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ABSTRACT

Data often contains sensitive information, which poses a major ob-

stacle to publishing it. Some suggest to obfuscate the data or only re-

leasing some data statistics. These approaches have, however, been

shown to provide insufficient safeguards against de-anonymisation.

Recently, differential privacy (DP), an approach that injects noise

into the query answers to provide statistical privacy guarantees,

has emerged as a solution to release sensitive data. This study inves-

tigates how to continuously release privacy-preserving histograms

(or distributions) from online streams of sensitive data by combin-

ing DP and semantic web technologies. We focus on distributions,

as they are the basis for many analytic applications. Specifically,

we propose SihlQL, a query language that processes RDF streams

in a privacy-preserving fashion. SihlQL builds on top of SPARQL

and the w-event DP framework. We show how some peculiarities

of w-event privacy constrain the expressiveness of SihlQL queries.

Addressing these constraints, we propose an extension of w-event

privacy that provides answers to a larger class of queries while

preserving their privacy. To evaluate SihlQL, we implemented a

prototype engine that compiles queries to Apache Flink topologies

and studied its privacy properties using real-world data from an

IPTV provider and an online e-commerce web site.
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1 INTRODUCTION

Companies, public administrations, and individuals show an active

interest in sharing their data on the web. The linked open gov-

ernment data movement is a successful example of this trend [21],

which has been joined by several companies, such as BBC and New

York Times. While there is potential value in sharing data about cit-

izens or customers, there are critical privacy-related risks that must

be taken into account. In the past, data owners used obfuscation and

anonymisation techniques to share datasets, but these solutions led

to scandals like the Netflix challenge [20] and the Massachusetts

hospital [24] ones. Record linkage is a common technique to crack

those techniques: by discovering links between the anonymised

dataset and one, where users are known, researchers have shown
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that user re-identification is possible. A solution emerged in mid-

2000s when Dwork proposed differential privacy [10]. The intuition

behind differential privacy is to introduce noise into query answers,

such that it becomes hard to state if the data contains a specific user.

Differential privacy has been intensively studied in the last decade

and today is used in different companies, such as Google and Apple

[11, 25], to let their data scientists analyse the data collected from

their users in a privacy-preserving manner.

To date, data publication has mainly focused on static datasets,

managing their evolution through archiving [12]. Data publication

is more complex in the dynamic setting, where responsiveness is

usually a key requirement. Some suggest managing updates as data

streams, publishing changes as they happen [5]. Similarly, privacy

in streams introduces new challenges related to the data dynamics,

which may be used to infer private information.

This study investigates how to continuously publish data extracted

from private data streams containing user-related information to the

web of data in a privacy-preserving manner. Consider the following

example scenario: a company processes a private stream carrying

information from an IPTV platform containing viewership informa-

tion. The stream describes what users watch, registering when users

switch channels. The company enriches the stream with data from

private and public data sources, and wants to publish their analyses

in the web to showcase their analytic capabilities. The company

also wants to be compliant with privacy regulations and avoid scan-

dals like the ones mentioned above. It is worth noting that there

can be privacy leaks when only releasing statistics, since they may

highlight the behaviour of outliers which could be re-identified by

exploiting external knowledge.

As a solution, we propose SihlQL, a query language to perform

data analytic tasks over streams while preserving privacy. SihlQL

focuses on the creation of histograms (or distributions), as they

provide the foundation for many analytic queries in applications

such as data warehousing, OLAP and business analytics, as well

as plenty of machine learning algorithms such as decision tree

learners or naïve Bayes. SihlQL extends SPARQL to support the

processing of data streams and narrows SPARQL by introducing

constraints to guarantee that results are compliant with differential

privacy. As such, the main contributions of this article are:

• SihlQL: a continuous SPARQL-based query language for RDF

streams that integrates differential privacy methods;

• a new differential privacy mechanism that extends the ex-

pressive power of w-event privacy [14] and its suitability for

SPARQL by strategically dropping histogram bins; and

• a SihlQL execution engine prototype built on top of Apache

Flink that rewrites SihlQL queries as Flink topologies.

Next, Section 2 describes related work and introduces the basic

notions of differential privacy and RDF stream processing. Section

3 presents the design of SihlQL, which is tailored to enable w-event
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privacy. Section 4 introduces our extension of w-event privacyÐthe

bin removal mechanismÐand integrates it to the w-event privacy

framework and SihlQL. Section 5 analyses SihlQLwith experiments

over two real-world data sets. Section 6 concludes the article with

final remarks and future work.

2 BACKGROUND AND RELATED RESEARCH

This section introduces differential privacy with a specific focus on

w-event privacy, which is one of the building blocks of this study.

Next, we review the main concepts of RDF stream processing and

privacy in the semantic web context.

Differential privacy. Differential privacy (DP) [10] introduces noise

in query answers to protect the presence of users in the dataset

without significantly changing the result. Central to DP is the notion

of neighbouring datasets: two datasets are neighbours if they differ

in one record. Given two neighbouring datasetsD andD ′, a queryQ
(or mechanism), DP imposes plausible deniability for each possible

answer E by comparing the probability P that the answer can be

found when running the query on D and D ′ against a threshold eϵ ,
i.e.

P (Q(D) ∈ E) ≤ eϵ · P(Q(D ′) ∈ E) + δ . (1)

ϵ ≥ 0 and δ ≥ 0 are two parameters that regulate the differen-

tial privacy mechanisms. ϵ is called privacy budget (shortly bud-

get) and trades off utility and privacy. When δ = 0, we have ϵ-

indistinguishability, i.e. the ratio between the two probabilities in

Eq. 1 is bound by eϵ . This is an ideal case since it guarantees that

any output produced by Q(D) is likely to be generated by eval-

uating Q on every neighbour dataset D ′. Without this property,

there are outputs from Q(D) which are more (or less) likely to be

generated by Q on some neighbour dataset D ′. When δ > 0, there

is a probability 1− δ that the output ofQ is not ϵ-indistinguishable.

DP is implemented through mechanisms that execute the query

Q and add some noise to the result. Such noise is usually sampled

from a Laplace distribution, calibrated to ϵ such that Eq. 1 holds.

This led to the development of a large set of mechanisms for op-

erations ranging from simple (e.g., sum and count [10]) to more

complex (e.g. deep learning [1]). Looking at interfaces for differen-

tially private querying, McSherry proposes PINQ [19], an extension

for Microsoft LINQ for DP. PINQ is a programmable API inspired

by SQL to let the user specify how to process data stored in static

datasets.

Data streams are different than static databases. Streams contain

continuous updates, hence query answers also become continuous.

The introduction of streams requires a definition of neighbouring

streams (rather than databases).

In [9], Dwork introduces event- and user-level privacy. Event-

level privacy defines two streams as neighbours if they differ in

one stream item. Event-level privacy is a straightforward exten-

sion of neighbour datasets and led to the creation of mechanisms

for computing different types of queries, such as count and his-

tograms [6, 9]. The main drawback is that ensuring plausible de-

niability w.r.t. streams changing in only one item exposes privacy

leaks in cases where such streams contain multiple stream items de-

scribing the same subject, such as financial transactions or location

streams. User-level privacy overcomes this drawback by defining

two streams as neighbours if they differ for one user (or object to

be protected). An issue with this definition is that it may require a

high injection of noise in the query results, destroying the utility

of the answers. This is because two neighbour streams can be com-

pletely different. E.g., if a stream contains only one user, the empty

stream would be a neighbour, and it requires high noise injection to

make the answers over them indistinguishable. To the best of our

knowledge, SihlQL is the first declarative query language proposed

for differentially private queries on streams.

w-event privacy. Kellaris et al. propose w-event privacy [14] to

overcome the limitations of the event- and user-level privacy. It

defines two streams as neighbours if they differ at most by one item

in a window of sizew which slides along the stream, and guarantees

that no window uses more budget than ϵ .

Let D = (D1,D2, . . .) be a stream of datasets. Each dataset Di

contains tuples (s,a), where s is the sensitive value to be protected

(e.g., user identities) and a is the value to analyse (e.g., TV channels);

two tuples in Di cannot share the value s , and s can appear in

multiple datasets of D. The task to be executed is represented

by a query Q that processes each individual dataset Di in D and

outputs an answer oi, which is appended to the output stream

(o1, o2, . . . , oi, . . .).
Kellaris et al. propose different algorithms and variations. In this

study, we focus on the Budget Distribution (BD) scheme, but our

contribution can also be applied to the other schemes they propose.

In the beginning, BD allocates a budget ϵ/w for the processing of

every dataset in D, ensuring that inw consecutive evaluations the

maximum budget used is ϵ . The idea of the BD scheme is that the

output stream may contain empty (or null) answers: the current

oi can be skipped (i.e., can be null) when it does not significantly

differ from the last non-null output ol. When an answer is null,

the budget can also be saved to process the next dataset in the

stream. The application of BD to the i-th item of D is presented in

Algorithm 1. The execution ofQ on Di produces as answer a vector

of values ci (Line 1). Next, BD computes the difference between

ci and the last non-null output ol, adds to it noise drawn from a

Laplacian distribution and stores it in a variable dis (Lines 3-4). This

step uses half of the privacy budget ϵ allocated for the processing

of Di (i.e. ϵ/(2 ·w)), as shown in Line 3. dis is compared with λi ,2
(Line 7) to determine if oi should be null or not. λi ,2 is half of the

remaining budget ϵrm (Line 6), which is computed by subtracting

from ϵ/2 the budget used in the previousw iterations (Line 5). If dis

is greater than λi ,2, noise is added to ci (calibrated by λi ,2) and the

algorithm releases a new answer, paying a price of ϵrm/2 (Line 7).
Otherwise, the privacy budget is preserved, the algorithm returns a

null answer and the data analyst will assume that the last non-null

release ol is a good approximation of oi.

w-event privacy is one of the most sophisticated state of the art

solutions to enable DP in stream processing. Compared to simpler

alternatives, this framework usually achieves better utility by using

the same amount of privacy budget. w-event privacy is presented as

a set of algorithms, but the authors do not propose a query language

on top of it. SihlQL is, therefore, the first declarative query language

built on top of this framework. This version of SihlQL focuses on a

specific operationÐhistogram computationÐbut it can be extended

to integrate a wider set of operators based on w-event privacy.
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Algorithm 1 Pseudocode of the w-event privacy BD scheme [14]

1: ci ← Q(Di )
2: Identify the last non-null release ol from (o1, o2, . . . , oi−1)
3: dis ← 1

d

∑d
j=1 |ol[j] − ci[j]|; λi ,1 ← (2 ·w)/(ϵ · d)

4: dis ← dis + Lap(λi ,1)
5: ϵrm ← ϵ/2 −∑i−1

k=i−w+1 ϵk ,2
6: λi ,2 ← 2/ϵrm
7: if dis > λi ,2 then ϵi ,2 ← ϵrm/2; return oi ← ci +

〈

Lap(λi ,2)
〉d

8: else ϵi ,2 ← 0; return oi ← null

RDF stream processing. RDF stream processing studies how to ex-

tend the semantic web stack with models to capture streams and

process them [8]. An RDF stream S is a sequence of time-annotated

RDF graphs ((G1, t1), (G2, t2), . . .), where Gi denotes the i-th RDF

graph and ti is its temporal annotation. We assume that the tem-

poral annotation is a time instant, and that graphs are ordered by

time, e.g. as in [4, 16, 17]. For example, let STV be an RDF stream

containing information about which channels users are currently

watching. At time ti ,Gi reports on the current state of viewers with

RDF triples (u :isWatching c), where u and c are IRIs identifying

respectively users and channels.

Query languages for processing RDF streams are extensions of

SPARQL [13]. A SPARQL query is defined as a tuple (E,DS,QF ).
E is a SPARQL algebra expression, which is composed by com-

bining graph patterns through algebraic operators, e.g., joins (▷◁),

left joins ( ▷◁), unions (∪), and groups (γ ). Let I be the set of IRIs;

DS = {(de f ,G), (u1,G1), . . . , (uk ,Gk )} denotes an RDF dataset,

where de f identifies the default RDF graphG , and ui ∈ I (i ≤ k) de-

notes the named graphGi . A dataset contains one default graph and

zero or more named graphs, i.e. k ≥ 0. QF is a query form among

SELECT, CONSTRUCT, ASK and DESCRIBE. To execute a SPARQL

query, algebra operators are replaced by physical operators that

implement the evaluation semantics of the relative operators. Phys-

ical operators consume and generate bags Ω of solution mappings

µÐpartial functions associating variables to RDF terms (the set of

IRIs, literals and blank nodes). For example, the SPARQL query in

Listing 1 computes histograms by processing data from a graph

GTV . The query can be represented as:

q = (E = γ?channel ,COU NT (∗)(BGP),
DS = {(de f , :GTV )},
QF = SELECT).

E describes a sequence of two operations: (1) a basic graph pattern

(Line 4) produces solution mappings µ that associate two variables

?user and ?channel to RDF terms and (2) a grouping operator cre-

ates groups of mappings sharing the same ?channel values (Line 5),

and computes the size of each group (Line 3). Continuous extensions

of SPARQL exploit time annotations to perform operations over

streams, including window-based operations (e.g. C-SPARQL [4]

and CQELS [16]) and event pattern matching (e.g. EP-SPARQL [2]

and DOTR [17]). They are built by extending DS to include streams

(in addition to graphs), and the set of operators to compose E with

stream-related operators [7]. Moreover, they extend the evaluation

semantics to move from one-time to continuous. The result of those

1 PREFIX : <http://example.com/>
2 FROM :GTV

3 SELECT ?channel (COUNT(∗) AS ?viewers)
4 WHERE{ ?user :isWatching ?channel }
5 GROUP BY ?channel

Listing 1: Histogram computation in SPARQL

continuous query evaluations is a stream which contains the an-

swers that are computed over time. These solutions focused on

creating languages with a large number of operations, to fulfil a

large number of tasks. In this study, we take a different perspective

focusing on the definition of a differentially private language for

processing RDF streams. Intuitively, there are queries which are in-

trinsically harder than others to protect. For example, select-project-

join queries reveal more information about the underlying data

than aggregation queries and are, consequently, harder to protect.

Therefore, a differentially-private query language may sacrifice

expressive power for the sake of preserving privacy.

Privacy in the semantic web. Kirrane et al. [15] provide an overview

of the problems and solutions of privacy, security and associated

policies in the context of the semantic web technologies. Whilst

they found various papers tackling the issue of privacy and we are

aware of some papers exploring the adaption of DP in the static

case [23], to the best of our knowledge no publication considered

the application of differential privacy to semantic web data streams.

3 A QUERY LANGUAGE FORW-EVENT
PRIVACY

In this section, we introduce SihlQL, a query language relaying on

and extending the notion of w-event privacy. We first present a set

of constraints derived from w-event privacy and then we describe

how SPARQL can be extended to fulfil them.

3.1 w-event privacy constraints

Defining a SPARQL-based query language for processing RDF

streams while preserving w-event privacy requires to take into

account the constraints the latter introduces. Looking at the input

data, w-event privacy assumes that: (C1) there is one input stream,

(C2) each stream item contains all the data required to compute

the relative answer, and (C3) in each stream item, the value to be

protected appears at most in one tuple.

In addition, w-event privacy imposes two assumptions on the

parameter d (Line 3 in Algorithm 1), which describes the number

of answer groups (e.g. bins) returned: (C4) d is a constant deter-

mined ex-ante during query definition time, and (C5) at each time

instant, the size of ci is d . In the task we want to achieveÐhistogram

computationÐd is the number of bins to be computed.

3.2 Dataset

Constraints C1, C2, and C3 drive the modelling of the SihlQL

dataset. A SihlQL dataset is composed by one RDF stream S and

zero or more named RDF graphs G, i.e.:

DSSihlQL = {(de f ,S), (u1,G1), . . . , (uk ,Gk )},k ≥ 0,

where de f denotes the data stream and ui ∈ I the named graphs

(i ≤ k). The SihlQL dataset intrinsically satisfies C1. S takes the

role of the default graph in SPARQL and it captures the idea that
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the default data source to be processed by SihlQL is the stream.

Comparing SihlQL with other query languages for RDF streams, it

differs from CQELS, since CQELS sets streams as named elements.

SihlQL is similar to C-SPARQL, where all the input streams are

merged into a default stream. This is a viable solution also in SihlQL,

but introduces the need to assess that C3 holds after the merge.

C2 requires that the stream conforms to the CQL’s RStream

definition [3]: each stream item reports a description of the events

happening at the relative time instant. We keep this assumption

for the sake of clarity, but it can be relaxed to include streams with

events annotated with the start and end time instants.

C3 also implies that one knows ex-ante which part of the data

is sensitive. Hence, we assume that the query is submitted by a

reliable user such as the data curator. A possible way to overcome

this limitation is to annotate the data to describe its level of privacy.

For example, if the query contains the triple pattern at Line 3 of

Listing 1 and the domain of :isWatchinд is declared as sensitive,

queries which projects or groups ?user will be rejected. This can

be implemented by designing meta-level annotations over the data

schema, similar to the approach that Zhao et al. propose to describe

data dynamics [26].

3.3 Algebra operators

SihlQL supports the usual algebra operators of SPARQL [13]: se-

lection, projection, join, left join, grouping and aggregations, in

addition to basic graph patterns and GRAPH clauses. Differently

from other extensions for querying streams, SihlQL does not in-

troduce new operators. Using stream item-aggregator operators

like sliding windows may affect the privacy of the answer since the

data from the same stream item would be processed multiple times.

This causes a potential loss of w-event privacy guarantees. Having

sliding windows may also break the condition C3 when a window

captures two stream items containing the same sensitive value.

In addition, to preserve the conditions C4 and C5 set by w-event

privacy, SihlQL limits the way onwhich ESihlQL (i.e. the algebra ex-

pressions) can be composed. C5 sets the number of bins as constant

over time. This happens when either the stream has information

about empty bins or the bin set is available from some background

data. When streams describe events, however, it often happens that

no information is available about entities not involved in them. E.g.

if no one is watching the TV channel c , c will not appear in STV .
Having information about the bins stored in some background data

is a common use case, and it follows that SihlQL should support

the join of static background data and the input stream. This join

must be a left join to ensure that empty bins are contained in the

result. An inner join would not produce empty bins. For example,

if at time t a channel c has no viewers, the relative stream item will

not contain any triple describing it, and the inner join will produce

zero solution mappings about c .

It follows that the SihlQLWHERE clause should contain aGRAPH

and an OPTIONAL clause as in Listing 2: channels are loaded from

background data :Gchannels and the combination between stream-

ing and background data is regulated by an OPTIONAL clause. This

is a minimal structure, and SihlQL queries support more complex

WHERE clauses, where graph patterns can be added to enrich, filter

or extend the solution mappings. For example, it is possible to put

1 PREFIX : <http://example.com/>
2 ENABLE PRIVACY EPSILON 0.1W 3
3 SELECT ?channel (COUNT(∗) AS ?viewers)
4 FROM STREAM :STV
5 FROM STATIC :Gchannels

6 WHERE {
7 OPTIONAL { ?user :isWatching ?channel }
8 GRAPH :Gchannels { ?channel a :TVChannel }
9 } GROUP BY ?channel

Listing 2: Histogram computation in SihlQL

conditions to select only the English-speaking TV channels or to

compute histograms of viewers with age between 18 and 35.

Note that the required OPTIONAL clause is a strong limitation

when defining queries. In Section 4 we introduce an extension

to the notion of w-event privacy, which allows us to relax this

constraint of fixed bin set size and consequently remove the need

of the OPTIONAL and GRAPH clauses.

It is worth mentioning that even if some constraints can be

checked at query compile time (e.g. the presence of OPTIONAL and

GRAPH clause), other constraints, such as C3 or C5, cannot and

can be only detected at evaluation time.

3.4 Evaluation semantics and query forms.

The continuous and instantaneous evaluation semantics define

respectively when and how the query is evaluated [7]. We designed

SihlQL to compute a new output every time new data is available

on the input stream. Therefore, there is an instantaneous evaluation

at each time instant ti such that (Gi , ti ) is a stream item of S. This
makes the SihlQL continuous evaluation semantics ideal to process

one stream item at a time, similarly to CQELS and EP-SPARQL

semantics.

The instantaneous semantics of SihlQL is analogous to SPARQL’s.

When the query is evaluated at time ti , the dataset is transformed

to DS
ti
SihlQL

= {(de f ,Gi ), (uk ,Gk )} where (Gi , ti ) is an item of

the input stream S and k >= 0. Hence, a SPARQL dataset is

built by setting the stream item associated to the evaluation time

instant as default graph. Since SihlQL does not introduce new

operators and it supports SELECT and CONSTRUCT as query

forms, any SihlQL expression ESihlQL leads to a SPARQL query

(DSti
SihlQL

, ESihlQL,QF ).
The instantaneous evaluation of a SELECT query produces solu-

tion bindings, while the instantaneous evaluation of CONSTRUCT

queries produce RDF graphs. Instantaneous answers are annotated

with the evaluation time instant and become items of the output

stream: a stream of time-annotated bindings in case of SELECT

queries and an RDF stream in case of CONSTRUCT queries.

3.5 Privacy considerations

To complete the description of SihlQL, we need to introduce the

privacy aspects. In Section 2 we explained that w-event privacy

requires two parameters, ϵ and w . SihlQL introduces a PRIVACY

clause to enable privacy and to set such parameters. An example

is at Line 2 in Listing 2, where ENABLE PRIVACY indicates that

the query should consider differential privacy. The second part of

the clause declares that ϵ = 0.1 and w = 3. This design choice

to let the user set the privacy parameters is similar to the one in
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PINQ [19], and it assumes that the query writer is a trusted user

and will set fair parameter values. Additionally, the system could

set a maximum privacy budget ϵmax , and when registered queries

use all the budget, no more queries are accepted.

w-event privacy is implemented as a physical operator that can

be used when the query compiles the algebra expression. This

physical operator implements Algorithm 1 and performs a left join

between two sets of mappings, it groups and aggregates them. In

other words, it implements an algorithm that evaluates

γ?bin,COU NT (∗)(Ωb ▷◁?bin Ωh ), (2)

where Ωb is the set of solution mappings including the list of bins,

Ωh is the set of solution mappings with the data to compute the

bin heights, and ?bin is the common variable between mappings

of Ωb and Ωh . Taking as an example the query in Listing 2, Ωb

and Ωh are the bags produced by the evaluation of the GRAPH and

OPTIONAL clauses (Lines 8 and 7 resp.), and the common variable

between the mappings of the two bags is ?channel .

4 EXTENDING SIHLQL EXPRESSIVENESS

The main limitation of the query language we designed in Section 3

is the relation between the w-event privacy algorithm and the alge-

bra expression it implements (Eq. 2). It implies a set of constraints

on both the data and the algebra expression that the query must

satisfy to ensure that the privacy-preserving computation occurs

(correctly). We observe that Eq. 2 is a direct consequence of the

constraints C4 and C5: the list of bins should be known a priori,

and every bin must appear in every non-null answer of the output.

The major obstacle to relaxing these constraints relates to the

empty bins: the privacy-preserving evaluation of the histograms

adds noise to every bin (Line 7 in Algorithm 1) independently of

its size. If we replace the left join in Eq. 2 with

γ?bin,COU NT (∗)(Ωb ▷◁?bin Ωh ) (3)

then the solution will contain only non-empty bins, potentially

leading to privacy leaks. For example, if the query isolates one

user of STV then the result would contain only one non-empty TV

channel bin and evaluating Eq. 3 would unveil which channel the

user is watching, even if the bin height is obfuscated with noise.

Eq. 2 avoids this situation by always returning all bins, whose

magnitude is obfuscated with noise. Hence, it is hard to distinguish

between empty bins and bins with one user. In this section, we

introduce an original extension of w-event privacy that addresses

this issue via a bin-removal mechanism.

4.1 The bin removal mechanism.

Our intuition to overcome this issue is to remove both empty and

almost empty bins. As a consequence, malicious data analysts would

not know if bins are missing because they are empty or almost

empty. Setting a threshold hth such that bins containing less than

hth entries are automatically removed would not solve the problem,

as it would allow exploiting such information to violate privacy

when the threshold is set to 0. We therefore design the bin removal

mechanism R, defined as follows.

Definition 4.1. Let R be a mechanism that takes as an input a

bin height and returns a boolean value: true to keep the bin or false

to remove it. The output is a sample from a Bernoulli distribution

Be(p), where p is defined as

p =
1

1 + e−k (ϵ )·(h−h0)
, (4)

having k(ϵ) defined as a function proportional to ϵ .

R is a stochastic process: the fewer elements a bin contains,

the higher the probability that it is removed. This behaviour can

be modelled with a Bernoulli distribution, where the argument

p is computed via a logistic functionÐa sigmoid function with

parameters to control the maximum value, the steepness, and the

mid-value position of the curve. The probability p that a bin of

height h is kept is 1
1+e−k ·(h−h0)

, where h0 ≥ 0 is the height which

sets the probability to 0.5 and k ≥ 0 is the steepness of the curve. k

impacts the privacy: the higher this value, the higher the steepness,

making it easier to infer the actual bin height. We, therefore, relate

k to the privacy budget ϵ by setting the former as a function of the

latter. As the privacy budget decreases, the steepness of the curve

decreases and the removal probability of a bin containing h items

is closer to the removal probability of the neighbouring bins (i.e.

containing h ± 1 items), leading to more privacy. Therefore, k(ϵ)
must be proportional to ϵ .

The following theorem defines the DP guarantees of R.

Theorem 1. R is (ϵ ,δ )-differentially private, having δ defined as:

δ = max {0,d(x̄)} , (5)

where

d(x̄) = 1

1 + e−k (ϵ )·(x̄−h0)
− eϵ

1 + e−k (ϵ )·(x̄−1−h0)
. (6)

If d(x) is not monotonically decreasing, x̄ is the value that maximises

d(x), i.e.

x̄ =
1

k
· ln(
−r +

√

r2 − 4 · s · q
2 · s ) (7)

where

s = ek (ϵ )·h0 · (eϵ+k (ϵ ) − 1) (8)

r = k(ϵ) · e2·k (ϵ )·h0+k (ϵ ) · (eϵ − 1) (9)

q = e3·k (ϵ )·h0+k (ϵ ) · (eϵ − ek (ϵ )) (10)

Proof. Let b1 and b2 be two neighbouring bins with x and y

items, i.e. |y − x | = 1. Differential privacy imposes plausible deni-

ability for every possible outcome: the probabilities that R keeps

b1 and b2 must be close, as well as the probabilities that R removes

them. Following the definition of (ϵ, δ )-DP in Eq. 1, the two cases

are respectively formally modelled as

P(R(b1) = kept) ≤ eϵ · P(R(b2) = kept) + δ (11)

P(R(b1) = ¬kept) ≤ eϵ · P(R(b2) = ¬kept) + δ . (12)

We first study Eq. 11, which can be rewritten as:

1

1 + e−k (ϵ )·(x−h0)
≤ eϵ

1 + e−k (ϵ )·(y−h0)
+ δ . (13)

Let fb1 (x) and fb2 (y) be
1

1+e−k (ϵ )·(x−h0)
and eϵ

1+e−k (ϵ )·(y−h0)
respec-

tively. When b2 is larger than b1, i.e. y = x + 1, fb1 (x) and fb2 (y)
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never intersect. We can show this by rewriting Eq. 13 with δ = 0

and y = x + 1:

e−k (ϵ )·x−k(ϵ )+k (ϵ )·h0 − eϵ−k (ϵ )·x+k (ϵ )·h0 ≤ eϵ − 1 (14)

e−k (ϵ )+k (ϵ )·h0 − eϵ+k (ϵ )·h0
ek (ϵ )·x

≤ eϵ − 1 (15)

e−k (ϵ )+k (ϵ )·h0 − eϵ+k (ϵ )·h0
eϵ − 1 ≤ ek (ϵ )·x (16)

Eq. 16 holds when ϵ,k(ϵ) > 0. The right term is positive; while

the left one is negative: the numerator is negative (ϵ and k(ϵ) are
positive, so eϵ+k (ϵ )·h0 > e−k (ϵ )+k (ϵ )·h0 ) and the denominator is

positive.

When b2 is smaller than b1, i.e. y = x − 1, fb1 (x) and fb2 (x − 1)
may or may not intersect. When the two functions intersect, there

is an area where fb1 (x) is bigger than fb2 (y). We need to set δ to a

value that let the two logistic functions touch in exactly one point

to avoid such area, and consequently let Eq. 13 hold.

Formally, let d(x) be the function fb1 (x) − fb2 (x − 1). The maxi-

mum value of d(x) is negative when fb1 (x) and fb2 (x − 1) do not in-
tersect; 0 or positive otherwise. It follows thatδ = max {0,max {d(x)}}.

Let x̄ be the value that maximises d(x). We can find x̄ by solving

the equation ∂d
∂x
= 0, i.e.

k(ϵ) · e−k (ϵ )·(x−h0)

(1 + e−k (ϵ )·(x−h0))2
− k(ϵ) · eϵ−k (ϵ )·(x−1−h0)

(1 + e−k (ϵ )·(x−1−h0))2
= 0 (17)

By expanding this equation, we obtain:

eϵ−k (ϵ )·x+k (ϵ )+k(ϵ )·h0 − e−k (ϵ )·x+k (ϵ )·h0+

k(ϵ) · (eϵ−2·k (ϵ )·x+k (ϵ )+2·k (ϵ )·h0 − e−2·k (ϵ )·x+k (ϵ )+2·k (ϵ )·h0 )+

eϵ−3·k (ϵ )·x+k (ϵ )+3·k (ϵ )·h0 − e−3·k (ϵ )·x+2·k (ϵ )+3·k (ϵ )·h0 = 0

By multiplying both sides for e3·k (ϵ )·x , we obtain:

s · e2·k (ϵ )·x + r · ek (ϵ )·x + q = 0

where s , r and q are defined as in Eq. 8, 9 and 10. We can replace

ek (ϵ )·x with a variable x̂ , resulting in a second grade equation:

s · x̂2 + p · x̂ + q, which has solutions

x̂ =
−r ±

√

r2 − 4 · s · q
2 · s . (18)

Since x̂ = ek (ϵ )·x , it follows that x = 1
k (ϵ ) · ln (x̂). We can observe

that s and r are non-negative since ϵ,k(ϵ) > 0, i.e. − r
2s is negative.

q is 0 or negative when ϵ ≥ k(ϵ), positive otherwise. That means x̂

does not exist when q is big enough to let ∆ = r2−4 ·s ·q be negative,
i.e. fb1 (x) and fb2 (x − 1) do not intersect and d(x) is monotonically

decreasing. When q has a value such that x̂ admits solutions, x̂ has

at least one negative or 0 solution, given by −r−
√
∆

2·s . The sign of the

other solution of x̂ , i.e. −r+
√
∆

2·s can be either positive (when r < ∆),

0 (when r = ∆), or negative (when r > ∆). We are interested in the

latter case, which guarantees the existence of x̄ . That means, the

only admissible solution x̄ is 1
k
· ln (−r+

√
p2−4·s ·q
2·s ).

To summarise, d(x̄) is the maximum value of d(x). When d(x̄)
is positive, by setting δ = d(x̄) we guarantee that the two logistic

functions fb1 (x) and fb2 (x−1) do not intersect, i.e., Eq. 13 is satisfied.

We reach the same result by studying Eq. 12. We can replace

P(R(b) = ¬kept) with 1 − P(R(b1) = kept), which leads to the

inequality:

e−k (ϵ )·(x−h0)

1 + e−k (ϵ )·(x−h0)
≤ eϵ−k (ϵ )·(y−h0)

1 + e−k (ϵ )·(y−h0)
+ δ (19)

Repeating the analysis we did for Eq. 11, we show that the logis-

tic functions never intersect when y = x − 1, while they may

intersect when y = x + 1. We define dr (x) as e−k (ϵ )·(x−h0)

1+e−k (ϵ )·(x−h0)
−

eϵ−k (ϵ )·(x+1−h0)

1+e−k (ϵ )·(x+1−h0)
. By solving ∂dr

∂x
= 0, we obtain the solution x̄r =

1
k
· ln (−rr−

√
r 2r−4·sr ·qr
2·sr ), where sr = ek (ϵ )·h0 · (eϵ−k (ϵ ) − 1), rr =

k(ϵ) ·e2·k(ϵ )·h0−k (ϵ ) · (eϵ − 1) and qr = e3·k (ϵ )·h0−k (ϵ ) · (eϵ −e−k (ϵ )).
In this case, rr and qr are positive while sr is negative.

Finally, we observe that d(x̄) = dr (x̄r ). Since d and dr are sym-

metric over the axis passing in h0, the two functions have the same

maximum value. Moreover, x̄ and x̄r are the solutions to
∂d
∂x
= 0

and ∂dr
∂x
= 0, respectively. □

Theorem 1 shows that the bin removal mechanism is (ϵ, δ )-
differentially private. Since there are several scenarios where data

curators prefer to have δ equal to zero, in the following theorem

we define a set of conditions which guarantee (ϵ, 0)-differential
privacy.

Theorem 2. R is (ϵ ,0)-differentially private when ϵ ≥ k(ϵ)

Proof. We focus the analysis on Eq. 11. As explained in the

proof of Theorem 1, the case where the two logistic functions may

intersect is the one where b2 is smaller than b1, i.e. y = x − 1. By
setting δ = 0, we can rewrite Eq. 13 as:

1 + ek (ϵ )−k (ϵ )·(x−h0) − eϵ − eϵ−k (ϵ )·(x−h0) ≤ 0. (20)

Since eϵ ≥ 1, 1 − eϵ is negative or null. Therefore, the solutions of

ek (ϵ )−k (ϵ )·(x−h0) − eϵ−k (ϵ )·(x−h0) ≤ 0 (21)

supply a sufficient condition for (ϵ, 0)-differential privacy. Eq. 21
holds when k(ϵ) ≤ ϵ . We reach the same conclusion by studying

the other possible outcome of R, i.e. Eq. 12. The analysis of Eq. 19
develops as the one of Eq. 13. □

One of the main results of Theorem 2 is that when ϵ is small and

δ = 0, k(ϵ) is small as well, i.e. the logistic function controlling the

removal probability is slight. It is also worth noting that there are

values of k(ϵ) > ϵ which lead to (ϵ, 0)-differential privacy, since Eq.
21 is stricter than Eq. 20.

Finally, we set a few conditions to determine the value of h0.

Ideally, we want h0 as small as possible, to reduce the number of

removed bins. At the same time, we want that P(R(b) = kept) is
close to 0 when the height of the bin b is close to 0. It follows that

h0 can be calculated by finding the minimum value of h0 such that

1/(1 + ek (ϵ )·h0 ) ≤ z, where z is the probability that R does not

remove an empty bin. It is worth noting that when z = 0, h0 = ∞,
since 0 is one of the asymptotes of the logistic function we defined.

From the above inequality, we can isolate h0:

h0 =
1

k(ϵ) · ln
(

1 − z
z

)

(22)
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Algorithm 2 Pseudocode of BDbr for histogram queries

1: di ← Q(Di )
2: for all (b,h) ∈ di do Add (b,h) to ci with probability 1/(1 +

e−k (ϵ/(3·w ))·(h−h0))
3: d ← |ci |; dis ← 1

d

∑

(b ,h)∈ci |last[b] −h |; λi ,1 ← (3 ·w)/(ϵ ·d)
4: dis ← dis + Lap(λi ,1)
5: ϵrm ← ϵ/3 −∑i−1

k=i−w+1 ϵk ,2
6: λi ,2 = 2/ϵrm
7: if dis > λi ,2 then ϵi ,2 ← ϵrm ;

8: for all (b,h) ∈ (ci) do last[b] = oi[b] ← h + Lap(λi ,2)
9: else ϵi ,2 ← 0; oi ← null

10: return oi

4.2 BDbr : w-event privacy with bin removal

Theorem 1 shows that the bin removal approach is ϵ-differentially

private. The next step is to develop an extension of the BD scheme

for w-event privacy to handle bin removal.

Algorithm 2 shows BDbr , the w-event privacy mechanism for

computing histograms with bin removal, at the i-th iteration. Ini-

tially, the query is evaluated and all the non-empty bins (b,h) (where
b is the bin identifier, and h is the bin height) are stored in di. Next,

the algorithm computes a subset ci ⊆ di by applying the bin re-

moval mechanism described above (Line 2). The d parameter now

can vary among evaluations and is set as the size of ci. Since the

output will contain all the bins in ci,d does not reveal any additional

information to the data analyst about di.

The algorithm uses a data structure last to store the last non-

null entry numbers released for every bin observed in the past.

This data structure is used to compute the mean absolute error

dis (Line 3). If last does not contain any information about a bin

b, last[b] is set to 0 (as in the first iterations of Algorithm 1, when

there are only null outputs). The value of dis is used to determine

if the current iteration should produce a non-null release (Line 8).

A significant difference between BD and BDbr is how the privacy

budget is distributed. BD uses half of the budget to add noise to dis

and part of the other half to obfuscate ci. BDbr allocates budget

also to the bin removal mechanism: it equally distributes a third

of the budget to the three privacy mechanisms it embeds. As in

BD, the budget for obfuscating the non-null answers can be moved

across datasets.

4.3 BDbr in SihlQL

We can now use BDbr to build a physical operator to evaluate

γ?bin,COU NT (∗)(Ωh ), where Ωh is the set of mappings containing

the data to compute histograms. Since BDbr implements one al-

gebra operator, it follows that it can be used to also evaluate the

algebra expressions in Eq. 3 as well as other sub-expressions which

lead to a bag Ωh compliant with C1, C2, and C3. BDbr relaxes con-

ditions C4 and C5, allowing to output histograms with a dynamic

number of bins. As a consequence, the OPTIONAL and GRAPH

clauses in Lines 7 and 8 of Listing 2 are not mandatory anymore and

can be omitted. Hence, BDbr extends the set of privacy-preserving

queries that can be expressed in SihlQL.

In the next section, we investigate how Algorithm 2 )differs from

Algorithm 1 in terms of utility (or accuracy, as controlled by ϵ and

w) of query results. Note that we do not run a traditional empirical

evaluation of our contributions, as the privacy guarantees of our

new mechanismÐthe main contribution of this paperÐis already

established by proofs provided in this section.

5 EXPERIMENTAL ANALYSIS

The main goal of this section is to provide insights about the bin

removal mechanism in practice. We first analyse the bin removal

mechanism alone and how different parameters affect it, and then

we study its impact when integrated into SihlQL.

5.1 Analysis of the bin removal parameters

Our first analysis focuses on the bin removal mechanism and on the

effect that the parametersk(ϵ), ϵ , δ and z have on it. Figure 1a shows

the value of h0 for different values of z and k(ϵ). We observe that

the higher the value of k(ϵ), the less z influences h0: when k(ϵ) ≥ 1,

h0 is having small variations (i.e. the shift of the probability curve

is smaller). Hence, the lower k(ϵ), which regulates the steepness

of the logistic function (and consequently the probabilities used

in the Bernoulli distribution), the higher the influence of z, which

entails the probability of removing an empty bin), on h0. Figure 1b

exemplifies the effect of z when k(ϵ) is fixed: the probability curve

shifts to the right as z decreases. Hence, when the probability of

removing an empty bin (i.e., z) decreases, the bigger the size of a

bin that has a 50% chance of removal.

Figure 1c shows the effect of k(ϵ) on the probability curve. As

explained above, k(ϵ) affects the steepness of the curve. While for

very small values of k(ϵ) (i.e. k(ϵ) < 0.1) the growth of the curve is

very smooth, when k(ϵ) ≥ 0.1 the curve starts to become steeper,

resembling the step function. The fact that for relatively small

values of k(ϵ) the curve is steep indicates that the logistic function

is a good choice to represent the bin removal probability.

The heat-maps in Figures 1d, 1e and 1f show how delta varies for

different values of k(ϵ) and ϵ . The green area identifies the values

for which the bin removal mechanism is (ϵ, 0)-differentially private.
The dashed line is the function k(ϵ) = ϵ , which we determined

as sufficient condition for (ϵ, 0)-differential privacy in Theorem 2.

Figure 1b shows that when ϵ ≥ 1, the line is a good approximation

of the maximum value of k(ϵ) that ensure δ = 0. The heat-map

also shows that the value of δ increases quickly as the difference

between k(ϵ) and ϵ increases.

Figure 1c and 1d focus on values of ϵ ≤ 1: they show that in this

area, there are values ofk(ϵ) > ϵ where δ = 0. This happens because

the area of (ϵ, 0)-differential privacy is defined by Eq. 20, while

Theorem 2 is based on Eq. 21, which is a stricter approximation.

Hence, for small values of ϵ , a user may want to find a maximum

value of k(ϵ) such that δ = 0 in order to increase the steepness of

the logistic curve and gain some utility.

In conclusion, we observe that when histograms have large bin

sizes (in the order of hundreds of entries) our mechanism is unlikely

to remove many bins. When bins have small sizes, the mechanism

is likely to remove those and for very small sizes some hand-tuning

of k(ϵ) parameters might be helpful. Depending on the use case,

user may also decide to increase the value of δ to gain utility.
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Figure 1: (a) effect of z onh0; (b) effect of z on the bin removal

probability (k(ϵ) = 0.1); (c) effect of k(ϵ) on the bin removal

curves; (d-f) values of δ for combinations of ϵ and k(ϵ).

5.2 Bin removal mechanism impact on SihlQL

In this section, we empirically illustrate the impact that the bin

removal mechanism has on w-event privacy and SihlQL. We ex-

plained that the new mechanism increases the expressiveness of

SihlQL. Intuitively, the price to pay for such expressiveness is a re-

duction of utility: we expect that results produced by BD are better

than the ones produced by BDbr . The rationale for this expectation

is that BDbr introduces a third privacy mechanism, requiring to

split the available budget in three parts rather than two, leading to

a higher amount of noise injected by each mechanism.

5.2.1 Data, queries and parameters. For our analysis, we consider

two real-world datasets. The IPTV dataset contains a selection of

viewership data from an IPTV platform. It covers a time period of

about 12 hours and contains 49,035 distinct timestamps with more

than 950 million events. The stream describes 450 channels, which

are also stored in an RDF graph to be used as background data.

We use two queries: to study BD, we use the query in Listing 2;

to study BDbr , we run a query without channel graph and with

the WHERE clause composed by one BGP to extract what users

watch (the BGP inside the OPTIONAL clause in Line 7 of Listing 2).

Hence, the queries build histograms with channels as bins and the

number of current viewers as bin size.

The second dataset contains reviews data from Amazon [18]. We

extracted a stream with 758,745 events in 1,266 stream items, which

cover a period from 26 January 2002 to 23 July 2014. The stream

contains 112 products. We run two queries analogous to the ones

of the IPTV case, which count the number of reviews per product.

We consider four values for the budget parameter ϵ = {0.1, 0.5, 1, 5}
and four values for the parameter w = {1, 5, 10, 100}. In settings

where DP is applied to static datasets, ϵ in the order of tens is usually

considered too high and assumed to lead to privacy leaks; values in

single digit are usually adopted by industries (e.g. [25]), and values

lower than 1 are associated to strong privacy. The presence of w

makes the calibration of ϵ even harder since it directly affects the

noise injected in the algorithms. In the BDbr experiments, we set

z = 10−2. We also set k(ϵ) = ϵ , i.e. δ = 0, to focus on the cases

where ϵ-indistinguishability must be guaranteed. Every experiment

considers one dataset, one query, and a specific value of ϵ and w .

We run every experiment twenty times.

5.2.2 The SihlQL engine. We developed a SihlQL engine prototype

to run experiments1. The prototype is built on top of Apache Jena

3.6.0 and Apache Flink 1.7.1. Jena parses the query, creates the al-

gebraic tree, and optimises it. The prototype replaces the algebraic

operators with physical operators, implemented as Flink functions.

The result of the compilation process is a topology, which can be

submitted to Flink for execution. When the SihlQL query contains

the PRIVACY clause, the prototype uses the physical operators im-

plementing BD and BDbr ; else it uses non-DP operators to compose

the topology. Currently supported SPARQL operators include BGP,

OPTIONAL, GRAPH, FILTER, GROUP BY, COUNT, and SUM.

We ran the experiments in a machine equipped with an Intel

i7-6600 CPU (2.60 GHz, four logical CPUs) and 16GB RAM, which

runs Ubuntu 19.04 with Oracle Java 1.8.0. Given that the main

focus of our analysis is the trade-off between answer quality and

expressiveness, we only report general time performance results.

The SihlQL engine was able to process the IPTV dataset (i.e. 950

million events) in ca. 11 minutes, including the time to load the

data (from a file stored in an external USB HDD storage) and store

the results in an InfluxDB instance running in a server located

in the institution local network. We noticed that the BDbr query

was executed faster than the BD one (ca. 1 minute faster): it is not

surprising since the former query processes only the items that

appear in the stream recently, while the latter processes all the

items at every new query evaluation. This suggests that the current

prototype can process large amounts of data reactively, even if

specific experiments are required to estimate accurate throughput

and latency values (which is out of the scope of this study).

Both BD and BDbr queries were faster than the query without

privacy, which was processed in ca. 14 minutes. This is due to the

fact that the two privacy-preserving queries drops data during the

execution, consequently increasing the time performance. In the

next subsections, we focus on analysing the quality of the answers.

1The prototype and the Amazon dataset used in the experiments are available at:
https://gitlab.ifi.uzh.ch/DDIS-Public/sihlql.
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Figure 2: Percentage of items for which the privatised time

series distances to the actual time series are indistinguish-

able for the Amazon dataset (a,e) and the IPTV dataset: all

(b,f), top 20 (c,g) and the bottom 20 (d,h) TV channels.

5.2.3 Analysis design. Directly comparing BD and BDbr is not

straightforward due to the fact that they execute different queries.

Hence, they produce results at different time instants and on a

different number of items. Therefore, we developed a comparison

strategy based on the distance (or error) of the results from the

original data as follows. For each item in the dataset, we computed

the actual answer, which can be represented as a time series where

values are the bin heights at different time points. Similarly, we can

represent the outcomes of BD and BDbr as two collections of time

series. We compare the two solutions by computing the distances

between the privatised noisy time series and the actual time series.

Since both BD and BDbr include mechanisms to reduce the

number of answers, the privatised time series have fewer time

points than the actual one. We considered two methods to impute

the missing points of the privatised time series: ARIMA [22] and

last observation carried forward (LOCF). ARIMA is a standard time-

series interpolation method. LOCF captures one of the basic ideas of

w-event privacy by assuming that the current value is equivalent to

the last non-null output. In our experiments, LOCF showed better

results, i.e. closer distances, than ARIMA; therefore, in the following,

we report the results obtained by imputing the missing points with

LOCF. Since the final goal is to have a good approximation of the

actual time series, we did not leverage sampling methods to reduce

their points.

We used the Euclidean distance as the distance measure. We did

not use other time series distances, such as DTW, because we know

that the time series are aligned over the time dimension. As usually

done in time series analysis, we applied z-normalisation before

imputing the missing points and computing the distances. Running

the experiments for each privacy approach (either BD or BDbr ),

item (product or channel, depending on dataset), ϵ , andw resulted

in 20 distances. To compare BD and BDbr , we test if the sets of

distances with the same item, ϵ , andw values are indistinguishable

(the null hypothesis H0) or not (the alternative hypothesis Ha ). We

employ the Mann-Whitney U test, a non-parametric test to assess

if the distributions of two populations are equal or not.

5.2.4 Hypothesis testing results. Figure 2 shows the test results

aggregated over ϵ andw . In each bar, the red area (at the top) shows

the percentage of items for which we cannot reject the null hy-

pothesis of the Mann-Whitney U test, i.e. the distances between BD

and the original data are indistinguishable from the ones between

BDbr and the original values. Figures 2a and 2b show the results for

the Amazon and IPTV datasets aggregated over ϵ : the higher the

privacy (i.e. the smaller ϵ), the more indistinguishable the results

of the two privacy mechanisms. Figure 2e shows that w behaves

similarly to ϵ in the Amazon dataset: when noise increases (i.e.w

increases) the number of indistinguishable items increases as well.

However, we cannot identify the same trend in Figure 2f, related to

the IPTV dataset:w does not seem to affect the plotted ratio. This

could be motivated by the more variability in the average and the

maximum number of viewers per channel of the IPTV dataset.

To further investigate this, we analysed the behaviour of the 20

channels with the highest and the lowest median values of viewers,

depicted in Figure 2(c,g) and 2(d,h) respectively. The plots show

that for channels with a high number of viewers, BD and BDbr are

producing results with different distances to the actual values, while

for channels with a few viewers, it is the opposite. The same analysis

on the Amazon dataset shows similar results, even if the ratios are

less extreme than the IPTV case. This is because the number of

products, as well as the median of their reviews for products, are

smaller than the number of channels and their viewers.

This analysis partially confirms our initial intuition: when the

height of the items (i.e. the size of histogram bin) is high, or the

privacy-constraints are weak, BD and BDbr produce different re-

sults. However, when the height of the bins is small, and the pri-

vacy requirements strong, the two solutions produce similar results.

Hence, when we put high privacy requirements (i.e. ϵ ≤ 1) on

the publication of a data stream the utility of BDbr is comparable

to BD’s in 75% (respectively, 35% or 30%) of the casesÐa positive

results given that BDbr provides a higher expressiveness. The same

is sometimes true to a lesser degree with large window sizes.

We observed than when ϵ = 0.1, the BD execution for the Ama-

zon dataset did not produce any non-null answer forw ∈ {1, 10}.
The reason is that most of the items of this dataset have low val-

ues, and the condition at Line 7 of Algorithm 1 is never satisfied.

BDbr does not suffer the same problem since the computation of

dis considers only the items that have a height greater than 0 and

that are not removed by the bin removal mechanism. This suggests

that when the data has multiple bins with a low number of items,

BDbr may be a more suitable solution than BD.

5.2.5 Difference in distances. When BD and BDbr are statistically

indistinguishable, then BDbr higher expressiveness shows a clear
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advantage. This sub-section further investigates what happens,

when the two mechanisms are distinguishable, to understand fur-

ther trade-off when using the methods. Figure 3 graphs the differ-

ence between BDbr and BD distances to the actual data for the

IPTV dataset (for brevity, we omit the plot of the Amazon dataset,

which is very similar). For each (ϵ,w) pair, we build the plot using

the items that show distinguishable distances (i.e., rejected H0 in

the Mann-Whitney U test). Positive differences indicate that BD

outputs are closer to the actual time series than BDbr ; negative

differences indicate the opposite case. We use relative distances, i.e.

each distance is divided by the values of the actual time series2.

The figure shows that the differences between the distances vary

between -1 and 1. Even if in some cases the differences are large

(close to 1, i.e., we can observe a difference up to the size of the bin),

the figure shows that bins with large sizes, coloured blue, are in

most of the cases close to the zero (i.e. similar error), while the ones

with small size shift more. One reason for this behaviour is that the

amount of noise added to a bin depends on the privacy budget but

not on the actual bin size. Hence, smaller bins are more affected.

It is interesting to observe that for small values of ϵ andw , there

are several cases where BDbr outperforms BD. This is positive since

ϵ should be tuned to enforce strong privacy. When w increases,

the differences shift towards positive values, and BD outperforms

BDbr : whenw increases, the BDbr bin removal mechanism has less

budget and consequently filters out more items. This is especially

evident for channels with fewer than 100 viewers (i.e., items with

bins sizes h ≤ 100; white and red in the figure), which suggests

a decrease of the utility of BDbr related to w for small bin sizes.

BD also improves over BDbr also when ϵ increases. When privacy

is very weak (ϵ = 5), almost all the distances are positive. This is

because the BD mechanism that creates the noisy answers usually

has more budget available than the BDbr ’s, as BDbr constantly

invests a third of the budget in the removal mechanism.

To summarise, BDbr includes an additional privacy mechanism.

In addition to the advantages in terms of query expressiveness,

the analyses show that the way in which those three mechanisms

interact leads to benefits (sometimes even higher utility than BD),

despite of the less available budget each of them has. As future

research, we plan to further investigate these interactions and de-

velop more sophisticated budget assignment policies, which may

improve the performance of the solution.

6 CONCLUSIONS

The ability to exchange data and information is one of the pillars

of our digital society. Data analyses lead to the creation of new

knowledge, which in turn leads to innovation and ultimately to

increased welfare. This also holds for the studies involving sensitive

data, which are the key to explain to unlock the potential in a

multitude of domains ranging from clinical studies, behavioural

analyses, However, such analyses should be built keeping privacy

as a key priorityÐindeed some argue as a basic human rightÐto

avoid that sensitive information or secrets get leaked and misused.

In this article, we presented a semantic-web-based framework

that allows experts to analyse and publish sensitive data Specifically,

2As a reference: for our datasets, themechanisms’ outputs relative distance to the actual
time series varies between ca. 0 and 2 (for different privacy parameter combinations).

Figure 3: Difference of distances for distinguishable results.

we introduced SihlQL, which allows defining queries over data

streams such that answers have formal statistical guarantees against

privacy leaks. SihlQL builds on top of SPARQL and the w-event

differential privacy framework. To generalise SihlQL and improve

the set of queries that can be privatised, we extended w-event

privacy with a bin removal mechanism.We prove that our extension

BDbr satisfies differential privacy constraints and, hence, provides

statistical privacy guarantees. We also developed a prototype for

SihlQL and showed that it can process streams with millions of

events while privatising the query results.

Obviously, SihlQL can be improved. We aim to extend SihlQL

with stream-specific operators, e.g. sliding windows and event pat-

tern matching. This requires studying those operators’ privacy

implications, potentially rethinking how they work and how they

can leak information. Currently, SihlQL builds on two of the foun-

dational semantic web blocksÐRDF and SPARQLÐand we believe

that other technologies can play an important role. Ontology- and

constraint-languages, such as OWL and SHACL, would be ideal to

describe the privacy aspects related to data and schema, automating

privacy assessments over queries before and during their execution.

These explorations will help to make SihlQL more versatile.

As such, the presentation of SihlQL and its expressiveness en-

hancing BDbr mechanism is a step towards the exploration of

privacy-preserving techniques in the Web of Data. Given that

semantic web research has so far mostly focused on publishing

privacy-insensitive data, this is an important step for the field that

will hopefully pave the way to a privacy-preserving web of data.
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