
Duplicate Identification Algorithms in SaaS Platforms
Dac Nguyen

AISIA Research Lab
Ho Chi Minh, Vietnam

Quy H. Nguyen
AISIA Research Lab

Ho Chi Minh, Vietnam

Minh-Son Dao
National Institute of Information and

Communications Technology
Tokyo, Japan

Duc-Tien Dang-Nguyen∗
Department of Information Science

and Media Studies
University of Bergen
Bergen, Norway

Cathal Gurrin
Dublin City University

Dublin, Ireland

Binh T. Nguyen†
AISIA Research Lab

VNU HCM - University of Science
Ho Chi Minh, Vietnam

ABSTRACT
Existing duplicate records is one of the most common issues in
many Software-as-as-Service (SaaS) platforms. In this paper, we
study the duplicate identification problem in one specific SaaS plat-
form related to quality and compliance management by using the
address information. We interpret all typical mistakes from users
that can generate the existent duplicated organizations in a given
dataset, collected from the SaaS platform. Also, we create another
set by crawling location data from Open Address (US Zone). We
compare different methods, including Bag-of-words (using Cosine
Distance), Record Linkage Toolkits, and Siamese Neural Networks
using the triplet loss, in terms of precision, recall, and F1-score. The
experimental results show that using Siamese Neural Networks can
achieve a better performance in comparison with other techniques.
We plan to publish our Open Address dataset and all implementa-
tion codes to facilitate further research in the related fields.

CCS CONCEPTS
•Computingmethodologies→Machine learning algorithms;
Neural networks; Classification and regression trees.

KEYWORDS
Duplicate Identification, Siamese, Triplet Loss, bi-GRU, Software-
as-a-Service

ACM Reference Format:
Dac Nguyen, Quy H. Nguyen, Minh-Son Dao, Duc-Tien Dang-Nguyen,
Cathal Gurrin, and Binh T. Nguyen. 2020. Duplicate Identification Algo-
rithms in SaaS Platforms. In Proceedings of the 2020 Intelligent Cross-Data
Analysis and Retrieval Workshop (ICDAR ’20), June 8, 2020, Dublin, Ireland.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3379174.3392319

∗Senior author
†Corresponding Author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICDAR ’20, June 8, 2020, Dublin, Ireland
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7509-2/20/06. . . $15.00
https://doi.org/10.1145/3379174.3392319

1 INTRODUCTION
Nowadays, there have been more and more Software-as-a-Service
(SaaS) platforms in different aspects of daily lives in the fourth
industrial revolution. People focus on the digital transformation of
industry through connected systems, applications, and the gather-
ing and harnessing of useful data from customers to foster their
businesses. During the last decade, machine learning, data ana-
lytics, cloud services, and Software-as-a-Service (SaaS) are being
integrated into businesses of all sizes to create intelligent networks
and provide valuable data. As a result, SaaS platforms continue
growing rapidly due to its ability to integrate with a third-party
solution smoothly in an Industry 4.0 connected world. Efficient data
aggregation and storage from different data sources become neces-
sary for many SaaS products. Due to the blooming of data and data
mining tools in recent years, each company has to choose smarter
ways to restructure their data into a managed manner. Noticeably,
data’s characteristics depend on the corresponding product, the
architecture, and the final implementation of the company. Conse-
quently, data can vary much on size, shape, structure, and concept.

People habitually use the mail addresses as the essential infor-
mation for identifying customers in SaaS platforms. The insertion
process can be done manually and sometimes create multiple dupli-
cate records due to human mistakes or without checking existent
users. Typically, two addresses can be considered as a duplication
when they represent a unique entity, located at the same place on
the map. It is worth noting that these addresses usually contain
many misleading details, dialects, and acronyms. Also, the structure
of one address may be various among many countries. One may
break these rules and write the addresses down in a different way. It
creates more challenges to identify duplicated addresses accurately.
Consequently, it is critical to investigate an efficient duplicate iden-
tification algorithm for each SaaS company to have a better way of
managing new data coming and avoiding any duplication as much
as possible. It can help to keep the stability and integrity of the
customer data.

There have been multiple studies during the last two decades.
Gao and colleagues [3] present a duplicate detection algorithm for
light blogs and short comments by using the Word2Vec method
and Hamming distances. They compare their proposed methods
with the unweighted Word2vec method and the traditional TF-
IDF technique on the SICK corpus. The experimental results show
that using weighted Word2Vec can achieve higher accuracy and

ICDAR Workshop

ICDAR ’20, October 26, 2020, Dublin, Ireland
 Proceedings published June 8, 2020

33

https://doi.org/10.1145/3379174.3392319
https://doi.org/10.1145/3379174.3392319

recall rate than other techniques. Mudgal and co-workers [10] study
a deep learning approach for entity matching and show that us-
ing deep learning approaches does not outperform the current
solutions on structured entity matching. Still, it can significantly
outperform them on textual and dirty entity matching with in-
teresting experimental results. Hajishirzi et al. consider a novel
near-duplicate document detection method by representing each
document as a real-valued sparse K-gram vector and then optimiz-
ing the corresponding weights for a specified similarity function.
The experimental results on two datasets (Web news articles and
email messages) show that the new approach can outperform with
the commonly used methods. More related works can be found in
[4, 5, 8, 12].

Deep learning techniques nowadays become state-of-the-art
methods in solving different problems, especially for computer vi-
sion and natural language processing fields. There have existed a
huge number of useful applications using deep learning techniques
in different aspects of daily life. Deep neural networks can also
be applied to brain segmentation [11], automatic music genera-
tion [1], image recognition [9], entity matching [10], and question
deduplicating [4, 5].

In this paper, we investigate the duplicate identification problem
in one SaaS company related to quality and compliance manage-
ment. The company provides us one original dataset which has
5600 existent organizations (including both duplicated and non-
duplicated cases). We aim at studying the duplicate identification
problem by using the address information based on this dataset. Be-
sides, we take another approach by analyzing all common mistakes
from users that can generate the existent duplicated organizations
in the dataset given. By crawling location data from Open Address1
(US Zone) and making new samples by different types of users’
mistakes learned, we create the second dataset for extensive ex-
periments. We apply different techniques, including Bag-of-words
(using Cosine Distance), Record Linkage Toolkits, hybrid methods,
and Siamese Neural Networks using the Triplet loss, for comparing
the corresponding performance in terms of precision, recall, and
F1-score, to choose the most appropriate model. The experimental
results show that using Siamese Neural Networks can achieve a
better performance than other techniques in both datasets.

2 METHODOLOGY
In this section, we present our methods to detect duplicate items
by using addresses. As the dataset provided by the SaaS company
having confidential information from customers, we will not dis-
close it in details but examine all possible human mistakes related
to the existent duplications. Subsequently, we demonstrate the per-
formance of different learning models via another dataset, crawled
from the website Open Address.

2.0.1 Preliminary. Given two strings, both of which represent two
mail addresses and point to a unique physical identity that can
be determined as a duplicate address. In what is going, we first
discuss how we process and analyze all duplicate data based on
learning patents from users’ behaviors in the dataset provided by
the SaaS company. Then, we describe all learning models to solve

1https://openaddresses.io/

the current problem. For the sake of easiness, we denote dataset A
as the dataset provided by the SaaS company and dataset B as the
dataset generated by crawling addresses from the website Open
Address.

2.1 Duplication Analytics
There are 5600 organizations in the dataset A, where 2.34% of the
number of organizations is determined as duplicated items. As one
organization may have more than one duplication, the total number
of records related to these organizations is 5787. Understanding
deeply all existent cases related to duplication issues in the dataset
A can give us another chance to find appropriate features for model
learning.

It is worth noting that all factory addresses in the dataset A
are written in English. Commonly, an address can have multi-
components such as address number, street name, postal code, and
place name. These sub-components do not need to be available at
the same time or the same resolution or follow a precise rule as the
writing style influences heavily. For instance, one can consider the
following example. A Vietnamese may prefer using “277 Nguyen
Van Cu, District 5, HCMC, Vietnam” instead of “#277, Nguyen Van
Cu, Ward 4, D5, HCM, Vietnam”. Here, two street addresses are
identical in terms of the location on the map, but the second one
gives more details on a focused area (Ward 4) while using short
terms of both district and city. Besides, one can find the different
structure in this example; the address namemay go after the symbol
and separate its following term by a comma.

In the dataset A, all existent users come from 77 countries with
different geographical hierarchy; hence it creates more challenges
for the duplicate identification problem. To demonstrate those chal-
lenges, we list all possible levels that can occur in addresses across
four countries (Vietnam, U.S.A, South Korea, and Ecuador) obtained
from the dataset A and depict them in Table 2. Since every country
has a different geographical hierarchy for the address format due
to its culture, we only use three values, YES, NO, and OPTION
for answers in each level. If a level has a “YES”, it means it is a
reliable indicator such that if the address does not include it, people
hardly find the correct location. For instance, some cities in South
Korea have one district, namely Buk-gu. If the province or city
name is not provided, it is impossible to identify where the address
is. The “NO" value indicates that the corresponding level neither
exists in an official hierarchy nor the associated language. Finally,
“OPTIONAL" means the address may (not) need the information of
this level without making any difficulty in determining the exact
location.

Table 1 depicts all popular reasons generating duplicate organi-
zations in the dataset A. The spelling mistake is a predominant case
where users may incorrectly type some words in a given address.
Wrong wording is a respectable minority in which users sometimes
use incorrect words for typing the corresponding addresses to refer
to a given organization. Due to the immature stage of the SaaS plat-
form, system errors can create “Null” values and produce duplicate
records later. The writing style is vast various with synonyms and
acronyms, very often used by our users when they want to com-
plete filing the organization address quickly. We categorize those
causes that do not have a high frequency in the last group. Figure

ICDAR Workshop

ICDAR ’20, October 26, 2020, Dublin, Ireland
 Proceedings published June 8, 2020

34

https://openaddresses.io/

1 illustrates the distribution of spelling errors, wrong wordings,
system errors, synonyms, acronyms, and others in the first dataset.

Figure 1: The distribution of common reasons creating dupli-
cated organizations in the SaaS platform. The most popular
reason comes from spelling errors (42.14%) of users.

2.2 Data Augmentation
For every machine learning model, training data are crucial for
success. It is important to note that in the SaaS dataset provided,
the number of samples is relatively small. Also, understanding all
possible mistakes from individuals and systems that generate du-
plicated items can give a better way to reproduce, extract essential
features, and learn suitable machine learning models for the prob-
lem. For a given address, we apply the following preprocessing and
augmentation steps:

(1) We lower case all characters.
(2) We remove all punctuation marks.
(3) We remove all simple mistakes (by human or system) such

as, e.g., multiple spaces, characters “Null” or “’NaN”.
(4) Following the results of the duplication analytics, we cre-

ate a heuristic rule to replicate human/system mistakes for
generating more samples in the training dataset.

(5) Finally, for diversifying duplicate cases in the experiments,
we use further techniques (including random insertion, swap,
and deletion) by using a Python library, namely nlpaug2.

2.3 Model Learning
The essential substance of any duplicate identification approach is
based on a robust metric. In literature, there are several token-based
metrics for this purpose. Jaro distance is the weighted sum of the
percentage of matched characters, while Jaro Winkler improves
this measure for matching prefix characters [14]. Also, Levenshtein
and Damerau Levenshtein determine the distance as the minimum
number of single-character edits (such as, e.g., insertion, deletion,
substitution) [7, 8]. Moreover, Q-Gram approximates the string-
matching score by finding common Q-grams, which are substrings
of length Q [13]. Longest Common Subsequence (LCS) finds the
longest common subsequence in two strings or sequences [7, 8].
Despite their usefulness, they may not well distinguish two inputs
that do not have a similar structure regardless of the same content
due to natural language characteristics. To expand the capability of

2https://github.com/makcedward/nlpaug

the string distance, we use the Siamese network for constructing a
deep learning duplicate prediction model for the problem.

2.3.1 The Siamese network [6]. It is an instance of deep metric
learning, which can estimate the similarity between two inputs.
Its underlying design consists of shared parameters for children
networks. Together, sub-networks project the input data onto an
abstract dimension in which the difference computed can be maxi-
mized as much as possible. Typically, one can use the Siamese net-
work’s characteristics to implywhether two input data arematching
or not, under one threshold. The architecture of the Siamese neural
network used in our experiments can be depicted in Figure 2.

2.3.2 Triplet Loss. It is a revisiting approach to enhance Siamese
networks. Traditionally, the network consumes positive pairs, ne-
glects negative pairs. A recent study [2] explains that using both
of them can give more reliable feedback for back-propagation, and
then lead to a robust result. Figure 2 shows the architecture of
training a Siamese model using the triplet loss. Given a candidate,
one can find both positive and negative samples by collating associ-
ated labels, belonging to a similar one, which is positive, contrarily
negative. We first feed three samples through our network at once,
then compute the negative and positive distance. The process ends
at the triplet layer, top layer, where the network minimizes the loss
functions.

The loss function can be defined as follows:

L =

N∑
i=1

ReLU(∥ f(xai), f(x
p
i)∥ − ∥ f(xai), f(x

n
i)∥ + α), (1)

where xa , xp , and xn denote anchor, positive, and negative, respec-
tively. The notation f(·) represents for the corresponding result of
the network transformation layers, α is a margin, and ∥·, ·∥ is an
arbitrary distance. We describe our selection of those distances at
Table 3.

Each of our proposed children networks consists of three layers;
they are embedding, bi-GRU, and the linear readout layer (Figure 2).
Subsequently, a triplet loss stands on the top, aggregates negative
and positive pairs. First, all input strings are padded to produce a
sequence ofM characters. Secondly, at the embedding layer, we use
the character-based embedding to transform each character in an
address into a vector whose size is H . Next, the bi-directional GRU
processes the sequence of vectors one by one in two ways, one from
the first character to the last and vice versa. During this processing
phase, for every time step in each direction, the previous hidden
state will be taken. At each time step, we extract the hidden state
from the forward and backward networks and concatenate them.
Hence, the bi-GRU’s shape isM × (2 ∗H). Lastly, the linear readout
layer squeezes each concatenation to a fixed length of L by a linear
transform; later, a sum-pooling is used to obtain the final output
1 × L.

3 EXPERIMENTS
In this paper, we execute all experiments on a computer with Intel(R)
Core(TM) i7 2 CPUs running at 2.4GHz with 128GB of RAM and
an Nvidia GeForce RTX 2080Ti GPU. We measure the performance
of different methods by using the Record Linkage Toolkit3 (RLT),
3https://recordlinkage.readthedocs.io/en/latest/about.html

ICDAR Workshop

ICDAR ’20, October 26, 2020, Dublin, Ireland
 Proceedings published June 8, 2020

35

Type Expectation Variant
Spelling errors No 8 Mangu Road, Beijiao, Shunde No. 8 Manggu rd., Beijao, Shune
Wrong wordings 82 Muhak-ro, Yongdu-dong, Seoul 82 Muhak ro, Yongdu dong, Seoul
System errors 59 Hanoi highway, Thao Dien, D2, HCM, 760000 59 Hanoi highway, Thao Dien, D2, HCM, null
Synonyms Economic development zone Economic development area
Acronyms 277 Nguyen Van Cu street 277 Nguyen Van Cu str
Others Lot 2, Road 13, Amata Industrial Zone, Bien Hoa, Dong Nai, VN Lot 2, Rd. 13, Amata Industrial Zone, Dong Nai, VN

Table 1: The existent reasons generating duplicate items by users in the SaaS platform. There are six types of reasons, including
spelling errors, wrong wordings, system errors, synonymns, acronyms, and others.

Resolution Level Vietnam U.S.A South Korea Ecuador
Other Indicators (e.g. “km. 1.5 via Duran Tambo”) Optional No No Optional
Address Number Optional Yes Yes Optional
Street Name Yes Yes Yes Yes
Street Type Optional Yes Optional Optional
Occupancy Type Optional Optional Optional Optional
Industrial zone Optional No No No
Neighborhood Optional (Hamlet, Village, Commune) No Yes (Dong) No
Town Yes No Optional Yes
District Yes Optional Yes Optional
City/Province/State Yes Yes Yes Yes
Postcode Optional Yes Yes Optional

Table 2: The different geographical hierarchy of one address format in four countries (Vietnam, USA, South Korea, and
Ecuador). Each resolution level has three values: Optional, No, and Yes.

Figure 2: The architecture of our proposed Siamese model.

the proposed Triplet Siamese model, and choosing the following
metrics: precision, recall, and F1-score.

3.1 Datasets
It is crucial to remark that a triplet Siamese model requires three
inputs: anchor, positive, and negative, which can be consumed at
once during training. The set has three types of data called a triplet,

in which the anchor represents a unique address; the positive is the
duplicate information; in contrast, the negative is a sample different
from the anchor. Hence, it is reasonable to create a set of data that
has three different types of samples.

In our experiments, we use two datasets, asmentioned previously.
The first training dataset, dataset A, has 5600 unique organizations.
Initially, 131 organizations have duplicate records, but 22 triplets

ICDAR Workshop

ICDAR ’20, October 26, 2020, Dublin, Ireland
 Proceedings published June 8, 2020

36

(a) and 109 positive pairs (b) are available. To populate (b), we ran-
domly selected samples that are not duplicate records to become
negative components. When having enough triplets, we apply our
proposed augmentation techniques, as mentioned preceding sec-
tion. Simultaneously, an additional effort to increase the number
of samples is conducted. We use a characteristic learned from the
analytics phase; that is, pairs have different street numbers (c). Thus,
we follow this presentation property to find ten negative pairs. For
each of the couples, we choose a candidate to be an anchor, and
later augmentation is applied over it, yield a positive sample. The
total number of samples when we finished this (a), (b), and (c) is
31424.

Next, we consider one Open Address dataset containing nearly
27 million addresses (US-EN only). Among these millions of ad-
dresses, we randomly collected about 2000 ones. It is important
to note that no duplication exists here. Similarly, by applying our
proposed augmentation techniques, we achieve the dataset B of
43978 locations. We regard 2000 selected addresses as anchors, use
the corresponding augmented samples created for each address
as positives, and select any of the remaining unique addresses as
negatives.

3.2 Results
For measuring the performance of our proposed model and other
techniques, we consider the following scheme of experiments. As
mentioned in the previous section, we train the proposed Siamese
model by studying two different training datasets: one using the
dataset A (namely Triplet Siamese (A)) and another using the
dataset B (namely Triplet Siamese (B)).

During the training process, we use one validation dataset includ-
ing 49 positive pairs (anchor and positive) of duplicate addresses

{(e1, f1), (e2, f2), . . . , (e49, f49}

collected from our platform. Here, each (ei , fi) maps to the same
organization (i = 1, . . . , 49). It is important to remark that these
addresses are completely different from ones in training datasets.
Subsequently, we add other 1176 negative pairs (anchor, negative)
along with 49 positive pairs to obtain 1225 pairs for the validation
dataset. Similarly, we consider other 114 positive pairs (anchor
and positive) of duplicate addresses as well as 5000 negative pairs
(anchor, negative) to generate the testing dataset.

To obtain the most suitable model in this problem, we compare
different configurations of the proposed Siamese neural networks:
GRU/LSTM + Cosine/Tanh, as described in Table 3. One can see
that using GRU+Cosine can achieve the best performance in terms
of F1-score. As a result, we decide choosing the final architecture
as described in Figure 2.

In the experiment, we choose the embedding layer having 300
dimensions and bidirectional GRU having 120 hidden dimensions.
The final output vector of the linear readout layer has 50 dimen-
sions.

For seven different distance and similarity methods (Jaro Win-
kler distance, Levenshtein distance, Damerau Levenshtein distance,
Q-Gram, Longest Common Subsequence (LCS), Smith-Waterman,
and the cosine distance), we execute necessary preprocessing steps
for the input data. Then, we select the best thresholds to classify

two given addresses are matching or not in terms of the com-
puted similarity score. To use the cosine distance, we first tokenize
all the addresses into tokens; then, we apply the cosine similar-
ity to measure the similarity between two addresses. Importantly,
when tuning learning parameters and thresholds for each learn-
ing model or similarity methods, we consider different thresholds
in {0.10, 0.11, . . . , 0.98, 0.99} and find the best one by measuring
the corresponding performance in the validation dataset using
the F1-score. Next, we apply these learning thresholds to measure
the performance of each method in the testing dataset. Table 2
describes the best performance of different techniques in the valida-
tion dataset, where using the triplet Siamese model with the TS-Lab
dataset outperforms all other classifiers in terms of all F1-score,
precision, and recall. The best thresholds for all approaches (Triplet
Siamese (A), Triplet Siamese (B), JaroWinkler distance, Levenshtein
distance, Damerau Levenshtein distance, Q-Gram, Longest Com-
mon Subsequence (LCS), Smith-Waterman, and the cosine distance)
are 0.57, 0.72, 0.66, 0.33, 0.33, 0.37, 0.59, 0.28, 0.57, respectively.

Additionally, we study one hybrid approach by combining seven
distance-based models and considering the predicted similarity of
each distance-based model as input data of the hybrid model. In our
experiments, we apply the logistic regression method for learning
the hybrid model. The corresponding output is matching or not
matching. It is worth noting that our proposed methods using both
Triplet Siamese (A) and Triplet Siamese (B) outperform all other
techniques in terms of the F1-score in the testing dataset. More
detailed, using Triplet Siamese (A) achieves the highest F1-score
(68.36%) while Triplet Siamese (B) gets 64.26% in F1-score. The
Cosine and Smith Waterman distances can obtain the best recall
(93.18%) while the hybrid model only achieves 90.91% in recall.

4 CONCLUSION
In this paper, we have addressed a duplicate identification problem
that commonly happens in SaaS platforms. The problem’s complex-
ity increases concerning the cost of collecting data and various user
behaviors across different countries. We have overcome the prob-
lem with an empirical study in which we analyze common errors
that occur in the SaaS’s production, which helps to reproduce these
mistakes upon the training set, to enlarge training samples as well
as making the machine learning model more robust. Besides, we
have proposed an approach using a character-based triplet Siamese
model to act as a deep learning metric, which computes the similar-
ity between two given addresses. We measure the performance of
different models in terms of accuracy, F1-score, precision, and recall.
The experimental results have shown that the proposed methods
outperform other traditional string metrics in terms of F1-score.
Those results can bring many benefits to a SaaS platform, which
reduces data fragmentation across different clients and ecosystems.
In the future, we plan to continue improving our methods by apply-
ing new algorithms related to the problem, such as active learning,
to leverage crowdsourcing to label new data.

ACKNOWLEDGEMENT
This research is conducted under the Collaborative Research Agree-
ment between National Institute of Information and Communi-
cations Technology and University of Science, Vietnam National

ICDAR Workshop

ICDAR ’20, October 26, 2020, Dublin, Ireland
 Proceedings published June 8, 2020

37

LSTM+Cosine LSTM+Tanh GRU+Cosine GRU+Tanh
F1-score 0.82 0.7788 0.8396 0.7463

Table 3: The comparison among different configurations of the proposed Siamese models: LSTM + Cosine, LSTM + Tanh, GRU
+ Cosine, and GRU + Tanh.

Accuracy F1 Precision Recall
Triplet Siamese (A) 0.9736 0.8396 0.9082 0.7807
Triplet Siamese (B) 0.9527 0.5323 0.44 0.6735

Jaro Winkler 0.904 0.4633 0.3083 0.9318
Levenshtein 0.9333 0.56 0.3962 0.9545

Damerau Levenshtein 0.9323 0.5563 0.3925 0.9545
Q-Gram 0.9202 0.5212 0.3554 0.9773
Cosine 0.9444 0.5985 0.4409 0.9318

Smith Waterman 0.9576 0.6769 0.5116 1.0
LCS 0.9556 0.6562 0.5 0.9545

Logistic Regression 0.9313 0.5641 0.3929 1.0
Table 4: The performance on the validation set of seven
distance-related methods, the ensemble logistic model, and
the triplet Siamese model trained by two training sets - (A)
is the dataset A, (B) is the dataset B.

Accuracy F1 Precision Recall
Triplet Siamese (A) 0.983 0.6836 0.5839 0.8246
Triplet Siamese (B) 0.9806 0.6426 0.546 0.7807

Jaro Winkler 0.9587 0.2749 0.1619 0.9091
Levenshtein 0.9601 0.2817 0.1667 0.9091

Damerau Levenshtein 0.9595 0.2787 0.1646 0.9091
Q-Gram 0.9758 0.3922 0.25 0.9091
Cosine 0.9671 0.328 0.199 0.9318

Smith Waterman 0.9693 0.3431 0.2103 0.9318
LCS 0.9787 0.4233 0.2759 0.9091

Logistic Regression 0.9671 0.3226 0.1961 0.9091
Table 5: The performance on the testing set of seven
distance-related methods, he ensemble logistic model, and
the triplet Siamese model trained by two training sets - (A)
is the dataset A, (B) is the dataset B.

University at Ho Chi Minh City. We acknowledge the support of
Science Foundation Ireland under grant number SFI/13/RC/2106
and L. Meltzers Høyskolefonds, UiB 2019/2259-NILSO.

REFERENCES
[1] Han K. Cao, Duyen T. Ly, Duy M. Nguyen, and Binh T. Nguyen. 2019. Auto-

matically Generate Hymns Using Variational Attention Models. In Advances in
Neural Networks – ISNN 2019, Huchuan Lu, Huajin Tang, and Zhanshan Wang
(Eds.). Springer International Publishing, Cham, 317–327.

[2] Xingping Dong and Jianbing Shen. 2018. Triplet loss in siamese network for
object tracking. In Proceedings of the European Conference on Computer Vision
(ECCV). 459–474.

[3] J. Gao, Y. He, X. Zhang, and Y. Xia. 2017. Duplicate short text detection based on
Word2vec. In 2017 8th IEEE International Conference on Software Engineering and
Service Science (ICSESS). 33–37. https://doi.org/10.1109/ICSESS.2017.8342858

[4] Yukiko Homma. 2017. Detecting Duplicate Questions with Deep Learning.
[5] Doris Hoogeveen, Andrew Bennett, Yitong Li, Karin M. Verspoor, and Timo-

thy Baldwin. 2018. Detecting Misflagged Duplicate Questions in Community
Question-Answering Archives. In ICWSM.

[6] Bromley Jane, Guyon Isabelle, LeCun Yann, Säckinger Eduard, and Shah Roopak.
1993. Signature Verification Using a "Siamese" Time Delay Neural Network. In
Proceedings of the 6th International Conference on Neural Information Processing
Systems (NIPS’93). Morgan Kaufmann Publishers Inc., San Francisco CA USA,
737–744. http://dl.acm.org/citation.cfm?id=2987189.2987282

[7] Matthew A. Jaro. 1976. UNIMATCH: A Record Linkage System: User’s Manual.
Technical Report. U.S. Bureau of the Census, Washington, D.C.

[8] Matthew A. Jaro. 1989. Advances in Record-Linkage Methodology as Ap-
plied to Matching the 1985 Census of Tampa, Florida. J. Amer. Statist. As-
soc. 84, 406 (1989), 414–420. https://doi.org/10.1080/01621459.1989.10478785
arXiv:https://www.tandfonline.com/doi/pdf/10.1080/01621459.1989.10478785

[9] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. 2015. Siamese Neural
Networks for One-shot Image Recognition.

[10] Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon Park,
Ganesh Krishnan, Rohit Deep, Esteban Arcaute, and Vijay Raghavendra. 2018.
Deep Learning for Entity Matching: A Design Space Exploration. In Proceedings
of the 2018 International Conference on Management of Data (SIGMOD ’18). ACM,
New York, NY, USA, 19–34. https://doi.org/10.1145/3183713.3196926

[11] D. M. H. Nguyen, H. T. Vu, H. Q. Ung, and B. T. Nguyen. 2017. 3D-Brain Segmen-
tation Using Deep Neural Network and Gaussian Mixture Model. In 2017 IEEE
Winter Conference on Applications of Computer Vision (WACV). 815–824.

[12] Thorsten Papenbrock, Arvid Heise, and Felix Naumann. 2015. Progressive Du-
plicate Detection. Knowledge and Data Engineering, IEEE Transactions on 27 (05
2015), 1316–1329. https://doi.org/10.1109/TKDE.2014.2359666

[13] Esko Ukkonen. 1992. Approximate string-matching with q-grams and maximal
matches. Theoretical Computer Science 92, 1 (1992), 191 – 211. https://doi.org/10.
1016/0304-3975(92)90143-4

[14] William E. Winkler and Yves Thibaudeau. 1991. An Application of the Fellegi-
Sunter Model of Record Linkage to the 1990 U.S. Decennial Census. Technical
Report Statistical Research Report Series RR91/09. U.S. Bureau of the Census,
Washington, D.C.

ICDAR Workshop

ICDAR ’20, October 26, 2020, Dublin, Ireland
 Proceedings published June 8, 2020

38

https://doi.org/10.1109/ICSESS.2017.8342858
http://dl.acm.org/citation.cfm?id=2987189.2987282
https://doi.org/10.1080/01621459.1989.10478785
http://arxiv.org/abs/https://www.tandfonline.com/doi/pdf/10.1080/01621459.1989.10478785
https://doi.org/10.1145/3183713.3196926
https://doi.org/10.1109/TKDE.2014.2359666
https://doi.org/10.1016/0304-3975(92)90143-4
https://doi.org/10.1016/0304-3975(92)90143-4

	Abstract
	1 Introduction
	2 Methodology
	2.1 Duplication Analytics
	2.2 Data Augmentation
	2.3 Model Learning

	3 Experiments
	3.1 Datasets
	3.2 Results

	4 Conclusion
	References

