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Abstract— Head pose recognition and monitoring is key to
many real-world applications, since it is a vital indicator for
human attention and behavior. Currently, head pose is often
computed by localizing landmarks on a targeted face and
solving 2D to 3D correspondence problem with a mean head
model. Recent research has shown that this is a brittle approach
since it relies entirely on the accuracy of landmark detection,
the extraneous head model and an ad-hoc alignment step.
Recent work has also shown that the best-performing methods
often combine multiple low-level image features with high-level
contextual cues. In this paper, we present a novel end-to-end
deep network, which is inspired by these ideas and explores
regions within an image to capture topological changes due
to changes in viewpoint. We adapt the existing state-of-the-
art deep CNNs to use more than one region for accurate
head pose recognition. Our regions consist of one or more
consecutive cells and is adapted from the strategies used in
computing HOG descriptor. Extensive experimental results on
head pose recognition using four different large-scale datasets,
demonstrate that the proposed approach outperforms many
state-of-the-art deep CNN models. We also compare our pose
recognition performance with the latest OpenFace 2.0 facial
behavior analysis toolkit. In addition, we contribute head pose
annotation to a large-scale dataset (VGGFace2).

I. INTRODUCTION

Automatic detection and analysis of faces in images and
videos is a fundamental problem in computer vision and has
an important role in various applications: person identifica-
tion, face verification, social robotics, activity recognition,
modeling attentions, fitting 3D models and many more.
Although significant advancement has been made in face
detection, the reliable estimation of head pose and landmarks
is still a challenging problem, particularly in unconstrained
“in the wild” images. Uncertainty in head pose estimation
is seemed to be a key factor for face recognition [10]
and landmarks estimation [48], [32]. In extreme poses, face
detection is arguably still a difficult problem to address.

Traditionally, head pose estimation is computed by lo-
cating 2D facial landmarks (also known as keypoints) in
the target face and establishing the correspondence between
landmarks and a head template by performing alignment
[48], [11], [49], [36]. However, many real-world applications
require an approximate estimation of the coarse head poses.
In such cases, are the landmarks-based approaches still the
best way forward? This paper address this question by
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exploring the latest deep Convolutional Neural Networks
(CNNs) models.

Recently, there has been a significant progress in de-
tecting and localizing facial landmarks using modern deep
learning models [23], [32], [33], [48]. This has significantly
influenced the way facial expression analysis is carried out.
This is mainly due to their flexibility and robustness to
extreme poses and occlusions, encouraging improvements
in performance. These models are aimed to jointly predict
head poses and facial landmarks. However, the primary goal
of the head pose estimation is to improve the accuracy of
the landmarks predictions. As a result, head pose estimation
itself is not sufficiently accurate on its own.

In this work, we propose a novel holistic approach to
estimate head poses from image intensities using CNNs.
The proposed approach is inspired by the recent success
in contextual action recognition using region-based CNN
(R*CNN) [13] that delivers superior accuracy. There is no
doubt about the significant improvement in facial landmarks
detection accuracy due to the recent success of deep learning.
However, there are many possibilities for introducing error
for estimating head poses from these detected facial land-
marks [34]. This is mainly due to the detection of sufficient
numbers of facial landmarks and the quality of the head
model. Its adaptation to each individual also depends on the
model deformation, which is computationally expensive.

A. Related Work

Head pose estimation is to infer the orientation of person’s
head relative to the camera view. It is widely studied with
very diverse approaches by exploring explicit 3D models [3],
[15] or 2D view-based models [48], [49], [7].

Recently, there has been some progress in head pose
estimation using CNNs. A study involving relatively shallow
networks trained using a regression loss is presented in [31].
In OpenFace 2.0 [1], authors use simplified deep Convolu-
tional Experts Constrained Local Model (CE-CLM) for facial
landmarks detection. Head pose estimation is carried out
using a 3D representation of facial landmarks and projects
them to the image using orthographic camera projection. The
tool could also recognize facial action unit and estimate eye-
gazes. Hyperface [32] is a CNN that combines R-CNN [12]
and AlexNet to predict four different sub-tasks (detect faces,
determine gender, detect facial landmarks and estimate head
pose) at once. KEPLER [23] uses Heatmap-CNN (H-CNN),
which is a modified GoogleNet architecture to predict facial
landmarks and pose, jointly. In order to improve the facial



Fig. 1: Examples of facial landmarks (5 and 68) detection using Tasks-Constrained Deep Convolutional Network (TCDCN)
[48]. Traditionally, these landmarks are often used for face alignment to estimate head pose. Figures are taken from [48].

landmarks detection, it uses the coarse pose supervision. All-
In-One CNN [33] is another deep model, which is aimed for
simultaneous face detection and alignment, face recognition,
smile detection, pose estimation, gender recognition and age
estimation using a single CNN. The model uses a multi-task
learning concept that regularizes the shared parameters.

Ruiz et al. [34] urge for landmarks-free head pose es-
timation using image intensities. They regress head pose
Euler angles by applying multi-loss objective function to
ResNet-50 and AlexNet. They demonstrate the success of
their approach by improving head pose estimation using syn-
thetically expanded 300W-LP dataset. This differs from our
work since we focus on classification of head poses targeting
the existing large-scale datasets used for face recognition.

Chang et al. [6] also advocate for landmarks-free head
pose estimation. They use a simple CNN to regress 3D
head poses, focusing on facial alignment using the predicted
head pose. The facial alignment pipeline is targeted towards
improving the face recognition accuracy. There is no direct
evaluation of the head pose estimation and is different from
our work since we evaluate and compare the head pose
results.

De et al. [9] use VGG16 model to regress the head pose
Euler angles by adding an additional FC and RNN layer.
The pose estimation is improved by leveraging the time
dimension captured by the RNN. Our approach focuses on
classification and improving the pose estimation accuracy
from a single image by modifying the state-of-the-art deep
network architectures. Moreover, our model can be easily
integrated into most of the deep CNN architectures.

B. Deep CNN for Estimating Head Poses

Recently, deep CNNs [37], [16], [42], [43], [18] have
been widely used for solving visual recognition (e.g. faces,
objects, scene, action, etc.) problems and have achieved
significant improvements in comparison to traditional ap-
proaches involving hand-crafted features (e.g. HOG [8], SIFT
[25]). However, head pose estimation using such networks is
still in its infancy. Most of the existing head pose estimation
approaches focus on depth images [38], [30], [27], [29] and
if no depth information exists, facial landmarks are detected
and pose is estimated [48], [23], [32], [33]. Recently, there
has been some progress to explore such networks for esti-
mating head poses [34], [38], [9]. However, these approaches
use these networks to regress the head pose Euler angles
(commonly known as Yaw, Pitch and Roll). This raises an
important question: Is very fine-grained (e.g. change in Euler

angles within a few degrees) head pose necessary for many
real-world applications?

A wide range of applications such as human-robot inter-
actions, social scene understanding from videos and human
computer interactions, do not necessarily require fine-grained
head pose estimation. In such scenarios, the user attention
is often measured as head pose directed towards the tar-
get objects or scene. Therefore, the pose within a certain
range (coarse) of Euler angle would be enough to measure
attention. For example, head pose is often used for drivers
alertness monitoring [20]. This alertness is often measured if
the driver head pose is directed towards windscreen (frontal
view), left mirror or right mirror (quarter to three quarter
profile view). Moreover, we looked into the existing datasets
(listed in Table I), which are widely used for facial expres-
sion analysis and recognition, landmarks detection and head
pose estimation. Most of these datasets contain fewer head
poses (i.e. binned into 5 to 8 poses), representing a range
of angles. Furthermore, the commonly used state-of-the-
art face databases such as VGGFace2 [5], Annotated Faces
in the Wild (AFW) [49] and Annotated Facial Landmarks
in the Wild (AFLW) [22] also use the coarse head poses,
influencing our motivation. Therefore, this paper focuses on
pose estimation as a classification problem to recognize five
different head poses (classes): 1) frontal (0◦), 2) half profile
- left (−45◦), 3) full profile - left (−90◦), 4) half profile
- right (+45◦) and 5) full profile - right (+90◦). A given
image will be assigned the nearest pose label with a ±15◦
error tolerance as in [49].

Depth (RGB-D) cameras (e.g. Kinect) and magnetic sen-
sors are widely used in applications, where accurate head
pose estimation is needed. The estimation could be very
accurate but they suffer form the following limitations: 1)
such devices use active sensing and therefore, they can be
difficult to use in uncontrolled environments and outdoors
since sunlight or ambient light can interfere with the active
illumination. 2) There is a constraint on power, size, area
and weight for real-world mobile applications (e.g. robotics
and autonomous vehicles). In such scenarios, RGB cameras
are more suitable since depth cameras draw more power,
heavier and bigger. 3) The data rate for depth cameras are
higher than the RGB ones, resulting increasing storage, data
transfer and processing time.

One of the reasons for not exploring deep CNNs for
head pose estimation could be due to the limited number
of images and identities in a given dataset. For example,
BIWI [11] dataset consists of 24 sequences (RGBD) from 20



Fig. 2: Illustration of our proposed approach. Given an image, we select a set of candidate regions (bounding boxes). The
image is passed through a base CNN (e.g.VGG [40], ResNet [16], Inception [43], etc.). For each pose p, the most informative
region is selected (max operation) and its weight is added to the weight vector representing whole image. The weight vector
is computed using specialised Squeeze-and-Excitation [17] layer, which responds to different inputs in a highly pose-specific
manner. The softmax operation transforms weight vector into probabilities and forms the final prediction.

identities. Similarly, DriveAHead [38] contains 21 sequence
(IR image and depth) from 20 subjects. Whereas, the deep
CNNs for solving face recognition tasks are often evaluated
on large datasets such as VGGFace2 [5], CelebFaces+ [41],
CASIA-WebFace [46] and Labelled Faces in the Wild (LFW)
[19], containing many thousands to a few millions images
with over a thousand identities. One could argue for using
transfer learning approach [47] for adapting such models
to smaller datasets. These models’ weights are learned from
RGB intensities and adapting them to recognize depth and
IR images is yet to be explored. More recently, it has also
been shown that head pose has a significant influence on face
recognition accuracy [5], [6].

The above discussion suggests that there is a need for
head pose estimation using image intensities. In this paper,
we aim to address this by proposing a novel approach,
which is motivated by the success of the state-of-the-art
deep CNNs for solving visual recognition problems. Our key
contributions are:

• A novel end-to-end approach to combine regions with
whole image to predict head pose directly from image
intensities. We validate the significance of the regions
leading to sizeable improvements in performance.

• Demonstrating the generalization capacity of our ap-
proach by integrating it with various state-of-the-art
deep CNN models. The proposed model outperformed
most of these models.

• To cope with the need for large training data with
accurate annotations, we annotate the head pose of
63,016 images from 200 identities in the VGGFace2
[5] training set. Currently, 10,750 images in testing set
are annotated. We are the first one to report the pose
recognition performance on this dataset.

• We also create another large dataset for head pose
recognition by combining various existing datasets
listed in Table I.

II. PROPOSED APPROACH

This section describes the proposed CNN architecture,
inspired by the recent advances in deep learning approaches
to solve image recognition problem. The overview of the

proposed architecture is shown in Fig. 2. We aim to esti-
mate the head pose using deep CNNs directly from image
intensities. We argue that it should be preferred to landmark-
to-pose approaches [23], [32], [33] that require: 1) accurate
2D landmarks detection, 2) assumption of 3D human mean
face model, 3) approximation of camera intrinsic parameters
and 4) need to solve 2D-3D correspondence problem. There
is a chance of introduction of error at each step which has
been well-explored in [34]. We explain how combined image
and region CNN features can be used for end-to-end training
resulting in improved performance while using state-of-the-
art CNN models. We also discuss about the creation of a
large dataset, which is a collection of smaller datasets that
are publicly available.

The proposed approach is inspired by R*CNN [13] and
Histogram of Oriented Gradient (HOG) [8] for combining
multiple cues in a given image. These cues are extracted
using regions (similar to cells and blocks in HOG [8]). For
a given region r in an image I , we define weight W(p; I, r)
of pose p as:

W(p; I) = WI
p · F(I) + max

r∈R(I)
Wr

p · F(r; I) (1)

where F(r; I) is a feature vector representing region r in I
and R(I) is the set of candidates region. Similarly, feature
F(I) represents the whole image I . The weight vectors WI

p

and Wr
p are the weights of whole image I and region r for

a given pose p, respectively. Given weights of each pose
(W(p; I, r)), we compute the probability of a given pose p
in image I by using a softmax layer:

Prob(p; I) =
eW(p;I)∑

p′∈P eW(p′;I)
(2)

The feature F(.) and weights WI
p and Wr

p are all
trainable parameters and learned jointly for all poses p ∈ P
using a CNN, trained with gradient-based optimization of
stochastic objective function.

A. Candidates Region Selection

Computer vision research has a long history of patch-
or component/region-based approaches to visual recognition
problem. This is mainly due to 1) different objects often



share some of their parts, 2) deal with partial occlusions and
cluttered scenes, and 3) changes in the geometrical relation
between parts can be modeled to be flexible to tolerate
some deformations. Human head pose exhibits most of these
characteristics.

Various hand-crafted features such as HOG [8] and SIFT
[25] consider patches around keypoints or facial landmarks to
extract features. Often the number of patches and their sizes
are pre-defined. Not long ago, this patch-based approach has
been adapted into the deep learning models such as R-CNN
(Regions with CNN features) [12], which led to a significant
impact on the simultaneous detection and localization prob-
lem involving objects and people. Our approach is inspired
by this. In R-CNN, selective search is used to find 2K region
proposals per image. Each region is passed through the same
network to compute its objectness and is more suitable for
the detection of distinct objects. Our aim is to recognize
face orientation, which can be seen as the deformation of
the same object (fine-grained task) and therefore, learning
separate region-specific features is more suitable. To achieve
this using a CNN, each region has to be modeled separately
and will be difficult to fit to a large number (e.g. 2K in R-
CNN) of regions. Thus, we adapted the strategies (cells and
blocks) used in HOG [8] for our region proposals. We divide
a given image into C×C cells. Our region consists of one or
more consecutive cells, resulting regions of different aspect
ratios and areas. For example, there are |R(I)| = 35 possible
regions for C = 3. Moreover, the proposed region-specific
computation layers are added towards the end layers of our
network (Fig. 2) and therefore, most computational time is
spent in the base CNN, which considers the whole image.
One of the main advantages of the proposed region-based
approach is that it can be added on the top of any existing
CNN models. We compare our performance using different
state-of-the-art CNN models as base CNN.

B. Weight Computation

An image is fed into a base CNN (Fig. 2). The output of
the base CNN is reduced spatial resolution with increased
number of channels/filters. This output is up-sampled and is
fed into an adaptive max pooling layer, which also takes
input as a list of regions of interest (ROIs) with spatial
location (x, y) and size (width and height) information. This
max pooling layer provides a fixed size (e.g. 7 × 7 for the
FaceNet [37] as a base CNN) feature map for each ROI
by manipulating the pooling size. These ROIs are computed
from all possible combinations by considering one or more
consecutive cells from a given C × C cells as described
earlier. Therefore, our network does not require the cropped
region or region annotations. Subsequently, the ROI-pooled
features are passed through the corresponding Squeeze-and-
Excitation [17] layer (red layers in Fig. 2) for computa-
tion of weights. The weights, W refers to convolutional
kernel weights and the proposed network does not have
any FC layer. We avoided the use of FC layer since it is
the main cause for big memory footprint of CNNs. The
weights are passed through a Max layer to identify ROIs

with pose-specific contribution. Similarly, the output of the
convolutional layer is also passed through a Squeeze-and-
Excitation layer (green layer) for computing the respective
weights. The green/red weights are indeed outputs of the re-
spective Squeeze-and-Excitation [17] layer. Region-specific
weights are added with the image-specific weights before the
Softmax layer for head pose prediction. The image-specific
weights (green) representing feature map of whole image as a
output of the base network. This feature map is resized using
bilinear interpolation, and then pooling is applied to provide
fixed feature map (like in ROIs). This enables the use of Add
layer before the Softmax layer. This network architecture
is efficient, since the computationally intense convolutions
are performed at an image-level within the base CNN and
are eventually being reused by the ROI-specific operations.

The motivation for selecting Squeeze-and-Excitation [17]
layer is to improve the representational power of our architec-
ture by explicitly modeling the inter-dependencies between
the channels of ROI-pooled features. In order to achieve
this, one needs to perform feature re-calibration in which
the network learns to use global information to selectively
suppress less useful features and emphasize on the more
informative ones. As a result, our model will be able to
emphasize ROIs with pose-specific features. The feature
re-calibration capability within the Squeeze-and-Excitation
layer is computed as: 1) First, the RIO-pooled features are
passed through a squeeze operation (channel-wise scaling),
which aggregates the feature maps across ROIs spatial di-
mension (e.g. 7×7 for the FaceNet [37]) to produce a channel
descriptor. This embeds the global distribution of channel-
wise feature responses. 2) Second, this is followed by an ex-
citation operation (element-wise summation) in which ROI-
specific activations are learned for each channel by a self-
gating mechanism based on channel dependence and governs
the excitation of each channel. As a result, the Squeeze-
and-Excitation layer becomes increasingly specialized and
responds to different ROIs in a highly pose-specific manner.

C. Learning

The proposed approach is experimented with various state-
of-the-art CNN as a base network. The main contribution in-
volving features and weight vectors representing the respec-
tive region and whole image in (1) is added on top of the base
network. All layers in the base network are initialized with
pre-trained ImageNet’s [35] weights except FaceNet [37],
which is initialized with pre-trained CASIA-WebFace [46]
and VGGFace2 [5] weights for the respective experiments
on two different datasets (section III). The ImageNet consists
of 1.2M natural images with 1K categories. The CASIA-
WebFace contains 0.5M images of 10K subjects whereas
VGGFace2 consists of 3.31M images from 9131 identities.

The network is trained in an end-to-end fashion with
default image size of 224 × 224 and is randomly selected
from 256× 256 with data augmentation of height and width
shift of up to 20%. The model is trained with a batch size of
32 using a Linux (Ubuntu) machine fitted with 24GB GPU
(NVIDIA Quadro P6000) card. During training, we minimize



TABLE I: A MultiLab head pose dataset (24,334 images
from 1288 identities) is created from the following existing
publicly available datasets.

Dataset Identities # Images with 5 different poses
−90◦ −45◦ 0◦ +45◦ +90◦

IST-EURECOM [39] 50 100 100 1600 100 100
VGGFace2 Test [5] 500 1750 1930 3595 1648 1827
EURECOM Face [28] 52 104 0 728 0 104
Pointing [14] 15 630 420 690 420 630
KDEF [26] 70 243 245 245 245 245
BrazilFEI [44] 200 374 373 1135 378 373
Pain [45] 23 0 0 530 23 23
GUFD [4] 303 295 301 318 276 284
Iranian Women [2] 8 15 13 8 16 15
Radboud Faces [24] 67 377 377 377 377 377

the softmax probability Prob(p; I) representing pose p is
appeared in image I computed in (2). The loss over a batch
of training images B = {Ii, yi}Mi=1 is given by

loss(B) = − 1

M

M∑
i=1

∑
p′∈P

log Prob(p = yi,p′ | Ii) (3)

where p are the pose predictions, y are the actual labels, i
denotes the training images and P represents a set of head
poses. We use the Adam [21] optimizer with learning rate
of 0.001 to minimize the objective function in (3) and train
the model for 50 epochs. A region can be a single cell or
combination of two or more adjacent cells. The number of
regions N = |R(I)| is a function of GPU memory limit.
Therefore, we divide the whole image into 3 × 3 cells and
consider all possible combinations, resulting in N = 35
regions.

The architecture of our network is based on the existing
models. As a result, most computation time is spent in the
base networks (Fig. 2), which consider the whole image.

III. EXPERIMENTS

In order to validate our model for pose estimation using
image intensities, we aim to consider a dataset consisting of
a large number of identities. Such datasets (e.g. VGGFace2
[5], CelebFaces+ [41] and CASIA-WebFace [46]) exist but
are mainly focused on identity recognition. We consider three
different kinds of datasets for our experiments.

A. Datasets

We notice that there are a number of publicly available
datasets for pose estimation and related research on face
analysis. The list is presented in Table I. However, these
datasets consist of a relatively small number of images and/or
identities and are not large enough for developing deep
models. Therefore, we combine these datasets to create a
larger dataset (called MultiLab head pose). The MultiLab
dataset consists of 24,334 images from 1288 identities. The
dataset is randomly split into training set (80%) and testing
set (20%) to evaluate our proposed architecture.

We also consider the VGGFace2 [5] dataset for our
evaluation. However, it provides pose annotation of a subset

of images (10, 750 from 500 identities) within the test set.
Using their head pose templates, we contribute to the pose
annotation of 200 identities (63, 016 images) within the
training set. We evaluate our architecture using this dataset.

We also evaluate our approach on the Multi-Task Facial
Landmark (MTFL) dataset [48] consisting five different head
poses (0,±30,±60). The dataset consists of 13, 466 faces in
which 5, 590 are from LFW [19].

B. Results and Discussion

We have evaluated the proposed approach on the above-
mentioned three challenging datasets. We use the metric as
accuracy in percentage and is presented in Table II for Mul-
tiLab, VGGFace2 [5] and MTFL [48] dataset. The proposed
region-specific computation layers are added on top of a base
CNN model (Fig. 2). The weights for region-specific layers
are initialized randomly whereas in base models, these are
taken from pre-trained models. These pre-trained models are
created using ImageNet dataset [35] except the FaceNet [37].
For FaceNet, the pre-trained model using CASIA-WebFace
[46] is used to evaluate MultiLab dataset and VGGFace2 [5]
for the rest of the two datasets. For the baseline, only the last
layer (Softmax) of the base CNNs is adapted to the target
number of classes (five in our case) and randomly initialized.
For both baseline and proposed approach the networks are
trained on the target datasets in an end-to-end fashion.

A common observation in performance of both the base-
lines and proposed approach is that the overall performance
decreases as we move from MultiLab to MTFL dataset (Table
II). This is mainly due to the increasing clutter in images. For
example, most images in the MultiLab dataset are captured in
a laboratory setup and thus, often exhibit clean background.
In both MTFL [48] and VGGFace2 [5], we observed that
both datasets contain images with mixed difficulty (e.g.
occlusion, multiple faces, hand-over-faces, etc.) since they
are collected from web. However, it is more often in MTFL
than VGGFace2. Moreover, the size of VGGFace2 head pose
train set is larger (∼63K) than the MTFL (10K), resulting
an impact on the performance because deep models learns
better from large datasets.

Among baselines in all three datasets (Table II), the
FaceNet[37] performed better than the rest (except VGG16).
This is mainly due to the fact that the pre-trained model
used for the initialization, is trained on large-scale face only
dataset. Whereas, the rest are initialized with pre-trained
models that are trained on ImageNet [35], which is targeted
for general visual recognition challenge. This demonstrates
the benefits of transfer learning [47] when base and target
dataset containing images, which are of similar content.

The other observation is that among all models, Inception-
V3 [43] and Inception ResNet-V2 [42] have the most im-
provement (i.e. gain in accuracy) when our proposed region-
specific layers are added. These two models with our region-
specific layers, are also best performer (except ResNet-V2
in VGGFace2 dataset) in all three datasets even better than
the FaceNet [37]. The exception in the VGGFace2 dataset
is not very far from the respective ResNet-50 and FaceNet.



TABLE II: Performance as recognition accuracy in percentage using MultiLab (Table I), VGGFace2 [5] and MTFL [48] head
pose datasets. The proposed approach is outperformed all baselines except VGG16 [40] in MultiLab and MTFL datasets.
For a given dataset and method, the best and the second best performances are in bold and italic, respectively.

Deep CNN Model MultiLab dataset (Table I) VGGFace2 dataset [5] MTFL dataset [48]
Baseline Ours Gain Baseline Ours Gain Baseline Ours Gain

FaceNet [37] 92.23 94.87 2.64 86.33 92.60 6.27 75.50 79.71 4.21
ResNet-50 [16] 91.50 94.17 2.67 85.40 91.40 6.00 75.47 77.67 2.22
Inception ResNet-V2 [42] 88.82 94.89 6.07 82.43 90.50 8.07 69.12 81.45 12.33
Inception-V3 [43] 90.97 95.01 4.04 85.54 93.35 7.81 70.70 80.85 10.15
DenseNet-121 [18] 90.89 92.23 1.34 85.57 87.13 1.56 77.11 78.09 0.98
DenseNet-169 [18] 91.56 92.09 0.53 85.23 85.55 0.32 75.23 76.20 0.97
DenseNet-201 [18] 90.75 92.56 1.81 85.85 86.30 0.45 72.06 76.57 4.51
VGG16 [40] 92.84 92.11 -0.73 85.16 90.39 5.23 71.50 64.84 -6.66
NASNet mobile [50] - - - - - - 64.72 66.10 1.38

TABLE III: The recognition accuracy in percentage using
the state-of-the-art OpenFace 2.0 [1] facial behavior analysis
toolkit for head pose recognition using MultiLab, VGGFace2
[5] and MTFL[48] datasets.

Dataset −90◦ −45◦ 0◦ +45◦ +90◦ Overall
MultiLab 12.31 43.82 99.25 35.86 16.87 54.14
VGGFace2 [5] 3.26 25.03 99.69 20.87 4.21 42.47
MTFL [48] 0.00 23.56 99.62 31.42 0.0 68.45

TABLE IV: The recognition accuracy in percentage using
FaceNet [37] as baseline and the proposed region-based
approach that uses FaceNet as a base network for head pose
recognition using MultiLab and VGGFace2 [5] datasets.

Dataset −90◦ −45◦ 0◦ +45◦ +90◦ Overall

MultiLab baseline 92.84 85.57 95.82 86.36 91.94 91.76
ours 98.37 85.44 96.84 93.95 93.92 94.42

VGGFace2 baseline 80.29 80.57 95.58 83.74 83.20 86.47
ours 94.40 89.27 96.83 88.41 95.84 93.61

We believe the performance would further improve if we
initialize these networks with pre-trained models, which are
trained on a large-scale face only dataset (e.g. VGGFace2
[5], CASIA-WebFace [46], etc.) like in FaceNet instead of
ImageNet [35].

The VGG16 [40] network did not do well in both Mul-
tiLab and MTFL [48] (Table II) datasets when our region-
specific layers are added. However, it performed pretty well
(improvement of 5.23%) in VGGFace2 [5] dataset. The only
reason we could argue is that the VGGFace2 dataset is larger
(training images ∼63K) than MTFL (10K) and MultiLab
(∼24K). The other unique characteristics of the VGG16
network is that it has two FC layers before the Softmax
layer in the baseline model. These FC layers contribute
a significant portion of network parameters, making it the
largest (∼138M) in comparison to other baseline models.
These FC layers are removed when we add our region-
specific layers since input to our region-specific layer is
from a Convolution layer. This could be the reason
why VGG16 baseline model performed well on smaller
datasets in comparison to our region-specific architecture.

Nevertheless, the performance of other networks integrated
with our region-specific layers, performed significantly well
in comparison to VGG16 baseline, even on a smaller dataset.

Fig. 3 presents some example images in which the pro-
posed approach using FaceNet [37] as a base network is able
to recognize the correct pose but the baseline fails. Similarly,
example images in which both baseline and our approach
fail to recognize correctly are presented in Fig. 4. Example
images in which the baseline is able to recognize correctly
whereas the proposed approach is failed to do so is shown
in Fig. 5.

We have also evaluated the proposed approach using the
AFLW dataset [22] consisting 25K annotated face images
with coarse head poses. The performances of various CNN
models are: 1) FaceNet [37] - 85.18% (baseline) and 93.19%
(proposed), 2) Inception-V3 [43] - 83.55% (baseline) and
92.14% (proposed), and 3) ResNet-50 [16] - 84.54% (base-
line) and 92.80% (proposed). This confirms the similar trend
in performance improvement on other datasets in Table II.

We are the first to provide the quantitative evaluation of
head pose recognition on VGGFace2 and MTFL dataset. To
the best of our knowledge, there is not direct evaluation
of head pose recognition using these datasets. However,
head pose has been used to improve the detection of facial
landmarks [48], as well as the influence of head pose in
identity recognition performance [5].

We also evaluate the head pose recognition performance
using the state-of-the-art OpenFace 2.0 toolkit [1], which
is developed for facial behaviour analysis. The recognition
performance is presented in Table III. All the test images
from three datasets are processed using this toolkit. The
detected poses are binned into five different poses: 1) 0◦, 2)
−45◦, 3) −90◦, 4) +45◦ and 5) +90◦, allowing ±15◦ error
tolerance so that all three datasets will have the identical
topology. From the Table III, it is evident that the toolkit
performed nearly perfect (100%) for the frontal view (0◦).
However, the performance is significantly dropped for both
half profile (±45◦) and full profile (±90◦) face images.
The overall performance is significantly lower than the
proposed approach, as well as the baseline models in Table
II. It is observed that the performance for both half profile
and full profile is lower in VGGFace2 and MTFL dataset



in comparison to MultiLab. These two datasets contain a
significant amount of clutter images (e.g. occlusion, multiple
faces, hand-over-faces, etc.). This suggests that the toolkit
does not work well for recognizing profile views when clutter
in images increases.

For a fair comparison, we also carried out performance
analysis involving individual poses (above-mentioned five
poses) using the proposed approach. The recognition per-
formance of various poses using FaceNet [37] as a baseline
and the proposed approach using FaceNet as a base network
is presented in Table IV. The performance of the baseline, as
well as the proposed approach is far better than the OpenFace
2.0 toolkit [1] (Table III).

IV. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this work, we present a novel approach that combines
pose-specific ROI-pooled features by exploring multiple re-
gions. The network learns to suppress regions, which are less
useful and emphasize on more informative ones for a given
head pose. Therefore, the proposed multi-region architecture
can directly, accurately and robustly predict the head pose
using image intensities. The proposed region-specific layers
are added on top of the existing CNN models and therefore,
most computational processing is in the base CNN, which
process the whole images.

The proposed approach is evaluated on three challenging
datasets. Our method significantly improves the prediction
accuracy in comparison to the state-of-the-art CNN models,
as well as the latest facial behavior analysis toolkit (Open-
Face 2.0 [1]). We have introduced a new head pose dataset
(MultiLab) by combining the existing datasets. We have
also provided head pose annotations to 200 identities (∼63K
images) in VGGFace2 dataset [5]. We strongly believe that
this will help advance the field of face and facial expression
analysis and recognition.

B. Future Works

This includes further investigation into the reason(s) be-
hind the incorrect classifications presented in Fig. 4 and
5. We will aim to further improve the current performance
by extending the proposed model to address these incorrect
classifications.

We will also like to extend our head pose architecture for
face recognition problem since the recent research [5] shows
that the identity recognition is often influenced by the head
poses.
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