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Abstract

We tackle the problem of large scale visual place recog-
nition, where the task is to quickly and accurately recog-
nize the location of a given query photograph. We present
the following three principal contributions. First, we de-
velop a convolutional neural network (CNN) architecture
that is trainable in an end-to-end manner directly for the
place recognition task. The main component of this archi-
tecture, NetVLAD, is a new generalized VLAD layer, in-
spired by the “Vector of Locally Aggregated Descriptors”
image representation commonly used in image retrieval.
The layer is readily pluggable into any CNN architecture
and amenable to training via backpropagation. Second, we
develop a training procedure, based on a new weakly super-
vised ranking loss, to learn parameters of the architecture
in an end-to-end manner from images depicting the same
places over time downloaded from Google Street View Time
Machine. Finally, we show that the proposed architecture
significantly outperforms non-learnt image representations
and off-the-shelf CNN descriptors on two challenging place
recognition benchmarks, and improves over current state-
of-the-art compact image representations on standard im-
age retrieval benchmarks.

1. Introduction
Visual place recognition has received a significant

amount of attention in the past years both in computer vi-
sion [4, 9, 10, 24, 35, 63, 64, 65, 66, 80, 81] and robotics
communities [15, 16, 44, 46, 75] motivated by, e.g., appli-
cations in autonomous driving [46], augmented reality [47]
or geo-localizing archival imagery [5].

The place recognition problem, however, still remains
extremely challenging. How can we recognize the same
street-corner in the entire city or on the scale of the en-
tire country despite the fact it can be captured in different
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(a) Mobile phone query (b) Retrieved image of same place

Figure 1. Our trained NetVLAD descriptor correctly recognizes
the location (b) of the query photograph (a) despite the large
amount of clutter (people, cars), changes in viewpoint and com-
pletely different illumination (night vs daytime). Please see ap-
pendix C for more examples.

illuminations or change its appearance over time? The fun-
damental scientific question is what is the appropriate rep-
resentation of a place that is rich enough to distinguish sim-
ilarly looking places yet compact to represent entire cities
or countries.

The place recognition problem has been traditionally
cast as an instance retrieval task, where the query image
location is estimated using the locations of the most vi-
sually similar images obtained by querying a large geo-
tagged database [4, 10, 35, 66, 80, 81]. Each database
image is represented using local invariant features [83]
such as SIFT [43] that are aggregated into a single vector
representation for the entire image such as bag-of-visual-
words [53, 74], VLAD [3, 29] or Fisher vector [31, 52]. The
resulting representation is then usually compressed and effi-
ciently indexed [28, 74]. The image database can be further
augmented by 3D structure that enables recovery of accu-
rate camera pose [40, 63, 64].

In the last few years convolutional neural networks
(CNNs) [38, 39] have emerged as powerful image represen-
tations for various category-level recognition tasks such as
object classification [37, 49, 73, 77], scene recognition [91]
or object detection [21]. The basic principles of CNNs are
known from 80’s [38, 39] and the recent successes are a
combination of advances in GPU-based computation power
together with large labelled image datasets [37]. While it
has been shown that the trained representations are, to some
extent, transferable between recognition tasks [19, 21, 49,
69, 89], a direct application of CNN representations trained

1



for object classification [37] as black-box descriptor extrac-
tors has so far yielded limited improvements in performance
on instance-level recognition tasks [6, 7, 22, 60, 62]. In this
work we investigate whether this gap in performance can
be bridged by CNN representations developed and trained
directly for place recognition. This requires addressing the
following three main challenges. First, what is a good CNN
architecture for place recognition? Second, how to gather
sufficient amount of annotated data for the training? Third,
how can we train the developed architecture in an end-to-
end manner tailored for the place recognition task? To ad-
dress these challenges we bring the following three innova-
tions.

First, building on the lessons learnt from the current
well performing hand-engineered object retrieval and place
recognition pipelines [2, 3, 25, 80] we develop a convo-
lutional neural network architecture for place recognition
that aggregates mid-level (conv5) convolutional features ex-
tracted from the entire image into a compact single vector
representation amenable to efficient indexing. To achieve
this, we design a new trainable generalized VLAD layer,
NetVLAD, inspired by the Vector of Locally Aggregated
Descriptors (VLAD) representation [29] that has shown ex-
cellent performance in image retrieval and place recogni-
tion. The layer is readily pluggable into any CNN archi-
tecture and amenable to training via backpropagation. The
resulting aggregated representation is then compressed us-
ing Principal Component Analysis (PCA) to obtain the final
compact descriptor of the image.

Second, to train the architecture for place recognition,
we gather a large dataset of multiple panoramic images de-
picting the same place from different viewpoints over time
from the Google Street View Time Machine. Such data
is available for vast areas of the world, but provides only
weak form of supervision: we know the two panoramas are
captured at approximately similar positions based on their
(noisy) GPS but we don’t know which parts of the panora-
mas depict the same parts of the scene.

Third, we develop a learning procedure for place recog-
nition that learns parameters of the architecture in an end-
to-end manner tailored for the place recognition task from
the weakly labelled Time Machine imagery. The resulting
representation is robust to changes in viewpoint and light-
ing conditions, while simultaneously learns to focus on the
relevant parts of the image such as the building façades and
the skyline, while ignoring confusing elements such as cars
and people that may occur at many different places.

We show that the proposed architecture significantly
outperforms non-learnt image representations and off-the-
shelf CNN descriptors on two challenging place recogni-
tion benchmarks, and improves over current state-of-the-art
compact image representations on standard image retrieval
benchmarks.

1.1. Related work

While there have been many improvements in design-
ing better image retrieval [2, 3, 11, 12, 17, 25, 26, 27, 29,
32, 48, 51, 52, 53, 54, 71, 78, 79, 82] and place recogni-
tion [4, 9, 10, 15, 16, 24, 35, 44, 46, 63, 64, 65, 75, 80, 81]
systems, not many works have performed learning for these
tasks. All relevant learning-based approaches fall into one
or both of the following two categories: (i) learning for an
auxiliary task (e.g. some form of distinctiveness of local fea-
tures [4, 15, 30, 35, 58, 59, 90]), and (ii) learning on top
of shallow hand-engineered descriptors that cannot be fine-
tuned for the target task [2, 9, 24, 35, 57]. Both of these are
in spirit opposite to the core idea behind deep learning that
has provided a major boost in performance in various recog-
nition tasks: end-to-end learning. We will indeed show in
section 5.2 that training representations directly for the end-
task, place recognition, is crucial for obtaining good perfor-
mance.

Numerous works concentrate on learning better local de-
scriptors or metrics to compare them [45, 48, 50, 55, 56,
70, 71, 88], but even though some of them show results
on image retrieval, the descriptors are learnt on the task of
matching local image patches, and not directly with image
retrieval in mind. Some of them also make use of hand-
engineered features to bootstrap the learning, i.e. to provide
noisy training data [45, 48, 50, 55, 71].

Several works have investigated using CNN-based fea-
tures for image retrieval. These include treating activations
from certain layers directly as descriptors by concatenating
them [8, 60], or by pooling [6, 7, 22]. However, none of
these works actually train the CNNs for the task at hand,
but use CNNs as black-box descriptor extractors. One ex-
ception is the work of Babenko et al. [8] in which the net-
work is fine-tuned on an auxiliary task of classifying 700
landmarks. However, again the network is not trained di-
rectly on the target retrieval task.

Finally, recently [34] and [41] performed end-to-end
learning for different but related tasks of ground-to-aerial
matching [41] and camera pose estimation [34].

2. Method overview

Building on the success of current place recognition sys-
tems (e.g. [4, 10, 35, 63, 64, 65, 66, 80, 81]), we cast place
recognition as image retrieval. The query image with un-
known location is used to visually search a large geotagged
image database, and the locations of top ranked images are
used as suggestions for the location of the query. This is
generally done by designing a function f which acts as the
“image representation extractor”, such that given an image
Ii it produces a fixed size vector f(Ii). The function is used
to extract the representations for the entire database {Ii},
which can be done offline, and to extract the query image
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representation f(q), done online. At test time, the visual
search is performed by finding the nearest database image to
the query, either exactly or through fast approximate nearest
neighbour search, by sorting images based on the Euclidean
distance d(q, Ii) between f(q) and f(Ii).

While previous works have mainly used hand-
engineered image representations (e.g. f(I) corresponds
to extracting SIFT descriptors [43], followed by pooling
into a bag-of-words vector [74] or a VLAD vector [29]),
here we propose to learn the representation f(I) in an
end-to-end manner, directly optimized for the task of
place recognition. The representation is parametrized
with a set of parameters θ and we emphasize this fact
by referring to it as fθ(I). It follows that the Euclidean
distance dθ(Ii, Ij) = ‖fθ(Ii) − fθ(Ij)‖ also depends on
the same parameters. An alternative setup would be to
learn the distance function itself, but here we choose to fix
the distance function to be Euclidean distance, and to pose
our problem as the search for the explicit feature map fθ
which works well under the Euclidean distance.

In section 3 we describe the proposed representation fθ
based on a new deep convolutional neural network architec-
ture inspired by the compact aggregated image descriptors
for instance retrieval. In section 4 we describe a method to
learn the parameters θ of the network in an end-to-end man-
ner using weakly supervised training data from the Google
Street View Time Machine.

3. Deep architecture for place recognition
This section describes the proposed CNN architecture

fθ, guided by the best practices from the image retrieval
community. Most image retrieval pipelines are based on (i)
extracting local descriptors, which are then (ii) pooled in an
orderless manner. The motivation behind this choice is that
the procedure provides significant robustness to translation
and partial occlusion. Robustness to lighting and viewpoint
changes is provided by the descriptors themselves, and scale
invariance is ensured through extracting descriptors at mul-
tiple scales.

In order to learn the representation end-to-end, we de-
sign a CNN architecture that mimics this standard retrieval
pipeline in an unified and principled manner with differen-
tiable modules. For step (i), we crop the CNN at the last
convolutional layer and view it as a dense descriptor ex-
tractor. This has been observed to work well for instance
retrieval [6, 7, 62] and texture recognition [13]. Namely,
the output of the last convolutional layer is a H ×W ×D
map which can be considered as a set of D-dimensional de-
scriptors extracted at H × W spatial locations. For step
(ii) we design a new pooling layer inspired by the Vector
of Locally Aggregated Descriptors (VLAD) [29] that pools
extracted descriptors into a fixed image representation and
its parameters are learnable via back-propagation. We call

this new pooling layer “NetVLAD” layer and describe it in
the next section.

3.1. NetVLAD: A Generalized VLAD layer (fV LAD)

Vector of Locally Aggregated Descriptors (VLAD) [29]
is a popular descriptor pooling method for both instance
level retrieval [29] and image classification [22]. It captures
information about the statistics of local descriptors aggre-
gated over the image. Whereas bag-of-visual-words [14,
74] aggregation keeps counts of visual words, VLAD stores
the sum of residuals (difference vector between the descrip-
tor and its corresponding cluster centre) for each visual
word.

Formally, given N D-dimensional local image descrip-
tors {xi} as input, and K cluster centres (“visual words”)
{ck} as VLAD parameters, the output VLAD image repre-
sentation V isK×D-dimensional. For convenience we will
write V as aK×D matrix, but this matrix is converted into
a vector and, after normalization, used as the image repre-
sentation. The (j, k) element of V is computed as follows:

V (j, k) =

N∑
i=1

ak(xi) (xi(j)− ck(j)) , (1)

where xi(j) and ck(j) are the j-th dimensions of the i-th
descriptor and k-th cluster centre, respectively. ak(xi) de-
notes the membership of the descriptor xi to k-th visual
word, i.e. it is 1 if cluster ck is the closest cluster to de-
scriptor xi and 0 otherwise. Intuitively, each D-dimensional
column k of V records the sum of residuals (xi−ck) of de-
scriptors which are assigned to cluster ck. The matrix V is
then L2-normalized column-wise (intra-normalization [3]),
converted into a vector, and finally L2-normalized in its en-
tirety [29].

In order to profit from years of wisdom produced in
image retrieval, we propose to mimic VLAD in a CNN
framework and design a trainable generalized VLAD layer,
NetVLAD. The result is a powerful image representation
trainable end-to-end on the target task (in our case place
recognition). To construct a layer amenable to training via
backpropagation, it is required that the layer’s operation is
differentiable with respect to all its parameters and the in-
put. Hence, the key challenge is to make the VLAD pooling
differentiable, which we describe next.

The source of discontinuities in VLAD is the hard as-
signment ak(xi) of descriptors xi to clusters centres ck. To
make this operation differentiable, we replace it with soft
assignment of descriptors to multiple clusters

āk(xi) =
e−α‖xi−ck‖2∑
k′ e
−α‖xi−ck′‖2

, (2)

which assigns the weight of descriptor xi to cluster ck pro-
portional to their proximity, but relative to proximities to

3



conv (w,b)
1x1xDxK

soft-max

VLAD core (c) intra-
normalization

L2 
normalization

soft-assignment

Vx
x

s

(KxD)x1
VLAD
vector

NetVLAD layerConvolutional Neural Network

...

Image

WxHxD map interpreted as 
NxD local descriptors x

Figure 2. CNN architecture with the NetVLAD layer. The layer can be implemented using standard CNN layers (convolutions,
softmax, L2-normalization) and one easy-to-implement aggregation layer to perform aggregation in equation (4) (“VLAD core”), joined
up in a directed acyclic graph. Parameters are shown in brackets.

other cluster centres. āk(xi) ranges between 0 and 1, with
the highest weight assigned to the closest cluster centre. α is
a parameter (positive constant) that controls the decay of the
response with the magnitude of the distance. Note that for
α → +∞ this setup replicates the original VLAD exactly
as āk(xi) for the closest cluster would be 1 and 0 otherwise.

By expanding the squares in (2), it is easy to see that
the term e−α‖xi‖2 cancels between the numerator and the
denominator resulting in a soft-assignment of the following
form

āk(xi) =
ew

T
k xi+bk∑

k′ e
wT

k′xi+bk′
, (3)

where vector wk = 2αck and scalar bk = −α‖ck‖2. The
final form of the NetVLAD layer is obtained by plugging
the soft-assignment (3) into the VLAD descriptor (1) re-
sulting in

V (j, k) =

N∑
i=1

ew
T
k xi+bk∑

k′ e
wT

k′xi+bk′
(xi(j)− ck(j)) , (4)

where {wk}, {bk} and {ck} are sets of trainable parameters
for each cluster k. Similarly to the original VLAD descrip-
tor, the NetVLAD layer aggregates the first order statistics
of residuals (xi − ck) in different parts of the descriptor
space weighted by the soft-assignment āk(xi) of descrip-
tor xi to cluster k. Note however, that the NetVLAD layer
has three independent sets of parameters {wk}, {bk} and
{ck}, compared to just {ck} of the original VLAD. This
enables greater flexibility than the original VLAD, as ex-
plained in figure 3. Decoupling {wk, bk} from {ck} has
been proposed in [3] as a means to adapt the VLAD to a
new dataset. All parameters of NetVLAD are learnt for the
specific task in an end-to-end manner.

As illustrated in figure 2 the NetVLAD layer can be vi-
sualized as a meta-layer that is further decomposed into ba-
sic CNN layers connected up in a directed acyclic graph.
First, note that the first term in eq. (4) is a soft-max func-
tion σk(z) = exp(zk)∑

k′ exp(zk′ )
. Therefore, the soft-assignment

of the input array of descriptors xi into K clusters can be
seen as a two step process: (i) a convolution with a set of K
filters {wk} that have spatial support 1×1 and biases {bk},

+

Figure 3. Benefits of supervised VLAD. Red and green cir-
cles are local descriptors from two different images, assigned to
the same cluster (Voronoi cell). Under the VLAD encoding, their
contribution to the similarity score between the two images is the
scalar product (as final VLAD vectors are L2-normalized) between
the corresponding residuals, where a residual vector is computed
as the difference between the descriptor and the cluster’s anchor
point. The anchor point ck can be interpreted as the origin of a
new coordinate system local to the the specific cluster k. In stan-
dard VLAD, the anchor is chosen as the cluster centre (×) in order
to evenly distribute the residuals across the database. However, in
a supervised setting where the two descriptors are known to be-
long to images which should not match, it is possible to learn a
better anchor (?) which causes the scalar product between the new
residuals to be small.

producing the output sk(xi) = wT
k xi + bk; (ii) the convo-

lution output is then passed through the soft-max function
σk to obtain the final soft-assignment āk(xi) that weights
the different terms in the aggregation layer that implements
eq. (4). The output after normalization is a (K × D) × 1
descriptor.

Relations to other methods. Other works have proposed to
pool CNN activations using VLAD or Fisher Vectors (FV)
[13, 22], but do not learn the VLAD/FV parameters nor the
input descriptors. The most related method to ours is the
one of Sydorov et al. [76], which proposes to learn FV pa-
rameters jointly with an SVM for the end classification ob-
jective. However, in their work it is not possible to learn the
input descriptors as they are hand-engineered (SIFT), while
our VLAD layer is easily pluggable into any CNN archi-
tecture as it is amenable to backpropagation. “Fisher Net-
works” [72] stack Fisher Vector layers on top of each other,
but the system is not trained end-to-end, only hand-crafted
features are used, and the layers are trained greedily in a
bottom-up fashion. Finally, our architecture is also related
to bilinear networks [42], recently developed for a different
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(a) (b) (c)
Figure 4. Google Street View Time Machine examples. Each
column shows perspective images generated from panoramas from
nearby locations, taken at different times. A well designed method
can use this source of imagery to learn to be invariant to changes
in viewpoint and lighting (a-c), and to moderate occlusions (b).
It can also learn to suppress confusing visual information such as
clouds (a), vehicles and people (b-c), and to chose to either ignore
vegetation or to learn a season-invariant vegetation representation
(a-c). More examples are given in appendix B.

task of fine-grained category-level recognition.

Max pooling (fmax). We also experiment with Max-
pooling of the D-dimensional features across the H × W
spatial locations, thus producing a D-dimensional output
vector, which is then L2-normalized. Both of these oper-
ations can be implemented using standard layers in public
CNN packages. This setup mirrors the method of [6, 62],
but a crucial difference is that we will learn the represen-
tation (section 4) while [6, 60, 62] only use pretrained net-
works. Results will show (section 5.2) that simply using
CNNs off-the-shelf [60] results in poor performance, and
that training for the end-task is crucial. Additionally, VLAD
will prove itself to be superior to the Max-pooling baseline.

4. Learning from Time Machine data

In the previous section we have designed a new CNN ar-
chitecture as an image representation for place recognition.
Here we describe how to learn its parameters in an end-to-
end manner for the place recognition task. The two main
challenges are: (i) how to gather enough annotated training
data and (ii) what is the appropriate loss for the place recog-
nition task. To address theses issues, we will first show that
it is possible to obtain large amounts of weakly labelled im-
agery depicting the same places over time from the Google
Street View Time Machine. Second, we will design a new
weakly supervised triplet ranking loss that can deal with
the incomplete and noisy position annotations of the Street

View Time Machine imagery. The details are below.
Weak supervision from the Time Machine. We propose
to exploit a new source of data – Google Street View Time
Machine – which provides multiple street-level panoramic
images taken at different times at close-by spatial locations
on the map. As will be seen in section 5.2, this novel data
source is precious for learning an image representation for
place recognition. As shown in figure 4, the same loca-
tions are depicted at different times and seasons, providing
the learning algorithm with crucial information it can use to
discover which features are useful or distracting, and what
changes should the image representation be invariant to, in
order to achieve good place recognition performance.

The downside of the Time Machine imagery is that it
provides only incomplete and noisy supervision. Each Time
Machine panorama comes with a GPS tag giving only its ap-
proximate location on the map, which can be used to iden-
tify close-by panoramas but does not provide correspon-
dences between parts of the depicted scenes. In detail, as
the test queries are perspective images from camera phones,
each panorama is represented by a set of perspective images
sampled evenly in different orientations and two elevation
angles [10, 24, 35, 81]. Each perspective image is labelled
with the GPS position of the source panorama. As a result,
two geographically close perspective images do not neces-
sarily depict the same objects since they could be facing dif-
ferent directions or occlusions could take place (e.g. the two
images are around a corner from each other), etc. There-
fore, for a given training query q, the GPS information can
only be used as a source of (i) potential positives {pqi }, i.e.
images that are geographically close to the query, and (ii)
definite negatives {nqj}, i.e. images that are geographically
far from the query.1

Weakly supervised triplet ranking loss. We wish to learn
a representation fθ that will optimize place recognition per-
formance. That is, for a given test query image q, the goal
is to rank a database image Ii∗ from a close-by location
higher than all other far away images Ii in the database. In
other words, we wish the Euclidean distance dθ(q, I) be-
tween the query q and a close-by image Ii∗ to be smaller
than the distance to far away images in the database Ii, i.e.
dθ(q, Ii∗) < dθ(q, Ii), for all images Ii further than a cer-
tain distance from the query on the map. Next we show
how this requirement can be translated into a ranking loss
between training triplets {q, Ii∗, Ii}.

From the Google Street View Time Machine data, we
obtain a training dataset of tuples (q, {pqi }, {n

q
j}), where

for each training query image q we have a set of potential
positives {pqi } and the set of definite negatives {nqj}. The

1Note that even faraway images can depict the same object. For exam-
ple, the Eiffel Tower can be visible from two faraway locations in Paris.
But, for the purpose of localization we consider in this paper such image
pairs as negative examples because they are not taken from the same place.
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set of potential positives contains at least one positive image
that should match the query, but we do not know which one.
To address this ambiguity, we propose to identify the best
matching potential positive image pqi∗

pqi∗ = argmin
pqi

dθ(q, p
q
i ) (5)

for each training tuple (q, {pqi }, {n
q
j}). The goal then be-

comes to learn an image representation fθ so that dis-
tance dθ(q, p

q
i∗) between the training query q and the best

matching potential positive pqi∗ is smaller than the distance
dθ(q, n

q
j) between the query q and all negative images qj :

dθ(q, p
q
i∗) < dθ(q, n

q
j), ∀j. (6)

Based on this intuition we define a weakly supervised rank-
ing loss Lθ for a training tuple (q, {pqi }, {n

q
j}) as

Lθ =
∑
j

l
(

min
i
d2θ(q, p

q
i ) +m− d2θ(q, n

q
j)
)
, (7)

where l is the hinge loss l(x) = max(x, 0), and m is a con-
stant parameter giving the margin. Note that equation (7) is
a sum of individual losses for negative images nqj . For each
negative, the loss l is zero if the distance between the query
and the negative is greater by a margin than the distance be-
tween the query and the best matching positive. Conversely,
if the margin between the distance to the negative image and
to the best matching positive is violated, the loss is propor-
tional to the amount of violation. Note that the above loss
is related to the commonly used triplet loss [67, 68, 86, 87],
but adapted to our weakly supervised scenario using a for-
mulation (given by equation (5)) similar to multiple instance
learning [20, 36, 85].

We train the parameters θ of the representation fθ using
Stochastic Gradient Descent (SGD) on a large set of train-
ing tuples from Time Machine data. Details of the training
procedure are given in appendix A.

5. Experiments
In this section we describe the used datasets and evalua-

tion methodology (section 5.1), and give quantitative (sec-
tion 5.2) and qualitative (section 5.3) results to validate our
approach. Finally, we also test the method on the standard
image retrieval benchmarks (section 5.4).

5.1. Datasets and evaluation methodology

We report results on two publicly available datasets.
Pittsburgh (Pitts250k) [81] contains 250k database images
downloaded from Google Street View and 24k test queries
generated from Street View but taken at different times,
years apart. We divide this dataset into three roughly equal
parts for training, validation and testing, each containing

around 83k database images and 8k queries, where the di-
vision was done geographically to ensure the sets contain
independent images. To facilitate faster training, for some
experiments, a smaller subset (Pitts30k) is used, contain-
ing 10k database images in each of the train/val(idation)/test
sets, which are also geographically disjoint.
Tokyo 24/7 [80] contains 76k database images and 315
query images taken using mobile phone cameras. This is an
extremely challenging dataset where the queries were taken
at daytime, sunset and night, while the database images
were only taken at daytime as they originate from Google
Street View as described above. To form the train/val sets
we collected additional Google Street View panoramas of
Tokyo using the Time Machine feature, and name this set
TokyoTM; Tokyo 24/7 (=test) and TokyoTM train/val are
all geographically disjoint. Further details on the splits are
given in appendix B.
Evaluation metric. We follow the standard place recog-
nition evaluation procedure [4, 24, 65, 80, 81]. The query
image is deemed correctly localized if at least one of the top
N retrieved database images is within d = 25 meters from
the ground truth position of the query. The percentage of
correctly recognized queries (Recall) is then plotted for dif-
ferent values of N . For Tokyo 24/7 we follow [80] and per-
form spatial non-maximal suppression on ranked database
images before evaluation.
Implementation details. We use two base architectures
which are extended with Max pooling (fmax) and our
NetVLAD (fV LAD) layers: AlexNet [37] and VGG-16
[73]; both are cropped at the last convolutional layer
(conv5), before ReLU. For NetVLAD we use K = 64 re-
sulting in 16k and 32k-D image representations for the two
base architectures, respectively. The initialization proce-
dure, parameters used for training, procedure for sampling
training tuples and other implementation details are given
in appendix A. All training and evaluation code, as well as
our trained networks, are online at [1].

5.2. Results and discussion
Baselines and state-of-the-art. To assess benefits of our
approach we compare our representations trained for place
recognition against “off-the-shelf” networks pretrained on
other tasks. Namely, given a base network cropped at
conv5, the baselines either use Max pooling (fmax), or ag-
gregate the descriptors into VLAD (fV LAD), but perform
no further task-specific training. The three base networks
are: AlexNet [37], VGG-16 [73], both are pretrained for
ImageNet classification [18], and Places205 [91], reusing
the same architecture as AlexNet but pretrained for scene
classification [91]. Pretrained networks have been recently
used as off-the-shelf dense descriptor extractors for instance
retrieval [6, 7, 22, 60, 62] and the untrained fmax network
corresponds to the method of [6, 62].
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Figure 5. Comparison of our methods versus off-the-shelf networks and state-of-the-art. The base CNN architecture is denoted in
brackets: (A)lexNet and (V)GG-16. Trained representations (red and magenta for AlexNet and VGG-16) outperform by a large margin off-
the-shelf ones (blue, cyan, green for AlexNet, Places205, VGG-16), fV LAD (-o-) works better than fmax (-x-), and our fV LAD+whitening
(-∗-) representation based on VGG-16 sets the state-of-the-art on all datasets. [80] only evaluated on Tokyo 24/7 as the method relies on
depth data not available in other datasets. Additional results are shown in appendix C.

Furthermore we compare our CNN representations
trained for place recognition against the state-of-the-art lo-
cal feature based compact descriptor, which consists of
VLAD pooling [29] with intra-normalization [3] on top
of densely extracted RootSIFTs [2, 43]. The descrip-
tor is optionally reduced to 4096 dimensions using PCA
(learnt on the training set) combined with whitening and
L2-normalization [25]; this setup together with view syn-
thesis yields the state-of-the-art results on the challenging
Tokyo 24/7 dataset (c.f . [80]).

In the following we discuss figure 5, which compares
place recognition performance of our method to the base-
lines outlined above on the Pittsburgh and Tokyo 24/7
benchmarks.

Dimensionality reduction. We follow the standard state-
of-the-art procedure to perform dimensionality reduction of
VLAD, as described earlier, i.e. the reduction into 4096-D
is performed using PCA with whitening followed by L2-
normalization [25, 80]. Figure 5 shows that the lower di-
mensional fV LAD (-∗-) performs similarly to the full size
vector (-o-).

Benefits of end-to-end training for place recognition.
Representations trained on the end-task of place recog-
nition consistently outperform by a large margin off-the-
shelf CNNs on both benchmarks. For example, on the
Pitts250k-test our trained AlexNet with (trained) NetVLAD
aggregation layer achieves recall@1 of 81.0% compared to
only 55.0% obtained by off-the-shelf AlexNet with stan-
dard VLAD aggregation, i.e. a relative improvement in re-
call of 47%. Similar improvements can be observed on
all three datasets. This confirms two important premises
of this work: (i) our approach can learn rich yet compact
image representations for place recognition, and (ii) the
popular idea of using pretrained networks “off-the-shelf”
[6, 7, 22, 60, 62] is sub-optimal as the networks trained for
object or scene classification are not necessary suitable for

the end-task of place recognition. We believe this could be
attributed to the fact that “off-the-shelf ” conv5 activations
are not trained to be comparable using Euclidean distance.
Comparison with state-of-the-art. Figure 5 also shows
that our trained fV LAD representation with whitening based
on VGG-16 (magenta -∗-) convincingly outperforms Root-
SIFT+VLAD+whitening, as well as the method of Torii et
al. [80], and therefore sets the state-of-the-art for compact
descriptors on all benchmarks. Note that these are strong
baselines that outperform most off-the-shelf CNN descrip-
tors on the place recognition task.
VLAD versus Max. By comparing fV LAD (-o-) meth-
ods with their corresponding fmax (-x-) counterparts it
is clear that VLAD pooling is much better than Max
pooling for both off-the-shelf and trained representations.
NetVLAD performance decreases gracefully with dimen-
sionality: 128-D NetVLAD performs similarly to 512-D
Max (42.9% vs 38.4% recall@1 on Tokyo 24/7), resulting
in four times more compact representation for the same per-
formance. Furthermore, NetVLAD+whitening outperforms
Max pooling convincingly when reduced to the same di-
mensionality (60%). See appendix C for more details.
Which layers should be trained? In Table 1 we study the
benefits of training different layers for the end-task of place
recognition. The largest improvements are thanks to train-
ing the NetVLAD layer, but training other layers results in
further improvements, with some overfitting occurring be-
low conv2.
Importance of Time Machine training. Here we examine
whether the network can be trained without the Time Ma-
chine (TM) data. In detail, we have modified the training
query set for Pitts30k-train to be sampled from the same
set as the training database images, i.e. the tuples of query
and database images used in training were captured at the
same time. Recall@1 with fmax on Pitts30k-val for the off-
the-shelf AlexNet is 33.5%, and training without TM im-
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Lowest trained
layer

fmax fV LAD

r@1 r@5 r@10 r@1 r@5 r@10
none (off-the-shelf) 33.5 57.3 68.4 54.5 69.8 76.1
NetVLAD — — — 80.5 91.8 95.2
conv5 63.8 83.8 89.0 84.1 94.6 95.5
conv4 62.1 83.6 89.2 85.1 94.4 96.1
conv3 69.8 86.7 90.3 85.5 94.6 96.5
conv2 69.1 87.6 91.5 84.5 94.6 96.6
conv1 (full) 68.5 86.2 90.8 84.2 94.7 96.1

Table 1. Partial training. Effects of performing backpropagation
only down to a certain layer of AlexNet, e.g. ‘conv4’ means that
weights of layers from conv4 and above are learnt, while weights
of layers below conv4 are fixed to their pretrained state; r@N sig-
nifies recall@N. Results are shown on the Pitts30k-val dataset.
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Figure 6. What has been learnt? Each column corresponds
to one image (top row) and the emphasis various networks (under
fmax) give to different patches. Each pixel in the heatmap corre-
sponds to the change in representation when a large gray occluding
square (100× 100) is placed over the image in the same position;
all heatmaps have the same colour scale. Note that the original
image and the heatmaps are not in perfect alignment as nearby
patches overlap 50% and patches touching an image edge are dis-
carded to prevent border effects. All images are from Pitts250k-
val that the network hasn’t seen at training. Further examples are
given in appendix C.

proves this to 38.7%. However, training with TM obtains
68.5% showing that Time Machine data is crucial for good
place recognition accuracy as without it the network does
not generalize well. The network learns, for example, that
recognizing cars is important for place recognition, as the
same parked cars appear in all images of a place.

5.3. Qualitative evaluation
To visualize what is being learnt by our place recogni-

tion architectures, we adapt the method of Zeiler and Fer-
gus [89] for examining occlusion sensitivity of classifica-
tion networks. It can be seen in figure 6 that off-the-shelf
AlexNet (pretrained on ImageNet) focuses very much on
categories it has been trained to recognize (e.g. cars) and
certain shapes, such as circular blobs useful for distinguish-
ing 12 different ball types in the ImageNet categories. The
Place205 network is fairly unresponsive to all occlusions as

it does not aim to recognize specific places but scene-level
categories, so even if an important part of the image is oc-
cluded, such as a characteristic part of a building façade,
it still provides a similar output feature which corresponds
to an uninformative “a building façade” image descriptor.
In contrast to these two, our network trained for specific
place recognition automatically learns to ignore confusing
features, such as cars and people, which are not discrimina-
tive for specific locations, and instead focuses on describing
building façades and skylines. More qualitative examples
are provided in appendix C.

5.4. Image retrieval
We use our best performing network (VGG-16, fV LAD

with whitening down to 256-D) trained completely on Pitts-
burgh, to extract image representations for standard object
and image retrieval benchmarks. Our representation sets the
state-of-the-art for compact image representations (256-D)
by a large margin on all three datasets, obtaining an mAP of
63.5%, 73.5% and 79.9% on Oxford 5k [53], Paris 6k [54],
Holidays [26], respectively; for example, this is a +20%
relative improvement on Oxford 5k. Appendix C contains
more detailed results.

6. Conclusions
We have designed a new convolutional neural network

architecture that is trained for place recognition in an end-
to-end manner from weakly supervised Street View Time
Machine data. Our trained representation significantly out-
performs off-the-shelf CNN models and significantly im-
proves over the state-of-the-art on the challenging 24/7
Tokyo dataset, as well as on the Oxford and Paris image re-
trieval benchmarks. The two main components of our archi-
tecture – (i) the NetVLAD pooling layer and (ii) weakly su-
pervised ranking loss – are generic CNN building blocks ap-
plicable beyond the place recognition task. The NetVLAD
layer offers a powerful pooling mechanism with learnable
parameters that can be easily plugged into any other CNN
architecture. The weakly supervised ranking loss opens up
the possibility of end-to-end learning for other ranking tasks
where large amounts of weakly labelled data are available,
for example, images described with natural language [33].
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Appendices
The below appendices describe the implementation de-

tails (appendix A), give details of the Google Street View
Time Machine datasets (appendix B) and provide additional
results (appendix C).

A. Implementation details
We use two base architectures which are extended with

Max pooling (fmax) and our NetVLAD (fV LAD) layers:
AlexNet [37] and VGG-16 [73]; both are cropped at the
last convolutional layer (conv5), before ReLU. For Max we
use raw conv5 descriptors (with no normalization) while for
VLAD and NetVLAD we add an additional descriptor-wise
L2-normalization layer after conv5. We found that not nor-
malizing for Max and normalizing for VLAD/NetVLAD
generalizes across architectures, i.e. these are the best con-
figurations for both AlexNet and VGG-16.

The number of clusters used in all VLAD / NetVLAD
experiments is K = 64. The NetVLAD layer parameters
are initialized to reproduce the conventional VLAD vectors
by clustering conv5 descriptors extracted from a subsample
of the train set for each dataset. The α parameter used for
initialization is chosen to be large, such that the soft assign-
ment weights āk(xi) are very sparse in order to mimic the
conventional VLAD well. Specifically, α is computed so
that the the ratio of the largest and the second largest soft
assignment weight āk(xi) is on average equal to 100.

We use the margin m = 0.1, learning rate 0.001 or
0.0001 depending on the experiment, which is halved ev-
ery 5 epochs, momentum 0.9, weight decay 0.001, batch

size of 4 tuples (a tuple contains many images, c.f . equa-
tion (7) of the main paper), and train for at most 30 epochs
but convergence usually occurs much faster. The network
which yields the best recall@5 on the validation set is used
for testing.

As the VGG-16 network is much deeper and more GPU-
memory hungry than AlexNet, it was not possible to train it
in its entirety. Instead, in the light of experiments in table
1 of the main paper, the VGG-16 network is only trained
down to conv5 layer.

To create the training tuple for a query, we use all of
its potential positives (images within 10 meters), and we
perform randomized hard negative mining for the negatives
(images further away than 25 meters). The mining is done
by keeping the 10 hardest negatives from a pool of 1000 ran-
domly sampled negatives and 10 hardest negatives from the
previous epoch. We find that remembering previous hard
negatives adds stability to the training process.

Naively implemented, the aforementioned training pro-
cedure would be too slow. Processing each training tu-
ple would require a forward pass on more than 1010 full-
resolution images. Instead, we compute image represen-
tations for the entire training query and database sets and
cache them for a certain amount of time. The hard negative
mining then uses these cached but slightly stale representa-
tions to obtain the 10 hardest examples and the forward and
backward passes are only performed on these 10, compared
to the original 1010, thus providing a huge computational
saving. However, it is important to recompute the cached
representations every once in a while. We have observed
slow convergence if the cache is fixed for too long as the
network learns quickly to be better than the fixed cache and
then wastes time overfitting it. We found that recomputing
the cached representations for hard negative mining every
500 to 1000 training queries yields a good trade-off between
epoch duration, convergence speed and quality of the solu-
tion. As described earlier, we half the learning rate every
5 epochs – this causes the cached representations to change
less rapidly, so we half the recomputation frequency every
5 epochs as well. All training and evaluation code, as well
as our trained networks, are online [1], implemented in the
MatConvNet framework [84]. Additional tuning of param-
eters and jittering could further improve performance as we
have still observed some amount of overfitting.

B. Google Street View Time Machine datasets
Table 2 shows the sizes of datasets used in this work,

described in section 5.1 of the main paper. The newly col-
lected Tokyo Time Machine (TokyoTM) database was gen-
erated from downloaded Time Machine panoramas, such
that each panorama is represented by a set of 12 perspective
images sampled evenly in different orientations [10, 24, 35,
80, 81]. Figure 7 shows example images from the dataset.
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Dataset Database Query set
Pitts250k-train 91,464 7,824
Pitts250k-val 78,648 7,608
Pitts250k-test 83,952 8,280
Pitts30k-train 10,000 7,416
Pitts30k-val 10,000 7,608
Pitts30k-test 10,000 6,816
Tokyo Time Machine-train 49,104 7,277
Tokyo Time Machine-val 49,056 7,186
Tokyo 24/7 (-test) 75,984 315

Table 2. Datasets. Sizes of datasets used in experiments.
All train/val(idation)/test datasets are mutually disjoint geograph-
ically.
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Figure 8. Place recognition accuracy versus dimensionality.
Note the log scale of the x-axis. 128-D NetVLAD performs com-
parably to the 4× larger 512-D fmax on Tokyo 24/7. For the same
dimension (512-D) NetVLAD convincingly outperforms fmax.

For each query, the positive and negative sets are sampled
from the database so that they have a time stamp at least one
month away from the time stamp of the query. This is done
for both training (training/val sets) and evaluation (testing
set). All datasets are publicly available: Pitts250k from the
authors of [81], Tokyo 24/7 from the authors of [80], while
we will share TokyoTM and Pitts30k on request.

C. Additional results and discussions

VLAD versus Max. Figure 8 shows that NetVLAD perfor-
mance decreases gracefully with dimensionality: On Tokyo
24/7, 128-D NetVLAD performs similarly to 512-D Max,
resulting in four times more compact representation for the
same performance. Similarly, on Pitts250k-test NetVLAD
achieves a two-fold memory saving compared to Max. Fur-
thermore, NetVLAD+whitening outperforms Max pooling
convincingly when reduced to the same dimensionality.

Max versus Sum. Recent work [7] suggests that Sum pool-
ing performs better than Max pooling. Indeed, in our ex-
periments Sum outperforms Max in the off-the-shelf set-up
(recall@5 on Pitts250k-test – Sum: 67.9%, Max: 59.3%),
but only for VGG-16, not AlexNet. Our training also works
for Sum getting a significant improvement over the off-the-

Training data recall@1 recall@10
Pretrained on ImageNet [37] 33.5 68.5
Pretrained on Places205 [91] 24.8 54.4
Trained without Time Machine 38.7 68.1
Trained with Time Machine 68.5 90.8

Table 3. Time Machine importance. Recall of fmax on Pitts30k-
val (AlexNet) with vs without using Time Machine data for train-
ing. Training using Time Machine is essential for generalization.

Method Dim. Oxford 5k Paris 6k Holidays
full crop full crop orig rot

NetVLAD off-shelf 16 28.7 28.1 36.8 38.2 56.6 60.3
32 36.5 36.0 48.9 51.9 68.0 71.7
64 40.1 38.9 55.7 58.1 76.5 80.4

128 49.0 49.8 60.1 63.2 79.1 83.3
256 53.4 55.5 64.3 67.7 82.1 86.0
512 56.7 59.0 67.5 70.2 82.9 86.7

1024 60.2 62.6 70.9 73.3 83.9 87.3
2048 62.8 65.4 73.7 75.6 84.9 88.2
4096 64.4 66.6 75.1 77.4 84.9 88.3

NetVLAD trained 16 32.5 29.9 45.1 44.9 54.8 58.6
32 43.4 42.6 53.5 54.4 67.5 71.2
64 53.6 51.1 61.8 63.0 75.4 79.3

128 60.4 61.4 68.7 69.5 78.8 82.6
256 62.5 63.5 72.0 73.5 79.9 84.3
512 65.6 67.6 73.4 74.9 81.7 86.1

1024 66.9 69.2 75.7 76.5 82.4 86.5
2048 67.7 70.8 77.0 78.3 82.8 86.9
4096 69.1 71.6 78.5 79.7 83.1 87.5

Table 5. Image and object retrieval for varying dimension-
ality of NetVLAD. We compare our best trained network (VGG-
16, fV LAD), and the corresponding off-the-shelf network (whiten-
ing learnt on Pittsburgh), on standard image and object retrieval
benchmarks, while varying the dimensionality (Dim.) of the im-
age representation.

shelf set-up (+21% relative), but after training Max still per-
forms better than Sum (Max: 88.7%, Sum: 82.3%).

Further results. Figure 10 reports a complete set of results
that did not fit into figure 5 of the main paper. Namely, it
includes results on the Pitts30k-test and the complete break-
down of day versus sunset/night queries for the Tokyo 24/7
benchmark as done in [80]. Table 3 contains additional
results showing the importance of training with Time Ma-
chine imagery. Figure 9 shows additional visualizations of
what has been learnt by our method. Please see section
5.3 of the main paper for the details of the visualization.
Figures 11 and 12 compare the top ranked images of our
method versus the best baseline.

Benefits of end-to-end training for place recognition As
shown in the main paper and in figure 10, the popular idea of
using pretrained networks “off-the-shelf” [6, 7, 22, 60, 62]
is sub-optimal as the networks trained for object or scene
classification are not necessary suitable for the end-task of
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(a) (b) (c) (d) (e) (f)
Figure 7. Google Street View Time Machine examples. Each column shows perspective images generated from panoramas from nearby
locations, taken at different times. The goal of this work is to learn from this imagery an image representation that: has a degree of invari-
ance to changes in viewpoint and illumination (a-f); has tolerance to partial occlusions (c-f); suppresses confusing visual information such
as clouds (a,c), vehicles (c-f) and people (c-f); and chooses to either ignore vegetation or learn a season-invariant vegetation representation
(a-f).
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Figure 9. What has been learnt? Each column corresponds to one image (top row) and the emphasis various networks (under fmax) give
to different patches. Each pixel in the heatmap corresponds to the change in representation when a large gray occluding square (100×100)
is placed over the image in the same position; all heatmaps have the same colour scale. Note that the original image and the heatmaps are
not in perfect alignment as nearby patches overlap 50% and patches touching an image edge are discarded to prevent border effects. All
images are from Pitts250k-val that the network hasn’t seen at training.

place recognition. The failure of the “off-the-shelf net-
works” is not surprising – apart from the obvious benefits
of training, it is not clear why it should be meaningful to di-
rectly compare conv5 activations using Euclidean distance
as they are trained to be part of the network architecture. For
example, one can insert an arbitrary affine transformation
of the features that can be countered by the following fully
connected layer (fc6). This is not a problem when trans-
ferring the pre-trained representation for object classifica-

tion [49, 89] or detection [21] tasks, as such transformation
can be countered by the follow-up adaptation [49] or clas-
sification [21, 89] layers that are trained for the target task.
However, this is not the case for retrieval [6, 7, 22, 60, 62]
when Euclidean distance is applied directly on the output
“off-the-shelf” descriptors.

Image retrieval experiments. We use our best perform-
ing network (VGG-16, fV LAD with whitening and dimen-
sionality reduction down to 256-D) trained completely on
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Method Oxford 5k (full) Oxford 5k (crop) Paris 6k (full) Paris 6k (crop) Holidays (orig) Holidays (rot)
Jégou and Zisserman [32] – 47.2 – – 65.7 65.7
Gordo et al. [23] – – – – 78.3 –
Razavian et al. [62] 53.3† – 67.0† – 74.2 –
Babenko and Lempitsky [7] 58.9 53.1 – – – 80.2
a. Ours: NetVLAD off-the-shelf 53.4 55.5 64.3 67.7 82.1 86.0
b. Ours: NetVLAD trained 62.5 63.5 72.0 73.5 79.9 84.3

Table 4. Comparison with state-of-the-art compact image representations (256-D) on image and object retrieval. We compare (b.)
our best trained network, (a.) the corresponding off-the-shelf network (whitening learnt on Pittsburgh), and the state-of-the-art for compact
image representations on standard image and object retrieval benchmarks. “orig” and “rot” for Holidays denote whether the original or the
manually rotated dataset [7, 8] is used. The “crop” and “full” for Oxford/Paris correspond to the testing procedures when the query ROI is
respected (the image is cropped as in [7]), or ignored (the full image is used as the query), respectively. † [62] use square patches whose
side is equal to 1.5× the maximal dimension of the query ROI (the detail is available in version 2 of the arXiv paper [61]), so the setting is
somewhere in between “crop” and “full”, arguably closer to “full” as ROIs become very large.

Pittsburgh, to extract image representations for standard ob-
ject and image retrieval benchmarks (Oxford 5k [53], Paris
6k [54], Holidays [26]). Table 4 compares NetVLAD to
the state-of-the-art compact image representations (256-D).
Our representation achieves the best mAP on Oxford and
Paris by a large margin, e.g. +20% relative improvement on
Oxford 5k (crop). It also sets the state-of-the-art on Hol-
idays, but here training is detrimental as the dataset is less
building-oriented (e.g. it also contains paysages, underwater
photos, boats, cars, bears, etc.), while our training only sees
images from urban areas. We believe training on data more
diverse than Pittsburgh streets can further improve perfor-
mance. The complete set of NetVLAD results for different
output dimensions is shown in table 5.
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(e) Tokyo 24/7 all queries
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(f) Tokyo 24/7 daytime
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Figure 10. Comparison of our methods versus off-the-shelf networks and state-of-the-art. The base CNN architecture is denoted in
brackets: (A)lexNet and (V)GG-16. Trained representations (red and magenta for AlexNet and VGG-16) outperform by a large margin off-
the-shelf ones (blue, cyan, green for AlexNet, Places205, VGG-16), fV LAD (-o-) works better than fmax (-x-), and our fV LAD+whitening
(-∗-) representation based on VGG-16 sets the state-of-the-art on all datasets. [80] only evaluated on Tokyo 24/7 as the method relies on
depth data not available in other datasets.
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Figure 11. Examples of retrieval results for challenging queries on Tokyo 24/7. Each column corresponds to one test case: the query
is shown in the first row, the top retrieved image using our best method (trained VGG-16 NetVLAD + whitening) in the second, and the top
retrieved image using the best baseline (RootSIFT + VLAD + whitening) in the last row. The green and red borders correspond to correct
and incorrect retrievals, respectively. Note that our learnt descriptor can recognize the same place despite large changes in appearance due
to illumination (day/night), viewpoint and partial occlusion by cars, trees and people.
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Figure 12. Examples of retrieval results for challenging queries on Tokyo 24/7. Each column corresponds to one test case: the query
is shown in the first row, the top retrieved image using our best method (trained VGG-16 NetVLAD + whitening) in the second, and the top
retrieved image using the best baseline (RootSIFT + VLAD + whitening) in the last row. The green and red borders correspond to correct
and incorrect retrievals, respectively. Note that our learnt descriptor can recognize the same place despite large changes in appearance due
to illumination (day/night), viewpoint and partial occlusion by cars, trees and people. The last column corresponds to a difficult query,
which is hard for our method because of its overall very dark appearance.
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