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Optimal placement of data concentrators for
expansion of the smart grid communications
network

Abstract: Evolving power systems with increasing renewables penetration, along with the development of the smart grid, calls
for improved communication networks to support these distributed generation sources. Automatic and optimal placement of
communication resources within the advanced metering infrastructure is critical to provide a high-performing, reliable, and
resilient power system. Three network design formulations based on mixed-integer linear and non-linear programming
approaches are proposed to minimise network congestion by optimising residual buffer capacity through the placement of data
concentrators and network routeing. Results on a case study show that the proposed models improve network connectivity and
robustness, and increase average residual buffer capacity. Maximising average residual capacity alone, however, results in both
oversaturated and underutilised nodes, while maximising either minimum residual capacity or total reciprocal residual capacity
can yield much-improved network load allocation. Consideration of connection redundancy improves network reliability further
by ensuring quality-of-service in the event of an outage. Analysis of multi-period network expansion shows that the models do
not deviate significantly from optimal when used progressively (within 5% deviation), and are effective for utility planners to use

for smart grid expansion.

1 Introduction

The adoption of new renewable standards and accelerated cost
reductions are driving sharp growth in renewable energy
technologies. In particular, the number of distributed solar
photovoltaic (PV) installations is growing rapidly. However, as
distributed solar power becomes an increasing fraction of total
energy generation, the electric power grid must ensure continued
reliability and cost-effectiveness. The development of the smart
grid, as a natural evolution of the electric power grid, seeks to
incorporate new technologies to support these distributed
generation sources.

New grid devices such as phasor measurement units and smart
meters (SMs) will be built to provide the existing supervisory
control and data acquisition (SCADA) systems with vital power
flow information, allowing utility operators to monitor and control
power flow and maintain operational efficiency. The advanced
metering infrastructure (AMI) is designed to measure, collect,
process, and relay energy consumption data from these SMs to
utility operators. The AMI is typically comprised of a multi-tiered
network of various communication devices and technologies. The
AMI is the most fundamental part of the smart grid and can pose a
challenging problem to solve in terms of node placement and
routeing design [1].

While technology selection and hardware capabilities are
important to the effectiveness of the smart grid, the placement of
hardware for AMI applications is equally as vital. Manual
reconfiguration of network deployments is often impractical since
devices and infrastructure are fixed. Multi-tiered AMI networks
require sensors and gateways deployed at specific locations to
operate effectively. Routeing assignments between nodes can have
significant effects on network quality and performance.
Bottlenecks and islanding can occur in the network due to highly
congested nodes and poor routeing, leading to difficulties serving
customers and ineffective system control. Careful planning of node
placement and routeing design can significantly alleviate these
quality-of-service (QoS) issues, while at the same time improving
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performance. Automatic placement and optimisation of network
topology are critical to provide a cost-effective, high-performing,
reliable, and secure communication network in support of the
expanding smart grid.

In this work, we develop a procedure to optimally place
communication hardware and route communication within AMI
networks in a way that best maximises QoS performance for utility
customers, provide redundant network connectivity in the event of
a security threat or outage, and provide for effective expansion of
the network.

To do so, we first propose three mixed-integer linear
programme (MILP) approaches for optimal placement of data
concentrators (DCs) to maximise the network residual buffer
capacity while ensuring network connectedness between SMs and
electrical control centres. We apply the models to a case study with
empirical parameters and standards. We analyse the network
residual buffer capacities of the results, comparing distributions of
connections and placement topologies. We then extend the
formulations to improve network resilience by imposing
connection redundancy and conclude by testing formulation
effectiveness in planning for smart grid communication network
(SGCN) expansion.

This paper is organised as follows. In Section 2, we summarise
and highlight related work. In Section 3, we describe the SGCN
and its supporting technologies, as well as define assumptions
about the network that we will use in the optimisation formulation.
Section 4 outlines the mathematical formulations for the smart grid
expansion problems (SGEPs). Section 5 describes the applied case
study in detail. Results of the optimisation are presented in Section
6. Section 7 contains concluding remarks and future research
directions.

2 Related work

In this work, we focused on the problem of expanding the
distribution grid communications networks as part of a growing,
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integrated smart grid. For consistency and conciseness, we will
refer to this problem as the SGEP.

The SGEP is two-fold; it consists of (i) a facility location
problem and (ii) a routeing assignment problem. Facility location
and routeing assignment problems have been studied extensively
for applications in supply chain, emergency, pipeline, and
telecommunications networks [2, 3]. We refer to topology (or
network) design as the process of placing nodes within a network,
and to route design as the process of link assignment and
bandwidth allocation between nodes.

There have been a number of previous studies on the use of
mathematical programming approaches for designing wired/
wireless mesh networks about QoS, cost, and/or traffic allocation.
Kojima et al. [4] investigated aggregation point placement in a
wired SCADA network and proposed an MILP framework
involving communication scheduling. Qiu et al. [5] presented an
MILP formulation based on the capacitated facility location
problem to optimally place Internet transit access points in a
wireless mesh network, while also handling QoS requirements such
as throughput and fault tolerance. Amaldi et al. [6] presented an
MILP formulation for constructing mesh access points in the form
of a multi-commodity network flow problem with consideration to
network traffic allocation. Jahromi and Rad [7] designed a
communication topology for meshed node placement and
assignments of wired connections within the power communication
network and formulated a multi-objective, non-linear problem
considering cost due to network packet loss, delay, and budget. The
previous work on wired networks and mesh networking cannot be
directly applied to our context because mesh routeing requires
different specifications and characteristics than smart grid AMI for
distributed power systems, which are typically multi-layered
systems with various interacting technologies.

Also, many related works reported using approximation
algorithms and heuristic-based solvers to solve their respective
location/routeing problems [5-11], citing high time complexities
when solving non-deterministic polynomial-time (NP)-hard
problems with exact methods. We instead argue that the problems,
while complex, can be handled effectively with exact solution
methods (i.e. branch-and-cut as implemented in state-of-the-art
commercial solvers), and the benefits outweigh the costs in doing
so. Approximation algorithms are typically fast and specifically
tailored to the application, but provide minimal optimality
guarantees. On the other hand, exact methods, by nature of the
methods themselves, automatically provide measures of optimality.
Given that the SGEP is a planning and design problem, fast
solution times may be less of a concern than the advantages of
optimality guarantees provided by exact methods.

There is existing work that investigates the optimal placement
problem of DCs within a smart grid context. Huang and Wang [12]
evaluate an MILP framework for constructing a three-layer smart
grid AMI that focuses on ensuring network demand while
minimising total cost and designed an approximation algorithm
handle the problem. Klinkert [10] presents an MILP framework for
repeater and data collector placement based on fixed-charge
network flow within the context of a smart grid communications
networks. They also consider a multi-tier AMI involving meters,
repeaters, data collectors, and a central data centre, analogous to
the AMI presented in this work. Their MILP formulation also
focuses on ensuring network feasibility for a minimum cost
placement. Tavasoli ef al. [9] considered the optimal placement of
data aggregation points (i.e. DCs) in hybrid wireless and wired
communication network by minimising installation costs of the
access points, fibre-optic backbone, and worldwide interoperability
for microwave access (WiMAX) communication costs. Kong [13]
studied the inter-network reliability problem concerning data
aggregator placement, specifically the problem of where to place
data aggregators to ensure communication and power robustness.
They proposed a minimum cost-objective subject to QoS
requirements and network robustness assurances. Each of these
related works [9, 10, 12, 13] presented models that minimised cost
while ensuring network demand is fulfilled. In this work, however,
we argue that while optimising for cost alone is an effective short-
term solution for cost-limiting scenarios, it is insufficient to
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guarantee network performance for the long term. A more rigorous
objective, namely one that prioritises QoS and network capacity, is
required to best ensure network longevity and future performance,
especially for planning a long-standing smart grid network.

Gourdin and Klopfenstein [14] have compared different QoS
objectives for communication routeing design. They condense the
resource management solutions for handling QoS factors (i.e.
bandwidth, delay, jitter, and packet loss rate) down to two essential
criteria: avoiding congestion and limiting path length. They define
congestion as the difference between arc capacity and arc flow and
denote this relationship as residual capacity. They also describe
three objective functions that can handle such congestion: (i)
maximise the minimum arc residual capacity for all arcs in the
network, (ii) maximise the total amount of available network
bandwidth (also equivalent to maximising the total/average
residual capacity across the network), and (iii) minimise the sum of
the reciprocal arc residual capacities. They analysed the
effectiveness of each of these objectives on a wired communication
network. While their methods focus on the optimal routeing of arc
flow (spliTable) with consideration to minimal communication
path length (i.e. the number of hops required from source to
destination), they did not consider node placement (i.e. network
design).

Our application focuses on the distribution system
communications networks with two-hop communication links and
intermediate DC nodes. Owing to the nature of data concentration,
we do not consider spliTable routes. Our approach prioritises node
placement and introduces binary variables, yielding an MILP
design problem. We focus on optimal handling of aperiodic data
traffic by optimising the residual buffer capacity of DCs as an
analogue to optimise QoS factors such as bandwidth, throughput,
packet loss, and delay requirements in the network. We expand on
the objectives proposed by Gourdin and Klopfenstein [14] within a
topology design framework and extend them with the incorporation
of communication redundancy to improve network reliability. Also,
our models prove effective for multi-period expansion of the
communications network. To the best of our knowledge, no prior
work has been done on solving the problem of DC placement while
prioritising QoS performance within an AMI network.

In summary, the placement of DCs to maximise network
residual buffer capacity under the impacts of budget constraints,
network connectivity requirements, distance limitations due to path
loss, and redundant communication links to enhance robustness for
an expanding smart grid communications network is a unique
challenge that we aim to address in this paper.

3 Introducing the SGCN

We first describe the SGCN in detail and then propose an
optimisation framework to handle the expansion of the network to
ensure QoS guarantees and network connectedness. Specifically,
we focus on the AMI, which is the data communication
architecture between the SM and the meter data management
system. The AMI is used to transfer real-time information from
meters including fault, outage, and usage to the utility control
centre, where utility operators will use the information to control
power flow and maintain operational efficiency. The AMI typically
involves a hierarchical network architecture utilising a variety of
communications technologies [15]. We will focus on the AMI
when referring to SGCN in this paper.

The general framework of the SGCN consists of a multi-tier
system: (i) a home area network (HAN) consisting of smart
appliances, Internet-of-things (IoT) devices, and distributed energy
sources communicating to a nearby SM, (ii) a neighbourhood area
network (NAN) consisting of DCs that receive the information
from nearby SMs, process and relay the information onto, (iii) the
edge router (ER) or a control centre of the energy provider within
the wide area network (WAN) [10, 15, 16]. ERs contain secure
fibre-optic connections to monitor stations on a SCADA network
within the transmission system. A number of communication
technologies for the SGCN can be used and can be divided into
wired and wireless types [16, 17]. For this paper, we will focus on
wireless communications technologies.
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Fig. 1 Network diagram

3.1 Home area network

The HAN is localised to the customer domain and encompasses
communication within the typical residential home including smart
appliances, solar panels, light controls, and various other sensors
and actuators. Home devices will send power readings, usage, and
outages over the HAN to the SM outside the home for AMI
application. A number of wireless technologies can be used within
the HAN including Bluetooth, ZigBee, and IPv6 over low-power
wireless personal area networks (6LOWPAN) [1].

Bluetooth, Institute of Electrical and Electronics Engineers
(IEEE) 802.15.1 standard, is a low power, short-range radio-
frequency (RF) standard operating on the 2.4 GHz band [18].
However, Bluetooth communication distances are short (between 1
and 100 m), are highly influenced by IEEE 802.11 networks, and
offer weak security compared with similar network standards.
6LoWPAN is an LoWPAN built on the IPv6 routeing protocol and
offers interoperability and QoS guarantees within an HAN.
Disadvantages include network security and poor service discovery
(i.e. automatically locating other nodes and higher-layer services)
[1, 15]. ZigBee (built on the IEEE 802.15.4 standard) was
developed by the ZigBee Alliance and is recommended as the
common choice for HAN communication. ZigBee devices and
routeing protocols allow for meshed networking within the HAN
and provide QoS guarantees for information relaying across
devices. Advantages include low cost, low power consumption,
minimal data rates, and widespread usage in existing smart home
devices. Additional information on ZigBee communications can be
found in [1].

3.2 Neighbourhood area network

The NAN connects SMs to DCs for AMI applications and can
involve a series of relays and mesh networking involving
technologies such as IEEE 802.11 s RF mesh, IEEE 802.11 2.4
GHz wireless local area network (WLAN), WiMAX, power line
communication (PLC), or cellular technologies. Compared to the
HAN and WAN, communications technologies can vary
significantly within the NAN, and often there is no smart grid-
specific standard within this domain. For our purposes, we focus
chiefly on wireless communications and will not discuss PLC
technologies, though more information can be found in [1].

Mesh networking can present a cost-effective and viable
solution for improved network resilience [19]. However, mesh
networking can have significant signal interference and fading
effects that make the quality of these connections unreliable,
presenting crucial security problems. Methods to address these
security issues in mesh routeing have been investigated [1].
WiMAX, based on the IEEE 802.16 standard, also provides
promise  with high-throughput, low-latency, high-security
standards, and traffic management tools [20]. However, WiMAX
capabilities are typically relegated to specific architectures and
would require constructing a utility-proprietary network with high
capital costs.

IEEE 802.11-based 2.4 GHz WLAN provides a robust, high-
speed, point-to-point communication. Its ubiquity allows for easy

IET Smart Grid, 2019, Vol. 2 Iss. 4, pp. 537-548

installation and low costs. Moreover, WLAN technologies are
undergoing continuous improvement of data rates, service, and
coverage. High reliability can be achieved by proper routeing
design and system design techniques [18]. WLAN is considered an
excellent candidate for smart grid systems [15], specifically in
remote metering and monitoring applications, and has been
recognised by the National Institute of Standards and Technology
via the International Electrotechnical Commission 61850 standard
for application in smart grid environment [18].

While cellular technologies have been studied for SM
transmissions, they are generally preferred for links between DCs
and ERs [16].

3.3 Wide area network

The WAN provides connections between the smart grid and the
core utility network. Within the WAN, communication between
DCs and ERs can include technologies utilised in the NAN as well
(e.g. cellular technologies, WiMAX, RF mesh, or broadband fibre-
optic connections for wired options [1, 15]).

Cellular and long-term evolution (LTE) technologies [third-
generation (3G)/4G on 824-894 MHz/1900 MHz spectrum] are on
licenced frequency bands and provide benefits of low interference,
high reception rate and information security, extensive data
coverage, and no maintenance costs (since operation and network
are maintained by carriers) [18]. Since utility control centres
require high levels of reliability, LTE connections are suitable for
WAN communication [20]. Additionally, the existing infrastructure
for cellular communications allows for rapid deployment of smart
grid communication hardware.

3.4 Defining the network graph

The network description addressed in this paper is summarised in
Fig. 1. The SGCN of interest in this paper considers wireless
communications between PV inverters, SMs, DCs, and ERs. In
addition, we assume PV inverters transmit to SMs via ZigBee, SMs
transmit to DCs via 2.4 GHz WLAN, and DCs relay to ERs via
LTE technology. While PV inverters are typically installed close to
SMs, DCs and ERs are installed separately from the PV inverter-
SM HAN. We do not consider mesh networking or multi-hop
communications in this work. Since the network communication is
wireless, connections can be established if transmitters and
receivers are within communication range of one another, but the
assignment of connections will be decided by the optimisation
formulation described in Section 4. We use the terms ‘link’, ‘arc’,
and ‘connection’ interchangeably to denote the connections in the
network. Specific parameters for the network are provided in
Section 5. For additional information on smart grid technologies
and practises, QoS requirements for smart grid integration to
SCADA systems, and background on AMI, we refer the reader to
[21].

3.5 QoS factors

There are several critical QoS factors that affect network
performance: packet loss, path loss, effective throughput, network
criticality, network availability, available bandwidth, latency, and
connection outage probability [8]. For our purposes in providing a
time-invariant, deterministic routeing assignment, and optimal
placement of communication nodes, we will consider only packet
loss, path loss, effective throughput, available bandwidth, and
latency as QoS factors of interest in this work. We consider the
time-varying and stochastic QoS parameters (network availability,
criticality, and outage probabilities) as future work.

Packet loss is the fraction of transmitted packets lost in the
network and commonly occurs due to queuing congestion and
buffer overflows. The path loss depends on factors such as antenna
height, frequency, and link distance. Effective throughput, the
amount of data successfully passed through a link at a given time,
is highly dependent on the processing within each network router
to determine the transmission rate to forward the packet with a
minimum number of hops [8]. Since packet loss and effective
throughput are highly dependent on the effectiveness of underlying
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Table 1 Numerical values for SUI model parameters

Model parameter Value
do, M 100
s, dB 8.2-10.6
T, M 10-80
f, MHz 2400
h;, M 6

a 4.0

4, m1 0.0065
w, M 171

A, m 0.125

network technologies and routeing protocols [5], we choose to
focus on path loss, available bandwidth, and latency as the
principal QoS factors when placing network hardware and
assigning network routes.

Latency, or network delay, is defined as the time needed for a
bit of data to travel from one node to another. Latency can be
divided into four parts: (i) processing delay — the time taken for a
node to process the packet header, (ii) queuing delay — the time a
packet spends in routeing queues before being processed, (iii)
transmission delay — the time taken to push the packet's bits onto
the link, and (iv) propagation delay — the time for a signal to reach
its destination. The propagation delay is dependent on the distance
and geography between communication nodes, while the majority
of latency (processing, queuing, and transmission delays) are
dependent on the communication hardware and wireless routeing
protocols [22].

In the SGEP, propagation delay is the relevant QoS metric of
interest within latency, while processing, queuing, and transmission
delays are handled by the hardware and wireless technologies (Park
et al. [23] have recently developed a low-latency congestion
control algorithm for wireless LTE networks). Lopez-Aguilera et
al. [24] have shown that the propagation delay for outdoor IEEE
802.11 wireless networks is dependent on the slot time and
translates up to 6 km communication range for IEEE 802.11b
without performance degradation. For larger distances, the
propagation delay becomes greater than the slot time and
performance is degraded.

For our proposed approaches, we ensure path loss and
propagation delay in the network are within QoS requirements by
defining the effective communication range of wireless
technologies to within the limits that ensure minimal performance
degradation (see Section 3.6). Once the communication ranges are
established, the optimisation can then consider optimal placements
for wireless hardware and routeing decisions by maximising
available network bandwidth.

Following the convention of [14], we refer to available network
bandwidth as residual capacity, specifically on the capacities of
buffers at each DC. Each DC has a buffer size that can handle
incoming messages. Exceeding this buffer limit negatively impacts
the packet loss rate, and increases communication delay [14].
Therefore, routeing assignments are made by maximising residual
capacities across the network.

3.6 Path loss propagation model for communication radius

The maximum allowable distance between nodes (communication
radius) can be predicted using a minimum threshold of received
power required for signal reception and a model for signal
propagation. The Stanford University Interim (SUI) propagation
model [25, 26] is chosen to represent the 2.4 GHz WLAN link
between SMs and DCs in our case study.

The SUI models are specified for three types of terrains (A, B,
and C), where Type A is associated with hilly terrain, and moderate
to heavy foliage with maximum path loss, Type B is associated
with mostly either flat terrain with moderate to heavy tree densities
or hilly terrains with light tree densities, and Type C is associated
with flat terrain and light tree densities with minimum path loss.
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More information and associated parameters on the SUI models
can be found in [25].

Given that the case study we will be considered in Section 5 is
representative of a typical suburban area, we have elected to use
the terrain Type B specification, though the proposed approach is
general and can be used with Type A and Type C terrains. The path
loss equations with correction factors and other parameters are
defined below:

P=X,+ 10ylogm(dio)+xf+xh+s (1)
X, = 2010g10(#) (1b)
r=a=pht g (o)

X; = 6.01ogw(2ofm) (1d)

Xp= — IO'SIOg“’(W}ZO) (le)

where P is the path loss (defined as the ratio of the transmitted to
received power); X, is the free space or line-of-sight (LOS) gain; d
is the distance between the transmitter (SM) and the receiver (DC)
antennas; d, is the reference distance (d > d,),;s is a shadow fading
factor; Ay is the base station height above ground; y is the path loss
exponent; Xy and X are correction factors for the operating
frequency and the antenna height, respectively; f is the operating
frequency of the transmission signal; 4 is the wavelength from the
communication frequency; and /4, is the receiver antenna height
above ground. The terrain constants «, f, and w used in our study
are given in Table 1, along with ranges and values for the other
parameters in the path loss equation.

Bounding (1a) for maximum path loss and expanding P,.,, we
have

P = P™™ — Piss ()

where P, is the maximum path loss incurred when the received
P"™ is the transmitted power (in dBm);
and Py, is the minimum received power (in dBm). From (1a)—(1e),

we obtain a relationship for the communication distance in terms of
Pmax

power is at its minimum;

d < doloPT/loy (3)

where Pr = P — X, — Xy — Xp—s. SM transceivers can operate
at peak transmitted power up to 1 W (30 dBm), but typically
averages low transmitted power since the transmission intervals are
very short and infrequent [27]. We, therefore, assume average
transmitted powers of P™" = 0.2 W (23.0 dBm) for our test case
[28]. Minimal received signal powers for wireless networks (IEEE
802.11 variants) are typical P, = — 100 dBm. Combining these
power specifications leads to P, = 123 dB. Therefore, the SM
communication radius, by the SUI propagation model parameters
in Table 1, is d £0.93km with s =9.0 and &, = 10, to remain
within minimal received signal power range for all receivers.
Besides, since this communication range for 2.4 GHz WLAN is
less than the reported distance to ensure minimal propagation delay
(i.e. 6 km according to Lopez Aguilera et al. [24]), setting this as
the distance limit between SMs and DCs will ensure acceptable
QoS in the optimal design.

4 Smart grid expansion problem

A larger number of SMs will eventually be constructed as the smart
grid grows, distributed generation becomes more widespread, and
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an increasing number of loT devices become commonplace. The
SGEP focuses on placement of additional DCs (by selecting from a
set of candidates denoted in Fig. 1 as c-DCs) and assignment of
communication links between SMs and DCs to handle the load on
the network while minimising congestion and improving network
connectivity and robustness. We consider the residual buffer
capacity of the network as the key metric to define congestion
levels in the network.

In this section, we show three formulations that focus on
improving network residual buffer capacity within an MILP to
form the SGEP.

The SGEP-average (SGEP—A) focuses on maximising average
residual buffer capacity and is defined by the following MILP:

maximise 7
Xy [EZL (43)
subject to Z <K (4b)
lelL
Xa, 1 < Vis VieL, ae d, (4c)
z Xa, | = 1, VaeA (4d)
le,
r = bz}’z - z Xy, [fw VielL (46)
a€A
n < Zx[,,,, VieL (49
aed
v % 1€1{0,1}, VieL aed, (4g)
n>0, VieL (4h)

where A is the set of all SMs that must be serviced; L is the set of
DCs (existing and candidate); and £, is the set of candidate DCs
within communication range of SM q, as determined by the path
loss model from (3). Here, &, is the set of all SMs that are within
the communication range of candidate DC / [i.e. the distance
between SM a and DC [/ is less than or equal to d defined in (3)].
The binary variable y, indicates if a DC at a location / is selected
for installation, binary variable x, ; indicates if SM a is assigned a
connection to DC /, and r; is a variable defined as the residual
buffer capacity for DC /. Parameters f, denote the flow of data or
amount of data to be processed daily (depending on units of buffer
capacity) from SM a; K defines the limit on the total allowable
number of DCs in the network (includes existing DCs); and b, is
the buffer capacity on DC /.

Problem formulations (4a)—(4h) seek to select the set of DCs
that should be built (y;) along with the connection routeing that
maximises the residual capacity of the constructed network.
Constraint (4b) limits the total number of newly installed DCs to be
within budget K. Constraint (4c) enforces that a connection
between SM a and DC / can occur only if DC / is installed and is
within communication range of a. Constraint (4e) describes the
residual capacity, defined as the difference between the allowable
bandwidth and the total throughput across each DC. This definition
corresponds to residual bandwidth in [14]. Constraint (4f) enforces
that a DC will not be installed unless at least one SM is assigned.
Note that if y; = 0 (the DC [ is not selected), then no connections
are possible for that concentrator (i.e. x, ;=0 Va€ A and r;, =0
from constraint (4e). Also, y; is fixed to 1 for all existing DCs.
Constraint (4g) defines the binary variables in the optimisation,
while constraint (4h) binds the residual capacity to be non-
negative.

While the average residual buffer capacity seems such as a
reasonable metric, it does nothing to ensure bandwidth is balanced.
Consider a simple case of two DCs, each with bandwidth 5. A
design that results in each DC at 50% residual bandwidth has the
same average as a design, where one DC is at 10% and the other at
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90%. Therefore, this formulation would conceivably yield
saturated nodes due to the nature of the averaging metric.
Therefore, we also reformulate SGEP-A to (i) maximise the
minimum residual buffer capacity and (ii) to minimise the sum of
the reciprocal residual buffer capacities. These alternative
objectives present options for penalising oversaturated nodes in the
network, while also handling node placement.

The reformulation to maximise the minimum residual buffer
capacity, called the SGEP-maximin (SGEP-MM), is as follows:

maximise z
s (5a)
subjectto 1>z, VIEL (5b)
w<kK
2 50
X 1<y, VieL aed, (5d)
X, =1, Vae€eA (Se)
le¥,
r = b[ - 2 Xa, lfa’ VielL (Sf)
a€ A
y < Xo 0 VIEL
P (5
Vi xa'le{O, 1}, VieL,ae d, (Sh)
rn>0, VIeL (51)

Objective (5a) now maximises an auxiliary variable z, defined as
the minimum residual capacity over all connections in the network,
enforced through constraint (5b). The objective function in SGEP—
A was focused on maximising the sum of the residual buffer
capacity. For SGEP-A, if a DC was not selected, ; must be forced
to zero for that specific DC. In the SGEP-MM formulation, we are
maximising the worst-case buffer capacity. This worst-case should
be identified for only the selected DCs. Therefore, (5f) is written to
ensure that unselected DCs do not impact this worst-case objective.
That is, numerically, the residual capacity r; for unselected DCs are
set equal to the total bandwidth to ensure that they are not
impacting the objective function as written. All other constraints
remain the same as those of SGEP-A.

As opposed to the SGEP-A formulation, which optimises for
maximum average residual capacity over the entire network, the
proposed formulation SGEP-MM improves reliability by assigning
connections to DCs in an attempt to maximise the worst-case or
minimum residual capacity. By ensuring that the minimum residual
buffer capacity is maximised, utility planners can be confident
about minimum QoS guarantees the system will be able to provide.

The reformulation to minimise the sum of the reciprocal
residual buffer capacities, called the SGEP-reciprocal (SGEP-R),
is as follows:

1

minimise —
X,y IEZL r (63)
subject to Z <K (6b)
lelL
X <y, VieL,aed, (6¢)
Xa, 1 = l, Vae A (6d)
le %,
n=b— Y Xfe VIEL (6e)
a€ A
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n < Z Xe» VIEL (69

aed;
%1 €10, 1}, VieL, aed, (62)
rn>0, VIEL (6h)

Objective (6a) now minimises the sum of the reciprocal residual
buffer capacities in the network. Constraint (6¢) has been modified
in the same manner as SGEP-MM. SGEP-R follows the same
assumption that the residual capacities of unselected DCs are equal
to its bandwidth rather than zero for the reciprocal objective to
perform as expected. All other constraints remain the same as those
of SGEP-A.

While SGEP-A maximises the total residual capacity of the
network, it fails to consider the distribution of links to each node.
In other words, the SGEP-A objective is indiscriminant of a
network with oversaturated nodes and concentrated links versus a
network with evenly distributed links. The SGEP-R objective,
however, does seek an even distribution of links in the network
while also maximising the total residual capacity. The reciprocal
objective function used in SGEP-R has been referred to as a
tractable penalty model, falling between the extreme approaches
used in SGEP-A and SGEP-MM in terms of the number of
connections routed to DCs [14].

Owing to the reciprocal objective, SGEP-R becomes a mixed-
integer non-linear programming problem and can be challenging to
solve. Fortunately, the non-linearity is convex, and this problem
can be approximated to arbitrary accuracy by applying linear
underestimators to approximate the non-linear function. First,
linear underestimators can be applied to the non-linear function
using a Taylor series expansion as follows:

Lol o L(-ri,). VieLmenm, ™

1 Flom Vi m
where 17, denotes the points along the domain of r; (denoted by
m € M;) to apply the underestimators. These points can be
generated uniformly or algorithmically to improve convergence
times. In our cases, we have chosen to generate them uniformly.
Besides, because the non-linear function is convex for the
minimisation objective, the constraint can be converted to an
inequality. The result is the following relaxed SGEP-R
formulation:

minimise Z vy (8a)
Xy, L
. 1 1 .
subjectto vy 2 ————5(n—rm), VIEL meM (8b)
iom Im
<Kk
) ®
X, 1<y, Vel ,ae d, (8d)
Zxa’lzl, Vae A (8e)
leZ,
rlzbl_ Zxa‘lfa! VielL (8f)
a€ A
Vi S Xa, Is Vi eL
2;1 (8¢)
Vis xa‘le{(), 1}, VlEL,aE(QVI (8h)
n>0, VIeL (81)

where v; is an auxiliary variable for the reciprocal residual buffer
capacity, which is approximated by constraint (8b). This relaxation
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Table 2 RTCA topology

Node type Total count
PV inverters 57
SMs 275
DCs 10

ER 1
candidate locations for DCs 1936

allows the problem to be solved as an MILP. For the rest of this
paper, SGEP-R will refer to the formulation comprising (8a)—(81).

4.1 Redundancy

Also, due to the flexibility of the MILP framework, constraints in
all three formulations can easily be modified to consider
connection redundancy. To do so, we can modify constraints (4d),
(5e), and (8e) and apply a redundancy threshold to the right-hand
side as follows:

Z Xa | = C, VYae A (9)
le %,

Constraint (9) provides redundancy if a DC is unavailable for a
connected SM, either because of component failure or unexpected
congestion, ensuring that each SM can connect to at least C DCs.
For example, if C = 2, then this formulation ensures that each SM
can connect to one of two DCs (e.g. primary and secondary) while
ensuring that the DC can feasibly handle the combined bandwidth
from all potential connections identified.

5 Case study

To show the application of the SGEP formulations for an SGCN,
and to evaluate the capabilities of the modelling method in
answering smart grid communication system problems, a case
study designing the topology of a semi-urban SGCN was
conducted.

The reference test case A (RTCA), shown in Fig. 2, was
adapted from Pacific Northwest National Laboratory taxonomy
feeder R2-25.00-1 [29] and represented a moderately populated
suburban area. It was placed arbitrarily in an area with good solar
resource data to provide representative scale for the network, but
has no relation to actual locations depicted. The characteristics of
the network are listed in Table 2.

The RTCA network spans 10.0 km from East to West and 8.0
km from North to South.

A grid layout of candidate locations for DCs was chosen, where
new nodes are allowed to be placed at any vertex on the grid. The
density of the grid can be assigned as a parameter to the
optimisation. In this case, a 44 x 44 matrix of candidate locations
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was used, totalling 1936 candidate locations with ~200 m between
each candidate node.

The communication range of the SMs via 2.4 GHz WLAN is
dependent on the transmit power of the transmitters (SMs), the
received power at receivers (DCs), terrain, elevation, and LOS.
Sources report widely ranging values for physical ranges of 802.11
signals, from 25 m for 802.11a/b/g [17] to 80—450 m for 802.11ah
(for smart cities in urban settings) [30] to 1.0 km for 802.11ac [17].
Instead, we will utilise a path loss propagation model to predict the
communication range of WLAN, described in Section 3.6,
particularly for a suburban topology that reflects the RTCA test
case. Nevertheless, the approach taken in this research can be
easily extended to urban environments that utilise closer range
protocols (as in the IEEE 802.11ah standard for smart cities). The
communication range is vital to construct the sets <, and </,
which determine what SM—DC pairs are communicable.

Given the size of the system under consideration, the LTE
communication range allows DCs to communicate with the ER
with minimal loss regardless of their proximity to each other.
Besides, each PV inverter is tied to an SM in the network, but
additional SMs exist for which no PV inverters are linked. These
additional SMs represent residents who have not yet integrated
solar generation into their household, but will shortly.

Therefore, the SGEP is formulated to place additional DCs to
ensure network connectivity for these emerging sources of
distributed generation. A multi-period expansion will be performed
using the proposed formulations to evaluate the effectiveness of the
methods for network expansion over time. The optimisation is
focused on the placement of the DCs and the assigned connections
between the SMs and DCs.

Table 3 summarises the parameter values used in the
optimisation. To facilitate the case study, the buffer capacities and
data transfer sizes are kept constant across all DCs and SMs in the
network, but the proposed formulations are amenable to varying
values for these parameters.

Andreadou ef al. [16] studied SM traffic, and DC processing for
AMI systems, particularly the effects on the network for SM
message sizes from 4 to 12,000 B and transmission intervals from
4 to 24 times/day. They showed that for an urban network of 101 m
to 1 DC, 12,000 B transmitted 24 times/day from each meter
required about 11 Mbits of data to be processed daily at each DC.
For our case, the amount of data or size of packets to be processed
daily from each SM was set to be at this maximum (11 Mbits) to
simulate a scenario where a large amount of daily traffic occurs at

Table 3 Parameter values for SGEP-A/-MM/-R

Model parameters Value

b 640 Mbits [16]

fa 11 Mbits [16]
WLAN range 0.93 km (see Section 3.6)
LTE range 50.0 km [17, 31]

Table 4 Numerical results for SGEP-A, SGEP-MM, and
SGEP-R solutions
Budget K Model

Objective value Residual buffer capacity

Max, % Min, %
8 SGEP-A 73.74 98.28 0.31
8 SGEP-MM 55.31 94.84 55.31
8 SGEP-R 1329.30 93.12 53.59
10 SGEP-A 76.37 98.28 0.31
10 SGEP-MM 67.34 93.12 67.34
10 SGEP-R 1328.56 93.12 63.91
25 SGEP-A 86.50 98.28 0.31
25 SGEP-MM 84.53 96.56 84.53
25 SGEP-R 1327.42 93.12 84.53
50 SGEP-A 92.12 98.28 0.31
50 SGEP-MM 89.69 98.28 89.69
50 SGEP-R 1327.07 94.84 84.53
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each DC in the network. This also ensures that the resulting
network will be able to handle increases in data rates from future
demand. Since the approach relegates the handling of packet
transmission and reception rates to the hardware technologies, the
placement problem needs to only consider best locations to place
the hardware and the specific routes to ensure network capacity can
handle high-traffic events.

An LTE range of 50.0 km was chosen to represent a moderately
populated suburban area for RTCA from [17]. For more rural
environments, evolved universal mobile telecommunications
system (UMTS) terrestrial radio access network can be used, which
is an air interface for LTE cellular network that supports coverage
up to 100 km with the acceptable performance [31]. For denser
urban environments, LTE coverage ranges are typically only
reported up to 20 km, according to the COST 231-Hata model [32].
The proposed approach is general and can be extended to urban or
rural environments with an appropriate choice of LTE coverage.

6 Numerical results

In the first set of numerical results, we consider all three
formulations (SGEP-A, SGEP-MM, and SGEP-R) with a single
period, no redundant connections. The optimisation problems were
constructed using Pyomo [33, 34] and solved with Gurobi
Optimiser. Gurobi Optimiser is a commercial optimisation solver
primarily used for linear, quadratic, and mixed-integer linear or
quadratic programming problems [35]. Gurobi Optimiser is well-
established in the operations research literature as a state-of-the-art
solver for mixed-integer problems of this class. The results were
obtained on a computer running a 2.4 GHz Intel Core 15, dual-core
processor with 8 GB RAM. Table 4 lists the computational results
for SGEP-A, SGEP-MM, and SGEP-R with different budgets of
DCs (budget K) based on the RTCA network. A total of ten
uniformly distributed linear underestimators were used for the
reciprocal function for each DC in constraint (8b).

Given a budget limit, fixed assignments from constraint (4c),
and the assumption of constant parameter values in this case study,
the average (or total) residual buffer capacity of the network can be
pre-computed assuming the budget allows a fully connected
network. As such, SGEP-A [formulation (4)] reduces to a pure
feasibility formulation. The SGEP-A formulation leads to both
oversaturated connections and underutilised DCs, as evidenced by
the unchanged maximum and minimum residual buffer capacities
of 98.29 and 0.31%, respectively. The SGEP-MM formulation, on
the other hand, seeks to maximise worst-case residual buffer
capacity, yielding values of 55.31, 67.34, 84.53, and 89.69% for
budget limits of 8, 10, 25, and 50 DCs, respectively. The SGEP-R
formulation seeks to minimise the sum of the reciprocal of the
residual buffer capacity and performs similarly to SGEP-MM,
yielding minimum values of 53.59, 63.91, 84.53, and 84.53% for
budget limits of 8, 10, 25, and 50 DCs, respectively.

The histogram comparisons in Figs. 3-5 show clearly the
distribution of connections per DC in the solutions provided by
SGEP-A, SGEP-MM, and SGEP-R for an increasing budget size.
Since SGEP-A only considers feasibility, the distributions shown
in Fig. 3 are not surprising — a large number of connections to a
few DCs along with many underutilised DCs with only one or two
connections. On the other hand, formulations SGEP-MM and
SGEP-R result in more balanced distributions of data flow with the
same average residual buffer capacity over the network.

The reciprocal objective in SGEP-R penalises designs with
DCs that have low residual buffer capacity. As Fig. 4 shows,
SGEP-R attempts to equalise the number of connections per DC
across the network to reduce bottlenecks. This behaviour
effectively reduces the maximum number of connections per DC
by consolidating the distribution. As the budget limit for DCs is
increased, this consolidation becomes more pronounced, yielding a
progressively tighter distribution. By distributing connections
effectively, the network robustness and QoS are improved in the
case of node outages.

SGEP-MM behaves similarly to SGEP-R. SGEP-MM
maximises the minimum residual buffer capacity of the network,
which, in test cases, where the amount of data to be processed daily
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Fig. 3 Distribution of connections per DC for SGEP-A solutions with
budget limit (a) K = 8, (b) K =25, and (c) K = 50
(a) SGEP-A with K = 8, (b) SGEP-A with K = 25, (¢) SGEP-A with K = 50

fa for each SM and the buffer capacities ; of each DC are equal, is
equivalent to minimising the maximum number of connections per
DC. Rather than reducing the maximum number of connections as
a result of consolidating in the case of SGEP-R, SGEP-MM
directly minimises the maximum value. By doing so, SGEP-MM
not only distributes connections similar to SGEP-R to reduce
congestion bottlenecks, but also provides the guarantee that the
minimum residual buffer capacity is maximised. One disadvantage
of SGEP-MM is that, by prioritising the minimisation of the high
end of the distribution, SGEP-MM neglects the low end, as shown
in Fig. 5c. This can lead to a few underutilised nodes. Compared to
Fig. 4c, SGEP-R provides better management of the low end of the
distribution, but does not provide the guarantees of SGEP-MM.
Fig. 6 shows the resulting placement of DCs following the
SGEP-A (Fig. 6a), SGEP-MM (Fig. 6b), and SGEP-R (Fig. 6¢)
formulations for budget K = 8 DCs. This limit is also the fewest
number required for the problem to remain feasible (i.e. fully
connected). As observed, the placements can be distant from the
feeder network. Since we have assumed a radius of
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Fig. 4 Distribution of connections per DC for SGEP-R solutions with
budget limit (a) K = 8, (b) K =25, and (c) K = 50
(a) SGEP-R with K = 8, () SGEP-R with K = 25, (¢) SGEP-R with K = 50

communicability for each SM rather than distance-dependent
performance, this result is not surprising.

Both SGEP-MM and SGEP-R assign connections to more
effectively utilise each DC. As such, not only do they handle
network demand more efficiently by spreading the load across
DCs, but the resulting placement locations are also closer to the
feeder network as a consequence of increasing the number of
connections to DCs. By staying within vicinity of the feeder
network, the solutions of SGEP-MM and SGEP-R become more
practical for utility operators and contractors, since the
infrastructure on which the DCs can be installed may already be in
place. SGEP-R shows a slightly better result than SGEP-MM in
terms of adhering to the feeder network, though the difference is
minimal.

The SGEP-R formulation was also tested on a feeder-centric
candidate topology, where the DCs were restricted to be placed
only along existing utility poles. The findings from this test showed
that the placements from the gridded topology were very similar to
those from the feeder topology. The restricted feeder topology
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Fig. 5 Distribution of connections per DC for SGEP-MM solutions with
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results in a similar number of connections per DC. Minor
discrepancies in location of placement between the two were
because the optimisation model considered any connecting node
within communication radius to be of equal value. In other words,
as long as an SM and corresponding DC were within
communication range, there was no added value in locating the DC
closer to the SMs. This is evident in the results of the gridded case,
where placements of DCs can be seen in locations that extend
outwards in directions away from the utility lines, in intermediate
distances between its connected SMs.
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6.1 System resilience

To address system resilience, we use the modified formulations
that enforce redundancy. This formulation enforces multiple
possible connections for each SM. With backup connections, we
improve the resiliency and robustness of the network in the face of
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Table 5 Numerical results for SGEP-A, SGEP-MM, and
SGEP-R with redundancy C =2
Budget K Model Objective value Residual buffer capacity

Max, % Min, %
20 SGEP-A 68.49 98.28 0.31
20 SGEP-MM 43.28 93.12 43.28
20 SGEP-R 1339.31 93.12 41.56
25 SGEP-A 72.99 98.28 0.31
25 SGEP-MM 62.19 93.12 62.19
25 SGEP-R 1335.84 91.41 62.19
30 SGEP-A 76.37 98.28 0.31
30 SGEP-MM 70.78 94.84 70.78
30 SGEP-R 1334.75 93.12 63.91
50 SGEP-A 84.24 98.28 0.31
50 SGEP-MM 82.81 96.56 82.81
50 SGEP-R 1333.10 94.84 81.09

possible security threats, outages, or node failures. In the case of a
node outage, the formulation ensures that a nearby DC will be able
to continue processing the information originally handled by the
damaged unit since routeing assignments and placement strategies
have accounted for the additional buffer capacity necessary.

Table 5 lists numerical results for SGEP-A, SGEP-MM, and
SGEP-R with redundancy threshold C = 2, where K = 20 is the
minimum number of additional DCs required for a feasible, fully
connected network. Fig. 7 shows the resulting placement of DCs
following the SGEP-A (Fig. 7a), SGEP-MM (Fig. 7b), and
SGEP-R (Fig. 7c¢) formulations for budget K =20 DCs and
redundancy threshold of C = 2.

Since SGEP-A focuses on feasibility only, DCs are overutilised
with very low residual buffer capacity (0.31%), along with
underutilised DCs yielding high residual buffer capacities of
98.28%. On the other hand, SGEP-MM produces solutions with
higher-minimum residual buffer capacities (43.28, 62.19, 70.78,
and 82.81% for K =20, 25, 30, and 50, respectively) while
maintaining high-maximum residual buffer capacities as well
(93.12, 93.12, 94.84, and 96.56% for K =20, 25, 30, and 50,
respectively). SGEP-R performs close to SGEP-MM, producing
minimum residual buffer capacities of 41.56, 62.19, 63.91, and
81.09% for K = 20, 25, 30, and 50, respectively, and maximum
residual buffer capacities of 93.12, 91.41, 93.12, and 94.84% for
K =20, 25, 30, and 50, respectively.

In comparison with the numerical results from C = 1 solutions,
the redundancy solutions for C =2 yield lower residual buffer
capacities overall. This is not surprising, since consideration of
redundancy requires the potential of additional throughput to DCs,
leading to lower overall residual buffer capacities for the same
number of nodes (minimum residual capacities of 84.53% for
SGEP-MM with C = 1 versus 62.19% for SGEP-MM with C =2
for K =25, for example). However, as the number of DCs
increases, this difference decreases (minimum residual capacities
of 89.69% for SGEP-MM with C =1 versus 82.81% for SGEP—
MM with C =2 for K = 50, for example). This effect is because
the redundancy threshold, in our case, does not scale with the
number of DCs, but with the number of SMs. Since the number of
SMs in the network is fixed, increasing the number of allowable
DCs will always serve to alleviate congestion by increasing total
buffer capacity.

While this phenomenon holds for SGEP-MM and SGEP-R, the
same cannot be said of SGEP-A. SGEP-A could still assign the
maximum number of connections to a few DCs, regardless of the
budget limit, while sparsely assigning the minimum number of
connections to the rest of the DCs.

Analysing Fig. 7 shows all models placing DCs in locations that
can be very close to others. This result is since, if a DC fails, the
SMs in the area must be able to reconnect to an alternative DC
nearby. An important trade-off occurs between the desire to prevent
against node failure by applying redundancy versus effective
utilisation of DCs. Nevertheless, SGEP-MM and SGEP-R handle
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this trade-off well by more evenly distributing route assignments
among DCs despite placing ones that can be near each other.
Future formulations should consider addressing the assumption of
independence of failure and spatial distribution of DCs.

6.2 Multi-period expansion

As this paper focuses on the expansion problem, it may be
reasonable to assume that utility planners will need to resolve the
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expansion problem multiple times over decades as the smart grid
grows and distributed generation spreads. Rather than solving a
large-scale multi-period problem, we verify the effectiveness of a
sequence of single period solves in a rolling horizon. In terms of
the optimisation, we model this rolling horizon approach by
progressively solving the expansion problem with an increasing
budget while requiring that nodes from each prior placement is
considered built.

Fig. 8 shows the system performance for a series of single-
period optimisations (with five DCs added in each period). This is
compared with the best possible solution obtained if the placements
were re-optimised for the new number of DCs. From this
comparison, we see that while placing a full set of DCs at once
(with the basic SGEP-MM formulation) yields a higher-minimum
residual capacity, the difference compared with the rolling horizon
solution is minimal, with an average gap of 4%. This gap is
dependent on the number of nodes utilised for each progressive
addition. The minimum residual buffer capacities of the rolling
horizon solutions and re-optimised solutions for SGEP-R are
nearly identical and lie close to those of the rolling horizon
solutions of SGEP-MM.

Investigation of SGEP—A was omitted here since the minimum
residual buffer capacities of SGEP—A solutions remain unchanged,
falling automatically to their extremes (minimum of 0.31%).

7 Conclusions and future work

A central issue in the expansion of the smart grid is the placement
of additional DCs to service a growing network of SMs while
maintaining a high level of reliability and QoS. In this research,
three network design formulations based on MILP approaches
were proposed to handle smart grid expansion with QoS
guarantees: (i) SGEP-A — maximising the average residual buffer
capacity, (i) SGEP-MM - maximising the minimum residual
buffer capacity, and (iii) SGEP—R — minimising the total reciprocal
residual buffer capacity. We applied the design formulations to a
case study with empirical parameters and solved them to optimality
using Gurobi.

Our key conclusions in this work are as follows. First, our
proposed formulations worked to design optimal placement
topologies of DCs in smart grid communications networks.
Second, the SGEP-A model can be useful for targeting (i.e. the
minimum number of DCs for feasibility), but is poor for routeing
assignment, since the total (or average) residual buffer capacity can
be computed directly. Third, the SGEP-MM and SGEP-R models
provide better solutions in terms of routeing assignment and leads
to better placement within the vicinity of the feeder network, a
practical consideration useful for ensuring that chosen placements
can be built. Also, SGEP-MM provides minimum residual buffer
capacity guarantees that are useful for establishing and ensuring
QoS standards. Fourth, these formulations can address resilience
concerns and are effective for rolling horizon network expansion.
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Future avenues of study include evaluation of the proposed
approaches on a variety of urban environments and network sizes,
as well as showing the scalability of the approaches across a larger
span of problems. Besides, investigation of the optimal spatial
distribution when placing nodes is important, since the clustered
placement of DCs can reduce their effective utilisation despite
provisioning for node outages. Also, multi-period placement
approaches with stochastic growth models for the expansion of the
smart grid network over time can address concerns such as worst-
case scenarios and placement under uncertainty. Finally, the
investigation of statistical metrics such as conditional value-at-risk
can be useful when considering alternative objectives for optimal
placement prioritising risk mitigation.
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