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ABSTRACT
Structural analysis of neurons can provide valuable insights
of brain function. Semantic segmentation of neurons thus be-
comes an important technique in bioinformatics. Deep learn-
ing approaches have shown promising performance in various
semantic segmentation problems. However, segmentation of
neurons in Electron Microscopy (EM) images has some dif-
ferences compared with typical segmentation tasks due to the
image noise and the disturbance of the intracellular structures.
In our work, we propose a network with a ResNet encoder and
densely connected decoder with large kernels, and then refine-
ment with simple morphological post-possessing. Two main
advantages of our method are: 1) the network can prevent
the loss of high-resolution information and enlarge the recep-
tion field; 2) the post-processing method is simple and can
be directly applied to the probability map from the network
to enhance the unconfident area. Evaluated on the ISBI2012
EM membrane segmentation challenge, the proposed method
achieves competitive performance.

Index Terms— neuronal boundary segmentation, elec-
tron microscopy image, deep neural network

1. INTRODUCTION

Understanding the anatomical connections of our brain plays
an important role in dense circuit reconstruction [1]. How-
ever, the relationship between the structure and functionality
of the nervous system is much more complicated to under-
stand than the other organ systems [2]. Recently, the serial
section Transmission Electron Microscopy (ssTEM) has be-
come a widely used tool to learn about the relationship of
structure and functionality of neuron connections. A key step
in the study of EM images is to obtain the segmentation of
neuron membranes as shown in Fig. 1. This generation of
these boundary maps can be approached as a semantic seg-
mentation problem.

Recently, several methods based on deep convolutional
neural networks (CNN) have been proposed for semantic
segmentation in general imaging. For example, SegNet [3]
is a fully convolutional deep architecture. In the SegNet, the

Fig. 1. Left: the binary segmentation for EM images (0 for
membrane and 1 for the background). Right: the original EM
image.

feature maps from the encoder are upsampled by the decoder
with the transferred maxpooling indices to improve the seg-
mentation resolution. However, when the image is resized
larger, the small convolutional kernel in the network will pro-
duce a small receptive field which results in information loss.
Therefore a global convolutional network (GCN) [4] with
very large kernel size is proposed to ensure the receptive field
is large enough during the whole process. However, these
methods are not directly suitable for neuron segmentation
due to the different imaging characteristics of EM images.
First, there exist many vesciles (small bubbles) around the
membranes, which make boundaries unclear as shown in
Fig. 1. Secondly, due to the intracellular structures such as
mitochondria (dark shadows), simple threshold and edge de-
tection methods will become ineffective when detecting the
neuron membrane [5].

In the EM segmentation domain, some studies have
shown promising performance with customized CNN ar-
chitectures, such as Pyramid-LSTM [6], optree [7], DIVE
[8] and M2FCN [9]. Pyramid-LSTM is based on Multi-
Dimensional LSTM which changes its traditional cuboid
order of computations into pyramidal style. Different from
Pyramid-LSTM, optree heavily relies on a post-processing
method with a tree-like structure watershed segmentation.
DIVE is a model constructed with a deep neural network
(DNN) pixel classifier and a post-processing method based
on random forests. M2FCN is a CNN which contains several
convolutional stages. All the side outputs in one stage con-
catenated with the original image are fed into the next stage



Fig. 2. The overall framework of our method. The kernel size of the first Conv layer after the input is 7. We use ResNet152 as
the ResNet layers encoders. A Deconv layer contains a Transpose Convolutional layer and a ReLU layer. The upsampling part
represents the nearest upsampling layers.

as input. While these methods achieve high performances in
ISBI2012 EM segmentation challenge [10], some problems
such as the receptive field being too small and high-resolution
information loss still need to be solved.

In this study, we propose to incorporate densely connected
parts on the global convolutional network. The new network
can process the high resolution feature together with the low
resolution one with a large kernel. It can not only minimize
high resolution information loss, but also ensure the recep-
tive field is large enough when the original image is resized
larger. Besides the network, we also design a post-processing
method which combines the final probability map with its cor-
responding binary mask to refine the boundaries. Our post-
processing method is easy to operate because it can be di-
rectly applied to the probability map from the network and its
computation load is small. Our proposed method achieves a
competitive ranking on the ISBI2012 EM segmentation chal-
lenge.

2. METHODS

2.1. Densely Connected Global Convolutional Network

In this part, we will present a densely connected global con-
volutional network for this EM membrane segmentation task.
First we consider that if the size of the receptive field is too
small, and the input image is large, some information in the
receptive field will be lost and this will reduce the segmen-
tation accuracy. Therefore the receptive field should be large
enough and the large kernel matter method is necessary in the
EM segmentation task. However, as the structure shown in
Fig. 2, the feature map from the high resolution layer will be

handled by several convolution models, some of the informa-
tion will be lost during this process when coming up. Thus we
need to make sure there is enough high-resolution informa-
tion remaining after the sampling transformation. One way to
solve this problem is to combine the high-resolution feature
map with the low-resolution one. In this way, the informa-
tion in the high-resolution feature map can remain at the very
last layers due to the network structure. In our model, we
choose to combine the high-resolution feature with the lower-
resolution directly after the encoder. If we do the combination
after the convolution model, as some information may be lost
after the transformation of the convolutional kernels.

The model we proposed is shown in Fig. 2. In the en-
coder part, we choose the ResNet152 [11] layers without
pre-training. Although some articles [12, 4] prefer to use the
ResNet model which is pre-trained on ImageNet, such meth-
ods did not work well in this particular task. As mentioned
above, there are noises which blur the boundary between the
neuronal membrane and the intracellular part. The pre-trained
ResNet increased the precision of the boundary detection, but
introduces misclassification of the intracellular part at the
same time.

In the decoder part, we choose the global convolutional
network modules (GCN) and the boundary refinement mod-
ules (BR) [4]. In order to ensure a large receptive field, a large
size kernel is required instead of the ordinary small one di-
rectly after each encoder. However, if we directly use a K×K
kernel, the number of parameters in the network will become
extremely large. GCN addresses the parameters problem by
using one 1 × K kernel with one K × 1 kernel instead of a
K × K kernel. Two branches which combines the two 1D
kernels permuted in different orders are summed together to



produce the output of the GCN module. The feature map from
each encoder will be sent to the GCN with kernel sizes of 31,
15, 9, 7 respectively. Then the output of GCN will be fed into
the BR modules. Each BR module shown in Fig. 2 is a resid-
ual structure which contains two 3 × 3 kernels with a ReLU
activation function between them. As for the upscale part, we
use upsampling kernels instead of traditional deconvolutional
kernels.

In the connection between encoder and decoder, we pro-
pose a densely connected style to combine the high-resolution
information together with the low-resolution information.
This idea is inspired by the densely connected network [13],
which is constructed by several small dense blocks. The
(n + 1)th layer of a dense block combines all the preceding
n feature maps together. Denoting the preceding layers as
x1, ..., xn, the (n+ 1)th layer will be:

xn+1 = Fn[x1, ..., xn] (1)

where the [x1, ..., xn] means that the preceding features are
concatenated together. In our network, we use a deconvolu-
tion layer to upscale the high-resolution feature map from the
ResNet layer encoder. Then we connect them in the same
style as dense block for the decoder in Fig. 2. In this way the
information from high-resolution feature map of the encoder
remains after the up-scaling layer of the decoder.

2.2. Morphological Post-processing

Although the probability map from the network reveals many
details, there are flaws and noises around some boundaries,
which may reduce the segmentation accuracy. Therefore, we
propose a post-processing method which can reduce such
noises to make the boundary clearer.

Fig. 3. An example of the effect of our post-processing tech-
nique. From left to right: part of the original image from test
set; corresponding segmentation probability map; probability
map after post-processing.

First we use a threshold value of 0.5 to get the binary im-
age of the original probability map Po. Second, we compute
the exact Euclidean distance transform of the binary image to
get a distance map. Based on this, we set a distance value of 1

as a threshold to get another binary image Pb. Then, we per-
form a linear combination between the binary image Pb and
the original probability map Po to generate the final result Pf :

Pf = kPo + (1− k)Pb (2)

where k is a parameter which controls the ratio of the original
probability map to the binary image in the final result. In our
experiment, we set k as 0.62 based on our empirical studies.
The effect of this post-processing is shown in Fig. 3.

3. EXPERIMENTAL RESULTS AND DISCUSSIONS

In our experiment, we use the dataset from EM segmentation
challenge. The dataset of this challenge is from the first instar
larva ventral nerve cord of the Drosophila.

The training data with ground truth provided and testing
data each contain 30 consecutive slices, with a size of 512 ×
512 pixels and a resolution of 4× 4× 50 nm/pixel [10]. Each
pixel in the image can either belong to the boundary or the
background. In addition, the resolution in the z-axis is lower
than that of the xy-plane. So the common method is to obtain
the boundary probability map of each slice separately.

In this dataset, there are only 30 slices of 2D images in
the training data. Data augmentation is thus necessary for
training. We tried flip, rotation, Gaussian blur, elastic trans-
formation, random drop out and affine transformation. Each
augmentation methods is operated on a randomly cropped im-
age with a size of 256×256. Also, in order to enhance the ro-
bustness of the training data, online data augmentation at the
beginning of each epoch is performed. After the experiment,
we find out that Gaussian blur, affine transformation and elas-
tic transformation are beneficial to the final result while im-
age dropout is harmful. This is because the image dropout
causes too much loss of image details. As for the optimiser,
we use SGD and ADAM. In this experiment, ADAM outper-
forms the SGD optimiser. Then we use the Adam optimiser
with a learning rate schedule, in which the learning rate of the
current epoch is:

lrepoch =

{
0.0005 if 0 < epoch < 101

lrepoch−1 × (1− epoch−100
epochmax

)power otherwise
(3)

where we set the epochmax as 50 and the power as 0.9. When
using a lower learning rate, the model is able to learn more
details in the images and avoid local-minimum. In addition,
from the ground truth of the training dataset, we find that the
ratio of the boundary and the background is 1:4, which means
there exists class imbalance which will make the segmenta-
tion less effective. Thus we assign a weight for each class in
the cross-entropy loss.

In order to evaluate the effect of the methods, the ISBI2012
challenge proposed foreground-restricted Rand Scoring after
border thinning (V rand

thinned) and Information Theoretic



Scoring after border thinning (V Info
thinned) [10]. From the

experiment in [10], V rand
thinned seems to be more robust

than V Info
thinned. In this way, the leader board is decided

by the V rand
thinned of the result. In this challenge, all the re-

sults are evaluated by submitting them to the official website.

Table 1. The V rand
thinned evaluation of our model when

there are no densely connected decoders or large kernels.

large kernels? 7 3 7 3
dense connection? 7 7 3 3

0.9610 0.9639 0.9649 0.9739

Table 1 shows the evaluation of our model when there are
no dense connected decoders or large kernels. We can see the
model without the dense connected decoders and large ker-
nels has the worst performance. By adding large kernels, the
model can get a higher score because the larger receptive field
in the network prevents details loss when the original images
are enlarged. The dense connections also make the results
better by keeping the high-resolution information remaining.
If the model contains both dense connections and large ker-
nels, it outperforms all the other methods. Thus the large
kernels and dense connection are necessary in our method.
Fig. 4 shows one slice of the test prediction. From the result
we can see that intracellular mitochondria can be removed
and some boundaries surrounded with vesicles can be clearly
distinguished.

Table 2. Evalution on ISBI2012 challenge.
Method VRand VInfor

M2FCN [9] 0.9780 0.9901
Ours (with post-processing) 0.9764 0.9858
DIVE-SCI [8] 0.9762 0.9874
Ours (without post-processing) 0.9739 0.9866
IDSIA [14] 0.9730 0.9874
RotEqNet [15] 0.9712 0.9790
optree [7] 0.9712 0.9849
PolyMtl [16] 0.9690 0.9860
Pyramid-LSTM [6] 0.9676 0.9829

Fig. 4. Left: slice 27/30 of the test set. Right: corresponding
prediction.

Table 2 shows the comparison of our proposed results and
some other state-of-the-art results using V rand

thinned evalu-
ation. There have been over 100 groups participating in this
challenge and their methods vary a lot. As our model is based
on the deep neural network, we choose to perform a more
detailed comparison with approaches based on deep learning
models. For the full leading board, please refer to the official
website 1. Comparing to the deep architecture in RotEqNet
[15], IDSIA [14] and PolyMtl [16], our network with its
densely connected decoders and large kernels performs better
even without post-processing. As to the anisotropic property
of this dataset, Pyramid-LSTM [6] which manipulated on
the whole 3D dataset performs worse than some other 2D
deep architecture including ours. Comparing to the com-
plex post-processing of optree [7] and DIVE-SCI [8], our
method outperforms them with a simple morphology post-
processing. Although the method M2FCN [9] outperforms
ours, its best structure is created by increasing the number
of sub-convolutional layers in each convolutional stage in
the network and increasing the number of the convolutional
stages. This creates a large number of parameters which has a
high cost of GPU memory. Our method contains only ResNet
layers and large kernels with a few parameters, and is thus
more memory efficient.

4. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a method for EM membrane
segmentation with a densely connected large kernel global
convolutional network. With the effects of large kernel of
GCN and densely connected encoders, our model minimizes
high-resolution information loss during training. The mor-
phological post-processing algorithm also helps to make
some blurred boundaries in the probability map clear. Our
method achieves a comparative result in the ISBI2012 EM
segmentation challenge. Compared to some other deep learn-
ing algorithms that require complex pre- or post-processing
algorithms, our model mainly relies on the performance of
the deep neural network, which shows the robustness and
effectiveness of our methods. In the future work, we will
implement our method on some larger ssTEM datasets to
evaluate its robustness.
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et al., “Crowdsourcing the creation of image segmentation al-
gorithms for connectomics,” Frontiers in neuroanatomy, vol.
9, 2015.

[11] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learn-
ing for image recognition,” in IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 770–778.

[12] S. Liu, D. Xu, S. K. Zhou, T. Mertelmeier, et al., “3d
anisotropic hybrid network: Transferring convolutional fea-
tures from 2d images to 3d anisotropic volumes,” arXiv
preprint arXiv:1711.08580, 2017.

[13] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten,
“Densely connected convolutional networks,” in IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR),
2017.

[14] D. Ciresan, A. Giusti, L. M. Gambardella, and J. Schmidhuber,
“Deep neural networks segment neuronal membranes in elec-
tron microscopy images,” in Advances in neural information
processing systems (NIPS), 2012, pp. 2843–2851.

[15] D. Marcos, M. Volpi, N. Komodakis, and D. Tuia, “Rotation
equivariant vector field networks,” in The IEEE International
Conference on Computer Vision (ICCV), 2017.

[16] M. Drozdzal, E. Vorontsov, G. Chartrand, S. Kadoury, et al.,
“The importance of skip connections in biomedical image seg-
mentation,” in International Conference on Medical Image
Comput-ing and Computer-Assisted Intervention Workshop on
Large-Scale Annotation of Biomedical Data and Expert Label
Synthesis, 2016, pp. 179–187.


