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Most upper-extremity musculoskeletal models represent the glenohumeral joint with an inherently stable ball-and-socket, but the
physiological joint requires active muscle coordination for stability. The authors evaluated sensitivity of common predicted
outcomes (instability, net glenohumeral reaction force, and rotator cuff activations) to different implementations of active
stabilizing mechanisms (constraining net joint reaction direction and incorporating normalized surface electromyography
[EMG]). Both EMG and reaction force constraints successfully reduced joint instability. For flexion, incorporating any
normalized surface EMG data reduced predicted instability by 54.8%, whereas incorporating any force constraint reduced
predicted instability by 43.1%. Other outcomes were sensitive to EMG constraints, but not to force constraints. For flexion,
incorporating normalized surface EMG data increased predicted magnitudes of joint reaction force and rotator cuff activations by
28.7% and 88.4%, respectively. Force constraints had no influence on these predicted outcomes for all tasks evaluated. More
restrictive EMG constraints also tended to overconstrain the model, making it challenging to accurately track input kinematics.
Therefore, force constraints may be a more robust choice when representing stability.
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In vivo glenohumeral joint motion involves not only rotation,
but also translation1; modeling this mobile joint is challenging.
Many musculoskeletal models neglect translation, representing the
joint as a ball-and-socket.2–4 This assumption makes the modeled
joint inherently stable; however, stabilization in vivo is provided
through coordinated cocontraction of surrounding muscles to
balance net glenoid joint reaction force (JRF).5 Inherent stability
of a ball-and-socket presents a challenge when using optimization
to solve for muscle activations because cost functions typically
minimize muscular effort.6 Solutions with cocontractions are typi-
cally avoided as they increase muscular effort without contributing
to resulting motion. Consequently, cocontractions necessary for
joint stability may be neglected, resulting in poor predicted out-
comes for JRF,7 rotator cuff forces, and instability metrics. To
ameliorate this, researchers have proposed methods to incorporate
cocontraction into optimization; 2 common approaches are con-
straining predicted muscle excitations to match magnitudes of
normalized surface electromyography (EMG) signals within a
tolerance8 or constraining optimization to direct JRF within the
glenoid.2,3,9 Constraining predicted muscle excitations to normal-
ized surface EMG signals may either constrain on/off timing or the
entire signal within a tolerance.8 Nikooyan et al,8 however, showed
that model predictions depended on how many muscles were
constrained, with high numbers overconstraining the model and
leading to poor predictions. Force constraints instead address the
balance of glenohumeral JRF rather than muscle coordination,
using one of 2 mechanisms by which JRFs are stabilized in vivo:
concavity compression and scapulohumeral balance.5 Concavity
compression (pressing the humeral head into the glenoid)3,9,10

constrains shear to compressive force ratio to fall within

multidirection dislocation force ratios determined through cadav-
eric studies.11,12 Scapulohumeral balance requires the JRF to pass
through the glenoid to maintain humeral head balance.2,13

Although effects of both EMG and force constraints have been
individually evaluated, analyses are typically made on only one
predicted outcome. For example, Dickerson et al3 evaluated effects
of concavity compression constraints on predicted muscle forces,
but not on glenohumeral reaction forces; Nikooyan et al8 evaluated
effects of ±5% EMG tolerance on predicted JRFs, but not on
predicted muscle forces. Furthermore, although Nikooyan et al8

incorporates both EMG and force constraints, interactions of these
constraints were not evaluated. Direct comparison of techniques to
model stabilizing forces in inherently stable glenohumeral joints
for multiple outcomes would provide a valuable foundation for
appropriate model decision making.

Our goal is to present and compare predictions of simulated
outputs using common types of stability constraints and character-
ize sensitivity of these results. Specifically, we evaluate sensitivity
of 3 predicted outcomes (instability, glenohumeral JRF, and rotator
cuff activations) to modeling choices for incorporating stability
(EMG constraints and force constraints). Our hypotheses were that
inclusion of any stability constraints (force or EMG) would lower
predicted instability and influence timing and magnitude of JRFs
and rotator cuff activation curves, but constraint style would not
influence predictions.

Methods
Musculoskeletal Modeling

Simulations were performed in OpenSim (version 3.3; Stanford,
CA)14 with a previously developed and validated upper-extremity
musculoskeletal model15 representing a 50th percentile male.
Shoulder rotations are defined using International Society of
Biomechanics standards,16 with constrained scapulohumeral
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rhythm.17 Muscle–tendon units representing muscles crossing the
glenohumeral (15 actuators) and elbow (10 actuators) joints were
included, implemented using Millard muscle models18 with force–
length, force–velocity, and tendon curves adjusted to reflect re-
lationships described by Binder-Markey and Murray.19 For each
subject, the model was scaled to anthropometry using a static
motion capture trial.

Computational Simulations

We performed computed muscle control (CMC) simulations20,21—
augmented to include glenohumeral stability constraints—of
abduction and forward flexion (details on data collection used to
inform simulations are presented in following subsections). A total
of 15 CMC simulations per task per subject (5 EMG and 3 force
conditions and interactions) were performed. In total, we simulated
4 subjects during 2 tasks for a total of 120 simulations. In brief, the
CMC algorithm incorporates error dynamics to determine joint
accelerations required to track experimental kinematics, a static
optimization to calculate required muscle activations to produce
desired joint accelerations, and an excitation controller to drive a
forward dynamic simulation which creates simulated joint kine-
matics that feedback into the error dynamics. Full details of the
CMC algorithm have been previously reported.20,21

Simulation Constraints

Altogether, we evaluate 2 styles of EMG constraints at 3 levels of
muscles constrained (all, subset, and none) for a total of 5 EMG
conditions per subject per task. The 2 styles of incorporating
normalized surface EMG signals into the CMC optimization
were constraining (1) on/off timing of excitations and (2) simulated
excitations within ±5% of normalized surface EMG signals.8 For the
on/off timing constraint, the muscle was considered off when
normalized EMG signal was <0.1; calculated excitation was limited
to 0.1. Otherwise, the muscle was considered on; calculated excita-
tion was required to exceed 0.1. Both timing and tolerance con-
straints were applied by adjusting upper and lower bounds between
which a specific muscle’s activations must lie. Nikooyan et al8

compared EMG-driven simulations against experimentally deter-
mined JRF and reported better tracking when only a subset of
recorded muscles was incorporated. Therefore, our simulations were
performed with constraints applied to both the entire set of recorded
muscles and a subset; we used optimal subsets reported byNikooyan
et al.8 For abduction, the subset included sternal pectoralis major and
triceps long head. For forward flexion, the subset included all deltoid
components, clavicular pectoralis major, and brachioradialis.

We evaluated 2 methods of controlling JRF direction within
the glenoid: concavity compression3,9 and scapulohumeral bal-
ance2,13 in addition to simulations where JRF direction was not
constrained. For constrained simulations, CMC optimization was
augmented with a penalty term to encourage resultant JRF (calcu-
lated using OpenSim joint analysis tool22) toward stability limits
and prevent theoretical glenohumeral subluxation. For concavity
compression, JRF was decomposed into compressive and shear
forces; the shear to compressive force ratio was constrained to fall
within empirical stability limits from cadaveric studies.5,11 These
stability limits were determined in multiple directions (eg, anterior–
posterior, superior–inferior) by compressing the humeral head into
the glenoid and determining the shear force required for joint
dislocation. Here, concavity compression stability limits (shear to
compressive force ratios) were derived from Halder et al,11 who

reported average stability ratios measured at 4 levels of shoulder
abduction and 3 force levels. For scapulohumeral balance con-
straint, JRF was constrained to remain within the glenoid ellipse
boundary2 derived from experimental measurements.5 For both
styles of JRF constraint, a penalty term proportional to the extent to
which JRF exceeds the stability criterion was applied to the
optimization:

J =
Xn
i=1

x2i þ
Xm
j=1

q̈�
j − q̈ j

2 þ p · ðS–LÞjS>L (1)

where p is a constant scaling the penalty term. For concavity
compression, S is shear force and L is allowed shear determined
from compressive force and empirical stability ratios.11 For sca-
pulohumeral balance, S is radial distance of JRF projected onto the
glenoid and L is radial distance of glenoid boundary defined by an
ellipse. The penalty term was applied if S > L. The default CMC
function used in simulations without force constraints is the same
as above without the additional penalty term.

A sensitivity analysis on the effect of constant p was per-
formed. For this analysis, only force constraints were applied and
p was varied from 0 to 0.25; resulting peak instability, JRF, and
rotator cuff activations were plotted against p. This sensitivity
analysis was performed for abduction task for the 4 subjects
because abduction had an unstable JRF over a longer range of
thoracohumeral elevation when neither EMG nor force constraints
were applied, compared with the flexion task. Based on the
sensitivity analysis, p was set to .05 for remaining simulations.

Experimental Data Collection

Kinematic and EMG data were simultaneously collected for
4 subjects (participant details presented below) to inform compu-
tational simulations. Kinematic data were collected using 7 motion
capture cameras (Motion Analysis Corp, Santa Rosa, CA) tracking
sixteen 1-cm retroreflective markers placed on anatomical land-
marks (Figure 1).23 Prior to testing, a static trial in which all
markers were visible to cameras was collected for scaling. Kine-
matic motion capture data were postprocessed and smoothed with a
6-Hz Butterworth filter. Anthropometrically scaled models were
used to obtain joint angle trajectories for each task through inverse
kinematics. Resultant joint kinematics were filtered with a zero-
phase filter in MATLAB (The MathWorks, Natick, MA).

Unilateral surface EMG recordings of anterior, middle, and
posterior deltoid; biceps brachii; triceps brachii long head; latissi-
mus dorsi; clavicular and sternal components of pectoralis major;
and brachioradialis were collected (Figure 1). Recordings were
made at 2000 Hz using 1-cm Ag/AgCl dual electrodes (Noraxon,
Scottsdale, AZ). Electrodes were placed on skin overlying the
muscle belly following recommendations of Cram and Criswell.24

Prior to testing, subjects performed maximum voluntary contrac-
tions (MVCs) against manual resistance following a standard
protocol25; the MVC test for biceps brachii was also applied for
brachioradialis. Exertions were obtained over 5 seconds; each
muscle was tested 3 times with 2 minutes of rest between trials.
EMG data for each task were normalized using the maximum value
for each muscle from any MVC trial.26

Testing Protocol

Subjects performed 3 trials each of unweighted abduction and
forward flexion trials, with 30-second rest between trials; task order
was randomized. Subjects were instructed to abduct or forward flex

JAB Vol. 36, No. 4, 2020

250 McFarland, Brynildsen, and Saul

Unauthenticated | Downloaded 11/05/20 05:22 PM UTC



to the end of their range of motion at a rate of 2 seconds per
movement. The second trial of each task for each participant was
postprocessed to obtain input kinematics and normalized EMG
signals for computational simulation.

Participants

Four healthy young adults (2 males and 2 females) aged 20–25 years
participated. On average, participants were 22.5 (2.9) years old,
170.4 (9.2) cm, and 77.1 (5.2) kg. Participants met inclusion criteria:
(1) no history of upper limb injury, (2) no neuromuscular impair-
ments, and (3) no physical impediment to performing exertions. All
subjects were self-reported right-dominant; the dominant hand was
used. All subjects provided written informed consent in accordance
with North Carolina State University Institutional Review Board.
Each subject completed the protocol in 1 session.

Statistical Analysis

For each simulated task, we evaluated the effect of simulation
constraints on predicted instability, calculated JRF normalized to
bodyweight, and calculated rotator cuff activations. Predicted
instability is calculated as a percentage of empirical stability limit
determined from cadaveric studies11:�

Shear force=Compressive force
�

�
Empirical stability limit

� × 100 (2)

where glenohumeral JRF is decomposed into shear and compres-
sive components, and the empirical stability limit is defined
according to shear component direction. We also calculate pre-
dicted instability using the scapulohumeral balance constraint in
the denominator (Figure 2) to demonstrate that both calculations
result in stable JRF at approximately the same thoracohumeral
elevation; thus, only the empirical stability limit was used for
remaining analyses. For predicted peak instability, peak JRF, and
peak sum of rotator cuff activations (supraspinatus, subscapularis,
and infraspinatus), a 2-way analysis of variance (α < .05; factors:
EMG and force constraints) was performed. For predicted insta-
bility, when interactions were not present, they were removed from
the model and Tukey honest significant difference post hoc test was
performed; when interaction was present, a simple main effects test
was performed with a 1-way analysis of variance at each factor
level of the interaction. For JRF and rotator cuff activations, if an
interaction was present, data were grouped by each level of
interaction for subsequent analysis; otherwise data were grouped
by single factor (EMG or force constraints). Statistical parametric
mapping (SPM) t tests27,28 were used to determine differences from
default condition (no EMG and no force constraint) in postural
dependence of outcome over thoracohumeral elevation. Due to the
exploratory nature of the study, we did not adjust α for multiple
comparisons.

Results
This work evaluated sensitivity of predicted outcomes (instability,
glenohumeral JRF, and rotator cuff activations) to modeling
choices for incorporating stability (EMG constraints and force
constraints). Most simulations ran successfully, although the
more restrictive EMG tolerance constraint required higher reserve
actuators to successfully track experimental kinematics. Reserve
actuators were included to provide additional joint torque where
required to track kinematics.29 Mean root mean squared reserve
torque was <1.0 N·m for all coordinates for all trials; simulations
requiring reserve torque >5 N·m are reported (Table 1). Of the 120
simulations, 3 simulations (2.5%) failed to converge during opti-
mization and were removed from analysis. Converged simulations
had mean root mean squared error between input and CMC
kinematics <1.1° and maximum tracking error <5° for every degree
of freedom. Subjects performed tasks at a consistent speed; task
duration was 0.67 (0.12) seconds (0.50–0.87 s) for 30° to 90°
thoracohumeral elevation.

Sensitivity analysis of penalty constant p revealed that the
value of p had little impact on instability and other outcomes.
Including a penalty term lowered instability; however, larger
values of p did not further lower instability. Larger p caused
some simulations to fail to converge (Supplementary Figure 1
[available online]).

Inclusion of EMG or force constraints lowered predicted
instability. When no constraints were applied, instability reached
or exceeded empirical limits in low thoracohumeral elevations
(Figure 2) for both tasks. When applied, EMG and force constraints
were main effects on predicted instability (P < .001); interactions
between force and EMG constraints were significant for flexion
(P < .001), but not for abduction (P = .22). For flexion with no force
constraints, applying any EMG constraint significantly lowered
predicted instability to within empirical limits (P < .001; Figure 3)
when compared with no EMG constraint, by 54.8% on average.
Likewise, for flexion, with no EMG constraints, applying any force
constraint significantly lowered predicted instability (P < .001)

Figure 1 — (A) Experimental setup included 9 electromyography
electrodes and 16 retroreflective markers. (B) Musculoskeletal model
used in the simulation with 25 muscle–tendon units crossing the
glenohumeral and elbow joints. Virtual markers on the models are
displayed in spheres.
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when compared with no force constraint by 43.1% on average.
Although predicted instability was lowered when any force con-
straint was applied to the no EMG condition, instability remained
slightly above empirical stability limits (<104% of the limit). In
contrast, for flexion, using any EMG constraint with a force
constraint lowered predicted instability to within empirical stability
limits; whether this reduction was significant depended on the
interaction between constraints (Figure 3). For abduction, post hoc
analysis revealed including either force constraint significantly

lowered instability (P < .01; Figure 4), by 22.5% on average.
For abduction, including the full set of muscles with either
EMG constraint significantly reduced instability compared with
no EMG (P < .05) by 36.2% on average. Using the muscle subset
with either EMG constraint did not significantly lower predicted
instability compared with no EMG for abduction (P = .95).

Inclusion of EMG constraints had substantial influence on
predicted JRF, whereas force constraints resulted in nonsignificant
JRF differences of <100 N (Figure 5). EMG constraints were

Figure 2 — Glenohumeral instability during abduction (left) and flexion (right). (A) Glenohumeral instability defined according to the limits of the
concavity compression constraint (empirical stability limit). (B) Glenohumeral instability defined according to the limits of the scapulohumeral balance
constraint. Predicted instability (mean: black line; 1 SD: shaded) of the subjects when neither force nor electromyography constraints were applied reached
or exceeded empirical stability limits (100%) primarily in low thoracohumeral elevations.

Table 1 Simulations With High Reserve Torques

Removed task Subject Force constraint Electromyography constraint Reserve (N)

Abduction Male subject 1 Scapulohumeral balance Tolerance all 6.0

Tolerance subset 6.0

Concavity compression Tolerance all 6.2

Tolerance subset 6.3

None Tolerance all 6.0

Tolerance subset 5.7

Female subject 1 Scapulohumeral balance Tolerance all 7.4

Concavity compression Tolerance all 7.4

None Tolerance all 7.3
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present as main effects (P < .05), but force constraints and inter-
actions were not (P > .9). Post hoc analysis revealed that con-
straining the full set of muscles with ±5% tolerance resulted in
higher peak JRF than other conditions (P < .05). For abduction, this
most constrained condition resulted in higher peak JRF than
simulations with tolerance constraint applied only to the muscle
subset (increased 27.3%). For flexion, this most constrained con-
dition resulted in higher peak JRF than simulations without EMG
constraints (increased 37.2%). For both tasks, the type of EMG
constraint impacted overall postural dependence. For abduction,
SPM analysis revealed higher JRFs at low thoracohumeral eleva-
tion postures when either EMG constraint was applied to the entire
set of recorded muscles; both subset EMG constraints were not
different from the none condition. The region over which signifi-
cant differences were detected was smaller for on/off timing
compared with ±5% tolerance. For flexion, SPM analysis revealed
significantly higher JRF at low thoracohumeral elevation when any
EMG data were used a constraint. EMG constraint style and
number of muscles included had minor impact.

Inclusion of EMG constraints on surface muscles has a
significant influence on predicted rotator cuff activations; however,
inclusion of force constraints caused only subtle but nonsignificant
increases at low elevations where reaction forces were near empir-
ical stability limits. EMG constraints were present as main effects
(P < .0001), but force constraints were not (P = .99). Post hoc
analysis revealed that for both tasks, inclusion of EMG constraints
increased predicted rotator cuff activations. For flexion, including
any EMG constraint resulted in significantly higher peak activa-
tions than for no EMG constraint (P < .001; increased 88.4% on
average; Figure 6). Furthermore, SPM analysis of postural depen-
dence revealed that including any normalized EMG resulted in
significantly higher rotator cuff activations throughout the range of
motion for flexion. For abduction, including all surface muscles for
either EMG constraint style resulted in higher peak activation than
including the subset or no EMG (P < .001; increased 23.8% on
average; Figure 7). For abduction, the number of muscles included
was more influential than constraint style; only simulations that
included all recorded muscles significantly increased activations.
For these abduction simulations, SPM analysis revealed a slight
difference between constraint styles only if all recorded muscles
were constrained; under this condition, the stricter ±5% tolerance
influenced rotator cuff activations throughout a larger range of
elevation postures than timing constraint.

Discussion
We evaluated effects of force and EMG constraints on predicted
glenohumeral instability, net glenohumeral JRF, and rotator cuff
activations during abduction and forward flexion. Without stability
constraints, instability was at or over empirical limits at low
thoracohumeral elevations, consistent with the observation that
outcomes were most sensitive to including stability constraints in
these postures. Predicted instability was influenced by both EMG
and force constraints, whereas net JRF and rotator cuff activations
were influenced by inclusion of normalized surface EMG data, but
not force constraints.

Predicted instability results suggest that either constraining
direction of glenohumeral JRF or constraining muscle excitation
patterns to normalized surface EMG signals can be appropriate
methods of incorporating stability. Both force constraints stabilized
reaction forces; for flexion, when no EMG data were included,
predicted instability was still slightly over empirical limits. This,

Figure 3 — Interaction plot of electromyography and force constraints on
peak glenohumeral instability during flexion. Mean peak predicted instability
(percentage of empirical stability limit) for scapulohumeral balance (top),
concavity compression (middle), and no force constraint (bottom) are plotted
against the 5 electromyography constraint styles. Significant differences
among electromyography conditions when considering only one force
constraint condition (ie, scapulohumeral balance, concavity compression,
and none) are denoted above the individual panels with letters. If letters
are different from each other, there is a significant difference between
electromyography constraint styles. For example, none condition is
significantly different from all other conditions when no force constraint
is applied (bottom panel). The only significant differences among force
conditions for a given electromyography condition were for the none
electromyography condition.
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however, is likely acceptable because stability limits vary based on
posture,11 and some humeral head translation occurs in vivo.1

Using EMG was appropriate for incorporating stability if enough
muscles were included. For flexion, the subset of muscles was
appropriate to stabilize the glenohumeral joint. For abduction, all
recorded muscles had to be included to stabilize the joint. There-
fore, muscle selection should be carefully considered when using
EMG to enforce glenohumeral stability. One reason EMG con-
straints were more successful at stabilizing the glenohumeral joint
using the flexion subset compared with the abduction subset is that

the flexion subset included all deltoid compartments, whereas the
abduction subset did not. Incorporating both EMG and force
constraints is likely unnecessary because either alone significantly
reduces predicted instability.

Predicted glenohumeral JRF and rotator cuff activations were
only sensitive to inclusion of normalized surface EMG. While we
do not have an instrumented endoprosthesis or indwelling fine-wire
EMG recordings for rotator cuff muscles here, and thus cannot
evaluate accuracy for these specific participants, we contextualize
predicted outcomes against relevant literature. Including EMG

Figure 4 — Effect of electromyography (left) and force (right) constraints on peak glenohumeral instability during abduction. Main effects of each
electromyography and force constraint on mean peak predicted instability (percentage of empirical stability limit) during abduction. Differences in
predicted instability among constraints are denoted with letters.

Figure 5 — Net glenohumeral JRF normalized by bodyweight for abduction (top) and flexion (bottom). Because there was no interaction between
EMG (left) and force (right) constraints for JRF, reaction forces are grouped by constraint type. Bars above the plots denote regions over which predicted
JRF differ as compared with the no constraint condition, as determined by SPM. EMG indicates electromyography; JRF, joint reaction force; SPM,
statistical parametric mapping.
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constraints did not improve consistency with previously reported
glenohumeral JRF7,8 or rotator cuff EMG signals.30,31 For example,
in the current work using the full set of recordedmuscles resulted in
high JRF at low thoracohumeral elevations for both abduction and
flexion; experimental results suggest a gradual increase in JRF.7,8

Peak JRFmeasured with an instrumented endoprosthesis have been
reported up to 1.2 × bodyweight for unweighted flexion and abduc-
tion7,32,33 and up to 2.38 × body weight for low-weighted forward
flexion.34 Other in vivo studies report JRF up to 1.7 × body weight
for various tasks.32,33,35 Our predicted JRFs are consistent with or
slightly higher than these values when no EMG constraints are
applied, ranging 1.2 to 2.9 times body weight. Previous studies that
calculate glenohumeral JRF forces with a computational model for
various upper-extremity tasks have also reported peak JRF between
1.3 and 2.7.34,35 However, when more restrictive EMG constraints
were applied to our tasks, predicted JRF reached 3.4 × body weight,
exceeding reported literature values, likely due to becoming over-
constrained.8 Thus, our results suggest that using a large set of
EMG signals as constraints may not improve JRF predictions.

It should be noted that in vivo measurements of JRF require
instrumented endoprosthesis, limiting use to individuals experienc-
ing osteoarthritis who are typically older and often have rotator cuff
damage. As a result, these subjects can have difficulty in perform-
ing tasks that are relatively easy for healthy young adults. For
example, Bergmann et al34 report that some subjects were unable to
abduct or forward flex with a 2-kg weight. In the Nikooyan et al7

study, subjects were instructed to elevate to the maximal angle
possible which ranged from 80° to 120°. This suggests that there
are differences in capacity compared with healthy young adult
subjects, which maymanifest in JRF. Therefore, it is not possible to
confirm our simulation results against experimental in vivo JRF of
healthy adults.

Using surface muscle, EMG constraints also caused predicted
rotator cuff activations that were not fully consistent with reported
fine wire EMG recordings from rotator cuff. For example, Heu-
berer et al30 report low subscapularis and infraspinatus EMG
signals throughout flexion and abduction, while inclusion of
EMG constraints increased predicted activations for these muscles.

Figure 6 — Effects of EMG (left) and force (right) constraints on predicted rotator cuff activations for supraspinatus (top), infraspinatus (middle), and
subscapularis (bottom) during flexion. Bars above the plots denote regions over which predicted rotator cuff activations differ as compared with the no
constraint condition, as determined by SPM. EMG indicates electromyography; SPM, statistical parametric mapping.
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For flexion, even EMG constraints applied to the muscle subset
caused high rotator cuff activations throughout the motion, possi-
bly because this subset of muscles included all deltoid components.
For abduction, EMG constraints applied to the muscle subset
(which did not include deltoid) did not cause a significant change
from no EMG condition. Thus, choice of muscles to constrain is
critical, as it significantly affects sensitivity of all 3 predicted
outcomes considered here.

EMG-based stability constraints may fail to improve predicted
outcomes for several reasons, including issues inherent to EMG
and modeling simplifications. Signal noise (cross talk, movement
artifacts, and so on), time delays, and normalization challenges all
introduce error to EMG signal that may confound application as
direct controls within a modeling framework. For example, several
studies have reported difficulty capturing true peaks for normali-
zation of dynamic tasks during standardized isometric MVC
activities.8,36–38 In addition, modeling simplifications may contrib-
ute to errors in predicted outcomes when using EMG as controls.
Many upper-extremity simulation studies do not account for
strength differences between individual subjects and the default

model7,8,39–41; differences in strength between a model and subjects
could result in different shoulder dynamics for a given EMG
control set. Furthermore, musculoskeletal models inherently rep-
resent the musculoskeletal system with reduced complexity. For
example, a volumetric muscle may be represented with limited
muscle paths, and application of limited EMG signals to these
actuators can overconstrain the simulation solution. Prior work by
Quental et al42 concluded that, in general, greater muscle discre-
tization leads to better prediction of muscle forces. However,
Nikooyan et al,8 using the Delft Shoulder and Elbow Model
with 139 muscle elements, still found that using all recorded
normalized EMG signals as constraints caused simulation failure.
Therefore, careful consideration of which surface muscles to
constrain is needed. Nikooyan et al8 suggest that constraining
only one cocontracting muscle may be appropriate, and muscle
choice should depend on task similarity to forward flexion or
abduction. In the current study, constraining 2 muscles to normal-
ized surface EMG signals for abduction did not significantly
alter JRF or rotator cuff activations compared with including
no EMG, suggesting that limiting muscle selection may avoid

Figure 7 — Effects of EMG (left) and force (right) constraints on predicted rotator cuff activations for supraspinatus (top), infraspinatus (middle), and
subscapularis (bottom) during abduction. Bars above the plots denote regions over which predicted rotator cuff activations differ as compared with the no
constraint condition, as determined by SPM. EMG indicates electromyography; SPM, statistical parametric mapping.
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overconstraining but provide limited value. This is in line with
findings of Nikooyan et al8 who reported that while incorporating
EMG data could sometimes improve predicted JRF; importantly,
some EMG-constraint conditions in their study caused worse
predictions or simulation failure. If EMG constraints are incorpo-
rated, on/off timing may be more appropriate, as output sensitivity
was lower compared with ±5% tolerance and avoids some concerns
related to EMG normalization.

Including force constraints had no significant influence on peak
JRF magnitude or rotator cuff activations. Our findings are consis-
tent with Blache et al,9 who compared concavity compression with
no constraint and reported minor changes in magnitude of shear and
compressive forces between conditions, suggesting a tradeoff of
shear for compressive forces to enforce stability without marked
change in JRF magnitude. Several studies have reported sensitivity
of predictedmuscular effort to force constraints9,40,41; these differing
reports may be related to a difference in empirical stability limits
employed. Empirical stability limits vary across studies,5,11 with
other models using limits either more conservative3,9 or less con-
servative than those used here.2 Dickerson et al3 reported increased
muscle forces with more conservative limits when they evaluated a
range of limits.While we did not explore differing empirical stability
limits here, we did evaluate sensitivity to the magnitude of the
penalty constant and found no improvement in predicted stability
with increased penalty.

Study limitations should be considered when interpreting
these results. Experimental glenohumeral reaction forces and
rotator cuff EMG signals were not measured for our subjects;
therefore, our analysis is limited to sensitivity of simulation outputs
to simulation constraints. We evaluated simulation sensitivity for
abduction and forward flexion between 20° and 90°; however,
sensitivity of predicted outcomes to evaluated constraints may
differ for other functional tasks or postures. We used inputs
from 4 healthy young adult subjects to drive simulations; sensitiv-
ity to constraints may vary for other populations, for example,
subjects with rotator cuff injury.

In summary, predicted instability was successfully controlled
by both force and EMG constraints; however, EMG constraints’
ability to control predicted instability depended on choice of
muscles. Peaks and postural dependence of JRF and predicted
rotator cuff activations were more sensitive to including normal-
ized EMG data than force constraints. More restrictive EMG
constraints tended to overconstrain the model, resulting in higher
reserve torques, and when contextualized with reported experi-
mental outcomes, may not necessarily improve predictions. Fur-
thermore, using larger muscle sets for EMG constraints resulted in
more variability from the default unconstrained condition in all
predicted outcomes. As a result, an EMG timing constraint with
fewer included muscles may be more appropriate than a tolerance
constraint; it is less likely to overconstrain and depends less on
normalization. However, careful consideration of which muscles to
include to ensure the constraint enforces stability, but does not
overconstrain the model. On the other hand, force constraints
improved predicted instability but had no influence on peak value
or postural dependence for JRF or rotator cuff activations. Force
constraint style had little impact on outcomes. Therefore, force
constraints may be more appropriate when just glenohumeral
stability is considered.
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