and widely used domain ontologies describing areas such as 30

chemical entities [5], phenotypes [6], and model organisms [7]. Using standard upper-level ontologies 31

is intended to support consistency between multiple ontologies and knowledge integration across 32

domains [8]. 33

From a technical perspective, OWL caters for the inclusion (i.e., import) of complete ontologies 34

so that they can be reused and built upon. Importing an ontology amounts to including all the 35

entities and axioms of another ontology in the importing ontology. While this is a provision of 36

simple modularity, it enables re-use of classes and axioms across ontologies, and it enables 37

automated reasoners to detect joint consistency. 38

However, full import of an ontology is not always sensible or feasible. Even when an ontology 39

makes heavy use of the classes and axioms in another ontology, only a subset of the classes are likely 40

to be relevant within another ontology. 41

For example, the Hypertension Ontology (HTN) [9] expands upon the hypertension classes in the 42

Human Phenotype Ontology (HP) [6] and the Disease Ontology (DO) [10], but is not concerned with 43

any terms in those ontologies besides those directly related to hypertension. To include all of the 44

classes in HP and DO in HTN is vulnerable to potential issues resulting from the inclusion of 45

irrelevant classes. Loading the ontology would take longer, in particular when imported ontologies 46

are retrieved over the internet. Editing an ontology may become challenging when many classes from 47

other ontologies are included on account of the large amount of additional classes that must be 48

loaded, classified, and possibly visualised. Overall, an ontology importing a large number of other 49

ontologies becomes more difficult to use with the relevant classes being hidden within the hierarchy 50

of the imported ontologies. 51

In response to these technical challenges, the research community has investigated different 52

models for ontology modularisation. Particularly, work has investigated locality-based module 53

extraction [11], which can be used to improve reasoner-based query performance and support 54

large-scale ontology development and re-use [12]. 55
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The MIREOT (Minimum Information to Reference an External Ontology Term) guidelines were 56

originally developed to support inclusion of classes from non-OBO Foundry ontologies without 57

needing to align to their axiomatisation, and has become a standard for term re-use and inclusion 58

throughout the biomedical ontology community [13]. 59

MIREOT relaxes the import of other ontologies through including all axioms and instead focuses 60

on the reuse of individual classes from other ontologies. Particularly, the MIREOT guidelines 61

stipulate that three pieces of information are necessary to “reference” an external ontology class: 62

Source ontology The Internationalised Resource Identifier (IRI) of the ontology which contains 63

the class being included. 64

Source class The IRI of the class to import, as defined in the external ontology. 65

Direct Superclass The IRI of the direct superclass of the imported class in the referencing 66

ontology. 67

Utilizing these three pieces of information, an external ontology class can be referenced. By 68

including MIREOT definitions for each relevant external class, a module is formed within the 69

imported ontology without fully importing any external ontologies. While this method allows 70

ontologies to reuse classes in a scalable and efficient manner, the inclusion of external classes without 71

the context of the external ontology’s axioms means that contradictions may arise that cannot be 72

detected using an automated reasoner that evaluates only the importing ontology. This may lead 73

ontology developers to build upon another class in a way that contradicts its original definition. 74

Furthermore, subsequent versions of the source ontology may re-axiomatise a subject class in a way 75

which renders its use in the importing ontology incompatible with it. 76

Our prior analysis of the Experimental Factor Ontology (EFO) [14] showed that the use of 77

MIREOT has the potential to cause inconsistency and unsatisfiabilities across the set of ontologies 78

the EFO references [15]. While our previous work revealed problems with EFO, the extent and exact 79

characterisation of this problem throughout the entire biomedical ontology ecosystem has not yet 80

been explored. It is also unknown whether there are common roots to widespread unsatisfiabilities. 81

More importantly, while identifying unsatisfiable classes and inconsistencies is important, it would 82

be much more useful to resolve them, ideally automatically or semi-automatically. It is not clear 83

whether the unsatisfiabilities can be automatically repaired. 84

We explore interoperability and hidden unsatisfiability throughout the OBO Foundry ontologies. 85

To do this extend the unMIREOT tool described by our previous work, and generalise it to reveal 86

hidden contradictions in any combination of OWL ontologies [15]. This analysis reveals many cases 87

of incoherency and inconsistency throughout the ontology ecosystem. 88

Based on the information revealed by our analysis, we present a novel algorithm that generates 89

explanations for unsatisfiability, and uses these explanations to systematically identify a small list of 90

axioms that can be removed from an ontology to repair all cases of unsatisfiability and generate a 91

novel ontology that is both consistent and coherent. The list is formed by automatically evaluating 92

explanations for unsatisfiable classes. We then use the algorithm to report on sources of the 93

contradictions we found throughout the OBO ontologies, and the axioms that are most frequently 94

involved. 95

Our method and tools allows detection of unsatisfiable classes and the systematic, 96

semi-automatic repair of ontologies. Applying our approach will lead to higher quality ontologies 97

maintaining consistency in the rapidly evolving web of knowledge that spans biology and 98

biomedicine. All our results and software are freely available at 99

https://github.com/bio-ontology-research-group/UNMIREOT. 100

3/16

.CC-BY-NC 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted May 17, 2020. . https://doi.org/10.1101/2020.05.16.099309doi: bioRxiv preprint 

https://github.com/bio-ontology-research-group/UNMIREOT
https://doi.org/10.1101/2020.05.16.099309
http://creativecommons.org/licenses/by-nc/4.0/


Materials and Methods 101

Ontologies and ontology versions 102

All non-deprecated and obtainable OBO ontologies were downloaded using the permanent download 103

links given by the OBO Foundry database at 104

http://obofoundry.org/registry/ontologies.yml. A total of 132 ontologies were obtained 105

on 28/03/2018. 106

Our experiments concern two sets of ontologies described by this database. First, the OBO 107

Foundry ontologies, which are judged as satisfying the OBO Foundry principles, and are therefore 108

tightly integrated and also widely used across many domains. The second is the wider set of 109

ontologies included in the OBO database. In the rest of this paper, we will refer to the core 110

ontologies as the OBO Foundry ontologies, while the wider set of ontologies will be referred to as the 111

OBO ontologies. 112

Implementation and experimental Setup 113

For all experiments, we use the OWLAPI 5.1.4 [16]. To classify the ontologies and to retrieve 114

unsatisfiability explanations, we use the Elk reasoner version 0.5.0-SNAPSHOT [17]. 115

Elk supports the OWL 2 EL profile, a fragment of OWL that supports tractable (i.e., 116

polynomial-time) reasoning, but lacks support for many logic operators. In particular, OWL 2 EL 117

does not support the use of negation in class descriptions or use of the universal quantifier. The only 118

type of axiom in OWL 2 EL that could result in an explicit contradiction is the disjointness axiom. 119

We also used Protégé to examine some of the combined ontologies for particular cases of 120

unsatisfiability [18]. 121

Results 122

Combining ontologies and detecting inconsistencies 123

We combined all of the OBO Foundry ontologies into one meta-ontology, by copying all the axioms 124

from each source ontology into the a new ontology. Figure 1 summarises the ontologies in this set. 125

We did not include the ontologies referenced in the imports closures of the OBO Foundry ontologies, 126

since in all cases these ontologies were included in the larger set of OBO ontologies, and therefore 127

their combined consistency would be evaluated later. Subsequently, we evaluated the combined 128

ontology for unsatisfiability and its causes. 129

The 9 OBO Foundry ontologies combined consist of 402,868 logical axioms and 207,105 named 130

classes. The use of an automated reasoner on the combined OBO Foundry meta-ontology 131

determined that 636 of these classes are unsatisfiable. Table 1 shows the number of unsatisfiable 132

classes and the ontology to which they belong. The origin ontology of the classes was determined 133

using the class IRI prefix. 134

Table 1. Unsatisfiable class counts in OBO Foundry

Ontology Unsatisfiable Class Count
CHEBI 37
GO 565
OBI 34

While each of these classes is unsatisfiable due to a different set of axioms, there may be a small 135

set of axioms that are shared by several cases of unsatisfiability. We developed an algorithm to 136

identify a small set of axioms that are sufficient to explain all unsatisfiable classes in an ontology; if 137

this set of axioms is removed from an ontology, all cases of unsatisfiability are resolved. We apply 138

this algorithm to the combined OBO Foundry ontologies in order to derive a coherent version, 139
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BFO Basic Formal Ontology [19]

CHEBI Chemical Entities of Biological Interest [5]

DO Disease Ontology [10]

GO Gene Ontology [20]

OBI Ontology for Biomedical Investigations [21]

PATO Phenotypic Quality Ontology [22]

PO Plant Ontology [23]

XAO Xenopus Anatomy and Development Ontology [24]

ZFA Zebrafish Anatomy and Development Ontology [25]

Figure 1. Ontologies included in the OBO Foundry.

removing two axioms. The algorithm, and the axioms it removes, are described in detail in the 140

Efficient ranking and repairing of axioms section. 141

We combine this coherent version of the OBO Foundry meta-ontology iteratively with each of the 142

OBO ontologies, classifying the resulting merged ontology, using an automated reasoner to 143

determine if there are any unsatisfiable classes; if we identify unsatisfiable classes we count their 144

number. Out of all 131 loadable ontologies that we use in this experiment, we revealed unsatisfiable 145

classes in 50 ontologies. The 10 OBO ontologies with the most unsatisfiable classes are listed in 146

Table 2. The total number of unsatisfiable classes across all OBO ontologies is 866,494 and the total 147

number of unique unsatisfiable classes is 312,398. Of these, 8,893 are obsolete classes, which are 148

intentionally unsatisfiable (and thus not considered an error). In addition, the Ontology of Vaccine 149

Adverse Events (OVAE) [26], Food Ontology (FOODON) [27], Plant Trait Ontology (TO) [28], 150

Gazetteer (GAZ) [29], Porifera (PORO) [30], Plant Experimental Conditions Ontology (PECO) [28], 151

Oral Health and Disease Ontology (OHD) [31], and Statistics Ontology (STATO) [32] became 152

inconsistent. 153

Table 2. The ten ontologies with the most unsatisfiable classes in the OBO ontologies, when
combined with a repaired version of the merged OBO Foundry ontology.

Ontology Name Unsatisfiable Class Count
Unified Phenotype Ontology (UPHENO) [33] 106,126
Monarch Disease Ontology (MONDO) [34] 97,619
Ontology for MIRNA Target (OMIT) [35] 63,015
Molecular Process Ontology (MOP) [36] 57,355
Name Reaction Ontology (RXNO) [37] 57,330
Human Phenotype Ontology (HP) [6] 46,075
Mammalian Phenotype Ontology (MP) [7] 43,806
Cell Ontology (CL) [38] 34,685
Ontology of Biological Attributes (OBA) [39] 26,523
Ontology of Adverse Events (OAE) [40] 20,566

Efficient ranking and repairing of axioms 154

Our algorithm for identifying the causes for unsatisfiability in ontologies builds upon a black-box 155

algorithm for computing a justification for one unsatisfiable class. A justification is a minimal set of 156

axioms which explain why the class is unsatisfiable. The black-box algorithm we employ creates an 157
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empty ontology containing only the class that is unsatisfiable; it then adds new axioms from the 158

original ontology to it, until the class becomes unsatisfiable. Axioms that are not necessary for the 159

class to become unsatisfiable are then removed using a backwards stepwise approach, eventually 160

producing a minimal set of axioms that constitute a justification for the unsatisfiability of the class 161

in the original ontology. Justification algorithms are usually used as debugging tools to direct 162

ontology developers towards the causes of unsatisfiability. For this reason, they are often integrated 163

into ontology development environments such as the Protégé software [41]. 164

The naive algorithm, for finding a minimal set of justifications that can be removed to repair all 165

cases of unsatisfiability, uses the black box algorithm to compute justifications for all unsatisfiable 166

classes in the ontology, and then removes the axiom that appears most frequently in the set of all 167

justifications. Subsequently, it then repeats this step until all cases of unsatisfiability are solved. 168

This algorithm works well if only a small number of classes are unsatisfiable, and the ontology is 169

relatively small. However, our experiments revealed a very large number of unsatisfiable classes, 170

some of which are in very large ontologies. In the most prolific case, the Unified Phenotype Ontology 171

(UPHENO) contains 106,126 unsatisfiable classes, out of 133,480 classes total in the ontology. Such a 172

large number of unsatisfiable classes makes the naive algorithm intractable. In the worst case, our 173

black-box algorithm has to add all axioms from the ontology, and then remove all but one of these 174

axioms in order to find a single justification for one class, leading to a time complexity of (n ·m) 175

where n is the number of axioms and m the number of unsatisfiable classes; since each step further 176

involves computing satisfiability, which has cubic complexity in the number of classes (and 177

relations) [17], it is obvious that the algorithm will not scale to large numbers of unsatisfiable classes. 178

We develop an improved algorithm for finding a small set of axioms to remove from an ontology 179

to repair all cases of unsatisfiability by a consideration of the problem according to the hitting set 180

problem. 181

In the theory of system diagnosis, we consider a series of conflict sets, each describing a 182

conflicting set of system components – a subset of elements from a universal set of system 183

components. A hitting set is one which intersects every conflict set, and the hitting set problem is 184

the problem of computing all the minimal hitting sets for the conflict sets [42]. 185

The problem is useful in cases where repairing or removing all of the elements in a hitting set 186

would repair a system. The hitting set problem is equivalent to the set cover problem [43], and both 187

problems are known to be NP-complete through reduction to the boolean satisfiability problem [44]. 188

Our problem can be reduced to the hitting set problem, because an unsatisfiability justification 189

can be considered as a conflicting set of axioms which can be resolved by removing one of its 190

members from the ontology. To completely remove all axioms causing unsatisfiable classes in an 191

ontology, all justifications must be resolved. 192

A hitting set of axioms to remove from the ontology to repair all axioms, therefore, must have a 193

non-empty intersection with every unsatisfiability justification. The problem of finding all 194

justifications for a single entailment in an ontology has previously been reduced to the hitting set 195

problem, and then solved using Reiter’s Hitting Set Tree (HST) algorithm [45]. The problem we 196

need to solve is similar, however we need to identify a hitting set of axioms that resolve all cases of 197

unsatisfiability in the ontology instead of just the axioms that cause unsatisfiability of a single class. 198

We develop an algorithm that exploits the fact that classes transitively inherit unsatisfiability 199

through subclass axioms; if C is unsatisfiable and the ontology contains D v C as an axiom, then D 200

will also be unsatisfiable. Consequently, we prioritise resolving unsatisfiabilities for classes that have 201

the largest number of (asserted) subclasses in the ontology; when we resolve the cause of such a class 202

becoming unsatisfiable, we also resolve the inherited causes of unsatisfiability for their subclasses 203

without explicitly needing to generate a justification for them. In the worst case, this optimisation 204

step will have no effect, because any class may have multiple causes of unsatisfiability independent 205

from its parent class. If that is the case, the performance would be equivalent to the naive algorithm 206

described above. However, commonly, if we assume that there are only a small number of overall 207

causes of unsatisfiability in the ontology, we will reduce the number of justifications generated 208

significantly. 209
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Data: o = Given ontology
Result: Minimal set of axioms required to repair ontology
Load and classify ontology o
x = unsatisfiable classes
while x > 0 do

y = x without leaf classes (zero subclasses in o)
if size(y) < size(x) then

y = y without classes which have a superclass in set y
z = group classes in y by total number of direct subclasses in o
x = max(z.key)

end
if size(x) > 25 then

x = randomly sample 25 classes from x
end
c = implicated axioms for each class in x
Count axioms in c, and remove the maximally implicated axiom from o
Reclassify ontology o

end

Figure 2. Algorithm for automatic diagnosis and repair of unsatisfiable classes in an ontology.

Our algorithm is shown in Figure 2. The algorithm takes an ontology O as input and determines 210

the set of unsatisfiable classes in O, υ(O); the algorithm then removes from υ(O) all classes that have 211

an asserted superclass in υ(O). This step ensures that for each cluster of unsatisfiability, the most 212

general class within the ontology taxonomy is examined first. The algorithm then selects the group 213

of classes with the highest number of directly asserted subclasses, and either generates justifications 214

for all of these classes or for a random sample of them if the number of direct subclasses is above a 215

threshold n (we select n = 25). The most frequently occurring axiom in these justifications is then 216

removed, and the ontology is reclassified, to produce another set of unsatisfiable classes, upon which 217

the process is repeated; the algorithm terminates when all unsatisfiable classes have been resolved. 218

In the selection step, our algorithm uses asserted subclasses instead of inferred subclasses because 219

each unsatisfiable class is an inferred subclass of all classes. It is possible that a class has more direct 220

subclasses than another yet a fewer number of total subclasses; however, this effect is controlled by 221

removing any classes with a superclass in the set of unsatisfiable classes υ(O). 222

Throughout execution of the algorithm, we record statistics on the set of classes that become 223

satisfiable after the removal of each axiom. These statistics enable ontology developers to identify 224

problematic axioms that affect groups of ontologies, and manually resolve them. 225

Application to OBO Foundry 226

We applied our algorithm first to the merged OBO Foundry ontology, finding that two axioms could 227

be removed to solve all cases of unsatisfiability: 228

1. ‘realizable entity’ (BFO:0000017) SubClassOf: ‘specifically dependent 229

continuant’ (BFO:0000020) with 599 classes repaired, and 230

2. ‘molecular entity’ (CHEBI:23367) SubClassOf: ‘material entity’ (BFO:0000040) 231

with 37 classes repaired. 232

These two axioms are members of the smallest set of axioms that suffices to remove all 233

unsatisfiabilities. We could also consider the unsatisfiable classes as a result of violating disjointness 234

axioms; in particular, all the unsatisfiable classes are also subclasses of two or more classes that are 235

asserted to be disjoint. The removal of each of the subclass axioms above solves multiple disjointness 236
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axiom violations. For the first axiom that contributes to the most unsatisfiable classes, the classes it 237

accounts for each violate one or more of these three different disjointness axioms: 238

1. ‘independent continuant’ (BFO:0000004) DisjointWith: ‘specifically dependent 239

continuant’ (BFO:0000020) 240

2. DisjointClasses: ‘independent continuant’ (BFO:0000004), ‘specifically 241

dependent continuant’ 242

(BFO:0000020), ‘generically dependent continuant’ (BFO:0000031) 243

3. ‘continuant’ (BFO:0000002) DisjointWith: ‘occurrent’ (BFO:0000003) 244

The second case is affected by two disjointness axioms: 245

1. ‘independent continuant’ (BFO:0000004) DisjointWith: ‘specifically dependent 246

continuant’ (BFO:0000020) 247

2. DisjointClasses: ‘independent continuant’ (BFO:0000004), ‘specifically 248

dependent continuant’ 249

(BFO:0000020), ‘generically dependent continuant’ (BFO:0000031) 250

The two disjointness axioms shown for the second case are included in the three axioms shown for 251

the first set, and the disjointness axiom between independent continuant and specifically 252

dependent continuant is a consequence of the others. In total, therefore, three disjointness axioms 253

account for all cases of hidden unsatisfiability throughout the OBO ontologies. Removing the 254

subclass axioms removes fewer axioms and solves the cases of unsatisfiability because they prevent 255

classes from violating multiple disjointness axioms. For example, in the case of removing the 256

subclass relationship between molecular entity (CHEBI:22367) and material entity 257

(BFO:0000040), some subclasses of ‘molecular entity’ violate the first disjointness axiom and 258

some violate the second. By removing the subclass axiom, however, molecular entities are no longer 259

subclasses of the parent class of material entity, independent continuant (BFO:0000004), for 260

which two disjointness axioms are asserted. 261

Among the wider set of OBO ontologies we found that a set of only 117 axioms could be removed 262

from ontologies to solve all unsatisfiability for all 866,494 unsatisfiable classes. Of these, 51 involved 263

a BFO class. Figure 3 shows the top ten axioms ranked by the number of unique unsatisfiable 264

classes they are responsible for repairing when removed, while the full set of axioms is available in 265

the Github repository associated with this experiment. 266

Inconsistency Analysis 267

Our experiments identify contradictions that lead to unsatisfiable classes in the OBO ontologies and 268

highlight the axioms that can be removed to solve most cases of unsatisfiability. Our experiments 269

further reveal which disjointness axioms are most frequently violated. However, merely removing the 270

axioms does not necessarily resolve the underlying issues in how domain knowledge is modeled. 271

For example, although 599 unsatisfiable classes are repaired in OBO Foundry ontologies by 272

removing the subclass axiom, ‘realizable entity’ (BFO:0000017) SubClassOf: 273

‘specifically dependent continuant’ (BFO:0000020), this does not entail that this axiom, or 274

the disjointness axioms it is related to, are themselves incorrect. Instead, the unsatisfiable classes 275

arise through the different, mutually exclusive, uses of these classes by more specific axioms. In 276

particular, 87 of these 599 classes are MAP kinase activity (GO:0004707) and its subclasses. The 277

violated disjointness axiom is the fundamental BFO distinction between continuant (BFO:0000002) 278

and occurrent (BFO:0000003). A continuant is something that is present as a whole at a time 279

point and maintains its identity over time while an occurrent unfolds through time and has temporal 280

parts [46]. They are often used in biomedical ontologies to refer to material entities and processes, 281

respectively. 282
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Table 3. Top ten axioms accounting for the most hidden cases of unsatisfiability across OBO
ontologies.

Axiom Class Count
‘processual entity’ (UBERON:0000000) DisjointWith:

‘anatomical entity’ (UBERON:0001062)

102,501

‘anatomical entity’ (UBERON:0001062) SubclassOf:

‘processual entity’ (UBERON:0000000)

63,349

miRNA target gene primary transcript (NCRO:0000001)

SubclassOf: nc primary transcript (SO:0000483)

59,887

‘has role’ (RO:0000087) Range: role (BFO:0000023)) 57,438
‘processual entity’ (UBERON:0000000) SubClassOf:

‘occurrent’ (BFO:0000003)

41,770

‘continuant’ (BFO:0000002) DisjointWith: ‘occurrent’

(BFO:0000003)

31,943

‘connected anatomical structure’ (CARO:0000003)

SubClassOf: ‘material anatomical entity’

(CARO:0000006)

31,639

‘independent continuant’ (BFO:0000004) DisjointWith:

‘specifically dependent continuant’ (BFO:0000020),

‘generically dependent continuant’ (BFO:0000031)

30203

‘realizable entity’ (BFO:0000017) SubClassOf:

‘specifically dependent continuant’ (BFO:0000020)

21,603

‘organ’ UBERON:0000062 SubClassOf: ‘has 2D boundary’

RO:0002002 some ‘anatomical surface’ (UBERON:0006984)

20,539

As shown in Figure 3, MAP kinase activity is a subclass of continuant (indirectly through 283

several other classes) by means of being a molecular function. It is also a subclass of part of 284

some MAPK cascade, which is a subclass of intracellular signal transduction. This class 285

stands in an occurs in relationship with intracellular. The object property occurs in contains 286

a restriction of its domain, asserting that something that occurs in something else must be an 287

occurrent. Consequently, MAPK cascade, a kind of intracellular signal transduction, is an 288

occurrent. 289

Then, because MAP kinase activity is part of a MAPK cascade, it too is an occurrent. The 290

reason for this is that the part of (BFO:0000050) relationship must be between two things of the 291

same kind; its description states “two distinct things cannot be part of each other” which is enforced 292

by assertions in RO that state occurrent is a subclass of part of only occurrent, and 293

continuant is a subclass of part of only continuant. This means that the reasoner infers from 294

the assertion that MAP kinase activity is a part of MAPK cascade, that it too must be an 295

occurrent.Therefore, MAP kinase activity must be both a continuant and an occurrent, 296

which is the source of its unsatisfiability. 297

In addition to the 87 classes that due to the axioms related to MAP kinase activity, all 599 298

unsatisfiable classes that can be removed by removing the ‘realizable entity’ (BFO:0000017) 299

SubClassOf ‘specifically dependent continuant’ (BFO:0000020) axiom are subclasses of 300

the class description: 301

• ‘molecular function’ and ‘occurs in’ some ‘intracellular’ 302

This is fundamentally the same cause of unsatisfiability as MAP kinase activity: that is they are 303

subclasses of continuant via molecular function, and occurrent via being something or a part 304

of something that occurs in intracellular. There are actually 1,306 total classes which are 305

subclasses of ‘occurs in’ some ‘intracellular’, but 707 of these are not subclasses of 306

continuant and are therefore not unsatisfiable. 307
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Figure 3. MAP Kinase unsatisfiability in the OBO Foundry meta-ontology represented as a graph.

These contradictions are not revealed by an automated reasoner used with the Gene Ontology 308

alone, because the Gene Ontology imports occurs in (BFO:0000066) from the Relation Ontology 309

using MIREOT, without the axioms of the Relation Ontology. Consequently, the axiom that asserts 310

the domain of occurs in is not imported. The contradiction is revealed when the ontologies are 311

combined and the imported class is extended with the restrictions declared in its original definition. 312

The long chain of inferences required to detect this unsatisfiability explains why it is easy for an 313

ontology developer to assert a contradictory axiom, especially when the full set of axioms is not 314

available to a reasoner during ontology development. The shared inheritance of continuant and 315

occurrent are hidden behind several layers of subclass axioms and domain and range restrictions on 316

object properties. Furthermore, colloquially, there may also be occasional confusion between 317

parthood and participation in a process [47]. The problems could be fixed without any removal of 318

axioms by using the participates in (RO:0000056) or has participant (RO:0000057) relations 319

instead of the part of relations in some axioms [48]. 320

Indeed, many of the axioms that were highlighted for removal imply issues deriving from 321

improper use of BFO. For example, in the OBO ontologies experiment, 57,438 classes were made 322
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satisfiable by removing the restriction that the role a class has must be a kind of role. 323

All tools described in this paper, including those to obtain, merge, analyse, and repair ontologies, 324

as well as the full results of the experiment, and tools to recreate the experiment, are available at 325

https://github.com/bio-ontology-research-group/UNMIREOT. 326

Discussion 327

We have identified a high prevalence of hidden unsatisfiability throughout a major biomedical 328

ontology ecosystem, the OBO ontologies. These ontologies include widely used ontologies that form 329

a crucial part of the bioinformatics infrastructure. We also developed a novel algorithm that can 330

diagnose incoherent ontologies by identifying a small set of axioms that resolve all cases of 331

unsatisfiability. We demonstrated this across the OBO Foundry, and found that relatively few 332

axioms can be removed to resolve all unsatisfiable classes. Nevertheless, the fact that many of the 333

axioms removed belong to BFO, the upper-level ontology that most OBO ontologies use as a 334

foundation, indicates that this ontology is not used consistently throughout all ontologies. Also of 335

note is that several ontologies were inconsistent when combined with the set of OBO Foundry 336

ontologies. These ontologies likely had similar problems to the other ontologies we examined, but 337

actually included instances of the unsatisfiable classes – turning an incoherent ontology into an 338

inconsistent one. Our algorithm reveals that it suffices to remove or change 117 axioms to repair all 339

issues we identified; while our algorithm can automatically remove these axioms, the number of 340

problematic axioms is small enough for them to be manually investigated; this sets out a way 341

forward towards a logically consistent set of biomedical ontologies. 342

While our algorithm removes a minimal set of axioms to make an ontology coherent, it does not 343

repair the root cause of the contradiction. In one case we showed that a large number of 344

unsatisfiable classes in the Gene Ontology were caused by a mistaken use of a parthood relationship. 345

This cause for unsatisfiability was complex, but would have been revealed by an automated reasoner 346

had the axioms of MIREOT-ed classes been included. This indicates that the unconstrained use of 347

MIREOT has introduced a new challenge for ontology interoperability, which must now be 348

addressed. The question remains, however, of how best to balance the challenges of developing 349

ontologies with the hardware resources and tools available, while at the same time maintaining 350

consistency and interoperability between ontologies. Our results illustrate how the unMIREOT tool 351

can be used to help ontology developers identify problematic axioms in their ontologies, and explore 352

them to diagnose causes of contradiction. 353

While we have shown that there are large clusters of unsatisfiability across the OBO Foundry, it 354

is unclear whether or to what extent these issues are affecting ontology-based analysis techniques. 355

Incorrect inferences could affect the results of gene enrichment analysis, inter-ontology phenotype 356

mapping, semantic similarity tasks, or any analysis that relies on ontology axiomatisation. In the 357

future, we intend to explore this by implementing a reference task that relies on multiple combined 358

ontologies, and comparing the performance before and after repairing the unsatisfiable classes. 359

While ontologies can be repaired by the unMIREOT approach, and examination of its output can 360

help to identify the root cause of unsatisfiability, this can still be a time consuming and complicated 361

process. It is possible that algorithmic tools could be developed to aid ontology developers in 362

identifying the most informative cause of the inconsistency, or instead to create a set of minimally 363

destructive axioms to remove from the ontologies. 364

One approach to preventing contradictions from entering ontology releases in the future is the the 365

use of full ontology inclusion and testing during the development process, as part of an integration 366

testing process. It would be possible to incorporate the unMIREOT tool in such a workflow or 367

ontology release tool [49]. The OBO ontologies use a shared central build system which can be 368

configured to validate ontologies against scripts that check for problems. By using a powerful build 369

server to combine ontologies with the ontologies they refer to and check for inconsistencies before 370

release, developers would be able to continue to use MIREOT while ensuring continuing 371

compatibility. 372
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It is also possible that either the MIREOT or OBO guidelines should be revised, to include more 373

information in a class reference. Including more axioms related to referenced classes would allow for 374

local consistency checking with an automated reasoner. Because many axioms are inherited, and 375

restrictions are placed transitively, the axioms of an entire ontology or at least a derived module 376

would need to be imported. This could be recommended in the case of small, high-level ontologies 377

such as BFO and RO, which should not cause performance or space issues. Without actually 378

including the ontology in the imports closure, however, it would not solve the problem of sourcing 379

ontologies becoming out of date with the ontologies they reference. 380
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