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 INTRODUCTION AND MOTIVATION 

xascale-grade High-performance Computing (HPC) systems require dramatic improvements in
nergy efficiency to provide an unprecedented performance level within a strict power envelope.
his implies the use of advanced Complementary Metal Oxide Semiconductor (CMOS) technolo-
ies only a few nanometers wide (i.e., each logic gate may consist of few atoms). Yet, device scaling
omes together with a higher susceptibility to manufacturing process variations, environmental
onditions, radiation and aging [ 41 ]. While these effects may be lower than in previous technolo-
ies at the transistor or singe-cell level [ 101 ], the reliability per area unit is similar or lower in latest
echnology nodes [ 127 ]. These dependability concerns together with the incredibly large number
f electronic devices in future Exascale systems, puts reliability in par with energy efficiency and
erformance as design considerations in current and future HPC systems. As a consequence, Ex-
scale systems will suffer dramatically higher fault rates [ 25 , 93 ]. This is already observable in
etascale systems as we will see in Section 1.1 . 
In this scenario, classic error detection and correction mechanisms will fail to scale, since they

ave been devised to deal with relatively low fault rates. Therefore, Exascale systems cannot rely
nly on error detection and correction mechanisms acting once faults have happened, but need
nstead effective ways to maximize applications survivability and, consequently, making the sys-
em more efficient and predictable. Exascale systems will require ensuring reliable operation in
he presence of very high fault rates, including transient and permanent faults, steadily degrading
ardware while meeting stringent power constraints and achieving high performance. 

.1 Errors Reported in HPC Systems 

eliability has already been a concern for HPC systems for decades. As early as 2003, the Big
ac Virginia Tech’s Advanced Computing facility failed to boot due to the high failure rate in

on-ECC protected memory [ 142 ]. The impact of radiation was later confirmed in 2009, when
he Jaguar supercomputer (number 1 in the Top500 list at that time) reported 350 ECC-corrected
rrors per minute [ 142 ]. However, ECC is not enough to deal with increasing fault rates. For in-
tance, the Titan supercomputer at Oak Ridge National Lab recently reported a Mean Time Be-
ween Failure (MTBF), due to detected uncorrectable errors (DUE) caused by radiation, of only
4 hours [ 168 ]. The previous works provide DRAM-only errors, but an HPC system is susceptible
o other sources (e.g., abnormal execution time, software bugs, I/O errors) [ 60 ]. When considering
ll possible sources, Reference [ 58 ] reported a Mean Time To Interruptions (MTTI) of 3.5 days; and
eference [ 120 ] reported a 20 × increase in failure rate when an application moves from 10.000 to
2.000 CPU cores. 

Reliability concerns affect not only supercomputers but also data centers. For instance, a recent
tudy for Facebook data centers reveals that every month 3% of the servers experience errors
orrected in memory, whereas 0.03% of the servers experience DUE in DRAM memory [ 122 ]. Thus,
nly memory errors, despite ECC protection, may make one out of every 3,000 servers to crash
very month with 2014–2015 technology. Moreover, even recoverable errors have a non-negligible
mpact on performance [ 92 ]. More advanced technologies with higher susceptibility to radiation
CM Computing Surveys, Vol. 53, No. 5, Article 95. Publication date: September 2020. 
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nd aging, the use of larger memories, as well as the effect of other semiconductor components,
uch as processors and GPUs, can only lead to much higher hardware-related failure rates in the
uture. 

.2 The Need for Reliability in HPC 

eliability has been acknowledged as a major roadblock for HPC applications in current super-
omputers and data centers [ 25 ]. As reported in recent years, faults have already the power to
ause frequent issues in nowadays HPC systems despite existing means for fault tolerance [ 63 ]. In
act, the reliability of HPC systems has recently gained particular attention [ 14 , 93 ]. 

In particular, the authors in Reference [ 93 ] propose a methodology based on identifying patterns
or faults and errors. These patterns define a flow from detection to containment and recovery. The
ethodology considers the full system stack and it is demonstrated for checkpoint-restore (for pro-

ess failures), process migration (for error avoidance) and DRAM errors (for soft-error resilience).
hese works are orthogonal to ours. In this work, we focus on the hardware/middleware inter-
ctions for HPC resiliency. At the hardware level, the already known reliability problems (e.g.,
rocess variations, soft-errors) come along additional problems at different scales, such as thermal
nd application timing issues. 

1.2.1 Thermal Issues. The increasing power density in post-Dennard chips increases on-chip
emperature. In turn, on-chip peak temperatures and thermal gradients increase silicon device
ear-out and they threaten the long-term reliability of chips (usually measured as Mean Time To

ailure (MTTF)) [ 70 ]. Current techniques such as Dynamic Voltage and Frequency Scaling (DVFS)
r core turn-off can potentially reduce the system’s long-term reliability due to undesired col-
ateral effects such as thermal cycling [ 39 ]. In metallic structures, if the thermal cycle amplitude
ncreases from 10 ◦C to 20 ◦C, lifetime reliability can decrease up to 16 × [ 38 ]. Furthermore, given
hat performance is highly affected by thermal aspects, the operational frequency can decrease
ore than 35% when working at 110 ◦C instead of at 60 ◦C [ 90 ]. 
The concerns above lead to the need for prediction-based (proactive) and emergency-based (re-

ctive) thermal management with the goal of reducing hot-spots and maintaining temperature
radients within a 5 ◦C limit. Otherwise, the large number of chips in Exascale systems together
ith highly heterogeneous thermal-related faults across chips (e.g., due to different utilization and
ifferent process variations) will lead to highly unpredictable and frequent faults. Similarly, ther-
al aspects also affect indirectly system performance. Namely, the vibrations induced by the fans
ay have a noticeable impact on the IO throughput, and thus decrease the performance of data-

ensitive applications [ 29 , 30 ]. One should underline that proper thermal management is crucial
rom the perspective of system reliability and delivered quality of service. 

1.2.2 Application Timing Issues. Corrected errors (CE) may have collateral effects in timing,
hus decreasing performance and QoS. Detected Unrecoverable Errors (DUE) impose the abnormal
ermination of applications and potential system reboots, which may lead to increased operational
osts and lower end user satisfaction. Finally, Silent Data Corruption (SDC) can be even more chal-
enging than DUE, since failures remain unnoticed, which may have catastrophic consequences
epending on the type of application where they occur, since HPC applications are nowadays
idespread in financial, engineering and scientific domains among others. 
Applications have also shown high susceptibility to correctable errors in data centers depend-

ng on the means set to log those errors [ 78 ]. In particular, owners of data centers need to log
nformation related to errors to diagnose systematic failures and replace faulty (or error prone)
omponents. However, as shown in Reference [ 78 ], a fault rate of four errors per second is enough
o increase execution time of HPC applications by 2 . 5 × and decrease the quality-of-service (QoS)
ACM Computing Surveys, Vol. 53, No. 5, Article 95. Publication date: September 2020. 
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Fig. 1. Fundamental chain of dependability threats. 
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f web-based applications by 100 ×. Larger memories and advanced CMOS technologies can only
orsen this trend. 
A number of operations are intrinsically resilient to faults due to their heuristic nature or due

o the characteristics of their output, so that upon a fault, the impact may be a slower convergence
owards the solution, or a degradation of the output that, although different from the golden (i.e.,
rror free) output, is semantically equivalent or sufficiently good. For instance, a fault altering the
emperature or humidity of a data point in a large matrix used for weather forecasting, has negli-
ible effects at the scale at which weather is forecast. In the particular case of HPC applications,
his effect has been studied for multiple solvers [ 22 , 23 , 26 , 66 ]. Therefore, although an increasing
ault rate challenges correct execution of applications and/or their performance, some faults, even
f uncorrectable, may be naturally tolerated for some applications. This has particular relevance
n HPC systems where a single failure may impact the execution of an application running for

any hours on a large set of computing resources, thus making full re-execution unaffordable and
ielding ineffective rollback (e.g., checkpointing) if errors are frequent. In this context, ignoring
ome faults may be a suitable solution. 

.3 Summary 

ncreased fault rates in future HPC systems will naturally lead to higher CE, DUE, and SDC rates,
hus causing unacceptable impact in performance, QoS, and operational costs, apart from unfore-
eeable consequences due to SDC. Therefore, error detection and correction techniques, while still
eeded, will not be enough to deal with increased fault rates. In this context, solutions to mitigate
ault rates, and to keep temperature low and constant so that fault rates do not exacerbate, will be
eeded to complement fault tolerance. In this article, we specifically focus on solutions addressing
PC systems. While some of these approaches may be applicable to conventional data centers, the
niqueness of the HPC infrastructure requires its own analysis and particular solutions—as we will
ee in short. We first review the state of the art on relevant fault models for HPC systems (Sec-
ion 2 ), fault prediction techniques (Section 3 ), and error detection and correction techniques for
PC systems (Section 4 ), putting all techniques in perspective with forthcoming HPC challenges.
inally, we provide some future directions for research and summarize this work in Section 5 . 

 FAULT TAXONOMY AND MODELS FOR HPC 

he introduction of the generic term dependability was probably the first attempt to introduce
a global concept that contains the attributes of reliability, availability, safety, maintainability,
tc.” [ 11 ]. In 1980, a joint committee on “Fundamental Concepts and Terminology” was formed
y the IEEE Computer Society and the IFIP WG 10.4 [ 110 ]. The committee published in 1992 a
ook named Dependability: Basic Concepts and Terminology [ 109 , 111 ]. In this work, we will follow
heir terminology. Especially significant is the distinction between fault, error, and failure. As de-
ned in Reference [ 11 ], “the fundamental chain of dependability and security threats” is shown in
igure 1 . 

For instance, at circuit level faults occur due to many reasons (e.g., electromagnetic interfer-
nce) and create a wrong transient or permanent state in combinational or sequential elements.
ventually, a fault may be activated by making it visible somehow at the output of the circuit (e.g.,
utput latch) thus becoming an error. This could be the case of a particle strike (fault) that creates
CM Computing Surveys, Vol. 53, No. 5, Article 95. Publication date: September 2020. 
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Fig. 2. Failure modes according to their domain. 

a  

b  

b  

i  

b  

c  

t  

t

 

 

 

(  

t

 

 

e

 

 

 

 glitch in an internal signal of an adder. If such signal determines the output of the adder, then it
ecomes an error. Eventually, if such error is not managed properly (e.g., it is not detected), it can
e propagated until becoming a failure at the specific scope (e.g., at microarchitectural level). For
nstance, the adder may deliver a wrong result for an instruction of the program. Such failure may
e perceived as a fault at a coarser scope. For instance, such wrong value may only be used to be
ompared against another value and the output of the comparison is not changed, thus masking
he fault at software level, or such fault may be propagated to the visible output of the program,
hus potentially becoming a failure at a more general scope. 

As classified in Reference [ 11 ] from the failure domain viewpoint, one can distinguish between: 

• “Content failures . The content of the information delivered deviates from the golden (non-
faulty) execution.”

• “Timing failures . The arrival time or the duration of the execution deviates from the non-
faulty execution.”

These definitions can be specialized (i.e., content can be numerical, alphanumerical or any other
e.g., color), and a “timing failure” can be early, late, or simply not complete after a given time
hreshold). When both timing and content are incorrect, failures can be classified as: 

• “Halt if the service is halted (the external state becomes constant, or the system activity is
not perceptible).”

• “Erratic s or degradation . The system responds but it is erratic or under-performing.”

Figure 2 summarizes the service failure modes with respect to the failure domain viewpoint. 
Merging the previous classification, many recent works encapsulate both timing and/or content

rrors in the following categories: 

• Silent Data Corruption (SDC) . No error is detected, but data (application code and/or appli-
cation data) is corrupted. No change in timing is observed. 

• Detected Unrecoverable Error (DUE) . An error is detected (in data and/or timing), but it can-
not be corrected. 

• Corrected Error (CE) . An error, either explicitly detected or not, is corrected so that content
and timing are recovered. 
ACM Computing Surveys, Vol. 53, No. 5, Article 95. Publication date: September 2020. 
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.1 HPC Specific Requirements 

PC centers have some specific requirements that are not present in conventional data cen-
ers. For instance, in data centers, the business will define the Tier level of the infrastructure.
o the contrary, HPC data centers require a differentiated approach to maximize scientific out-
ut while minimizing operational and capital expenses. This requires a detailed analysis of the
ervices/applications provided and customer profiles. Different applications or customer groups
ay require different levels of redundancy and reliability. System designers and managers must

rade-off availability against the cost of potential failures. Another difference between HPC and
ata centers is the power density of a rack. In a conventional data center, it varies between less
han 1 kW up to 6 kW, whereas HPC centers deal with much higher densities. It is not unusual to
nd machines, currently in the market, consuming over 30 kW per rack [ 183 ]. Consequently, in
his survey, we focus solely on HPC centers and solutions. 

Overall, lower power is desirable for cost reasons, as well as lower temperature. This, in fact,
llows us to reduce cooling costs, with direct benefits in terms of infrastructure reliability and
eduction of power needed to feed the cooling system. However, the need for increasing perfor-
ance in HPC systems would reallocate any potential power saving or temperature reduction to

ncrease computational power. 
As the HPC centers get larger, the probability of errors increases proportionally to the number of

omponents. This is particularly true as technology integration grows, thus using smaller devices
e.g., gates and wires), which are subject to increasing current densities at relatively high tem-
eratures. Accordingly, those devices experience higher stress as the silicon technology shrinks.
herefore, HPC centers need to deploy suitable monitoring, prevention, and recovery tools to keep

heir systems operational. 

2.1.1 Energy and Power Modelling. There are now several extensive research efforts focus-
ng exclusively on power and energy models and techniques for the processors composing these
xtreme-scale computing systems. In Reference [ 134 ], the authors summarize these research efforts
ith a special focus on predictive power and energy models with an emphasis on node architecture

considering CP Us, GP Us, Intel Xeon Phis, and FPGAs). While Reference [ 134 ] presents power- and
nergy-related analytical models for high-performance computing systems and applications, Ref-
rence [ 43 ] focuses more on methods and tools as well as whole simulation environments that can
ake use of such models. Without power and energy models, it is not possible to perform thermal
odeling and, thus, model the reliability aspects that are described in the next section. 

2.1.2 Thermal Aging and Reliability. Bias Temperature Instability (namely, BTI), is a degrada-
ion effect that changes the threshold voltage of CMOS transistors, and has been regarded as one
f the most relevant aging effects in CMOS technology [ 163 ]. From a technological perspective,
he BTI occurs when, under a constant gate voltage, a stress in temperature (i.e., increasing tem-
erature from ambient to 200 ◦C) results in charges being trapped in the transistor gate oxide and
educes the voltage threshold of transistors [ 67 ]. These variations affect the switching characteris-
ics of transistors and, therefore, the maximum frequency under which the circuit can work [ 157 ].

The BTI effect causes two main components: (i) a non-permanent effect that disappears once the
ystem is switched off, and (ii) a semi-permanent effect that increases the effect of the previous one
s the system ages. This partially recoverable nature of BTI poses some interesting challenges for
he power/thermal/performance management of circuits as the duration of sleeping periods can
mpact BTI degradation and the overall system’s reliability. Recent work shows the importance of
he impact of temperature transients on BTI [ 65 ], whereas the previous observation implies that
aking into account both, application characteristics and transient temperature on BTI modeling,
CM Computing Surveys, Vol. 53, No. 5, Article 95. Publication date: September 2020. 



Predictive Reliability and Fault Management in Exascale Systems 95:7 

i  

t  

e

 

m  

m  

e  

f  

a  

u  

p  

o  

m  

s  

c  

e  

e
 

e  

o  

i  

T  

h  

t  

f  

o  

4  

e  

d  

a  

m  

f  

s  

e  

o  

i  

t  

s  

a  

t  

t  
s of utmost importance. This has been mostly analyzed at the circuit but also chip level [ 28 ]. Yet,
here start to be efforts to evaluate physical effects at the data center level [ 104 ], but limited to
lectromigration in the power delivery network. 

Observation 1. While application and circuit-level concerns have been kept separated in HPC, 

thermal effects on reliability call for the investigation of the impact of applications on tempera- 

ture, as well as for appropriate techniques to minimize thermal transients with negligible impact on 

performance. 

2.1.3 Thermal Modeling and Reliability in Heterogeneous Reconfigurable Systems. One of the
ost important challenges brought by current heterogeneous and reconfigurable systems is ther-
al modeling. As pointed out in Reference [ 70 ]: “In traditional high-performance CPUs, the knowl-

dge of the chip floorplan allows to identify, at design time, the hot-spots. However, this is not
easible if the system is equipped with reconfigurable fabrics (e.g., FPGAs) for application-specific
cceleration purposes. The thermal behavior will depend on actual accelerators used, which are
nknown during the design phase.” As a result, the development of thermal and reliability-aware
olicies comes at the cost of either exploring a large variety of reconfigurable fabrics utilizations,
r shifting thermal evaluation from the chip design phase to the end-user application develop-
ent phase or the run-time system. In this context, thermal simulators as 3D-ICE [ 155 ] provide a

olid base for runtime monitoring, prediction, and managing of the cooling mechanisms in an HPC
ontext. Similarly, recent proposals point in the direction of mixed design-time/run-time models,
nabling proactive thermal and reliability techniques for both conventional multicores and het-
rogeneous systems [ 99 ]. 

However, considering only the chip might not be sufficient to model the overall system thermal
fficiency, especially in terms of HPC. Thus, there is a need to evaluate how the thermal behavior
f the chip affects the whole infrastructure. This process starts from the computing node where
t belongs, through the rack and runs up to the whole server room including cooling equipment.
o this end, one should consider the power and thermal states of the resources in the HPC center
ierarchy and their mutual impact to get the full overview of the HPC system at hand. In this con-
ext, simulators such as DCworms [ 106 ], that allows incorporating thermal and cooling models
or the purpose of computing infrastructure simulations, can be applied to study the scalability
f proposed solutions and overall performance and energy gains. The authors of References [ 6 ,
2 , 133 ] addressed this issue by providing power models for both computing and non-computing
quipment. In Reference [ 40 ], these models [ 42 ] were used to study the energy efficiency of the
ata centers for different workloads and management policies. The M2DC project [ 131 ] also took
dvantage of thermal models in developed heterogeneous servers with energy-aware fan manage-
ent and providing them the power capping functionality. In particular, adopting thermal models

or predicting CPU temperatures enabled proactive fan management (i.e., smooth changes in fan
peed). The motivation is the fact that the proper thermal management does not only reduce en-
rgy costs but it also can increase the server’s lifetime and performance, including the performance
f running applications [ 29 ]. The same approach can be applied at the HPC center level as the cool-
ng efficiency factors, like the coefficient of performance, are highly dependent on the measured
emperatures. It must be noted that reliability and efficiency require—sometimes—opposite mea-
ures at the HPC center level. For example, higher room temperature leads to lower cooling costs
llowing even free cooling scenarios, especially for Direct Liquid Cooling (DLC) that enables high
emperature of coolant. However, this approach may have negative effect on reliability both at
he chip level (degradation caused by high temperature operation) and the whole HPC system
ACM Computing Surveys, Vol. 53, No. 5, Article 95. Publication date: September 2020. 
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shorter operation time in case of cooling system failure). Thus, a trade-off between reliability and
fficiency must be carefully balanced in future Exascale systems. 

Observation 2. Thermal modelling is no longer a chip design phase concern to be evaluated just 

once. Instead, the use of reconfigurable fabrics calls for new approaches based on the run-time ther- 

mal models to optimize cooling solutions and application performance. A careful trade-off between 

reliability and efficiency must be found using thermal/cooling models for whole HPC/datacenter 

systems. 

2.1.4 Timing Requirements in HPC. Focusing on timing requirements, in recent years it is pos-
ible to notice an increasing trend of emerging HPC applications that need strict timing require-
ents, that are typical of embedded systems. In fact, soft real-time guarantees, intended as aver-

ge Quality of Service (QoS) control, may be insufficient for certain classes of applications, such
s natural disaster prediction algorithms, medical software, and real-time video transcoding tools
 69 , 135 ]. However, existing timing analysis tools delivering a certain degree of guarantees are
ntended for relatively simple systems and execution scenarios with limited parallelism [ 2 , 179 ].
nstead, HPC platforms build upon high-performance CPUs able to run tens of threads simultane-
usly with unobvious interactions among them, thus challenging current practice for (worst-case)
iming analysis [ 143 ]. 

Observation 3. Techniques for the estimation of the Worst-Case Execution Time (WCET) used 

in the embedded domain, where platforms and execution models are simple, need to be scaled up to 

the challenge of executing parallel applications on large-scale high-performance systems due to the 

increasing need for timing guarantees in HPC. 

2.1.5 Network Capabilities. To accommodate current HPC workloads, data center intercon-
ects need to be “scalable, efficient, fault tolerant and easy-to-manage” [ 76 ]. A probe of this fact

ays out in the number of architectures proposed in literature to improve scalability and perfor-
ance in data center networks [ 5 , 44 , 79 , 80 , 113 ]. However, the issue of reliability has not been

ddressed to the same extent and the majority of studies have focused on understanding the impact
f network failures on system operation [ 76 , 100 , 105 ]. These works collect events from network
ogs with the goal of analyzing and characterizing different types of interconnect faults and errors.
owever, the analysis of recorded data is still challenging due to several aspects [ 76 ]. The most

emarkable issue is the inability to quantify precisely the impact of these types of failures on the
unning applications. 

Observation 4. Network fault models are not mature enough to be used in fault-prediction tech- 

niques. On the one hand, a deeper understanding and characterization of interconnect failures is re- 

quired. On the other hand, they need to be correlated with the application impact to close the existing 

gap. 

.2 Predominant Fault Sources in HPC 

or classification, we will distribute fault sources in two categories: internal and external faults.
nternal faults are caused within the system itself (and its components). External faults are caused
y the interaction of the system with the environment and/or surrounding systems. 
CM Computing Surveys, Vol. 53, No. 5, Article 95. Publication date: September 2020. 
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Table 1. Internal Sources of Variability, Leading to Circuit Degradation and/or Faults 
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Fault caused by external sources originate in: (1) noisy input signals (among those power is the
iggest concern) and external radiation; (2) operating ambient temperature (extreme temperature
perations in uncontrolled environments); and (3) particle strikes (alpha particles from package
ecay, cosmic rays creating energetic neutrons and protons, and thermal neutrons). In an HPC
ystem, noisy input signals (1) and, especially, power noise can be managed by extra power reg-
lators on the board. On the other side, ambient temperature (2) is controlled in the long run.
et, particular and localized temperature fluctuations can induce faults. Finally, particle strikes are
he main external concern during operation. As pointed out in Section 1.1 , fault rates caused by
article strikes produce a significant reduction of uptime and MTTF. 
Internal faults are caused by mismatches in the manufacturing process and/or the degradation

f the circuitry during its lifetime. Table 1 describes these sources of variability in the circuitry.
he sources are classified according to three criteria: 

• Proximity : inter-die (between different dies), intra-die (within a given die), and device-to-
device (transistor to transistor). 

• Spatial : affecting the dimensions or material density (time independent). 
• Temporal : causing degradation when negative situations arise (time dependent). 

Internal faults are present in the chips used in HPC systems. As most spatial internal sources
ollow a statistical distribution, manufacturers select the less affected chips for their high-end
roducts. Such solutions are able to operate reliably at higher operating frequencies during the
inning process prior to sell them. Those components are, therefore, sold at higher prices. Most
PC systems are built with these high-end products. While the effects of these sources of faults
ay be lower than in ordinary chips, as technology scales, distributions widen, so all chips now

ave extra features to ensure a functioning device (and a high yield), despite spatial internal sources
f faults. 
Temporal sources involve certain operation conditions that favor the appearance of faults. In

his sense, (high) temperature as well as temperature transients trigger all temporal sources. More-
ver, parameter variations manifesting as faults may be exacerbated at high temperatures. Con-
equently, it is of great interest to study these phenomena. Next, we describe more in detail the
ffect of the temperature on the system reliability. 

2.2.1 Thermal Gradients and Thermal Cycling. Thermal stress is a rapid change (in time or
pace) in temperature. Thermal stress degrades the MTTF of the system [ 112 ]. Reducing hot
pots is not enough to achieve an adequate thermal management of high-performance CPUs
ACM Computing Surveys, Vol. 53, No. 5, Article 95. Publication date: September 2020. 
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nd increase MTTF [ 98 ]. In the following paragraphs, we will briefly describe the thermal issues
aused by temporal or spatial gradients and thermal cycling. 

Temporal Temperature Gradient (TTG) can be defined as the rate that temperature changes over
ime. Given a point in time, the spatial temperature gradient (STG) is the temperature difference
etween two points in the circuit. Both STG and TTG pose a critical impact on the system lifetime
eliability [ 38 ]. Yet, note that STG is mostly affected by power and thermal throttling applied at
he processor level, i.e., the allocation of work and specific setup of all cores in the system need
o be taken into consideration. In contrast, TTG is mostly dependent on the operating frequency
nd the workload characteristics of each core. 

Finally, Thermal Cycling (TC) is the phenomenon of regularly increasing and decreasing tem-
erature. [ 180 ]. Thermal cycling can be measured through Downing’s rainflow-counting algo-
ithms [ 64 ]. MTTF reduction due to thermal cycling occurs due to the mismatch on the expansion
oefficient between the layers of the chip, which results in thermo-mechanical stresses. Thermal
ycling reduces the MTTF as the number of cycles or the amplitude of the cycles increase. Large
mplitudes are usually caused by the co-scheduling of very different thermal profile applications
n a single core. Power saving techniques as DVFS or turning on and off cores can increase the
umber of thermal cycles [ 38 ]. 

Observation 5. The dynamic behavior of temperature in terms of temporal and spatial gradi- 

ents, as well as thermal cycles, has a direct impact on the MTTF of HPC processors. Therefore, pro- 

cessor configuration and utilization can no longer be unaware of those thermal concerns. Suitable 

techniques must be devised to leverage such issues along with other concerns, namely, performance, 

power, hot-spot management, and the like. 

 FAULT-PREDICTION TECHNIQUES FOR HPC 

 number of fault prediction mechanisms and analytical methods for estimating application’s ro-
ustness have been proposed in the literature. Predicting faults, rather than detecting them, pro-
ides some additional time to react to recover from the fault (or even avoid it at all). Estimating
pplication’s robustness based on fault statistics and effective usage of resources minimizes appli-
ation crashes and helps determine optimal resource utilization. This information can be exposed
o the software orchestrator to drive efficiently the different recovery mechanisms and the utiliza-
ion of the system to maximize resource efficiency. 

In our analysis, we follow the taxonomy introduced in Reference [ 145 ], but we only keep those
ategories that apply to the problem at hand. For the sake of completeness, apart from the very few
orks targeting HPC systems, we include relevant works that could be applied to HPC systems. 

.1 Techniques Based on Failure Tracking 

hese techniques build upon the idea that past failures can be used to predict future failures.
herefore, one of the main limitations of this type of technique is that failures must have occurred

o be able to predict future ones. Hence, while those techniques can be appropriate for failures due
o transient and intermittent faults, they lack the ability to prevent permanent faults. In particular,
he latter relates to the fact that, once a failure caused by a permanent fault has manifested, any
orrective action may help preventing further failures due to such fault, but cannot do anything
o mitigate the fault, since it is already permanent. 

Some works—not specific for HPC systems—have analyzed statistical relationships and proba-
ility distributions of the time-between-failures [ 137 ]. These techniques may also be used in the
CM Computing Surveys, Vol. 53, No. 5, Article 95. Publication date: September 2020. 
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ontext of HPC systems, since their statistical nature makes them agnostic to the source of the
ailure data. Such an approach is, indeed, investigated in Reference [ 20 ], where failure prediction
s performed based on the probabilistic analysis of job failures in an HPC system. 

Other works, instead of looking for probability distributions, build upon dependencies and cor-
elations to predict failures based on the occurrence of other failures [ 57 , 58 , 71 , 116 , 167 ]. In partic-
lar, Reference [ 167 ] notes that failures can occur either close in time or close in space. In general,
lose in time failures may relate to a single fault (e.g., a permanent fault or uncorrected transient
ault) that leads to multiple failures, whereas close in space failures may relate to a broader set of
onditions, such as a single fault that manifests in several components using the faulty (shared)
omponent, or as multiple faults whose occurrence is not independent (e.g., due to high aging of
n overused set of resources). Such ideas have been used by Reference [ 116 ] to predict failures of
he IBM’s BlueGene/L system. In particular, authors build upon event logs with reliability, avail-
bility, and serviceability (RAS) information to analyze whether some patterns exist in terms of
ime occurrence or space occurrence of failures. Then, upon the detection of a failure, if a positive
pace or time correlation has been found for that fault, then related faults are assumed to occur
n the near future either in the same component (time dependence) or in neighbor components
space dependence). This work was extended for IBM’s BlueGene/Q system [ 57 , 58 ] for fatal sys-
em events. These concepts have also been applied to distributed systems, thus being of relevance
or HPC systems [ 71 ]. 

Observation 6. Since fault rates are expected to increase in future HPC systems, there will be 

more room to learn from already occurred faults, errors and failures. Indeed, rather than building 

upon failures, appropriate fault and error monitoring may allow developing these fault prediction 

techniques without requiring the occurrence of failures. 

.2 Techniques Based on Symptom Monitoring 

ymptom-based prediction builds upon system state information to predict whether a failure may
ccur in the future. Unlike failure tracking techniques, those based on symptom monitoring do not
eed any failure to occur in the system to predict the occurrence of future failures. Hence, they
o not suffer from the same limitation as other techniques where failures need to occur to predict
uture failures, which plays against preventing permanent faults. Symptom monitoring may allow
redicting failures due to future permanent faults, thus taking corrective actions before those faults
ctually occur, hence avoiding those faults. However, since correlation between symptoms and
uture failures may be weaker than the correlation between multiple failures, symptom monitoring
echniques may have higher chances of raising false positives (i.e., predicting a failure that would
ot occur) and false negatives (i.e., failing to predict a future failure). 
Most techniques do not target failures due to (electronics-related) faults but, instead, software

oncerns due to memory leaks, system performance degradation, and resource utilization that
ay lead to functional failures and decreased performance. For instance, function approximation

as been used to estimate when performance of some servers may degrade due to serving large
mounts of requests [ 8 ]. Machine learning has also been a popular approach for predicting failures
ased on symptom monitoring. Machine learning was already used successfully to predict failures
f mechanical components in the early 1990s [ 170 ]. However, it has been used in a plethora of
orks targeting server-type and telecommunications systems [ 71 , 86 , 145 ]. In this context, Hoff-
ann et al. [ 87 ] showed that the selection of appropriate input variables for machine learning is

he most relevant concern to maximize the accuracy of the approach. 
ACM Computing Surveys, Vol. 53, No. 5, Article 95. Publication date: September 2020. 
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A different approach within symptom monitoring consists of training a classifier with data re-
ated to systems prone to failure and systems that are not, using some variables of the system. Then,
uring operation, those variables are monitored and assessed by the classifier algorithm, which,
ased on the current state of the system, decides whether it matches better a failure-prone or a
ailure-free condition. This concept has been applied with discrete variables [ 81 ], with continuous
ariables [ 126 ] and with support vector machines [ 72 , 171 ] for disk and server failure prediction,
hus being of relevance for HPC systems. Such techniques are not restricted to specific compo-
ents. Moreover, it has been shown that, since some of these techniques do not provide binary
nswers (failure versus non-failure) but continuous values, their outputs can be used to monitor
lowly evolving system states that get closer to failure [ 15 ]. Similar approaches have also been used
or fault classification across transient or permanent faults [ 138 ]. While this is not a failure predic-
ion scheme per se, fault classification can be used to feed failure prediction, since transient faults
an be eliminated, whereas permanent ones remain and may likely lead to failures in the future. 

While symptom monitoring needs training data, other approaches build upon system models
etermining the range of values expected for multiple variables during failure-free operation.
ence, no training phase is needed, in general, for these approaches. During operation, the

et of variables used for failure prediction are assessed against the system model to determine
hether values are within failure-free ranges. If this is not the case, then a failure is predicted.
his approach has been applied to hard disk failure prediction [ 91 , 126 ] using models that use
ata during failure-free operation to predict failures. Similar implementations based on matrix
epresentation of the variables monitored and residual deviations with respect to failure-free
ehavior could also be used for failure prediction in HPC systems [ 151 ]. Alternative models
ave been used either based on statistical distributions of the variables assessed (e.g., mean and
ariance) to predict failures [ 177 ] or defining grammars of failure-free sequences of values [ 33 ].
hese models can be generally applied to failure prediction in HPC systems by monitoring
ppropriate variables of the system. Some other models build upon component utilization and
nteraction within a system to compare the set of components used against the different sets
sed during failure-free operation [ 34 , 103 ]. At processor level, some authors show that specific
ariables (e.g., mispredicted branches, cache misses) vary noticeably upon the occurrence of a
ault, so they can be used to determine whether a fault has occurred [ 128 ]. While authors do not
se this technique for failure prediction, it could be used together with other techniques that,
or instance, relate error frequency with failure chances, as discussed later. Those approaches,
lthough not used explicitly for HPC systems, could be taken into account. 

A number of techniques for failure prediction, build upon past history of monitored variables
o predict their future values and, consequently, whether those values will fall into a range corre-
ponding to a failure. Such prediction can be performed with different means: 

• Regression: A function is adjusted to the data and future values used for prediction. 
• Residual computation: A residual value of the measurements is computed and used for pre-

diction. 
• Time series prediction: Both stationary and non-stationary time series are used to predict

future values. 
• Signal processing techniques: Noise is removed from measurements for a better prediction.

In general, these techniques have not been used for failure prediction due to (electronics)
aults, but their different incarnations can be applied to the problem at hand. For instance,
egression-based methods have been used to predict time-to-exhaustion of a given resource [ 75 ].
 similar approach could be applied to failure prediction if appropriate variables to monitor are

dentified. Residuals for fractality and time series of Hölder exponents have also been used to
CM Computing Surveys, Vol. 53, No. 5, Article 95. Publication date: September 2020. 
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redict resource exhaustion [ 148 ]. Time series have been used to predict whether values will
iolate a threshold [ 83 ]. 

Observation 7. While transient faults can be tolerated and, hence, fault prediction can build on 

past transient faults to predict future ones, permanent faults cannot be removed. Hence, symptom- 

based fault prediction is particularly useful to this aim. Since temperature is highly related with 

aging and thus with permanent faults, there is a huge potential to adopt symptom-based fault pre- 

diction techniques, already used in other domains, to predict permanent hardware faults and prevent 

the occurrence of unrecoverable faults. 

.3 Techniques Based on Error Reports 

hese techniques build upon error events (i.e., error logs) to predict future failures. Unlike previous
ategories, these techniques neither need actual failures to have occurred, nor monitor specific
ariables periodically. Instead, error reports are monitored and decisions taken on an event-related
asis. 

Some authors use genetic algorithms to identify the rules to predict failures based on error
eports [ 178 ], whereas others build upon identifying specific sequences of errors occurring before
ailures to anticipate those failures [ 173 ]. Fault trees and Markov Bayesian Networks have also
een suggested as potential methods on which to build failure prediction solutions [ 145 ]. 
As for the case of occurred failures, some techniques aim at identifying dependencies and cor-

elations between errors, either in time or in space, to predict failures. In particular, an observa-
ion common across multiple works is that the number of errors per time unit increases before a
ailure [ 114 ]. This observation has been corroborated in several works. For instance, in the IBM
lueGene/L supercomputer, a job experiencing two non-fatal events has a higher chance to experi-
nce a failure (above 5 ×) than if it only experiences one [ 116 ]. Increased error frequency has been
he basis for several failure prediction methods. Some authors rely on changes in the distribution
f error types to predict failures [ 150 ], whereas others study the error frequency and, if such fre-
uency increases, an imminent failure is predicted [ 107 , 129 ]. Error frequency has also been used,
ot only to predict failures, but to classify faults and failures as either transient or permanent [ 1 ,
17 ]. 

Beyond error frequency, some works also consider whether some patterns exist in the sequence
f errors prior to a failure. In particular, error types and times are exploited for pattern identifica-
ion [ 117 , 146 , 172 ]. In the case of patterns, a specific technique has been applied to HPC systems,
uilding upon techniques from the signal processing domain [ 73 ]. Such technique is proven ef-
cient to schedule checkpoints in failure-prone locations and to migrate tasks away from those
odes. 
In this context, some authors investigate how to monitor error logs in distributed HPC systems

nd deliver information appropriately to software layers to build failure prediction mechanisms
n top [ 140 ]. 

Observation 8. While techniques based on error reports do not need those errors to become 

failures to use them, faults need to occur in both cases. Hence, limitations related to the occurrence 

of permanent faults are also a concern for this type of technique. However, expected increasing error 

rates enable the development of more accurate fault-prediction mechanisms due to the increased 

amount of information in the error logs. 
ACM Computing Surveys, Vol. 53, No. 5, Article 95. Publication date: September 2020. 
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.4 Timing Analysis in HPC 

ealing with application timing constraints in the HPC scenario is extremely challenging, due
o the unpredictability of hardware and software layers, usually composed of Commercial-Off-
he-Shelf (COTS) components that make the tasks timing analysis hard or even impossible [ 45 ].
iming constraints are usually considered in the soft real-time sense in HPC. Several research
orks and tools to deal with the resource management problem have been developed in recent
ears and they are thoroughly reviewed in literature surveys [ 94 , 152 ]. However, the number of
orks considering strict timing constraints for HPC is far much lower. In fact, even if hard real-

ime has been widely studied in recent decades for parallel architectures [ 51 ], the applicability of
uch techniques in HPC environments is limited—if at all possible—due to the previously discussed
npredictability challenges. Although some recent works on HPC timing predictability exist [ 61 ,
35 ], this problem is still open, and several challenges have to be tackled, since existing solutions
re not general enough yet. In this context, probabilistic timing analysis that aims at reducing
he amount of information needed for the timing analysis and relieves end users from having
o exercise too much control on their system under analysis [ 27 ], offers an interesting venue to
evelop solutions for HPC systems. 

Observation 9. The emergence of HPC applications with strict real-time needs calls for the devel- 

opment of suitable WCET estimation techniques to guarantee with sufficient confidence that timing 

faults cannot occur. Building upon methods that allow modeling the system as a black box (or as 

close as possible to a black box) is a promising path to follow due to the portability and scalability 

of those approaches. 

.5 Summary 

s shown, there is a plethora of techniques that can be used for fault, error, and failure prediction.
ost of them have not been applied to the particular case of HPC systems or do not target (elec-

ronics) fault-related failures. However, the number of possibilities to develop failure prediction
echniques for HPC systems is huge, but appropriate techniques need to be devised and proven
ffective. 

 ERROR DETECTION AND RECOVERY IN HPC SYSTEMS 

iterature on error detection and recovery is abundant, and many techniques are general enough
o be applied to both HPC and non-HPC systems. Next, we review the most relevant techniques
or the problem at hand, at hardware, application, and system level. 

.1 Fundamental Hardware Monitoring 

eliability, availability, and serviceability (RAS) is a term used in computer systems to include the
esign and implementation of appropriate means to ensure system reliability, high availability and
erviceability. While other related concepts have been often considered in computer systems, such
s security and maintainability, the term RAS is often used (and abused) to refer to the original
hree concepts, as well as to some others. 

The term RAS was originally coined by IBM to refer to the robustness of their mainframe com-
uters [ 88 ]. Nowadays, not only IBM provides support for RAS, but virtually all hardware vendors
n the HPC domain provide support for it, including Intel [ 96 ], AMD [ 124 ], and ARM [ 9 ]. RAS
upport includes a number of interdependent features. The most common ones are as follows: 
CM Computing Surveys, Vol. 53, No. 5, Article 95. Publication date: September 2020. 
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• The initial Machine Check Architecture capabilities. Some tests are performed to validate
that hardware operates normally and without errors. For instance, in the case of memories,
usual March tests are passed to validate that no permanent fault is in place [ 21 ]. Those tests
consist of writing specific data patterns intended to trigger different fault types. 

• Processor instruction error detection. For example, residue codes for data operated, and
valid opcode checking are examples of error detection means in this category. 

• Parity or ECC errors in caches, system memory, and memory bus have been shown ef-
fective to capture faults leading to bitflips, such as those caused by radiation, temperature
disturbances, aging, and crosstalk. 

• Input/Output: Checksums (like CRC) for data transmission and storage, with a nature sim-
ilar to that of parity and ECC. 

• Storage: Checkpointing or journaling file systems for file repair after crashes. 
• Background scrubbing. This solution is often employed to ensure that single-event upsets

(SEUs) are detected and corrected timely before multiple SEUs accumulate, thus becoming
unrecoverable. 

• Power/cooling: violation of nominal operating frequency, voltage, temperature, power en-
velope. For example, processors are usually halted on a temperature overrun to protect the
physical integrity of the chip. 

RAS support includes not only specific hardware support but also Operating System (OS) sup-
ort to monitor errors (even if recovered by hardware means), and configure the system and trigger
ecovery actions if needed. For instance, Linux-based machines include the mce-log daemon to
rack RAS-related information by interacting periodically with the corresponding RAS hardware
upport. Similarly, the Windows Hardware Error Architecture (WHEA) performs a similar work
or Windows machines. In both cases, the OS can trigger protective and/or remedial actions when
ecessary based on the predictive failure analysis (PFA) performed. 
Nowadays, computers have many RAS features that guarantee a sustained (high) availability of

he system. This relates to the fact that individual processors may be designed with a specific (very
ow) Failure in Time (FIT) rate. 1 For instance, a processor may have 200 FIT, so that, on average,
 failure is expected every 5,000,000 hours (i.e., every 571 years). However, if we set up 100,000
uch processors working cooperatively in a supercomputer or data center, then we can expect a
ailure in any of the processors every 50 hours (i.e., every 2 days), which may be unacceptable
or applications lasting several days. Note that in those large systems, other components such as
nterconnects, memories, and so on, will also contribute to the overall FIT rate of the system. 

Observation 10. While RAS support will still be needed in future HPC systems to cope with most 

of the errors, the increased fault rates per processor together with potentially higher processor counts 

per HPC system will lead to much higher error rates, thus exceeding the capabilities of RAS support 

to keep the HPC system available. Hence, RAS support on its own will not scale up to the challenge. 

.2 Application-level Fault Detection and Recovery 

4.2.1 Checkpoint/Restore. Checkpointing has been often used as a means for efficient fault
ecovery. A checkpoint consists of a snapshot of the execution at a certain point in time,
hich can be used to resume the execution from that point without starting over. In general,
 checkpoint must reflect the architectural state of the application at a given instant, thus
 The FIT rate is defined as the number of failures expected per 10 9 hours of operation. 
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ncluding its architectural registers and memory state. Unfortunately, checkpoints introduce
ome non-negligible overheads in terms of timing and storage, since saving the state requires
reezing execution and storing potentially large amounts of data, with crucial implications for
xascale applications [ 47 ]. Because of the above overheads, several solutions support incremental
heckpointing (i.e., only new or modified data, since last checkpoint is stored [ 77 ]), or rely on
 hierarchical and multi-level checkpoint organization for improved scalability [ 48 , 123 ]. Some
olutions take an application-specific approach for optimizing the checkpointing performance
e.g., family of solvers [ 36 ]) or at the library level [ 123 , 158 ]. 

Due to the tradeoff between checkpointing frequency and fault rate, a number of works aim at
dentifying optimal checkpoint intervals [ 19 , 46 , 48 , 53 , 55 , 59 ]. Interestingly, checkpointing op-
rations may even have significant impacts on energy consumption, calling for specific optimiza-
ion techniques aimed at the combined optimization of checkpoint rate and performance/energy
fficiency, addressing both traditional checkpointing and multilevel solutions [ 46 ]. Recent con-
ributions suggest that resource management for exascale systems should expressly support the
election of the optimal checkpointing strategy, depending on each application’s execution char-
cteristics, as well as scheduling decisions that are resilience-aware and make use of accurate time
redictions [ 49 ]. For example, the work in Reference [ 48 ] addresses the relationship between sys-
em failure rates, checkpoint/restart overheads, and checkpoint intervals and develops a prediction
odel for finding the optimal time duration between successive checkpoints. Finally, checkpoint-

ng can be performed hierarchicaly. In References [ 53 , 55 ], authors consider multi-level check-
ointing as a baseline and they provide insight on how to optimize the selection of checkpoint

evels based on failure distributions observed in a system, and how to compute the optimal check-
oint intervals for each of the checkpointing levels. Later on, in Reference [ 59 ], authors propose a
amily of hierarchical mechanisms consisting of two checkpointing levels: level 1 deals with errors
ith low checkpoint/recovery overheads such as transient memory errors, while checkpoint level
 deals with hardware crashes such as node failures. 

The complications brought by checkpointing techniques are exacerbated by the massive adop-
ion of accelerators in HPC, particularly GPUs. In fact, as more and more HPC workloads rely
n accelerators, an increasingly large part of the application execution state reside outside the
ost processor and memory. This offloading of computation poses new issues related to both the
ccess to the execution state and the particular reliability characteristics of acceleration devices.
or example, GPUs tend to have higher DUEs per GB than CPUs [ 74 , 156 , 169 ] and GPUs may
ome with large memory ports (e.g., 128 bit for High-Bandwidth Memory 2 technologies) as well
s reduced correction capabilities [ 132 ]. As an example, the work in Reference [ 60 ] shows that the
UE rate per GB for GDDR5 memory in NVIDIA Kepler GPUs can be as high as five times the
UE rate of CPU memory equipped with state-of-the-art error checking and correction support.
he availability of effective and scalable checkpointing techniques for accelerators is thus essen-

ial for emerging exascale systems. Initial contributions [ 130 , 149 , 166 ] do not support features
hat are normally available in recent devices, such as NVIDIA Unified Virtual Addressing (UVA),
s pointed out in Reference [ 74 ]. The decoupled CP U-GP U architecture poses additional technical
hallenges for effective application-wide checkpointing. Various works rely on a proxy-based ar-
hitecture, including CRCUDA [ 164 ] and CheCL [ 165 ], which targets the OpenCL nonproprietary
rogramming model [ 160 ]. OpenCL support is also featured by VOCL-FT [ 136 ], which provides
fficient soft error recovery capabilities while reducing data exchanges between the device and the
ost as well as disk traffic. Other works, introduce some form of GPU checkpointing like HiAL-
kpt [ 181 ], HeteroCheckpoint [ 102 ], and cudaCR [ 139 ], taking an application-specific approach to
rovide GPU-side checkpointing. Last, the CRUM framework presented in Reference [ 74 ], which
lso relies on a proxy-based approach along with new shadow page synchronization mechanisms,
CM Computing Surveys, Vol. 53, No. 5, Article 95. Publication date: September 2020. 
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irectly addresses the support for CUDA’s unified virtual memory (UVM) available in the latest
evice generations, enabling fast asynchronous checkpointing for large-memory CUDA UVM ap-
lications and significantly reducing checkpointing overheads. While all the above contributions
ddress GPU devices, FPGAs have emerged during recent years as an alternative for dedicated
cceleration matching a few specific types of HPC workloads. For this type of accelerator, check-
ointing is a nearly unexplored area, outside embedded systems [ 147 , 185 ]. 

Observation 11. Increasing error rates in future HPC systems will lead to increasing checkpoint 

costs. Therefore, there is a need for effective fault prediction, also extended to heterogeneous acceler- 

ators, to prevent errors occurrence while containing the cost of checkpointing. Further reducing the 

cost of checkpointing opportunistically will also allow tolerating increasing error rates. 

4.2.2 Algebraic- and Data-based Detection and Recovery. On a different strand, some works
uild upon the algebraic properties of the algorithms being executed to extend them for fault recov-
ry. In particular, solutions build upon mathematical relationships, adding software redundancy
nd/or data interpolation to recover from faults without needing to store checkpoints and, instead,
sing the data of fault-free threads to recover the data for the faulty one [ 3 , 4 , 35 , 108 ]. Algebraic
roperties have also been used for error detection for algorithms such as CG, Fourier transform,
R and LU factorizations, and matrix multiplication among others [ 17 , 36 , 50 , 85 , 89 , 115 ]. 
Recently, other authors started exploring data-based approaches such as linear prediction meth-

ds or machine learning to detect SDCs [ 54 , 56 , 161 , 162 ]. Eventually, the key component of any
nfering mechanism is the feature extraction (or identifying what are the key parameters to mon-
tor). In Reference [ 56 ], authors provide a detailed analysis on multiple available features. Several
rediction methods have been proposed: linear [ 54 ], or quadratic [ 56 ]. On the machine learning
ide, the proposal in Reference [ 161 ]—extended in Reference [ 162 ]—relies on the end user declar-
ng some state variables for monitoring. The fault detector is trained for the specific program and
ater, during operation, is able to detect whether the values for those variables are abnormal and,
ence, a SDC may have occurred. 

Observation 12. This type of technique needs to address three key challenges in future HPC 

systems: (1) lack of generality, (2) increasing error rates, and (3) atomicity of some computations 

on reconfigurable fabric or accelerators. In particular, the latter, apart from being a challenge, also 

opens the opportunity to configure those fabrics so that they perform computations and check for 

errors simultaneously with virtually negligible recovery costs. 

4.2.3 n-Modular Redundancy. One of the most used techniques for error detection and recovery
onsists of using n-modular redundancy, where n refers to the number of redundant copies of the
ystem executed [ 119 ]. This scheme is based on the redundant execution of the program and the
omparison of the outputs across the redundant instances to detect errors, based on the assumption
hat a single fault will not lead to errors in multiple instances or, at least, if this was the case, the
rror would be different in the faulty instances. This would guarantee error detection every time
utputs are compared. Correction, instead, may be built in different ways, among which we name
he following: 

• Majority voting recovery . On an error, if n ≥ 3 and the error probability is low enough, then it
is almost guaranteed that only up to 1 instance can be faulty. Hence, there will be a higher
number of (identical) correct outputs than the number of faulty outputs. By comparing
ACM Computing Surveys, Vol. 53, No. 5, Article 95. Publication date: September 2020. 
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outputs and voting, the correct output can be determined. Then, the state of the faulty
instance can be replaced by the state of a fault-free one before resuming execution. However,
this solution is only valid as long as the number of fault-free outputs is strictly higher than
n/ 2 . For instance, if n = 2 , then such a recovery mechanism is not possible. 

• Checkpoint rollback . On an error detection, execution can be rolled back to the last fault-free
checkpoint for all instances, regardless of the value of n and the number of faulty instances.

• Restart . An even simpler mechanism to recover consists of simply restarting the faulty task.
This solution can be regarded as appropriate as long as tasks are short enough, so that their
re-execution does not involve too many redundant computations. 

Usual implementations of n-modular redundancy include Triple Modular Redundancy (TMR)
nd Dual Modular Redundancy (DMR). For instance, the HP NonStop architecture [ 16 ] builds upon
ully redundant boards whose outputs are compared at the Sphere of Replication (SoR) of the full
oard, thus detecting errors only when requests are sent out of the board. Other SoR schemes
xist comparing the outputs of redundant computations at pipeline stage level, which allows quick
etection and recovery by simply reexecuting not-yet committed faulty instructions [ 153 ]. 
An important consideration in n-modular redundant systems is the independence of redundant

nstances so that a single fault does not lead multiple instances to the same erroneous output,
ince this would defeat the purpose of redundancy. This concern has been considered in the safety-
ritical domain (e.g., in the automotive domain [ 97 ]) and faults of interest include voltage drops,
rosstalk, and so on. The usual solution consists of introducing some form of diversity across
edundant instances, which can be attained by different means: 

• Using independent devices, e.g., using independent boards with independent power sup-
plies. 

• Diverse hardware implementations, e.g., using two different processors, for instance, an
Intel and an AMD processor. 

• Diverse software implementations, e.g., different implementations of the algorithm or dif-
ferent compilations of the same algorithm. 

• Time diversity, e.g., executing redundantly identical binaries on identical hardware, but
with some time slack in between so that a fault does not affect the same instructions in
redundant instances. 

The scheduling of redundant tasks in parallel systems has been an important concern [ 176 ]
s well as whether to enable only partial redundancy [ 18 , 95 ], so that it is used only for those
odes or computations more vulnerable to faults. Finally, n-modular redundancy has also been

mplemented by software means by making programs perform all computations redundantly. Such
oncept is known as n-version programming [ 10 ]. Particular redundant MPI implementations have
een evaluated with success [ 68 ]. 

Observation 13. n-Modular redundancy looses effectiveness as error rates increase, which is the 

case of future HPC systems. Therefore, these solutions are expected to remain effective as long as 

fault-prediction techniques can keep error rates low enough. 

4.2.4 Data Representation. Error detection mechanisms, such as n-modular redundancy
mong others, rely on the comparison of results against those of redundant computations, or
gainst some form of reference value or data check. In theory, these techniques are effective.
owever, their practical implementation on actual computers with limited data representation
ay pose some issues. In particular, processors implement finite-precision numbers (e.g., 32-bit
CM Computing Surveys, Vol. 53, No. 5, Article 95. Publication date: September 2020. 
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r 64-bit) that naturally fail to cover the spectrum of any number field, such as Integer or Real
umbers. Normally, this is not a big concern for integer numbers, since all numbers in a range

e.g., [ −2 63 , 2 63 − 1] ) can be represented and hence, as long as the program does not need numbers
eyond this range, the actual implementation is accurate with respect to the abstract algorithm.
owever, in the case of real numbers, limited representation leads to limited precision, which

mposes some form of rounding for computations. Hence, rounding can easily bring deviations
ith respect to the expected (theoretical) result and discrepancies across redundant computations

f operations can occur in different order. In particular, the latter concern relates to the fact that
he Associative Property does not hold for real numbers with limited precision. In other words,
f limited precision is used for real numbers, in general, we have that 

(A + B) +C � A + (B +C ). 

Therefore, either it is guaranteed that the same computations are performed strictly in the same
rder across redundant executions (or in an appropriate order for comparison against a golden
eference), or some degree of tolerance is allowed in the comparison so that small discrepancies
otentially caused by rounding effects do not alter the result of the comparison. Note that the

atter may allow some error tolerance if errors do not cause deviations larger than those already
ntroduced by rounding effects. 

Observation 14. The increasing use of reconfigurable fabrics and accelerators in future HPC 

systems must also be aware of data representation problems, since different implementations can 

help mitigate this problem or exacerbate it. 

4.2.5 Non-determinism. At a different abstraction level, we find that some algorithms may be
ntrinsically non-deterministic, thus challenging error detection, since a single correct result may
ot exist. For instance, algorithms based on pseudo-random search and/or optimization, such as
hose based on genetic algorithms or simulated annealing, may take different choices based on
oth different (random) initial values and different (random) choices during algorithm execution.
or instance, a genetic algorithm may pair individuals randomly, choose points for crossover of
ndividuals randomly and apply mutation of some genes randomly. Simply modifying the ran-
om seed of the pseudo-random number generator (PRNG) or performing different actions calling
he PRNG in a different order, may lead to different random choices and, thus, different results.
ence, determining whether a partial or final result is fault-free is particularly challenging for
on-deterministic algorithms regardless of whether n-modular redundancy is used or not. 

Observation 15. Semantic error checks based on assessing whether specific properties hold for 

partial results may open the door to tolerate not only non-determinism but also data representation 

variations and even some errors. Many algorithms whose output quality does not depend on specific 

values but, globally, on all data, may greatly benefit from this type of approach in future HPC 

systems with increased error rates. Thus, research on this topic becomes highly relevant. 

.3 System-level Solutions 

4.3.1 Task Migration. Task migration is a recovery action that can be used as an alternative or
s a support to Checkpoint/Restore (C/R). It consists of moving the code of a running task among
rocessing resources, as well as moving the allocated memor y pages among different memor y
odes. 
ACM Computing Surveys, Vol. 53, No. 5, Article 95. Publication date: September 2020. 
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The operating system or the resource managers can operate both in reactive and proactive mode.
n the former case, the task migration would consist of changing the set of resources allocated to the
iven task, before relaunching it or performing a rollback. In the latter instead, the task migration
ould be performed whenever a prediction of fault has been provided. In such a case, the OS or the

esource manager would check if the affected hardware is currently used to run some tasks, and
f so, change the resource allocation preventing such tasks from experiencing the expected faults.

Task migration can be exploited in the Restore phase of a C/R protocol, thus resuming the exe-
ution of the target application or tasks on a different set of computational resources. Depending
n the scope under which task migration is performed, in HPC we can distinguish among: 

• Inter-node task migration 

• Intra-node task migration 

The Inter-node migration consists of moving the tasks (or the entire application) from one com-
utational node to another. If the application has been implemented by using the Message Passing
nterface (MPI) programming model, then this may typically require the movement of MPI pro-
esses ( Process migration ) among nodes. Some authors proposed an extension of the OpenMPI
untime to perform this in a transparent manner [ 144 ]. 

In large clusters, process migration is therefore useful to add reliability and to balance the re-
ource allocation across the cluster [ 94 ]. The migration request can be managed by a centralized
ntity (e.g., by a global resource manager) or by the single node (a local resource manager), that,
or instance, may require processes to migrate in case of overload or a predicted fault. In this re-
ard, whatever the entity in charge of triggering the migration, we must take into account the
onsiderable cost due to the interruption, the migration of code and data to another node and the
estore procedure. 

In 1996, the Cocheck environment was proposed, being the first migration mechanism imple-
ented in MPI [ 159 ]. This environment was built on top of the MPI framework and not inside (ac-

ually small modifications to MPI framework were applied). The global consistent state is achieved
y imposing no message in-flight over the network. Then, checkpoint or a migration of a subset
f processes is performed according to what is required. 
Process migration can also be used to support classical C/R approaches, as presented in Refer-

nce [ 175 ]. The technique minimizes the number of checkpoints. To do so, the system is extended
ith a health monitor for each computing node. In case of imminent fault prediction, all running
rocesses are migrated to another node. 
For Intra-node migration , things are much simpler, since the resources are typically under the

ontrol of a single instance of the OS. Moreover, the overheads are much lower with respect to the
nter-node case. In the scope of the single node case, a reliability-oriented resource management
olicy can exploit the isolation mechanisms provided by the OS (e.g., Linux control groups or
ontainers) to implement this recovery action. 

Observation 16. Increasing fault rates in future HPC, as well as thermal considerations—which 

ultimately impact also fault rates—pose additional requirements and constraints on task migration 

for future HPC systems. 

4.3.2 Heterogeneous Task Migration. Task migration, in the context of heterogeneous hard-
are, poses additional challenges that do not exist when operating on homogeneous resources,
here any task can be potentially migrated to any hardware context. Instead, migration on het-

rogeneous platforms is much more complex if it needs to occur across heterogeneous computing
esources [ 94 ]. 
CM Computing Surveys, Vol. 53, No. 5, Article 95. Publication date: September 2020. 
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In 1998, the Tui System [ 154 ], an experimental framework to perform process migration between
eterogeneous machines, was introduced. The article was well received by the scientific commu-
ity as it shows several issues affecting heterogeneous migration. The main problem, in fact, is
iven by the conversion between different ISAs, that may require different instructions, register
umbers, register size, and so on. For this reason, the compiler is necessarily involved, because it
ust produce a code that matches one-to-one between different architectures. As a consequence, to

implify the problem, the Tui System introduced strong constraints regarding the two architectures
nvolved, which leads to a migration looking like quasi-homogeneous rather than heterogeneous. 

Other solutions proposed an Open MPI middleware to provide migration mechanisms in het-
rogeneous systems [ 24 ]. In this case, the process is not directly migrated but a new process is
tarted in the destination machine. Unfortunately, this middleware provides dedicated MPI calls,
iolating the standard and requiring substantial rewriting of all MPI applications. 

Observation 17. Heterogeneity expected in future HPC systems, with reconfigurable fabrics and 

other accelerators (e.g., GPUs), challenges existing task migration solutions for these environments. 

Thus, transparent and efficient task migration solutions are needed, to react timely if faults are 

predicted to occur soon. This must be achieved while preserving application timing constraints as 

much as possible. 

4.3.3 Power and Thermal Aware Resource Management. Peak temperature control through
ower management [ 141 ] was one of the first attempts to enable temperature control in a system
hrough available tools. However, even if power management techniques can have an influence
n the thermal hot spots across the chip, these techniques are nowadays insufficient to deal with
ot spots. Novel policies centered on thermal behavior have appeared for both design-time [ 31 ]
nd run-time [ 125 ]. 

Thermal management strategies may exhibit conflicting goals between peak temperature reduc-
ion and thermal stress reduction [ 37 ]. Yet, they do not consider power management or thermal
ycling. In addition, Reference [ 182 ] proposes task scheduling methods for reducing temporal tem-
erature gradients but disregards thermal cycling and spatial gradient. 
Holistic policies, such as Reference [ 98 ], are able to manage efficiently all thermal reliability

spects and pave the way to collaborative hardware (e.g., DVFS) software (e.g., workload allocation
nd application configuration) techniques to enhance the reliability of the system while providing
he adequate power/performance/QoS. However, there is still a lack of research works that tackle
fficient thermal management not only with the goal of controlling current thermal emergencies
ut also preventing the consequences of thermal stress, thereby focusing on long-term reliability
oth at the CPU and the overall server level. 

Observation 18. The increasing importance of thermal concerns, which impact reliability, in 

future HPC systems, call for appropriate task scheduling methods that consider all concerns holisti- 

cally. Those approaches that mitigate aging rather than simply predicting an imminent fault are of 

particular interest to minimize already high fault rates expected. 

.4 Network-level Solutions 

edundancy is the main characteristic provided by any reliable network that has been shown
bsolutely useful to recover from transient and permanent failures [ 7 , 62 ]. In this context different
patial and temporal redundancy techniques have been applied [ 121 ]. On the one hand, spatial
ACM Computing Surveys, Vol. 53, No. 5, Article 95. Publication date: September 2020. 
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edundancy techniques replicate components or data in the system, e.g, error-correction codes
nd transmission over multiple paths through the network, adopting in some cases 1:1 redundancy
chemes [ 7 ]. On the other hand, temporal redundancy techniques consist of implementing sliding
indow protocols, as Transmission Control Protocol (TCP). Link Control Blocks (LCBs) is another

xample of implementing sliding window protocols to provide reliable delivery of network traffic
t hardware level, used in Gemini Interconnect [ 7 ], among others. 

Observation 19. As future HPC systems grow in size, mechanisms that dynamically re-route 

packets when a device or link is unreliable are very expensive, hard to design/verify, and hard to 

manage. Therefore, models for analyzing the impact of redundancy schemes on overall system per- 

formance must be revised taking into account not only performance but also cost. 

.5 Programming Models and Runtime Managers 

everal programming models include now resilience support. In Reference [ 82 ], authors provide a
etailed analysis of the resilience features of the different programing languages, grouped by para-
igm: message passing (e.g., MPI-ULFM [ 118 ]), partitioned global address space (e.g., UPC++ [ 12 ]),
synchronous partitioned global address space (e.g., X10 [ 32 ]), actor (e.g., Erlang [ 174 ]), dataflow
e.g., Legion [ 13 ]). Table 2 summarizes the comparison developed in Reference [ 82 ]. The insertion
f resilience (fault tolerance) features is clearly visible. Beyond its original performance oriented
urpose, at this moment, the programming models and the respective runtime managers include
ome of the features listed in the previous sections (i.e., task migration, energy/power/thermal re-
ource management, checkpoint/recovery, reliability monitoring). Similarly, standalone resource
anagers such as SLURM [ 184 ], PBS [ 84 ], or Cobalt [ 52 ] (the three cover—at this moment—the

op five HPC systems) are also progressing in this direction. 

Observation 20. As future HPC systems grow in size, runtime managers—especially—and pro- 

gramming models—in cooperation—need to be an active part of the resilience stack and contribute 

towards reliability prediction, error detection and recovery. 

 CONCLUSIONS 

xascale systems will suffer from high fault-rates. This projection, coupled with the fact that it is
ot possible to recover from all faults—once they happen—asks for effective ways of maximizing
pplications survivability and, consequently, making the system more efficient and predictable. 

Given the reliability needs shown in Section 1.2 and the current state of the art, we need
o explore fault prediction mechanisms and analytical methods for estimating application’s
obustness. Predicting faults will provide the time to react to recover from the fault and will allow
rror detection and correction mechanisms to scale properly. Statistical and machine learning
echniques will likely have prominent importance to predict faults and leverage application and
un-time layers. Estimating application’s robustness based on fault statistics and effective usage
f resources will minimize application crashes and help determining optimal resource utilization.
his information can be exposed to both the local and the global resource managers to drive
fficiently the different recovery mechanisms (including checkpointing), the proactive reliability
olicies, and the utilization of the system to maximize resources efficiency. 
The co-running applications have a significant impact on the reliability and efficiency of

he system. Since they are executed at the same time, they compete for the shared resources.
CM Computing Surveys, Vol. 53, No. 5, Article 95. Publication date: September 2020. 
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Table 2. Programming Model Fault Tolerance Features [ 82 ] 
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nderstanding how the applications affect each other might help to schedule them more
fficiently, especially when timing requirements must be considered. 

To achieve these goals, there is a need for combining expertise on thermal and reliability mod-
ling, as well as on reliability-aware workload management techniques. 

In this article, we reviewed the main reliability concerns for future HPC systems, and the state-
f-the-art predictive solutions for fault mitigation, as well as error detection and correction tech-
iques for HPC systems. As presented, some valuable solutions exist mainly for error detection
nd correction, whereas predictive reliability and QoS is a less mature area requiring further in-
estigation and elaboration of practical solutions. 
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