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A robust tracking method is proposed for complex visual sequences. Different from time-consuming offline training in current
deep tracking, we design a simple two-layer online learning network which fuses local convolution features and global handcrafted
features together to give the robust representation for visual tracking.The target state estimation ismodeled by an adaptive Gaussian
mixture.Themotion information is used to direct the distribution of the candidate samples effectively. Andmeanwhile, an adaptive
scale selection is addressed to avoid bringing extra background information. A corresponding object template model updating
procedure is developed to account for possible occlusion andminor change.Our trackingmethodhas a light structure andperforms
favorably against several state-of-the-art methods in tracking challenging scenarios on the recent tracking benchmark data set.

1. Introduction

Visual tracking is one important topic in computer vision
with a wide range of applications, such as video surveil-
lance, automobile navigation, human-computer interface,
and driverless vehicle [1]. Although substantial progress has
been proposed in recent years, it remains a challenging task
due to many factors such as illumination changes, quick
movement, and background disturbance [2].

To address these challenges for robust tracking, cur-
rent visual tracking algorithms focus on exploiting robust
handcrafted target representations, such as Haar-like fea-
tures, color histogram, HOG descriptors, etc. Since each
type of handcrafted feature is commonly able to address a
few specific classical changes, they are not tailored for all
generic objects and we require some sophisticated learning
techniques to improve their representative capabilities. These
learning methods build models to distinguish the target
from the background. They typically learn classifiers based
on multiple instance learning, online boosting, structured
output SVMs, etc. Recently, correlation filter based tracking
algorithms have achieved remarkable results due to the
computational efficiency in the Fourier domain.Thefilter can

locate the tracking target effectively, but all of them have the
limitation of being excessively dependent on the maximum
response value. When the response map becomes unreliable
under some challenging circumstances, shift may occur even
the object becomes lost. Different from handcrafted features,
deep learning adopts hierarchical architecture to simulate
human brain mechanism, which can generate outstanding
representation for high nonstructured visual data. Convo-
lutional neural network (CNN) for object recognition and
detection has inspired tracking algorithms to employ the
discriminative features learned by CNNs [3, 4]. To produce
stable shared weights, CNN network needs a large number
of training samples, while this is often not available in visual
tracking as there exists only a few number of reliable posi-
tive instances extracted from the initial frame. In addition,
because the CNNs are trained to recognize object classes,
the deeper the network structure is, the faster the space
information will lose. Thus, naively applying CNN models
into tracking is not suitable. One way to address these
problems is to fine-tune a pretrained CNN model. The other
way is to design a narrow learning network.

Motivated by the challenges in object tracking in complex
scenarios and inspired by the fusion method [5], we propose
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a novel tracking scheme similar to correlation convolution,
which takes advantage of convolutional and handcrafted
features and meanwhile makes use of the adaptive Gaussian
mixture filter (GMF) to generate samples effectively. The
main contributions of this paper are summarized below:

(1) We propose an efficient feature extraction scheme,
which combines local convolutional features and global
handcrafted features to produce robust appearance expres-
sion. A simple narrow network is designed to generate high-
level local features without pretraining. In this way, spatial
information can bewell preserved and it bringsmore accurate
tracking.

(2) Our method takes advantage of strong correlation
between adjacent frames to produce groups of convolution
filters, which helps to discriminate the target from the
surrounding background with the maximum likeness.

(3) Adaptive sampling scheme directs to reshape the
candidates’ distribution based on the 1-order motion infor-
mation.This detectionmechanism allows us to get the correct
location of target object.

(4) In addition, we design an adaptive scale estimation
method and an efficient model updating scheme. Spatiotem-
poral property decides scale changing and the updating
degree.

The rest of this paper is structured as follows. We first
review related work in Section 2. Next, the joint features are
presented via a simple two-layer network. And the adap-
tive particle filter tracking model and the model updating
scheme are described in Section 3. Section 4 demonstrates
the objective and subjective experimental results in current
benchmark datasets.

2. Related Work

Visual object tracking has been studied extensively and a
comprehensive tracking can be found in [6–9]. In this section,
we just review the works related to our method for simplicity,
which include the particle filter based trackers and the deep
learning based trackers.

PF algorithms have been studied in visual object tracking
for many years and their variations are still widely used
nowadays as it is neither limited to linear systems nor requires
the noise to beGaussian [10–12].The traditional PF algorithm
implements a recursive Bayesian framework by using the
nonparametric Monte Carlo sampling method, which can
effectively track target objects inmost scenes. But challenging
problems still exist. PF needs to design complex appearance
models to deal with different visual sequences. And during
updating the posterior distributions, it uses sequential impor-
tance sampling scheme to address the sample degeneration
phenomenon when only a few particles representing the
distribution have significant weights. Resampling may give
limited results and is computationally expensive. Different
from current PF, the appearance model can be automatically
learned by convolutional network, which can directly be
used in many challenging sequences. And we introduce
motion information intoGaussian equation and the posterior
distributions are directly decided by the state of the target

objects without requiring particle resampling. Compared
with current PF, it reduces computational complexity and
brings adaptive particle distributions.

Deep neural networks are a powerful tool for learn-
ing image representations in computer vision applica-
tions. Inspired by the success of convolutional neural net-
work in image classification and object recognition [13–15],
researchers in tracking community have started to focus on
the deep trackers that exploit the strength of CNN.These deep
trackers come from two aspects: One trend is discriminative
convolution trackers (DCT). It is the combination of excellent
correlation filter tracking framework and CNN features.
These tracking methods replace handcrafted features such as
HOG with deep features and use correlation filter to find the
maximum impulse [16–18]. The other trend is to design the
tracking networks and pretrained them which aim to learn
the target-specific features for each new sequence. And then
the online tracking is followed using PF or classifiers [3, 19,
20]. Despite their notable performance, all these approaches
are not designed towards real-time applications because
of their time-consuming feature extraction and complex
optimization details. In addition, they cannot end-to-end
train and only tune the hyperparameters heuristically since
feature extraction and tracking process are separate. Different
from existing deep tracking frameworks, we formulate the
extraction of high-level features as a one-layer convolution
operation in the spatial domain. And the global handcrafted
features are fused in a similar fully connection layer. This
narrow deep learning structure allows feed-forward learning
to capture robust appearance expression. Online adaptive
tracking and updating mechanism brings optimal estimation
for target location and scale selection.

3. The Tracking Framework

Our tracking algorithm includes constructing target model,
online tracking, and model updating. The flowchart is
expressed in Figure 1.

3.1. Joint Features Generation. Deep convolutional features
can express the abstract information just like our brains, while
different handcrafted features tend to deal well with some
certain challenging tracking problems. Here we combine
local convolutional features with color information as the
appearancemodel of the tracking objects in order to deal with
some challenging problems such as illumination variation
and occlusion.

3.1.1. Local Convolutional Features. When there is heavy
disturbance from complicated backgrounds, object shift will
occur in current CNN tracking or correlation filter tracking.
To avoid losing objects when involving in background infor-
mation, our algorithm tries to design a group of local filters
which not only consider the inner features of the target but
also the background disturbance.

The target field is preprocessed into a fixed size and
a set of overlapping patches are densely sampled inside it.
To maintain good geometric and illumination invariance,
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Figure 1: The algorithm flowchart.

we calculate the HOG features for each patch to express
the local appearance and shape. After this, k-means algo-
rithm is applied to select a foreground bank with n patches{𝑃𝑂1 , 𝑃𝑂2 , ...., 𝑃𝑂𝑛 }. Each patch is processed by subtracting the
mean to get local contrast as the fixed foreground filters{𝐹𝑂1 , 𝐹𝑂2 , ...., 𝐹𝑂𝑛 }:

𝐹𝑂𝑖 = 𝑃𝑂𝑖 − 𝑚𝑒𝑎𝑛 (𝑃𝑂𝑖 ) (𝑖 = 1, 2, . . . , 𝑛) (1)

Since the background context provides useful informa-
tion to discriminate the target, here 𝑛 background filters are
generated from a group of samples. We choose 𝑚 samples
around the target in current frame, and a set of patches are
selected in each sample. Just like foreground filters, we also
calculate theHOG features and use k-means cluster to select 𝑛
patches for each sample. After subtracting the mean value for
each patch, a bank of filter {𝐹𝐵𝑖,1, 𝐹𝐵𝑖,2, ...., 𝐹𝐵𝑖,𝑛} (𝑖 = 1, 2, ..., 𝑚) is
produced.Then we summarize all filters by weighted average
to produce the background filters {𝐹𝐵1 , ...., 𝐹𝐵𝑛 }:

𝐹𝐵𝑖 = 1𝑚
𝑚∑
𝑗=1

𝐹𝐵𝑗,𝑖 (𝑖 = 1, . . . , 𝑛) (2)

The final convolutional filters {𝐹1, ...., 𝐹𝑛} are defined as
the difference between the target filters and the background
filters:

𝐹𝑖 = 𝐹𝑂𝑖 − 𝐹𝐵𝑖 (𝑖 = 1, . . . , 𝑛) (3)

Then given the candidates P = {P1, P2, . . . , Pm} in
current input frame, the local convolutional feature map𝐷 ={𝐷1, 𝐷2, ..., 𝐷𝑛} for each candidate 𝑃𝑗 is defined as

𝐷𝑖 = 𝐹𝑖 ⊗ 𝑃𝑗 (𝑖 = 1, . . . , 𝑛; 𝑗 = 1, . . . , 𝑚) (4)

In this way, the background information can be well
suppressed, and shift brought by accumulative error gets
alleviation. In addition, the feature maps produced by these
filters are robust to noise introduced by appearance varia-
tions.

3.1.2. Global Color Features. Local convolutional features
based on HOG captures the texture of the image while
ignore color information. Color information has shown its
advantages in the environments with shade or strong color
contrast. So we use the global color histograms in HSV
color space as the complementation of the local convolutional
features.

According to the visual discrimination of human eyes, we
quantify the three channels H, S, and V as

𝐻 =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

0 𝐻 ∈ [316, 20]1 𝐻 ∈ [21, 40]2 𝐻 ∈ [41, 75]3 𝐻 ∈ [76, 155]4 𝐻 ∈ [156, 190]5 𝐻 ∈ [191, 270]6 𝐻 ∈ [271, 295]7 𝐻 ∈ [296, 315]
𝑆 == {{{{{

0 𝑆 ∈ [0, 0.2]1 𝑆 ∈ (0.2, 0.7]2 𝑆 ∈ (0.7, 1]
𝑉 == {{{{{

0 𝑉 ∈ [0, 0.2]1 𝑉 ∈ (0.2, 0.7]2 𝑉 ∈ (0.7, 1]

(5)
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Then the three parts are connected into 1D vector just as

𝐺 = 𝐻𝑄𝑆𝑄𝑉 + 𝑆𝑄𝑉 + 𝑉 (6)

Here, 𝑄𝑆 = 𝑄𝑉 = 3 are the quantization levels for 𝑆 and 𝑉
channels. The maximum value 𝐺 = 7 × 9 + 2 × 3 + 2 = 71.
Then the global color histogram 𝐻 for a given image sample
is defined as a vector𝐻 = {𝐻(0),𝐻(1), . . . ,𝐻(71)}, and each
element𝐻(𝑖) is calculated by

𝐻(𝑖) = ∑𝑀𝑡=1∑𝑁ℎ=1 𝛿 (𝐺 (𝑡, ℎ) − 𝑖)𝑀 ×𝑁 (7)

where𝑀 ×𝑁 is the number of the pixels in one sample. 𝛿 is
Kronecker delta function. 𝐺(𝑡, ℎ) is the fused value according
to formula (6) at the location (𝑡, ℎ).
3.1.3. Joint Appearance Model. The convolutional feature
maps 𝐷 and color histogram features 𝐻 encode the local
structural texture information and global color information
for the target. Thereby fusing them can bring a better rep-
resentation to handle appearance variations and background
disturbance. Here, we connect these two features and form a
1-D feature vector𝐴 = [𝐷,𝐻], 𝐴 ∈ 𝑅1×𝑡 (𝑡 is the total number
of the features) just like the fully connected layer in deep
convolution network. In addition, tomake the features robust
to noises introduced by appearance variation, we normalize
joint features 𝐴 as the final appearance template:

𝐴𝑗 = 𝐴𝑗√∑𝑡𝑖=1 (𝐴 𝑖)2 (𝑗 = 1, . . . , 𝑡) (8)

Here, 𝐴 𝑖 ∈ 𝐴 denotes 𝑖𝑡ℎ feature value. Hence the complex
patch features preserve the geometric layouts of the useful
parts and suppress confusing background in advance. The
fused features give the full appearance description which can
improve the tracking robustness.

3.2. Adaptive Tracking Algorithm

3.2.1. Position Estimation. Our tracking algorithm is for-
mulated within an adaptive framework similar to particle
filtering tracking. Different from current random sampling
method, our algorithm introduce the speed information of
consecutive frames to predict the candidate samples during
tracking. We assume that m target states {(𝑥𝑖𝑡, 𝑦𝑖𝑡)}𝑖=1,...,𝑚 in
current frame are modeled by two Gaussian distributions,
and the dynamic model can be formulated as

𝑥𝑖𝑡 = 1√2𝜋𝜎𝑥𝑡 exp(−
(𝑥𝑡−1 − 𝜇𝑥𝑡)22𝜎2𝑡 )

𝑦𝑖𝑡 = 1√2𝜋𝜎𝑦𝑡 exp(−
(𝑦𝑡−1 − 𝜇𝑦𝑡)22𝜎2𝑦𝑡 )

(9)

Here, (𝑥𝑡−1, 𝑦𝑡−1) is the target position in the previous frame.(𝜇𝑥𝑡, 𝜇𝑦𝑡), (𝜎𝑥𝑡, 𝜎𝑦𝑡) are separately mean and variance. They

are determined by the motion information in the three
previous frames.

𝜇𝑥𝑡 = (𝑥𝑡−1 + 𝑥𝑡−2 + 𝑥𝑡−3)3
𝜇𝑦𝑡 = (𝑦𝑡−1 + 𝑦𝑡−2 + 𝑦𝑡−3)3

(10)

𝜎𝑥𝑡 = 𝑠𝑖𝑔𝑥 + 𝜇𝑥𝑡
𝜎𝑦𝑡 = 𝑠𝑖𝑔𝑦 + 𝜇𝑦𝑡 (11)

where 𝑠𝑖𝑔𝑥, 𝑠𝑖𝑔𝑦 are constants, which can control the clus-
tering degree of the candidate samples. Different from the
traditional particle filter, the motion information gives the
prediction of the candidates in the next frame. When there
is partial even full occlusion, the samples can get more
reasonable distribution.

Then the optimal state (𝑥𝑡, 𝑦𝑡) is achieved by weighting all
the predicting states:

(𝑥𝑡, 𝑦𝑡) = 𝑚∑
𝑖=1

𝑤𝑖 × (𝑥𝑖𝑡, 𝑦𝑖𝑡) (12)

The weighted values 𝑤𝑖 (𝑖 = 1, ..., 𝑚) play a key role in
robust tracking. They are produced by the observation model𝑇𝑖 (𝑖 = 1, ..., 𝑚):

𝑤𝑖 = 𝑇𝑖∑𝑚𝑖=1 𝑇𝑖 (13)

Here, 𝑇𝑖 gives the distance between appearance representa-
tion 𝐴𝑖𝑡 for the 𝑖𝑡ℎ candidate sample and the target template𝐴 𝑡−1 at frame 𝑡 − 1. We hope the smaller the difference is, the
bigger the contribution is. So the observation model𝑇𝑖 in this
work is defined as

𝑇𝑖 = 1(󵄩󵄩󵄩󵄩𝐴 𝑡−1 − 𝐴𝑖𝑡󵄩󵄩󵄩󵄩12 + 𝜑) (14)

Here, 𝜑 is a minor positive constant.
With the proposed dynamic and observation model, the

algorithm can keep tracking the target even if there is the
overall occlusion and fast motion in the scene. In David
sequence, the target walks behind one tree and occurs again.
If only depending on the convolutional features, the tracking
fails. The color information and motion information help to
predict the targetwell (seen in Figure 2). In Figure 3, the target
keeps rotating and moving fast; the visual tracker without
color and motion cues during tracking causes the target lost.

3.2.2. Scale Estimation. Rotation or scale variation tends to
appear when the object moves. To avoid involving extra
background information or losing partial foreground, the
tracking scale needs to be adjusted adaptively according to
the tendency of scale change [21]. Supposing 𝑆𝑡−1, 𝑆𝑡−2, 𝑆𝑡−3
are the sizes of the three former tracking results, we define
the scale variation factor 𝑓 as

𝑓 = 𝑆𝑡−1𝑆𝑡−2 − 𝑆𝑡−2𝑆𝑡−3 (15)
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Figure 2: The blue, green, and red show the tracking results of our model, fused features, and convolutional feature.

Figure 3: There is rotation and fast motion. The fused features and dynamic model bring continuous tracking.

If𝑓 > 0, the scale is regarded to be enlarged. We define an
amplification pool 𝐴𝑀 = {𝑎𝑚1, ..., 𝑎𝑚𝑘} for candidate scales.
Then the new candidate scales S = {𝑆𝑖𝑡 | 𝑖 = 1, 2, ..., 𝑘} in the
current frame are calculated as

𝑆𝑖𝑡 = 𝑆𝑡−1 × 𝑎𝑚𝑖 𝑎𝑚𝑖 ∈ 𝐴𝑀 (16)

To find the most proper scale, we calculate the distance
according to formula (14) for each candidate with the size 𝑆𝑖𝑡.
The final target scale 𝑆𝑡 is chosen by

𝑆𝑡 = argmax
𝑆𝑖
𝑡
∈𝑆

𝑇𝑆𝑖𝑡 (17)

Else, the scale will be reduced. Similar to the scale
amplification, we also set a reduction pool𝐷𝐸 = {𝑑𝑒1, ..., 𝑑𝑒𝑘}
and choose the scale whose patch features are the most
approximate to the model template.

3.3. Model Updating. Model updating is an important step
in visual tracking. In the process of tracking, the object
appearance often changes with the factors of scale, motion,
rotation, or posture. Therefore, the appearance model needs
to be updated over time to accommodate these changes for
robust visual tracking. But overupdating is easy to result
in shift and bring extra computation. Motivated by these
intuitions, we consider the appearance model needs not to
be updated when there’s little change or large occlusion. For
these two situations, we predefine two thresholds 𝑇ℎ1 and𝑇ℎ2. Supposing 𝐷𝑡 = ‖𝐴 𝑡−1 − 𝐴󸀠𝑡−1‖21 denotes the difference
between current tracked target features 𝐴󸀠𝑡−1 and the target
model 𝐴 𝑡−1, then

if𝐷𝑡 ≺ 𝑇ℎ1 or𝐷𝑡 ≻ 𝑇ℎ2 the appearance template will not
be updated.

Else, the model gets new appearance description 𝐴 𝑡:
𝐴 𝑡 = 𝜌 × 𝐴 𝑡−1 + (1 − 𝜌) × 𝐴󸀠𝑡−1 (18)

Here 𝜌 is the weighted parameter and is set to 0.95. With
the incremental update scheme, the appearance template is
not only able to largely maintain the former appearance
but also adapt to the target variations. And meanwhile the
threshold and weighted parameter effectively control the
updating degree. In this way, our method can alleviate the
drift problem.

Due to illumination variation and target moving, the
background keeps changing. To get correct appearance fea-
tures for the predicting samples, we reproduce new back-
ground samples around current target location (𝑥𝑡, 𝑦𝑡). The
new convolutionfilters are recalculated according to formulas
(2) and (3).

4. Experimental Results

4.1. ImplementationDetails. Theproposed algorithm is tested
on the OTB 100 dataset. The size and location of the target in
the first frame are given by the ground-truth. In each frame,
candidate samples are resized into 32 × 32 and each patch
is 6 × 6. During online tracking, the number of the local
filters is set to 80 and the adaptive Gaussian mixture filter
produces 300 candidate samples. The constants 𝑠𝑖𝑔𝑥, 𝑠𝑖𝑔𝑦
are set as 2.5. The value for the scale amplification pool is𝐴𝑀 = {1, 1.1, 1.2, 1.3, 1.4, 1.5} and reduction pool 𝐷𝐸 ={0.5, 0.6, 0.7, 0.8, 0.9, 1}.
4.2. Quantitative Comparisons. For quantitative evaluation,
we compare our algorithm with 9 current trackers by
reporting the results of one-pass evaluate (OPE) based on
precision plots and success plots. The precision plots show
the percentage of frames whose estimated location distance
from the ground-truth is within a predefined threshold
varying from 0 to 50 pixels. The success metric computes
the intersection over union (IoU) and counts the number of
successful frames whose IoU is larger than a given threshold
(varying from 0 to 1).
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Figure 4: Comparisons between our algorithm and the two simplified versions.

0

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

50 5040 4530 35252010 15

Precision plots of OPE

Success plots of OPE - illumination variation

Precision plots of OPE - illumination variation

Success plots of OPE

Precision plots of OPE - scale variation

Success plots of OPE - scale variation

Precision plots of OPE - occlusion

Success plots of OPE - occlusion
our algorithm [0.380]
CNT [0.347]
CXT [0.345]
IVT [0.328]
SCM [0.326]
CT [0.321]
L1APG [0.271]
MTT [0.257]
CNT-color [0.246]
CNN [0.195]

our algorithm [0.380]
CNT [0.347]
CXT [0.345]
IVT [0.328]
SCM [0.326]
CT [0.321]
L1APG [0.271]
MTT [0.257]
CNT-color [0.246]
CNN [0.195]

our algorithm [0.731]

CNT [0.351]

CXT [0.553]
CT [0.496]

IVT [0.345]

SCM [0.378]

L1APG [0.294]

MTT [0.402]

CNT-color [0.257]
CNN [0.108]

our algorithm [0.667]

CNT [0.375]

CXT [0.391]
CT [0.398]

IVT [0.380]

SCM [0.353]

L1APG [0.286]
MTT [0.290]

CNT-color [0.379]

CNN [0.206]

our algorithm [0.735]

CNT [0.123]

CXT [0.168]

CT [0.090]
IVT [0.099]

SCM [0.228]

L1APG [0.074]

MTT [0.150]

CNT-color [0.265]

CNN [0.080]

our algorithm [0.667]

CNT [0.375]

CXT [0.391]
CT [0.398]

IVT [0.380]

SCM [0.353]

L1APG [0.286]
MTT [0.290]

CNT-color [0.379]

CNN [0.206]

our algorithm [0.419]

CNT [0.306]

CXT [0.500]

IVT [0.303]

SCM [0.353]
CT [0.384]

L1APG [0.270]

MTT [0.352]

CNT-color [0.156]
CNN [0.191]

our algorithm [0.223]

CNT [0.103]
CXT [0.098]

IVT [0.069]

SCM [0.164]

CT [0.049]

L1APG [0.071]

MTT [0.124]
CNT-color [0.161]

CNN [0.057]

Pr
ec

isi
on

0

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Pr
ec

isi
on

0

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Pr
ec

isi
on

1

0

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Pr
ec

isi
on

0

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Pr
ec

isi
on

1

0

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

1

0 0.90.80.70.60.50.40.30.20.1 1

Su
cc

es
s r

at
e

0

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Su
cc

es
s r

at
e

Su
cc

es
s r

at
e

0

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

1

0

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Su
cc

es
s r

at
e

Su
cc

es
s r

at
e

0

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Pr
ec

isi
on

Su
cc

es
s r

at
e

Location error threshold

50 5040 4530 35252010 15

Location error threshold

50 5040 4530 35252010 15

Location error threshold

50 5040 4530 35252010 15

Location error threshold

50 5040 4530 35252010 15

Location error threshold

50 5040 4530 35252010 15

Location error threshold

Overlap threshold
0 0.90.80.70.60.50.40.30.20.1 1

Overlap threshold
0 0.90.80.70.60.50.40.30.20.1 1

Overlap threshold
0 0.90.80.70.60.50.40.30.20.1 1

Overlap threshold
0 0.90.80.70.60.50.40.30.20.1 1

Overlap threshold
0 0.90.80.70.60.50.40.30.20.1 1

Overlap threshold

our algorithm [0.565]

CNT [0.330]
CXT [0.342]

CT [0.392]

IVT [0.344]

SCM [0.266]
L1APG [0.240]
MTT [0.212]

CNT-color [0.387]

CNN [0.282]

our algorithm [0.716]

CNT [0.450]
CXT [0.452]
CT [0.476]

IVT [0.447]
SCM [0.407]

L1APG [0.335]
MTT [0.328]

CNT-color [0.384]

CNN [0.239]

our algorithm [0.438]
CNT [0.415]
CXT [0.410]

CT [0.383]

IVT [0.386]
SCM [0.386]

L1APG [0.317]
MTT [0.290]
CNT-color [0.258]
CNN [0.225]

our algorithm [0.368]
CNT [0.327]

CXT [0.278]

CT [0.378]

IVT [0.300]

SCM [0.246]
L1APG [0.238]
MTT [0.197]

CNT-color [0.262]

CNN [0.281]

Precision plots of OPE - fast motionPrecision plots of OPE - deformation

Success plots of OPE - fast motionSuccess plots of OPE - deformation

Figure 5: Comparison of different trackers with five attributes.

First of all, to highlight the contribution of local con-
volutional features, global handcrafted features, and motion
information, we firstly compare our proposed algorithm with
two simplified versions. They only depend on convolutional
features (CNT) or on the convolutional and color fusion fea-
tures (CNT-color). Five visual sequences (basketball, david3,
human8, lemming, and biker) are tested with initialization
from the ground-truth position in the first frame. These
sequences include different challenging attributes such as fast
motion, full occlusion, rotation, and illumination variation.
The OPE curves in Figure 4 clearly show that our algorithm
outperforms the other two versions by 32% ∼53% in success
plots and 56% ∼60% in precision plots.

Then, to gain more insight about the proposed method,
the proposed algorithm is compared with nine state-of-
the-art visual trackers: CXT, IVT, CT, L1APG, CNN, MIT,
CNT-color, CNT, and SCM. We use the publicly available
source codes provided by the authors themselves with the
same initialization and parameter settings to generate the
comparative results. Here, success plots and precision plots
of five different attributes are illustrated in Figure 5 which
includes fast motion, occlusion, illumination variation, scale

variation, and deformation. In the case of fast motion, the
average precision plots and success plots show that our
proposed method outperforms the other trackers by more
than 40% and over 8%, respectively. Meanwhile, our method
can outperform the CNN tracker which only depends on
the deep convolutional features by a wide margin of more
than 85% in terms of precision OPE and over 78% in success
OPE for occlusion sequences. Though our method only
ranks the second, it still maintains the best performance
when the threshold is less than 0.5 shown in the success
curve. In the challenging conditions of illumination and
fast motion, our method gets the best results for both
success and precision evaluations. This is largely due to the
fact that moving information allows predicting the object
direction well. Though several other trackers perform better
in sequences with scale variation, the average statistics show
that ourmethod achieves competitive results (more than 39%
and more than 4% in terms of precision rate and success rate,
respectively) because of the fusion of local and global features.

4.3. Qualitative Comparisons. Figure 6(a) shows tracking
results for the David3 sequence. Performance on this
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Figure 6: Qualitative results for selected sequence.
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sequence exemplifies the robustness of the proposed algo-
rithm to complete and partial occlusion. Only CNT-color and
our algorithm are capable of tracking the target during the
entire sequence. Other trackers experience drift at different
instances: CXT at frame 15, MIT, L1APG, SCM, CT at frame
90, CNNat frame 161, andMIT at frame 243 because of partial
occlusion.

Lemming sequence in Figure 6(b) includes full occlusion,
fast motion, and scale variation. For the other methods,
tracking drifts from the moving object while the proposed
algorithm keeps tracking accurately because it exploits the
motion tendency well.

In Human8 sequence, the tracked object is subject to
change in illumination and the background color is some-
times similar to the color of the man’s backpack. CT, MIT,
SCM, CXT, IVT, CNN, and CXT drift from the target con-
tinuously from frame 12 because of the similar color between
the shade and the target. And meanwhile, L1APG and CNT
cannot deal with the persistent change in illuminance and the
disturbance of the background. They can only keep tracking
until frame 55. Our method successfully tracks the object in
the whole sequence.

Skiing sequence includes rotation in plane and fast
motion. Tracking results at frames {9, 13, 15, 38, 41} for all 10
methods are shown.Thedifferent trackingmethods are color-
coded. CXT tracker starts to drift from the target at frame
7 and finally loses tracking. From frame 9, other trackers
except our algorithm andCNT-color begin to drift and totally
fail tracking at frame 15. When the target jumps quickly
and rotates in the sky, only our method tracks the target
successfully almost from frame 1 to frame 41.

In Women sequence, there are partial occlusion, motion
blur and rotation. CNN, CT, CXT, MIT, IVT, and L1APG
trackers lose the target with the occlusion occurring because
of the background disturbance with the similar color (seen
in frame 399 and frame 479). After the target passes the
cars, fast walking brings a little blue effect at frame 567. At
this moment, only our method can maintain good tracking.
After that, the target turns back several times, our method
can succeed tracking her with the help of fusion features and
motion information.

The CarScale sequence shows a car keeps changing the
scale and moving fast. When it passes a tree from frame
166, CXT, IVT, CT, MIT, and CNN begin to lose the target
because of the occlusion and fail tracking at frame 169. After
that, the scale changes continuously with the quick motion.
Our method can not only keep tracking but also adjust the
tracking speed with the moving car.

5. Conclusion

A novel visual tracking algorithm is proposed based on
a simple online learning network. The fusion of global
color features and local convolutional features shows robust
tracking against shade and presence of confusing colors in the
background. And meanwhile, the speed information directs
the propagation of the particles and improves the adaptivity
of PF. When there is total occlusion or quick motion, the

proposed tracker canmaintain robust tracking.The proposed
algorithm achieves substantial performance gain over the
existing state-of-the-art trackers.

Data Availability

(1) All the source images are from the TB-100 dataset which
is publicly available online at http://cvlab.hanyang.ac.kr/
tracker benchmark/datasets.html. (2) The other results
including quantitative and qualitative comparisons can be
available by emailing the authors at crystalhanlei@163.com.
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