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Abstract. This paper dealt with the existence of periodic waves for a per-
turbed quintic BBM equation by using geometric singular perturbation theory.
By analyzing the perturbations of the Hamiltonian vector field with a hyperel-
liptic Hamiltonian of degree six, we proved that periodic wave solutions persist

for sufficiently small perturbation parameter. It is also proved that the wave
speed c0(h) is decreasing on h by analyzing the ratio of Abelian integrals, where
h is the energy level value. Moreover, the upper and lower bounds of the limit
wave speed are given.

1. Introduction. Traveling waves in nonlinear wave equations can model many
nonlinear complex phenomenon in physics, chemistry, biology, mechanics, optics,
etc. There exist many shallow water wave models, such as the Korteweg-de Vries
(KdV) [12], the Benjamin-Bona-Mahony [3], the Green-Naghdi [9] and more recently
the Camassa-Holm [4] equations. All these model equations govern the asymptotic
dynamics of wave profiles of long waves in shallow water. To solve the practical
problems, many authors have tried to explain wave motions on a liquid layer over an
inclined plane in fluid dynamics. Topper and Kawahara [18] proposed the following
partial differential equation,

ut + uux + αuxx + βuxxx + γuxxxx = 0, (1.1)

where the variable u means the hight of the wave at the point x and time t. The
physical parameters α, β and γ are all positive. Here, the wave motion is assumed
depending only on the gradient direction. If the inclined plane is infinitely long
and the surface tension is relatively weak, the uxx and uxxxx terms are relatively
small, then (1.1) can be considered as a 1-parameter equation by taking an trans-
formed appropriate scale transformation of u, x and t. For example, (1.1) can be
transformed to the following equation,

ut + uux + uxxx + ε(uxx + uxxxx) = 0, (1.2)

In some physical circumstances, for example, correspond to the case ε is small. It is
important in the sense of understanding the role of dispersion uxx and dissipation
uxxxx in nonlinear wave systems. A year later, Ogawa [14] studied the existence

2010 Mathematics Subject Classification. Primary: 34C25, 34C60; Secondary: 37C27.
Key words and phrases. Quintic BBM equation, periodic waves, Picard-Fuchs equation,

Abelian integral.
This research is supported by the NSF of China (No.11971495 and No.11801582).
∗ Corresponding author: Yulin Zhao.

4689

http://dx.doi.org/10.3934/dcds.2020198


4690 LINA GUO AND YULIN ZHAO

of traveling waves of the perturbed KdV equation (1.2) and gave the relation be-
tween the amplitude and the wavelength. When the backward diffusion (uxx) and
dissipation (uxxxx) terms are absent, the equation (1.2) is regarded as the KdV
equation.

In general, perturbation theory in a dynamical system can be divided into three
types: periodic or quasi-periodic forcing, singular perturbation and regular pertur-
bation. If the perturbation term of a partial differential equation is quasi-periodic
forcing, an infinite dimensional KAM theory is used to investigate dynamics of the
system. This theory is an extension of the well-known classical KAM theory, which
was established by Kolmogorov [11], Arnold [1] and Moser [13]. If the Kolmogorov
non-degenerate condition is satisfied, the majority of cycle is persistent under per-
turbations.

When a perturbed system can be reduced to a singular perturbation system,
the main problem is the existence of traveling wave solutions of the system. In
order to deal with singular perturbations, a classic approach is to use the Fenichel’s
theory [8], which ensures the existence of an invariant manifold and then simplifies
the problem to a regular perturbation system on the manifold. In these cases
[7, 14, 15, 16], the perturbation always has only one or two terms with lower degrees
on the invariant manifold.

As we all know, perturbations are usually not restricted on manifolds, therefore,
there are very few problems that can be directly reduced to regularly perturbed
systems. Furtheremore, there exist few mathematical tools available to study the
dynamic behavior of perturbed systems, and the analysis and calculation based on
this method can hardly be used to prove the existence of periodic waves yet.

Recently, Yan et al. [20] discussed a perturbed generalized KdV equation.

ut + unux + uxxx + ε(uxx + uxxxx) = 0. (1.3)

When ε = 0 and n = 2, (1.3) becomes the generalized KdV equation. Using
the geometric singular perturbation theory, they have proved that traveling wave
solutions persist for sufficiently small perturbation parameter.

In 2005, Wazwaz [19] has studied some nonlinear dispersive generalized forms of
the Benjamin-Bona-Mahony (BBM) equation.

(um)t + (un)x + (ul)xxx = 0. (1.4)

The aim of [19] is to extend the work conducted by Rosenau [17] to make further
progress in finding compactons of dispersive structures.

More recently, Chen et al.[5] investigated a perturbed generalized BBM equation
for m = 2, n = 3 and l = 1, that is,

(u2)t + (u3)x + uxxx + ε(uxx + uxxxx) = 0, (1.5)

and established the existence of solitary waves and uniqueness of periodic waves.
In this paper, the authors applied Picard-Fuchs equation to determine the periodic
waves, and developed a good approach to prove that the dominating factor of the
Abelian integral is monotonic. Using the same manner, Chen et al. [6] also proved
that the perturbed defocusing mKdV equation,

ut + (u2)ux + uxxx + ε(uxx + uxxxx) = 0, (1.6)

has a unique periodic wave. Both of the works [5] and [6] studied the perturbation
problems restricted on the manifolds by using geometric singular perturbation the-
ory. As we all know, a lot of work is done on the study of the generalized BBM
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equation. However, till now there are few works on the perturbed quintic BBM
equation.

In this paper, we study the BBM equation (1.4) for m = 3, n = 5 and l = 1, that
is, we consider a perturbed quintic BBM equation

(u3)t + (u5)x + uxxx + ε(uxx + uxxxx) = 0, (1.7)

where ε > 0 is a perturbation parameter. When ε = 0, Eq.(1.7) becomes the quintic
BBM equation

(u3)t + (u5)x + uxxx = 0. (1.8)

By using the traveling coordinate ξ = x − ct , where c is speed, we insert the
traveling wave u = ϕ(ξ) into Eq.(1.7). It follows that

− 3cϕ2(ξ)ϕ′(ξ) + 5ϕ4(ξ)ϕ′(ξ) + ϕ′′′(ξ) + ε[ϕ′′(ξ) + ϕ′′′′(ξ)] = 0. (1.9)

Integrating Eq.(1.9) and without loss of generality, we can put the integral constant
to zero, then

− cϕ3(ξ) + ϕ5(ξ) + ϕ′′(ξ) + ε[ϕ′(ξ) + ϕ′′′(ξ)] = 0. (1.10)

After doing the suitable scale transformation ξ = τ/c , ϕ =
√
cz to (1.10), the

final equation can be transformed to

− z3(τ) + z5(τ) + z′′(τ) + ε

(

1

c
z′(τ) + cz′′′(τ)

)

= 0. (1.11)

If we have a solution z(τ) of (1.11) for ε > 0 and c > 0, then the corresponding
ϕ(ξ) is a traveling wave solution to Eq.(1.9), and, therefore, u(x, t) is a traveling
wave solution to the original equation (1.7).

When ε = 0 , Eq. (1.11) becomes an unperturbed system

− z3(τ) + z5(τ) + z′′(τ) = 0, (1.12)

whose solutions are traveling wave solutions to the quintic BBM equation. Eq.(1.12)
has an equivalent form

{

dz
dτ = y,
dy
dτ = z3 − z5.

(1.13)

It is easy to see that system (1.13) has three equilibrium points O(0, 0), P1(1, 0)
and P2(−1, 0). The origin O(0, 0) is a nilpotent saddle of third order, P1(1, 0) and
P2(−1, 0) are two centers. Thus system (1.13) belongs to the so called “a double
cuspidal loop” [2] case. The phase portrait of system (1.13) is given as Figure 1.

The system (1.13) is a Hamiltonian system with Hamiltonian of degree six

H(z, y) = −1

2
y2 − 1

6
z6 +

1

4
z4,

satisfying H(±1, 0) = 1/12, and H(0, 0) = 0. Now, we consider a level curve of
the form H = h. If h satisfies 0 < h < 1/12, then it corresponds to two periodic
orbits Γh of (1.13). If h = 0, it includes two homoclinic orbits. If h < 0, then it
represents a big periodic orbit surrounding the three singular points . Therefore
we can parameterize these traveling wave solutions to (1.12) by h. Using this
parametrization, we can describe the existence result of periodic wave solutions of
(1.7) as the following theorem.

Theorem 1.1. For the perturbed quintic BBM equation(1.7), the following results
holds.
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Figure 1. The phase portrait of system (1.13).

(1) For any sufficiently small ε > 0, there exists ε∗ > 0, ε ∈ [0, ε∗] and h ∈
[δ, 1/12], Eq.(1.7) has two periodic wave solutions

u± = ±cz(ε, h, c, τ),

where c = c(ε, h), and z(ε, h, c, τ) is a solution of Eq.(1.11), and δ is a small
positive number.

(2) c = c(ε, h) is a smooth function of ε and h, and converges to c0(h) as ε → 0,
where c0(h) is a smooth decreasing function for h ∈ (0, 1/12], and,

√
2

2
≤ c0(h) <

8

9
, lim

h→0
c0(h) =

8

9
, lim

h→ 1

12

c0(h) =

√
2

2
.

(3) When ε → 0, z(ε, h, c, τ) converges to z(h, c0(h), τ) uniformly in τ , where
z(h, c0(h), τ) is a solution of system (1.13) on the level curve H = h.

The goal of this paper is to study the existence of periodic waves for Eq.(1.7).
To obtain our main result, it is necessary to compute the Abelian integral (3.2)(see
Section 3) with two ratios. The chief difficulty lies in proving the monotonicity of
the ratio of Abelian integral Z(k). We will finish the task in Section 3.

The remaining part is organized as follows. Section 2 is devoted to investigate
the existence of periodic wave solutions of Eq.(1.7) by using the geometric singular
perturbation theory. In Section 3, the Abelian integral theory is used to analysis
the limit speed and the monotonicity of the wave speed c0(k), and the main results
are proved.

2. Perturbation analysis. In this section, our purpose is to find the periodic
solutions to Eq.(1.11) by using the geometric singular perturbation theory and
regular perturbation analysis for a Hamiltonian system.

Firstly, we introduce the singular perturbation theorem on invariant manifolds
which comes from Theorem 9.1 in Fenichel [8]. For convenience, we use a version
of this theorem due to Theorem 1-2 in Jones [10].

Consider the system
{

ẋ = f(x, y, ε),
ẏ = εg(x, y, ε),

(2.1)

where the ′ means differentiation with respect to t. x ∈ Rn, y ∈ Rl and ε is a real
parameter. We shall compile three hypotheses about the system (2.1).
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(H1) The functions f and g are both assumed to be C∞ on a set U × I, where
U ⊂ RN is open, with N = n+ l, and I is an open interval, containing 0.

We are given an l-dimensional manifold, possibly with boundary, M0 which is
contained in the set {f(x, y, 0) = 0}. The manifold M0 is said to be normally
hyperbolic if the linearization of (2.1) at each point in M0 has exactly dim(M0)
eigenvalues on the imaginary axis ℜ(λ) = 0. The assumption (H2) is given as
follows.

(H2) The set M0 is a compact manifold, possibly with boundary, and is normally
hyperbolic relative to the system (2.1) |ε=0 .

In order to significantly simplify the notation, we shall restrict attention to the
case that M0 is given as the graph of a function of x in terms of y. That is we assume
there is a function h0(y), defined for y ∈ K, with K being a compact domain in Rl,
and so that M0 = {(x, y) : x = h0(y)}. Thus, consider x = h0(y) wherein y ∈ K
and make the following assumption.

(H3) The set M0 is given as the graph of the C∞ function h0(y) for any y ∈ K. The
set K is a compact, simply connected domain whose boundary is an (l − 1)
-dimensional C∞ submanifold.

The following two lemmas are crucial for our analysis.

Lemma 2.1. [10] Under the hypotheses (H1)-(H2), if ε > 0 , but sufficiently small,
there exists a manifold Mε that lies within O(ε) of M0 and is diffeomorphic to M0.
Moreover it is locally invariant under the flow of (2.1), and Cr, including in ε, for
any 0 < r < +∞.

Lemma 2.2. [10] Under the hypotheses (H1)-(H3), if ε > 0 is sufficiently small,
there is a function x = hε(y), defined on K, so that the graph

Mε = {(x, y) | x = hε(y)},
is locally invariant under (2.1). Moreover hε is Cr, for any 0 < r < +∞, jointly
in y and ε.

Now we recall system (1.11), which is equivalent to






dz
dτ = y,
dy
dτ = w,
εcdwdτ = z3 − z5 − w − ε

cy.

(2.2)

When ε > 0, (2.2) defines a system whose solutions evolve in the three dimen-
sional (z, y, w) phase space. Note that in this phase space, system (2.2) admits the
following three singular points (0, 0, 0), (1, 0, 0) and (−1, 0, 0).

By making time scale transformation σ = τ/ε, (2.2) becomes






dz
dσ = εy,
dy
dσ = εw,
cdwdσ = z3 − z5 − w − ε

cy.

(2.3)

When ε > 0, (2.2) and (2.3) are equivalent. Generally, (2.2) is called the slow
system, and (2.3) is called the fast system.

Consider the slow system (2.2) with ε = 0. The critical manifold M0 is given by
the set

M0 = {(z, y, w) ∈ R
3 | w = z3 − z5, (z, y) ∈ K},
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where K = {(y, z) : 0 < δ ≤ −1/2y2 − 1/6z6 + 1/4z4 ≤ 1/12}, δ is a small
positive number. Obviously, the set K is a compact, simply connected domain.
The assumption (H3) holds.

For M0 to be normally hyperbolic, we must show that the linearization of the
fast system, restricted to M0, has exactly dimM0 eigenvalues on the imaginary axis,
with the remainder of the system hyperbolic. Note that the linearization of (2.3)
restricted to M0 is given by the following matrix

C =





0 0 0
0 0 0

1
c (3z

2 − 5z4) 0 − 1
c



 .

It can be easily seen that the matrix C has three eigenvalues λ1 = 0, λ2 = 0, λ3 =
−1/c, with λ1 and λ2 being on the imaginary axis , thus we can conclude that
M0 is normally hyperbolic. Obviously, the assumption (H2) holds. Consequently,
it follows from Lemma 2.2 that, for ε > 0 sufficiently small, there exists a two-
dimensional submanifold Mε of R

3 within the Hausdorff distance ε of M0 and which
is invariant under the flow of system (2.2).

Let

Mε = {(z, y, w) ∈ R3 : w = z3 − z5 + ζ(z, y, ε), (z, y) ∈ K}, (2.4)

where ζ(z, y, ε) depends smoothly on z, y, ε, and satisfies ζ(z, y, 0) = 0. We can
expand ζ(z, y, ε) in ε as follows

ζ(z, y, ε) = εζ1(z, y) +O(ε2). (2.5)

Substituting (2.4) and (2.5) into the third equality of slow system (2.2), we can get

εc(3z2 − 5z4)y +O(ε2) = −εζ1(z, y)−
ε

c
y +O(ε2). (2.6)

Comparing the coefficients of ε, we can get

ζ1(z, y) = c

[

(5z4 − 3z2)y − 1

c2
y

]

.

Therefore, the dynamics on the slow manifold Mε for system (2.2) is determined by
{

dz
dτ = y,
dy
dτ = z3 − z5 + εc

[

(5z4 − 3z2)y − 1
c2 y

]

+O(ε2).
(2.7)

which is a regular perturbation problem. By Lemma 7.3 in [21] O(0, 0) is still a
saddle point in system (2.7).

Now we can easily check if a periodic orbit persists or not as follows. By symme-
try, we only need to check the orbit with z > 0. First of all, we should pay attention
to the dynamics of the unperturbed system (1.13), which can be understood by the
level curve of H . Fix an initial data (α, 0) with 0 < α < 1. Now let (z(τ), y(τ)) be
the solution of (2.7) with (z, y)(0) = (α, 0). Then there exist τ1 > 0 and τ2 < 0, so
that

y(τ) > 0 for 0 < τ < τ1, y(τ1) = 0,

and

y(τ) < 0 for τ2 < τ < 0, y(τ2) = 0.

Let us define a function Φ as follows

Φ(α, c, ε) =

∫ τ1

τ2

Ḣ(z, y)dτ.
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Here,

Ḣ(z, y) = −εc

[

(5z4 − 3z2)y2 − 1

c2
y2
]

+O(ε2).

Φ(α, c, ε) denotes difference of the level between the two points on the z-axis;

Φ(α, c, ε) = H(z(τ1), y(τ1))−H(z(τ2), y(τ2)).

Hence, Φ(α, c, ε) = 0 if and only if z(τ) is a periodic solution of (2.7), that is, our
goal is to solve Φ = 0. Since Φ(α, c, 0) = 0, we have

Φ(α, c, ε) = εΦ̃(α, c, ε).

When ε → 0, Φ̃(α, c, ε) has a limit

Φ̃0(α, c) = lim
ε→0

Φ̃(α, c, ε) = c

∫ τ1

τ2

[

(5z40 − 3z20)y
2
0 −

1

c2
y20

]

dτ.

Here, (z0, y0) is a solution of (1.13) and this integral is performed on a level curve
H = H(α, 0) ∈ (0, 1/12). Since,

∫ τ1

τ2

z20z
′
0
2
dτ = −2

∫ τ1

τ2

z20z
′
0
2
dτ −

∫ τ1

τ2

z30z
′′
0dτ.

i.e.
∫ τ1

τ2

z20z
′
0
2
dτ = −1

3

∫ τ1

τ2

z30z
′′
0dτ.

Similarly,
∫ τ1

τ2

z40z
′
0
2
dτ = −1

5

∫ τ1

τ2

z50z
′′
0dτ.

Then we have
∫ τ1

τ2

[(5z40 − 3z20)y
2
0 −

1

c2
y20 ]dτ = −

∫ τ1

τ2

z50z
′′
0dτ +

∫ τ1

τ2

z30z
′′
0dτ −

∫ τ1

τ2

1

c2
z′0

2
dτ.

=

∫ τ1

τ2

z′′0
2
dτ −

∫ τ1

τ2

1

c2
z′0

2
dτ.

Therefore,

Φ̃0(α, c) = c

(∫ τ1

τ2

z′′0
2
dτ −

∫ τ1

τ2

1

c2
z′0

2
dτ

)

=
1

c

(

c2
∫ τ1

τ2

z′′0
2
dτ −

∫ τ1

τ2

z′0
2
dτ

)

.

And we have to determine the limit speed c0 by

c20

∫ τ1

τ2

z′′0
2
dτ −

∫ τ1

τ2

z′0
2
dτ = 0. (2.8)

3. Analysis by the Abelian integral theory. In this section, we focus on cal-
culating the limit speed c0 with h and prove our main theorem. Here, we suppose
that z(τ) is a solution of (1.12).

Firstly, let Q and R be

Q =
1

2

∫ τ1

τ2

z′′
2
dτ, R =

1

2

∫ τ1

τ2

z′
2
dτ,

Eq.(2.8) becomes c20Q−R = 0. In what follows, we will give specific expressions for
Q and R. And when 0 ≤ k = 2h < 1/6,

− 1

3
z6 +

1

2
z4 = k. (3.1)
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Let α(k) and β(k) be the two non-negative real roots of (3.1), where 0 ≤ α(k) <
β(k). Here, as mentioned above, the orbit (z(τ), y(τ)) is on the level curve H =
h = k/2, where y = dz/dτ , therefore, we have

Q =

∫ β

α

(−z5 + z3)2

E(z)
dz, R =

∫ β

α

E(z)dz,

by system (1.13). Here, E(z) =
√

1
2z

4 − 1
3z

6 − k.

For convenience, we represent Q and R by the following integrals:

Jn(k) =

∫ β

α

znE(z)dz, n = 0, 1, 2, · · · .

Then it meets
∫ β

α

zn

E(z)
dz = −2J ′

n(k).

Therefore, Q and R are represent as follows:

R = J0(k), Q =

∫ β

α

(−z5 + z3)2

E(z)
dz = −2J ′

6(k) + 4J ′
8(k)− 2J ′

10(k).

By Green formula, we have R(k) = J0(k) =
∫ β

α E(z)dz =
∫ β

α ydz =
∫∫

intΓh

dzdy

> 0. By the first equality of system (2.2), T = 2
∫ T

2

0
dτ = 2

∫ β

α
1/ydz = −4J ′

0(k) >
0, then J ′

0(k) < 0. Let Z(k) = Q(k)/R(k), since the function Z(k) about variable
k is continuous , then we have the following proposition.

Proposition 3.1. For 0 < k < 1
6 , Z

′(k) > 0. Moreover,

81

64
< Z(k) < 2, lim

k→0
Z(k) =

81

64
, and lim

k→ 1

6

Z(k) = 2.

To prove this proposition, we need the following lemmas. Firstly, let us study
the basic properties of J0, J2 and J4 by the following lemmas.

Lemma 3.1. Let B(p, q) =
∫ 1

0
xp−1(1− x)q−1dx, p > 0, q > 0 be the Beta function.

Then we have

J0(0) =
3
√
3

8
B

(

3

2
,
3

2

)

, J2(0) =
9
√
3

16
B

(

3

2
,
5

2

)

, J4(0) =
27

√
3

32
B

(

3

2
,
7

2

)

.

Moreover,
J2(0)

J0(0)
=

3

4
,

J4(0)

J0(0)
=

45

64
.

Proof. Since α(0) = 0, β(0) =
√
6
2 , we can get

J0(0) =

∫

√

6

2

0

z2
√

1

2
− 1

3
z2dz =

√
2

2

∫

√

6

2

0

z2
√

1− 2

3
z2dz.

Let 1− 2
3z

2 = t, then z2 = 3
2 (1− t), dz = −

√
6
4 (1− t)−

1

2 dt, we can get

J0(0) =

√
2

2

∫

√

6

2

0

z2
√

1− 2

3
z2dz =

3
√
3

8

∫ 1

0

(1− t)
1

2 t
1

2 dt =
3
√
3

8
B

(

3

2
,
3

2

)

.

Similarly,

J2(0) =
9
√
3

16
B

(

3

2
,
5

2

)

, J4(0) =
27

√
3

32
B

(

3

2
,
7

2

)

.
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Since

B(p, q) =
Γ(p)Γ(q)

Γ(p+ q)
, Γ(s+ 1) = sΓ(s).

Here Γ(s) =
∫ 1

0
xs−1e−xdx +

∫ +∞
1

xs−1e−xdx, s > 0 is the Gamma function, we
have

J2(0)

J0(0)
=

9
√
3

16 B(32 ,
5
2 )

3
√
3

8 B(32 ,
3
2 )

=
3

2
× Γ(32 )Γ(

5
2 )

Γ(4)
× Γ(3)

Γ(32 )Γ(
3
2 )

=
3

2
×

3
2 × Γ(32 )Γ(3)

3× Γ(32 )Γ(3)
=

3

4
.

Similarly,

J4(0)

J0(0)
=

45

64
.

Lemma 3.2. lim
k→1/6

J2(k)
J0(k)

= lim
k→1/6

J4(k)
J0(k)

= 1.

Proof. By mean value theorem for integrals, we have

lim
k→1/6

J2(k)

J0(k)
= lim

z→1
z2 = 1.

Similarly,

lim
k→1/6

J4(k)

J0(k)
= lim

z→1
z4 = 1.

Lemma 3.3.




J0
J2
J4



 =





3/2k 0 −1/4
1/8k k −3/16

15/128k 3/16k 3/4k− 45/256









J ′
0

J ′
2

J ′
4



 .

Proof. Since E2 = 1/2z4 − 1/3z6 − k, we can get EdE/dz = z3 − z5. J0 can be
calculated as follows.

J0 =

∫ β

α

Edz =

∫ β

α

E2 dz

E

=

∫ β

α

(

1

2
z4 − 1

3
z6 − k

)

dz

E

=

∫ β

α

[

1

2
z4 − 1

3
z

(

z3 − E
dE

dz

)

− k

]

dz

E

=

∫ β

α

(

1

6
z4 − k

)

dz

E
+

1

3

∫ β

α

zdE

= −1

3
J ′
4 −

1

3
J0 + 2kJ ′

0,

that is,

J0 =
3

2
kJ ′

0 −
1

4
J ′
4.
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On the other hand, J2, J4 is calculated by the same method as J0.

J2 =

∫ β

α

Ez2dz =

∫ β

α

z2E2 dz

E

=

∫ β

α

z2
(

1

2
z4 − 1

3
z6 − k

)

dz

E

=

∫ β

α

(

z3 − E
dE

dz

)(

−1

3
z3 +

1

2
z

)

dz

E
+ 2kJ ′

2

=

∫ β

α

(

1

2
z4 − 1

3
z6 − k

)

dz

E
+ 2kJ ′

2 − 2kJ ′
0

+
1

3

∫ β

α

z3dE − 1

2

∫ β

α

zdE

= J0 + 2kJ ′
2 − 2kJ ′

0 +
1

2
J0 − J2,

that is,

J2 =
1

8
kJ ′

0 + kJ ′
2 −

3

16
J ′
4.

Similarly, a direct computation shows that

J4 =

∫ β

α

Ez4dz =

∫ β

α

z4E2 dz

E

=

∫ β

α

z4
(

1

2
z4 − 1

3
z6 − k

)

dz

E

=

∫ β

α

(

z3 − E
dE

z

)(

−1

3
z5 +

1

2
z3
)

dz

E
+ 2kJ ′

4

=

∫ β

α

(

1

2
z6 − 1

3
z8 − z2k

)

dz

E
+ 2kJ ′

4 − 2kJ ′
2

+
1

3

∫ β

α

z5dE − 1

2

∫ β

α

z3dE

= J2 + 2kJ ′
4 − 2kJ ′

2 +
3

2
J2 −

5

3
J4,

that is,

J4 =
15

128
kJ ′

0 +
3

16
kJ ′

2 +

(

3k

4
− 45

256

)

J ′
4.

This proves the lemma.

By Lemma 3.3, we can get the following lemma.

Lemma 3.4. J0, J2 and J4 satisfy the Picard-Fuchs equation





J ′
0

J ′
2

J ′
4



 =
1

∆













4k − 3

4
−1

4

4

3

−1

2
k 6k − 5

4

4

3

−1

2
k −3

2
k 8k

















J0
J2
J4



 ,

where ∆ = k(6k − 1).
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Lemma 3.5. Jn, n = 6, 8, 10 can be represented only by J0, J2 and J4 as follows.

J6 =
21

20
J4 −

3

10
kJ0,

J8 =
189

160
J4 −

3k

4
J2 −

27

80
kJ0,

J10 =

(

6237

4480
− 15

14
k

)

J4 −
99

112
kJ2 −

891

2240
kJ0.

Proof. A direct computation shows that

J6 =

∫ β

α

Ez6dz =

∫ β

α

z

(

z3 − E
dE

dz

)

Edz

= J4 −
∫ β

α

z

(

1

2
z4 − 1

3
z6 − k

)

dE

= J4 −
7

3
J6 +

5

2
J4 − kJ0

= −7

3
J6 +

7

2
J4 − kJ0,

which implies the first equality of this lemma. By the same manner, the last two
equalities can be obtained.

To analyze Q and R, we can represent them by J0, J2 and J4. Applying Lemma
3.4 and Lemma 3.5, we get R = J0, R′ = J ′

0, and

Q = −2J
′

10 + 4J
′

8 − 2J
′

6

= −2

(

6237

4480
J
′

4 −
15

14
kJ

′

4 −
99

112
kJ

′

2 −
891

2240
kJ

′

0 −
15

14
J4 −

99

112
J2 −

891

2240
J0

)

+ 4

(

189

160
J
′

4 −
3k

4
J
′

2 −
27

80
kJ

′

0 −
3

4
J2 −

27

80
J0

)

− 2

(

21

20
J
′

4 −
3

10
kJ

′

0 −
3

10
J0

)

=

(

−

357

2240
+

15

7
k

)

J
′

4 −
69

56
kJ

′

2 +
51

1120
kJ

′

0 +
15

7
J4 −

69

56
J2 +

51

1120
J0

=

(

−

357

2240
+

15

7
k

)(

−

1

2∆
kJ0 −

3

2∆
kJ2 +

8k

∆
J4

)

+
15

7
J4 −

69

56
J2 +

51

1120
J0

−

69

56
k

(

−

k

2∆
J0 +

24k − 5

4∆
J2 +

4

3∆
J4

)

+
51

1120
k

(

16k − 3

4∆
J0 −

1

4∆
J2 +

4

3∆
J4

)

= 2

(

10

7
+

15

14

)

J4 −

(

99

56
+

69

56

)

J2

= 5J4 − 3J2.

Next, we investigate the property of

Z =
Q

R
= 5

J4
J0

− 3
J2
J0

. (3.2)

Let

x̃ =
J2
J0

, x∗ =
J ′
2

J ′
0

; ỹ =
J4
J0

, y∗ =
J ′
4

J ′
0

.

Then we have the following Lemma.

Lemma 3.6. For 0 < ki < 1/6, i = 1, 2, if x̃′(k1) = 0 and ỹ′(k2) = 0, then
3/4 < x̃(k1) < 1, 45/64 < ỹ(k2) < 1.
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Proof. By Lemma 3.3, we get

3

4
J0 − J2 = kJ ′

0 − kJ ′
2,

i.e.
3

4
− J2

J0
= k

J ′
0

J0

(

1− J ′
2

J ′
0

)

.

If x̃′(k1) = 0, then x̃ = x∗ = J ′
2/J

′
0 and

3

4
− x̃(k1) = k

J ′
0(k1)

J0(k1)
(1− x̃(k1)).

Since J ′
0(k1)/J0(k1) < 0, 0 < k < 1/6, then

(

3

4
− x̃(k1)

)

(1− x̃(k1)) < 0,

i.e.
3

4
< x̃(k1) < 1.

In the same manner, we can get 45/64 < ỹ(k2) < 1.

By Lemma 3.1, Lemma 3.2 and Lemma 3.6, we can easily get the following
lemma.

Lemma 3.7. For 0 ≤ k ≤ 1/6 , we have

3

4
≤ x̃(k) ≤ 1,

45

64
≤ ỹ(k) ≤ 1.

Lemma 3.8. For 0 < k < 1/6 , we have Z ′(k) > 0.

Proof. By equality (3.2), we have

Z ′(k) =

[

5
J4(k)

J0(k)
− 3

J2(k)

J0(k)

]′

=
1

J0
2(k)

[

5(J0(k)J4
′(k)− J4(k)J0

′(k)) + 3(J2(k)J0
′(k)− J0(k)J2

′(k))
]

=
1

∆

[

−k − 3

4
(
J2(k)

J0(k)
)2 − 20

3
(
J4(k)

J0(k)
)2 +

21

4

J2(k)

J0(k)
· J4(k)
J0(k)

+(20k − 1

4
)
J4(k)

J0(k)
+ (

45k

2
− 6)

J2(k)

J0(k)

]

=
1

∆

[

−k − 3

4
x̃2 − 20

3
ỹ2 +

21

4
x̃ỹ + (

45k

2
− 6)x̃+ (20k − 1

4
)ỹ

]

=
1

∆
· F (x̃, ỹ, k).

where F (x̃, ỹ, k) = −k − 3/4x̃2 − 20/3ỹ2 + 21/4x̃ỹ + (45k/2− 6)x̃+ (20k − 1/4)ỹ.
In what follows we are going to determine the sign of F (x̃, ỹ, k). Firstly, we

study the maximum or minimum values of the continuous function F (x̃, ỹ, k). Since
F (x̃, ỹ, k) is differentiable, F (x̃, ỹ, k) has a maximum point or minimum point at
either the point M(x̃0, ỹ0, k0) for which satisfies the ∂F/∂x̃ = ∂F/∂ỹ = ∂F/∂k = 0
or the points on the boundary. Since







∂F
∂x̃ = − 3

2 x̃+ 21
4 ỹ + 45

2 k − 6,
∂F
∂ỹ = 21

4 x̃− 40
3 ỹ + 20k − 1

4 ,
∂F
∂k = −1 + 45

2 x̃+ 20ỹ.
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By direct computation,






x̃0 = − 251
1610 ,

ỹ0 = 2903
12880 ,

k0 = 78703
386400 .

By Lemma 3.7, it is easy to find that M(x̃0, ỹ0, k0) is not in the interior of three-
dimensional cuboid domains

ABCDEFGH : {3
4
≤ x̃ ≤ 1,

45

64
≤ ỹ ≤ 1, 0 ≤ k ≤ 1

6
}.

Therefore, the extreme value of F (x̃, ỹ, k) must be on the boundary. For conve-
nience, the six plane of the cuboid can be expressed as the following forms

ABCD := {k = 0,
3

4
≤ x̃ ≤ 1,

45

64
≤ ỹ ≤ 1}; EFGH := {k =

1

6
,
3

4
≤ x̃ ≤ 1,

45

64
≤ ỹ ≤ 1};

ADHE := {x̃ =
3

4
, 0 ≤ k ≤

1

6
,
45

64
≤ ỹ ≤ 1}; BCGH := {x̃ = 1, 0 ≤ k ≤

1

6
,
45

64
≤ ỹ ≤ 1};

ABFE := {ỹ =
45

64
, 0 ≤ k ≤

1

6
,
3

4
≤ x̃ ≤ 1}; DCGH := {ỹ = 1, 0 ≤ k ≤

1

6
,
3

4
≤ x̃ ≤ 1}.

On one hand, we consider the rectangular plane ABCD, then we have

F (x̃, ỹ, 0) = −20

3
ỹ2 +

(

21

4
x̃− 1

4

)

ỹ − 3

4
x̃2 − 6x̃.

For 3/4 ≤ x̃ ≤ 1, the discriminan of the above equation about variable ỹ is

(21/4x̃− 1/4)2 − 20x̃2 − 160x̃, which sign is negative, then for any ỹ, we have
F (x̃, ỹ, 0) < 0. By the same argument, we know that F (x̃, ỹ, 1/6) < 0 is also true
at the rectangular plane EFGH .

On the other hand, we consider the rectangular plane ADHE, then we have

F

(

3

4
, ỹ, k

)

=
127

8
k − 20

3
ỹ2 − 315

64
+ 20ỹk +

59

16
ỹ

=

(

127

8
+ 20ỹ

)

k − 20

3
ỹ2 − 315

64
+

59

16
ỹ.

Since 127/8 + 20ỹ > 0, then on 0 < k < 1/6, the function F (k) about variable k
is monotonically increasing. Therefore, we only need to prove F (3/4, ỹ, 1/6) < 0.
Direct calculation shows that

F

(

3

4
, ỹ,

1

6

)

= −20

3
ỹ2 +

337

48
ỹ − 437

192
.

Since −20/3 < 0 and the discriminan of the equation is negative, then for any ỹ,
we have F (3/4, ỹ, 1/6) < 0. Therefore, at the rectangular plane ADHE, we have
F (3/4, ỹ, k) < 0. By the same arguments, on any 0 < k < 1/6, F (x̃, ỹ, k) < 0 is
also satisfied at rectangular plane of BCGH,ABFE, and DCGH .

In summary, on the boundary of the three-dimensional rectangularABCDEFGH ,
we have F (x̃, ỹ, k) < 0. Since ∆ < 0, then

Z ′(k) =
1

∆
· F (x̃, ỹ, k) > 0.

That is, the monotonicity of Z(k) is increasing monotonically on any 0 < k < 1/6.
This completes the proof of Lemma 3.8.
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Proof of Proposition 3.1. By Lemma 3.1 and Lemma 3.2, we have

lim
k→0

Z(k) = lim
k→0

(

5
J4(k)

J0(k)
− 3

J2(k)

J0(k)

)

=
81

64
,

lim
k→ 1

6

Z(k) = lim
k→ 1

6

(

5
J4(k)

J0(k)
− 3

J2(k)

J0(k)

)

= 2.

Since Z(k) is increasing by Lemma 3.8, then we can obtain 81/64 < Z(k) < 2. This
completes the proof of Proposition 3.1.

By Eq.(2.8) in section 2 and Proposition 3.1, we have c′0(k) < 0. Since k ∈
[2δ, 1/6] ⊂ (0, 1/6], we obtain c0(δ) → 8

9 as δ → 0. Therefore we have the following
lemma.

Lemma 3.9. For 0 < k ≤ 1/6 , (z0, c0) satisfies the limit speed condition (2.8).
Moreover, c′0(k) < 0, and

√
2

2
≤ c0(k) <

8

9
, lim

k→0
c0(k) =

8

9
, lim

k→ 1

6

c0(k) =

√
2

2
.

Proof of Theorem 1.1. In Lemma 3.9, we have proved the Theorem 1.1(2). Since
∂Φ̃
∂c (α(k), c0, 0) =

∫

z′′0
2
dτ +

∫

1/c2z′0
2
dτ > 0, we can solve the equation Φ̃ = 0 by

the implicit function theorem for k ∈ [2δ, 1/6]. That is, there exists a unique smooth
function ck(ε) = c(ε, k) and ε ∈ (0, ε∗) so that

Φ̃(α(k), c(ε, k), ε) = 0 for 2δ ≤ k ≤ 1

6
, 0 < ε < ε∗.

where k = 2h, therefore we get the Theorem 1.1(1) and (3).
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