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Pathogens give rise to a wide range of diseases threatening global health and

hence drawing public health agencies’ attention to establish preventative and curative

solutions. Genome-scale metabolic modeling is ever increasingly used tool for

biomedical applications including the elucidation of antibiotic resistance, virulence, single

pathogen mechanisms and pathogen-host interaction systems. With this approach,

the sophisticated cellular system of metabolic reactions inside the pathogens as

well as between pathogen and host cells are represented in conjunction with their

corresponding genes and enzymes. Along with essential metabolic reactions, alternate

pathways and fluxes are predicted by performing computational flux analyses for the

growth of pathogens in a very short time. The genes or enzymes responsible for

the essential metabolic reactions in pathogen growth are regarded as potential drug

targets, as a priori guide to researchers in the pharmaceutical field. Pathogens alter the

key metabolic processes in infected host, ultimately the objective of these integrative

constraint-based context-specific metabolic models is to provide novel insights toward

understanding the metabolic basis of the acute and chronic processes of infection,

revealing cellular mechanisms of pathogenesis, identifying strain-specific biomarkers and

developing new therapeutic approaches including the combination drugs. The reaction

rates predicted during different time points of pathogen development enable us to

predict active pathways and those that only occur during certain stages of infection, and

thus point out the putative drug targets. Among others, fatty acid and lipid syntheses

reactions are recent targets of new antimicrobial drugs. Genome-scale metabolic

models provide an improved understanding of how intracellular pathogens utilize the

existing microenvironment of the host. Here, we reviewed the current knowledge of

genome-scale metabolic modeling in pathogen cells as well as pathogen host interaction

systems and the promising applications in the extension of curative strategies against

pathogens for global preventative healthcare.
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INTRODUCTION

Pathogens give rise to a wide range of diseases threatening global
health and drawing public health agencies’ attention to establish
preventative and curative solutions (Sweileh, 2017; World Health
Organization, 2017). As antibiotics lose their effectiveness in
the course of time due to the emergence of bacterial resistance,
researches on antibiotics necessitate continuous improvements.
However, the interest of pharmaceutical companies in antibiotic
development dwindled over the last decades owing to scientific,
regulatory, and economic difficulties (Brown and Wright, 2016;
Luepke et al., 2016). Based on 10 different criteria including
community and health-care burden, mortality, pipeline,
prevalence of resistance, preventability in community and
health-care setting, transmissibility, treatability and trend of
resistance, 20 bacterial species among 25 antibiotic-resistant
bacteria were classified into three priority groups as critical,
high and medium priority. Multidrug-resistant Mycobacterium
tuberculosis takes the global priority.

Over the quarter century after the first genome sequenced for
pathogenic Haemophilus influenzae Rd in 1995, the advances in
experimental and computational technologies have accelerated
context-specific understanding of complex biological networks
and the emergence of a new field of science, called systems
biology (Fleischmann et al., 1995; Aggarwal and Lee, 2003).
Metabolic reactions in conjunction with their corresponding
metabolites and genes constitute a sophisticated cellular system
inside the pathogens. This interconnection among genes,
metabolites and reactions are converted into mathematical
representation by using genome-scale metabolic modeling which
is an ever increasingly used computational approach in the
field of systems biology to elucidate pathogenic mechanisms
along with their host interactions. Numerous pathogen-specific
genome-scale metabolic models (GEMs) were reconstructed in
the last two decades (Table 1). The key aspects such as predicting
cellular and disease phenotypes, production of virulence factors,
and evolution of antibiotic resistance related to human pathogens
have been effectively studied by GEMs. In addition to identifying
the cellular phenotype of a single pathogen, this modeling
approach can be extended to interactions between pathogen and
host cells (Jamshidi and Raghunathan, 2015).

Essential genes are mandatory for the cellular growth, and
their computational prediction plays a fundamental role in
genome-scale modeling of pathogens. These genes are regarded
as potential drug targets for killing pathogenic microorganisms.
Instead of tedious and time-consuming experimental work,
a priori computational analysis of gene essentiality and drug
targeting by using constraint-based metabolic models can save
considerable time and effort. The deletion of a single gene
in the laboratory and observation of phenotypic change may
take a few days or weeks; however, computational analysis of
gene deletion is performed within seconds. An important point
that need to be considered in the gene essentiality analysis
for drug targeting studies, is essential genes be specific to
pathogenic microorganisms.

Since their emergence two decades ago, GEMs have
extended our knowledge toward system-level understanding

of pathogenesis of microbial infections. They have provided
irreplaceable contributions to elucidate antibiotic resistance,
virulence, single pathogenic as well as pathogen-host interaction
mechanisms. Pathogens change the key metabolic processes both
in themselves and the host cell depending on the nutrient
sources present in the infected host niche. Therefore, revealing
cellular mechanisms of pathogenesis, identifying strain-specific
biomarkers and developing new therapeutic approaches have
great importance. Here, we reviewed the current knowledge of
genome-scale metabolic modeling in pathogen cells with the
specific examples mainly from WHO prioritization list as well as
pathogen host interaction systems and its promising applications
in the extension of curative strategies against pathogens for
global preventative healthcare. GEMs integrated with genomic,
proteomic and metabolomic data may be the first step toward the
quantitative analysis of the pathogen metabolism, and thus can
provide a remarkable benefit for the researchers as a priori guide
in the drug target studies.

GENOME-SCALE METABOLIC MODELING
AND ANALYSIS

First genome sequences were published for bacterial pathogens
Haemophilus influenzae and Mycoplasma genetalium in 1995.
Since then, continual improvements in genome sequencing
technologies and their applications to genome analysis of
pathogens have resulted in the comprehensive gene and
cellular network information specific to microorganism of
interest (Reed et al., 2006; Land et al., 2015). The cutting-
edge technologies facilitated the understanding of complex
cellular mechanisms behind the genomic variations in pathogens
(Bryant et al., 2012). Starting with the genome annotation,
the genome-scale metabolic modeling aims to reconstruct
the mathematical representation of interconnected biochemical
relationship among genes, reactions, and metabolites (Figure 1).

A crucial component of the pathogen-specific GEM
reconstruction is the accurate inclusion of microbial metabolism
to investigate cellular mechanism. In addition to common
metabolic pathways, different pathogens have particular
pathways, which are hallmark to expand models toward
better understanding of pathogenic mechanisms. For example,
mycolic acid is the unique component of the mycobacterial
cell envelope and essential for the growth of devastating
pathogen M. tuberculosis causing tuberculosis (Marrakchi et al.,
2014). The metabolic reactions in mycolic acid biosynthetic
pathway should thus be included in the GEM of M. tuberculosis.
Moreover, virulence factors are the critical molecules in the
infection mechanism and their synthesis pathways need to be
incorporated into reconstructed GEM for valuable insight into
virulence factor metabolism (Bartell et al., 2017).

In accordance with pathogen-specific data, validated
experimentally or available in the literature, the localization of
metabolic reactions into the different cellular compartments,
the addition of transport reactions between the compartments
inside the cell and the determination of biomass reaction with
correct composition of its constituents (i.e., stoichiometric

Frontiers in Cell and Developmental Biology | www.frontiersin.org 2 November 2020 | Volume 8 | Article 566702

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


Sertbas and Ulgen GEMs in Infection Mechanism

TABLE 1 | Reconstructed GEM examples of priority pathogens reported by World Health Organization (2017).

Pathogen Priority Model name Number of

metabolites

Number of genes Number of reactions References

Mycobacterium tuberculosis Global iNJ661 826 661 1,025 Jamshidi and Palsson, 2007

GSMN-TB 645 726 856 Beste et al., 2007

GSMN-TB 1.1 766 759 876 Lofthouse et al., 2013

sMtb 929 915 1,192 Rienksma et al., 2014

iOSDD890 961 890 1,152 Vashisht et al., 2014

iSM810 723 810 938 Ma et al., 2015

iEK1011 998 1011 1,128 Kavvas et al., 2018

Acinetobacter baumannii Critical AbyMBEL891 778 650 891 Kim et al., 2010

iLP844 1,509 844 1,628 Presta et al., 2017

iCN718 890 718 1,016 Norsigian et al., 2018

Pseudomonas aeruginosa Critical iMO1056 760 1,056 883 Oberhardt et al., 2008

iMO1086 1,021 1,086 1,031 Oberhardt et al., 2011

iPae1146 1,284 1146 1,493 Bartell et al., 2017

iPau1129 1,286 1,129 1,495 Bartell et al., 2017

iPAO1 3,022 1,458 4,265 Zhu et al., 2018

Escherichia coli Critical 15 pathogenic strain 1,378–1,484 4,584–5,784 1,473–1,564 Vieira et al., 2011

Klebsiella pneumoniae Critical iYL1228 1,685 1,228 1,970 Liao et al., 2011

Helicobacter pylori High iCS291 403 291 388 Schilling et al., 2002

iIT341 485 341 554 Thiele et al., 2005

Salmonella typhimurium High iRR1083 774 1,083 1,087 Raghunathan et al., 2009

iMA945 1,036 945 1,964 AbuOun et al., 2009

STM_v1.0 1,119 1,270 2,201 Thiele et al., 2011

MetaSal 1,088 824 1„097 Hartman et al., 2014

Staphylococcus aureus High iSB619 571 619 641 Becker and Palsson, 2005

iMH551 604 551 712 Heinemann et al., 2005

iSA863 1,379 863 1,545 Mazharul Islam et al., 2020

Campylobacter jejuni High - 467 388 536 Metris et al., 2011

Streptococcus pneumoniae Medium iDS372 355 372 462 Dias et al., 2019

Haemophilus influenzae Medium iJE296 343 296 488 Edwards and Palsson, 1999

iCS400 451 400 561 Schilling and Palsson, 2000

coefficients) play crucial roles in GEMs. When hundreds
or thousands of metabolic reactions occurring inside the
pathogenic cells and their literature-based distribution among
different compartments are taken into consideration, the
reconstruction process is extensively time-consuming and needs
to be standardized. This reconstruction process was described
by various studies (Francke et al., 2005; Rocha et al., 2008; Feist
et al., 2009). A comprehensive protocol (Figure 1) with four
main stages (draft reconstruction, manual curation, conversion
to mathematical model and network analysis) in genome-scale
metabolic modeling was published by Thiele and Palsson
(2010). In a very recent publication, this protocol was extended
toward developing multi-strain GEMs from a reference model
(Norsigian et al., 2020).

Different tools and softwares have been developed to facilitate
and accelerate metabolic reconstruction process (Hamilton and
Reed, 2014; Mendoza et al., 2019). The biochemical databases
such as KEGG, BRENDA, andMetaCyc have become remarkable
sources in this reconstruction process to obtain collective

information on genes, enzymes, reactions, metabolites and
pathways (Kanehisa, 2000; Schomburg, 2002; Caspi et al.,
2012). High-throughput phenotype microarrays technology
(Biolog) provide clues toward the viability of the pathogenic
microorganisms on hundreds of nutrient sources simultaneously
(Bochner et al., 2001). Biolog phenotype microarrays take full
advantage of respiration of the cells, detected by tetrazolium
dye, as a reporter system. Therefore, in addition to the model
refinement, Biolog data have been used in the validation of a wide
range of GEMs (Oberhardt et al., 2008, 2011; Baumler et al., 2011;
Liao et al., 2011; Metris et al., 2011; Bartell et al., 2017; Norsigian
et al., 2018; Zhu et al., 2018).

Genome-scale metabolic models have many key advantages
in the investigation of pathogenic processes. They allow to
perform thousands of different infection scenario simulations in
a very short time in an effective manner. Cellular phenotypes
such as growth and virulence factor production are predicted
by changing nutrient sources present in the host environment.
Different infected locations within the human body show
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FIGURE 1 | Reconstruction process of pathogen-specific GEMs.
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different nutrient distributions and thus different infection
features and growth phenotypes that can be rapidly deduced from
GEMs. They are highly cost-effective in gene deletion analysis.
Thus, essential genes are examined by carrying out in silico
simulations with gene deletion one by one in the genome-scale
network. These predicted essential genes and their products are
considered as putative drug targets to fight against pathogen
of interest. Multi-omics data can be easily mapped to GEMs
to investigate condition-specific pathogenicity. The integrated
analysis of pathogen and host GEMs enables us to identify
essential metabolic connections between host and pathogen and
thus to unlock the mechanisms behind their interactions.

Flux Balance Analysis
Flux balance analysis (FBA) is a frequently used constraint-
based modeling approach to represent the possible behavior of
microbial metabolism and plays an irreplaceable role in genome-
scale metabolic modeling (Kauffman et al., 2003; Orth et al.,
2010). FBA uses metabolic reaction stoichiometry together with
the physiochemical and environmental constraints at steady state
condition. Subsequent to conversion of genome-scale metabolic
reconstruction to mathematical matrix format at steady state,
FBA finds a flux distribution which maximizes the objective
function. Stoichiometric coefficients of the metabolic reactions
compose stoichiometric matrix (S), where the rows and columns
are represented by metabolites and reactions, respectively.
Metabolic fluxes constitute flux vector (v) of the metabolic
reactions in the GEM. At steady state, a system of linear equations
obtained from the metabolic network, is given by:

S.v = 0

Constraints, arising from reaction directionalities and
experimental measurements, are imposed by arranging upper
and lower limits. The exchange fluxes between the pathogen cell
and environment are involved in accordance with themetabolites
in the growth medium. Maximization of biomass is defined as
objective function in order to simulate pathogen growth. The
linear optimization problem used in FBA is summarized below:

max f Tv

s.t S.v = 0

vlower ≤ v ≤ vupper

where f is objective function vector, the vector of coefficients
assigning the cellular objective to each reaction.

Flux Variability Analysis
Constraint-based modeling leaves open the possibility of
alternate optimal solutions which mean that the same objective
value can be achieved by a diverse set of flux distributions and the
solution is not unique. Flux variability analysis (FVA) determines
the possible range of flux quantities which is allowable with the
given objective value (Mahadevan and Schilling, 2003). First, the
value of the objective function that is maximization of growth
in pathogenic microorganisms is computed by FBA. By adding
and fixing calculated objective value in the model, a series of

FBA/FVA is performed for each reaction in the GEM with the
maximization and minimization objective function for allowable
range of fluxes for each reaction. The reactions with the same
minimum and maximum non-zero fluxes computed by FVA
are essential in accomplishing certain objective. There are no
alternative pathways for those in which these reactions exist and
therefore these reactions and pathways are essentially involved
in the GEM to succeed objective of interest. Mathematical
formulation of FVA is given by:

max vi andmin vi

s.t S.v = 0

f Tv = Zobj

vlower ≤ vi ≤ vupper for i = 1, . . . n

where Zobj is previously computed objective function value by
using FBA.

Growth and metabolic state predictions are calculated by
FBA and FVA. Flux variability analysis determines all possible
alternate routes for growth of a microorganism and thus
identifies a minimal set of reactions required for pathogen
intracellular survival. FBA and FVA are used in testing and
validation of the GEMs by comparing with the experimental
data. The consistency between in silico growth simulations
and experimental studies demonstrate the predictive power of
the model.

Flux Sampling
Flux sampling calculates all feasible solutions throughout the
entire solution space in a statistical meaningful way (Price et al.,
2004; Schellenberger and Palsson, 2009; Bordel et al., 2010;
Herrmann et al., 2019). Sufficient and uniform data points
are required for the accurate and unbiased analysis of the
solution space. Both flux sampling and FVA computes feasible
flux range; i.e., set of possible flux distributions. However,
flux sampling gives additional information on probability of
flux solutions. Different from FBA, flux sampling does not
require an objective function. Therefore, it is an effective
and alternative approach in analyzing the GEMs when certain
objective of cell is not clear. Several algorithms were developed
for flux sampling. Artificial centering hit-and-run (ACHR)
algorithm calculates the random flux distributions by using the
center estimate and random flux vector direction (Kaufman
and Smith, 1998). Coordinate hit-and-run with rounding
(CHRR) applies a rounding preprocessing to the anisotropic
flux sets (Haraldsdóttir et al., 2017). optGpSampler provides an
opportunity of use of large samples via parallel sampling to
reduce computation process (Megchelenbrink et al., 2014).

Gene Essentiality
Essential genes are necessary for completeness of metabolic
network and proper functioning of the cell. They have
crucial roles in the development of phenotypic features of
microorganism. Their knockouts give rise to failure in the cellular
metabolism and no growth condition eventually. Therefore,
essential gene studies in pathogenic microorganisms gain further
importance to fight against pathogens. Experimental analyses of
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essential genes are performed by different methods including
random mutagenesis, targeted mutagenesis and knockdown
approaches (Rancati et al., 2018; Gonyar et al., 2019). These
studies constitute a significant platform for computational
gene essentiality predictions by using pathogen-specific GEMs
(Joyce and Palsson, 2007). Computationally predicted genes
are compared with the experimentally obtained essential gene
datasets for the predictive capacity of the GEMs. FBA is widely
used in gene essentiality predictions. Genes are deleted from
the model on an individual basis by setting the flux value of
corresponding reactions to zero. The objective function, used in
the optimization, is the maximization of biomass production. If
the flux analysis results in no growth, the corresponding gene is
predicted to be essential.

The formulation of the biomass reaction (equation) in
the GEM holds a great importance (Thiele and Palsson,
2010). It should include accurate chemical compositions
of the pathogen obtained from experimental studies. In
addition to growth associated maintenance, required energy for
macromolecular synthesis, the content of amino acid, nucleotide,
lipid, soluble pool (polyamines, vitamins, and cofactors) and
ions are required in the generation of biomass equation. The
composition of the biomass reaction is critical for the analysis
of essential genes. If a biomass precursor is not included
in the biomass reaction, its synthesis reactions may not be
necessary for the cellular growth and these reactions are
regarded as non-essential with the associated genes in the
computational analysis.

Drug Targeting
Target identification is the primary and indispensable step in drug
discovery and development to combat infection. Impairments in
the metabolic functionalities of the investigated microorganisms
give rise to cell death due to drug inhibition (Fischbach and
Walsh, 2009). Conventional methods require an extensive and
expensive experimental research to detect therapeutic targets.
On the other hand, computational studies reveal a rapid and
cost-effective alternative route by predicting novel targets, which
are critical for cell growth. Over the last decade, genome-
scale metabolic modeling has fulfilled an inevitable rise in the
prediction of pathogenic drug targets.Within this scope, essential
genes and their corresponding products, obtained from in silico
analysis of pathogen-specific GEMs, are regarded as putative
drug targets to inhibit cell survival.

The ideal drug target is the target with little or no harm to
the host organism. Fungal sphingolipid pathways are different
in many ways from their mammalian analogs in terms of
enzymes and products. The glucosylceramide (GlcCer) lowering
antifungal agents have an important potential to control and
prevent infections. Acyhydrazones have been identified as the
inhibitor of glucosylceramide synthase enzyme. When the
glycosylceramide synthesis gene is deleted in Cryptococcus
neoformans, the strain does not produce glycosylceramide and
is avirulent in host organism. In this context, glucosylceramide
(GlcCer) lowering agents or inhibitors of glycosylceramide
synthesis can be considered as new opportunities to prevent
fungal infections (Rittershaus et al., 2006; Raj et al., 2017).

Other Methods
Constraint-based methods mentioned above are the most
frequent techniques used in the analysis of pathogen-specific
GEMs. Investigation of the in silico killing strategies of
pathogenic bacteria is the main goal of the pathogen-specific
GEMs; however, the maximum amount of production of valuable
metabolites takes great importance in industrial microorganisms’
GEMs with the minimum cost. Depending on the application of
the GEMs, various approaches are also available in the literature.
Among them, dynamic FBA (dFBA) was suggested for the
study of the metabolic network dynamics since the classical
FBA is used for steady state systems (Mahadevan et al., 2002).
Minimization of metabolic adjustments (MOMA) and regulatory
on-offminimization (ROOM) are used in the analysis of response
to gene deletion or insertion (Segrè et al., 2002; Shlomi et al.,
2005). Metabolic reactions controlled by the genes of interest are
deleted from the GEM and the new reaction fluxes are optimized
with the minimum metabolic change.

GENOME-SCALE METABOLIC MODELS
OF PATHOGENIC MICROORGANISMS AND
ANTIBIOTIC RESISTANCE

Antibiotic resistance is a growing problem threatening global
health. Development of promising novel treatments require
a complete understanding of resistance mechanisms. For
this purpose, adaptive laboratory evolution experiments are
frequently used where the pathogens are treated with certain
antibiotics and tested whether to develop resistance (Conrad
et al., 2011; Dragosits and Mattanovich, 2013; Zampieri et al.,
2017; Dunphy et al., 2019). Multi-omics technologies, including
transcriptomics, proteomics and metabolomics, have become
crucial components of these experiments since they provide
simultaneous measurements of thousands of gene expressions,
proteins and metabolites, respectively. Muti-omics data are
collected from the wild-type and antibiotic-resistant pathogens
at various time points. Then, they are integrated with the
pathogen-specific GEMs for system-level understanding of
pathogenic shifts due to antibiotic resistance (Figure 2). The
integration process, that maps high throughput omics data onto
high-connected metabolic network, facilitates the prediction of
feasible flux distributions throughout pathogenic metabolism.
Consequently, the novel therapeutic strategies are proposed to
combat antibiotic resistance as well as infection.

Several applications of GEMs in antibiotic resistance have
been published by the researchers around the world (Dunphy
and Papin, 2018). Recently, the flux distributions and metabolic
changes of streptomycin resistant and chloramphenicol
resistant Chromobacterium violaceum were studied by using
its specific GEM (iDB858) and metabolomics data (Banerjee
and Raghunathan, 2019). FVA was carried out to predict
the metabolic reprogramming due antibiotic pressures.
Chloramphenicol resistance enhanced acetate production,
whereas streptomycin resistance resulted in increased secretion
of both acetate and formate. NAD/NADH ratio of streptomycin
resistant population growing on glucose was calculated to
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FIGURE 2 | Integrated investigation of the antibiotic resistance by adaptive laboratory evolution (ALE) experiments and pathogen-specific GEMs. Multi-omics data are

collected during the ALE experiments from wild-type and antibiotic-resistant pathogens at different time points. To elucidate the evolutionary response at system-level

due to antibiotic pressure, high throughput omics data are computationally mapped onto the genome-scale metabolic network. Analysis of metabolic shift in the

(Continued)
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FIGURE 2 | cellular metabolism and mechanism of antibiotic-resistant pathogenic GEMs facilitate the discovery of novel potential drug targets and treatment

strategies against antibiotic-resistant pathogen. Fitness landscapes demonstrate the optimality in adaptive evolution of antibiotic resistance. Smooth fitness

landscapes consist of a single optimum and regardless of the starting point evolutionary tendency converge to this optimum. There exist multiple optima on the rough

fitness landscapes and evolutionary tendency diverge even from the same starting point.

be higher than that of chloramphenicol resistant population
(2.47–0.28). Further works on this issue will be discussed under
the related pathogenic bacteria below.

Mycobacterium tuberculosis
M. tuberculosis is one of the most studied pathogens in
genome-scale metabolic modeling due to its global priority.
The first GEMs published for this pathogen are iNJ661
and GSMN-TB (Beste et al., 2007; Jamshidi and Palsson,
2007). Genome annotation of M. tuberculosis H37Rv was
used as the starting point in iNJ661 model reconstruction
(Cole et al., 1998). However, GSMN-TB model was initiated
with previously developed Streptomyces coelicolor genome-scale
metabolic model (Borodina et al., 2005). M. tuberculosis specific
reactions obtained from literature and biochemical databases
were added to both models throughout the reconstruction
processes. Instead of starting with annotated genome, previously
developed genome-scale metabolic models can also be used
as a draft in the reconstruction process. Therefore, these
initial models became a starting point for the most of the
subsequent M. tuberculosis genome-scale metabolic models.
More than 10 genome-scale models were developed for this
pathogen with divergent representations around the world by
extending previous ones (Lofthouse et al., 2013; Rienksma
et al., 2014, 2018; Vashisht et al., 2014; Ma et al., 2015). They
were standardized and updated with a new model iEK1011,
including 1228 reactions, 1,011 genes and 998 metabolites
(Kavvas et al., 2018). Recently, eight M. tuberculosis GEMs were
systematically evaluated for accurate model selection (López-
Agudelo et al., 2020). By taking genetic information, network
topology, blocked reactions, mass and charge balance reactions
and gene essentiality predictions into consideration, iEK1011
and sMtb2018 were described as the best performing M.
tuberculosis GEMs. These two GEMs were further improved and
named iEK1011_2.0 and sMtb2.0, respectively. These updated
versions allow comprehensive in silico investigation of the
effects of various environmental and genetic conditions on
M. tuberculosismetabolism.

Jamshidi and Palsson (2007) analyzed essentiality of glycerol
and non-essentiality of glucose in M. tuberculosis model iNJ661
by using FVA at maximum biomass production. Glycerol
transporter and glycerol kinase in glycerol metabolism were
computed as non-zero flux values with no flexibility. This
shows that glycerol-3-phosphate production via glycerol kinase
is required for membrane and fatty acid metabolism. Beste
et al. (2007) investigated in silico slow growth mechanism
of M. tuberculosis by using GSMN-TB. The reactions in the
glyoxylate shunt were predicted to be significantly changed
due to the slow growth of organism. A high increase was
computed in the isocitrate lyase reaction flux. This observation

proposed a hypothesis of a key role of isocitrate lyase to
sustain growth at the slow growth condition. The activity
of isoctrate lyase was measured at slow and fast growth
rates experimentally. Consistent with the simulations, the
activity of this enzyme was twofold higher in the slow
growing cells.

The mechanism of antibiotic resistance evolution in M.
tuberculosis was investigated by means of in silico iEK1011
(Kavvas et al., 2018). Antibiotic-specific pressures were imposed
by using an associated metabolic objective function. For example,
decaprenylphosphoryl-β-D-arabinose (DPA) production was
elevated by ubiA mutations, which cause ethambutol resistance.
Consequently, the maximization of DPA production was used as
the objective function to simulate antibiotic resistance evolution
due to ethambutol (Safi et al., 2013). In order to incorporate
this evolution into in silico iEK1011 model, the minimization
of mycothiol production was selected for ethionamide and the
maximization of tetrahydrofolate and L-alanine production were
chosen as objective functions for para-aminosalicylic acid and
d-cycloserine, respectively (Vilchèze et al., 2008; Zheng et al.,
2013; Desjardins et al., 2016). The computational analyses of
in vivo and in vitro conditions were performed by FVA, and
an important effect of L-alanine due to correlation between the
ethambutol and d-cycloserine fluxes was unraveled. These two
antibiotics may be less effective in vivo owing to the presence
of L-alanine.

Acinetobacter baumannii
An important high threat pathogens in hospitals isA. baumannii,
causing various infections covering pneumonia, blood-stream,
urinary-tract and wound infections (Dijkshoorn et al., 2007).
First GEM for multi-drug resistant A. baumannii AYE is
AbyMBEL891, reconstructed from genome annotation data
integrated with literature and biological databases (Vallenet et al.,
2008; Kim et al., 2010). Similarly, genome-scale metabolic model
iLP844 was developed for A. baumannii ATCC 19606, which was
initiated with a draft model from genome annotation by using
Kbase and then manually curated (Davenport et al., 2014; Presta
et al., 2017; Arkin et al., 2018). The publications of new studies
lead to the inclusion of new knowledge into the model and also
to the validation of the model with more experimental work
enhancing its prediction quality. In accordance with this purpose,
AbyMBEL891 model was updated with the new data produced
in experiments and standardized into a new model, iCN718,
to provide more accurate representation of the microorganism
(Norsigian et al., 2018). iCN718 was used in the simulation of
growth behavior and the development of strain-specific GEMs of
74 other A. baumannii strains.

The role of reaction reversibility on gene essentiality
was simulated using in silico AbyMBEL891 model of A.
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baumannii (Kim et al., 2010). Ornithine carbamoyltransferase
and argininosuccinate synthase reactions are experimentally
demonstrated to be essential in arginine biosynthesis and cell
growth in the A. baumannii (Dorsey et al., 2002). These reactions
were also computationally estimated to be essential on condition
that a series of alternative path reactions toward arginine
production were set irreversible. If the reactions in alternative
route were set as reversible, two essential reactions became
non-essential and AbyMBEL891 lost the capability to synthesize
arginine. Thus, in silico AbyMBEL891 model gives consistent
simulation results with A. baumannii phenotype and provides a
valuable use in reaction reversibility.

Similar to essential genes, the metabolites whose absence
leads to no growth are considered essential metabolites (Kim
et al., 2010). They are predicted by using flux balance analysis
and removing each metabolite out of the cell to explore their
effect on cell growth. Computational investigation of an essential
metabolite in the GEM is performed by the deletion (zero flux
values) of all outgoing reactions and allowing non-zero flux
values of the incoming reactions associated with the interested
metabolite (Kim et al., 2007). Kim et al. (2010) presented essential
metabolite filtering method (EMFilter) to discover effective drug
targets for in silico AbyMBEL891. EMFilter includes four steps
that are removal of currency metabolites, selection of essential
metabolites existing in more than three reactions, removal of
metabolites present in human metabolic network and removal
of metabolites related with genes which have human homologs.
In order to avoid drug interference with any of the human
enzymes and identify multi-drug target, EMFilter narrowed 211
essential metabolites down to 9 metabolites for drug targeting
by using these four steps. The enzymes catalyzing the outgoing
reactions associated with essential metabolites were predicted to
be final candidate drug target. D-glutamate and 4-aminobenzoate
were predicted as essential metabolites in silico and they have
critical roles in the biosynthesis of bacterial cell wall and folate,
respectively (Lundqvist et al., 2007; Valderas et al., 2008). Six
essential metabolites were also predicted to be essential for four
pathogens amongA. baumannii, E. coli, H. pylori, M. tuberculosis,
P. aeruginosa, and S. aureus. Therefore, the enzymes catalyzing
the reactions in which these six essential metabolites are involved
could be regarded as broad-spectrum drug targets due to the
fact that a broad-spectrum antibiotic acts against a wide range
of pathogenic bacteria.

The colistin-resistant A. baumannii metabolism was studied
by GEM to determine new putative drug targets (Presta
et al., 2017). The in silico model iLP844 was integrated
with transcriptomic response to colistin, sampled at 15 and
60min after its exposure (Henry et al., 2014). The integration
was performed by using MADE (Metabolic Adjustment by
Differential Expression) method which maps gene expression
data onto genome-scale metabolic network (Jensen and Papin,
2011). Essential genes were computed at 15 and 60min with and
without colistin exposure to analyze the shifts in gene essentiality.
In addition to 66 essential genes shared between with and without
colistin exposure, 21 and 17 condition-specific essential genes
were predicted for 15 and 60min data, respectively. Following
colistin exposure, some essential genes became non-essential

and vice versa. These results demonstrated changes in gene
essentiality patterns due to colistin and consequently significant
drug targets for A. baumannii ATCC 19606 strain. Potential
drug candidates should be pathogen-specific and should not
have orthologs in human to avoid side-effects. Subsequent to
BLAST search, they defined four condition-specific and 46
general essential genes without human orthologous (Altschul
et al., 1990). To study colistin resistance mechanism, loss of
lipopolysaccharide (LPS) production approach was implemented
with the transcriptomic data sampled at 60 minutes (Moffatt
et al., 2010). LPS component was removed from biomass reaction
in iLP844 to simulate LPS deficit A. baumannii. They observed
54 shared essential genes in the presence and absence of colistin
resistance at 60min. Eighteen genes switched from non-essential
to essential. By applying BLAST search, they demonstrated that
five essential genes do not have orthologs in human and these
can be considered as specific targets in combination therapy with
colistin in LPS deficient strain of A. baumannii.

Pseudomonas aeruginosa
Pathogenic genome-scale metabolic modeling can potentially be
used for comparative analysis and drug assessment. Genome-
scale metabolic model iMO1056 was developed for P. aeruginosa
PAO1 from annotated genome, published studies and databases
(Stover et al., 2000; Oberhardt et al., 2008). Three years later,
iMO1056 was updated with iMO1086 and reconciled with non-
pathogenic P. putida model (iJP962) by the same research group
for comparative analysis of these two strains for understanding
the pathogenicity (Oberhardt et al., 2011). To reflect different
mechanisms in these two microorganisms, a number of unique
reactions and pathways were identified including naphthalene
and anthracene degradation, phenylalanine metabolism and
benzoate degradation in P. putida and pyrimidine, purine and
beta-alanine metabolism in P. aeruginosa. The in silico iMO1056
was used in the study of multiple targets in P. aeruginosa and 41
putative targets were suggested (Perumal et al., 2011). Recently,
Bartell et al. (2017) presented two GEMs for P. aeruginosa
strain PAO1 and P. aeruginosa strain PA14 (iPae1146 and
iPau1129, respectively) to provide insight into the relationship
between virulence factor production and growth. These two
in silico models included 112 and 108 virulence-associated
genes, respectively. The genes only critical for virulence factor
production, growth and both were analyzed and thus non-
obvious links between virulence factor production and growth
were observed. iMO1056 and Opt208964, an automatically
generated GEM by Model SEED, were used as initial drafts
in the development of iPAO1, which is then extensively
curated using the literature and databases toward the study
of polymyxin treatment in P. aeruginosa metabolism at the
systems level (Henry et al., 2010; Zhu et al., 2018). Together with
other biochemical databases, Pseudomonas aeruginosa specific
database PseudoCAP provides valuable metabolic information
for GEM reconstruction of this organism (Winsor et al., 2005).

Oberhardt et al. (2011) performed comparative pathway
flexibility analysis of pathogenic P. aeruginosa and non-
pathogenic P. putida by using in silico iMO1086 and iJP962,
respectively. Three sulfur-associated pathways, which are sulfur
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metabolism, taurine and hypotaurine metabolism, and cysteine
and methionine metabolism, showed more flexibility in P.
aeruginosa than in P. putida. This finding demonstrated
significant probability of sulfur-associated pathways behind the
distinct phenotypes. Enhanced flexibility of P. aeruginosa was
also simulated in terms of nitrogen metabolism and the demand
reactions of virulence factor. P. aeruginosa is able to carry out
denitrification in microaerobic condition which can be seen in
lung infections of cystic fibrosis patients (Eschbach et al., 2004),
whereas P. putida cannot carry out denitrification. Increased
flexibility simulation of P. aeruginosa, in comparison with P.
putida, is in agreement with the known role of denitrification
in virulence.

The essential genes in Pseudomonas aeruginosa were
investigated for both virulence factor synthesis and growth by
using in silico mPA14 and comparing 46 shared essential genes
for biomass production and synthesis of at least one virulence
factor (Bartell et al., 2017). Seven genes (aacA, aacB, aacC,
aacD, fabB, fabD, and fabG) in fatty acid and phospholipid
metabolism were predicted to be essential for growth and
production of at least eight virulence factors. Growth-essential
genes in aromatic amino acid synthesis (aroB, aroC, aroE,
and aroK) were predicted to be essential for the synthesis
of six virulence factors which are chorismate, pyocyanin,
1-carboxyphenazine, salicylate, dihydroaeruginoic acid and
pyochelin. Moreover, the interconnectivity for each knockout
was computationally researched by plotting virulence factor vs.
growth inhibition compared to wild-type simulations. Uncertain
connections between growth and virulence factor production
were determined from the distribution of data points on plots.
Several growth-essential genes partially hindered virulence
factor synthesis. The virulence factor-related essential genes were
significantly altered and not correlated with pathway complexity.

Investigation of metabolic response of pathogenic P.
aeruginosa to polymyxin B treatment unlocked its effect on
bacterial metabolism with the help of genome-scale metabolic
model iPAO1 (Zhu et al., 2018). RNA-seq data obtained in the
presence and absence of polymyxin B were combined with the
in silico model by using E-Flux method constraining fluxes as
a function of the gene expression level (Colijn et al., 2009).
Several pathways involved in central, amino acid and fatty acid
metabolisms were found to be significantly perturbed because
of polymyxin B treatment which enhanced oxygen uptake and
decreased the growth rate. In TCA cycle, NADH production
and the fluxes from citrate to fumarate were increased. The
reduction in biomass production due to polymyxin treatment
resulted in the downregulation of fluxes in LPS, GPL and
peptidoglycan biosynthesis. Spermidine biosynthesis enhanced
with the increased expression level of sdeD and speE encoding
S-adenosyl-L-methionine decarboxylase and spermidine
synthase, respectively.

Escherichia coli
Due to its genetic simplicity as well as its history in a variety
of infections, Escherichia coli is one of the most extensively
studied microorganisms in genome-scale metabolic modeling.
Based on the genome sequence, the first GEM (iJO660) for

E. coli was reconstructed for K-12 MG1655 commensal and
common laboratory strain (Blattner et al., 1997; Edwards and
Palsson, 2000). Over the last two decades, several updates were
published to expand the understanding of bacterial mechanism
via in silico network of E. coli (Reed et al., 2003; Feist et al.,
2007; Orth et al., 2011; Monk et al., 2017). Besides the commensal
strains, there also exist pathogenic strains of E. coli which brings
about different intestinal and extraintestinal infections (Kaper
et al., 2004). So as to reveal further insight into evolution
mechanism in silico, Baumler et al. (2011) developed six strain-
specific genome-scale model of E. coli (two enterohemorrhagic
(EHEC), two uropathogenic (UPEC) and two commensal strains)
by means of pangenome and core GEM. In addition to several
pathogen specific reaction deletions, eight new reactions unique
to EHEC strains were added, which are fructose synthetase,
gentisate 1,2,-dioxygenase, perosamine synthetase, salicylate
hydroxylase, sucrose transport, urease, tellurite reduction and
UDP-N-acetylglucosamine 4-epimerase reactions. UPEC strains
included only one addition of propionate CoA-transferase
reaction in common. Furthermore, one unique reaction was
added to eachUPEC strain; hydroxy-pyruvate reaction for UTI89
strain and galactose isomerase reaction for CFT073 strain. The
comperative simulations of strain-specific E. colimodels resulted
in variations of biomass yields on glucose due to the strain-
specific metabolic reactions.

By increasing the number of the strains investigated, the
diversities of the commensal and pathogenic E. coli strains
were broadened (Vieira et al., 2011; Monk et al., 2013). Vieira
et al. (2011) developed a genome-scale metabolic network for
the analysis of core and panmetabolism in 29 E. coli strains
including 21 pathogenic strains and eight commensal strains,
which cover six Shigella strains. The reconstructed strain-specific
GEMs resulted in 1,545 and 885 reactions in panmetabolism and
core metabolism, respectively. The removal of Shigella strains
did not significantly change the reactions in panmetabolism
(1,545–1,543); however, increased number of reactions in the
core metabolism to 1,065 from 885. This increase in the number
of the reactions in the core metabolism among E. coli strains
indicates a conserved metabolism in E. coli. The reactions
absent from Shigella core metabolism were distributed in various
pathways including D-allose degradation, phenylethylamine and
phenylacetate degradation, and biosynthesis pathways related
amino acids, nucleotides and fatty acids. Another strain-specific
GEM was built for 55 strains of E. coli and Shigella to shine
light on adaptations to diverse environments (Monk et al., 2013).
This study increased the reactions in core and panmetabolism
to 1,773 and 2,501, respectively. Similarly, strain-specific GEMs
of 64 strains of S. aureus were reconstructed for elucidating the
metabolic capabilities associated with the pathogenity (Bosi et al.,
2016).

Klebsiella pneumoniae
In the reconstruction and analysis of iYL1228 for K. pneumoniae
MGH 78578, FBA was performed for the growth phenotype
predictions on different nutrition media including carbon,
nitrogen, phosphorus and sulfur to compare with the Biolog
data (Liao et al., 2011). The discrepancies between computational

Frontiers in Cell and Developmental Biology | www.frontiersin.org 10 November 2020 | Volume 8 | Article 566702

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


Sertbas and Ulgen GEMs in Infection Mechanism

results and Biolog data were taken as advantages toward the
curation of the model by pioneering and adding experimentally
supported metabolic reactions. Subsequent to refinement,
iYL1228 was able to predict 84% of phenotypes among 171
growth conditions. In the same study, in addition to in
silico viability predictions, experimental growth rates of nine
carbon sources under aerobic conditions were investigated
and two of them (citrate and myo-inositol) were predicted
significantly higher than those of experimental results. After
adaptive evolution of K. pneumoniae to myo-inositol by serial
passage, the experimental growth rate increased and the rate of
growth error decreased from 80% to 24%. Hence, GEMs can
also give remarkable clues toward uncovering adaptive evolution
mechanism. In another study, the in silico iYL1228 was used as
a platform to reconstruct GEMs for 22 K. pneumoniae strains
(Norsigian et al., 2019). These models were manipulated for
the investigation of growth capabilities on carbon, nitrogen,
sulfur and phosphorus sources. Carbon, nitrogen and sulfur
simulations varied across the strains; however, phosphorus
results were largely remained the same.

The screening of putative drug targets in K. pneumoniae
was studied by iYL1228 with the improved biomass reaction
(Cesur et al., 2020). So as to mimic the host microenvironment,
the growth simulations were performed by using FBA in three
different conditions including human body fluid, sputum-
macrophage, and generic host media. Gene-centric (essential
genes) and metabolite-centric (essential metabolites) approaches
were employed to identify whether they are indispensable
for bacterial metabolism or not. Since potential drug targets
are required to exist in only pathogen metabolism, homology
analysis of essential genes was performed and presence of
essential metabolites among human metabolites were examined
to eliminate possible side effects in the host metabolism.
Further in silico prioritization approaches such as subcellular
localization, druggability, antibiotic resistance, virulence and
broad-spectrum analysis were performed to come up with
more effective targets. 2-dehydro-3-deoxyphosphooctonate
aldolase (KdsA) was identified as the highest-ranked putative
drug target satisfying virulence, druggability and broad-
spectrum criteria and ZINC95543764 was suggested as a
potential Klebsiella inhibitor in gene-centric approach. The
enzymes related to essential metabolites were suggested as
putative drug targets in metabolite-centric approach. These
are enoyl-(acyl carrier protein) reductase (FabI) in fatty
acid metabolism, riboflavin synthase subunit α (RibC) and
riboflavin synthase subunit β (RibH) in riboflavin metabolism,
and penicillin-binding protein 1A-C (PBP 1A, PBP 1B,
and PBP 1C) in the peptidoglycan biosynthesis. PBP 1A-C
were found to be synthetic lethal and the remaining three
were essential.

Salmonella typhimurium
Salmonellae are gram-negative bacterial pathogens with a wide
host range, causing millions of human infections and hundreds
of thousands of deaths per year worldwide. The serovars
of Salmonella differ in their antimicrobial host specificity,
resistance profiles, and virulence phenotypes. For example, S.

typhimurium is the leading cause of human gastroenteritis
and have more than 2000 serovars. An in silico strain-specific
metabolic reconstruction was performed for 410 Salmonella
strains and the metabolic capabilities on minimal media with
more than 500 different growth-supporting nutrition sources
including carbon, nitrogen, phosphorous, and sulfur were
compared across the Salmonella genus in aerobic and anaerobic
conditions (Seif et al., 2018). One thousand nine hundred
thirteen metabolic reactions associated with 1,013 genes and
1,407 metabolites are shared across all 410 strains. The common
strains mostly differ in their capability to utilize D-tagatose, myo-
inositol, 2,3-diaminopropionate, allantoin, D-galactonate, and
2-aminoethylphosphonate. All 6 Typhi strains were predicted
to lack the capability to utilize L-idonate (an available nutrient
source in the gut) due to the absence of idnD and idnO and
show lack of fitness (inability of the organism to thrive in
a competitive environment). A total of 21 catabolic pathways
like the utilization of D-tagatose, L-xylulose, D-xylose, deoxy-
D-ribose, L-idonate, D-glyceraldehyde, and allantoin, that form
part of the host’s diet and/or exist in the intestinal environment,
contributed to Salmonella fitness during intestinal infection.
The compositional differences in the intestinal vs. extraintestinal
milieu of the host may reflect differences in pathogenicity of
different Salmonella types.

The in silico model of S. typhimurium (iRR1083) provided a
suitable platform to analyze the role of reactions important in
infection and pathogenesis, such as those required for drug efflux,
proton pumps, inhibitory effects of antibiotics, mechanisms for
reactive nitrogen species (RNS) and reactive oxygen species
(ROS) resistance (Raghunathan et al., 2009). Two hundred (out
of 1,083) metabolic genes were predicted as essential. Gene
essentiality analysis was extended to virulence predictions study
in such a way that Salmonella mutants defective in essential and
non-essential genes were considered as avirulent (no growth) and
virulent (can grow) in the host cells, respectively. Of the 24 in vivo
essential genes from the literature, the in silico analysis correctly
predicted 22 virulence characterizations. For example, AceA,
which was predicted as non-essential and mutants defective
in AceA are virulent. AceA is required only for chronic and
not for acute Salmonella infections (Fang et al., 2005). The
double deletion of two genes (ackA and pta) responsible in
acetyl phosphate formation lead to virulent strain. The fatty acid
degradation genes fadA, fadD/fadE genes have been implicated
for virulence in chronic Salmonella infection, however the model
predicted the presence of glucose or pyruvate but not acetate
or short chain fatty acids during the early stages of infection
(Fang et al., 2005) and these fad genes are not being operational
during the early stages of infection. Furthermore, simultaneous
upregulation of cyoE and cyoA (succinate dehydrogenase and
electron transport chain genes) was reported suggestive of an
aerobic condition in vivo, during the early stages of infection
(Karatzas et al., 2008). Increased levels of F1F0 ATP synthase
subunits, heme biosynthesis, upregulated histidine biosynthesis
(hisC, hisD, hisG) predictions were consistent with the literature
(Eriksson et al., 2003; Shi et al., 2006; Karatzas et al., 2008). The
in silicomodel accurately predicted that catalase (katE and katG)
mutants and super oxide dismutase mutants (sodA and sodCII)
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are virulent, confirming the pathogens have multiple defenses
to oxidative stresses. On the other hand, the model predicted
that mutants defective in aromatic amino acid biosynthesis
are avirulent.

Staphylococcus aureus
Taking the evolution due to drug resistance into consideration,
GEMs for 13 multidrug-resistant S. aureus strains were
reconstructed by using genome annotation, functional pathway
analysis and comparative genomics approaches (Lee et al., 2009).
The number of metabolic reactions in these GEMs varied
between 1,444 and 1,497, and over 90% of these metabolic
reactions, metabolites and enzymes were shared in common
by all 13 strain-specific GEMs. Several amino acid biosynthesis
pathways were involved in all strains, but L-histidine, L-serine,
L-homocysteine and L-asparagine pathways were absent in all
13 strains. Fatty acid biosynthesis genes (fabG, fabA, fabZ, fabI,
fabK, fabH, and fabF) were present in all strains. All these genes,
exluding fabI, were determined as essential. The analysis of single
unconditionally essential enzymes (essential in rich medium and
computed without any limitation on fluxes of uptake reactions)
resulted in 70 essential enzymes in one or more of 13 strains and
44 in all S. aureus strains. Of the 44 shared essential enzymes,
minimum six of them were experimentally supported in S.
aureus including transketolase, hydroxyl-methylbilane synthase,
methionine adenosyltransferase, UDP-N-acetyl-glucosamine 1-
carboxyvinyltransferase, protein N (pi)-phospho-histidine-sugar
phosphortransferase and acetyl-CoA carboxylase (Forsyth et al.,
2002). Simultaneous inactivation of two enzymes in the GEMs
could lead to lethality or no growth while their single (one-
at-a-time) knockout does not result in lethality. Of the 54
synthetic-lethal pairs of enzymes, 10 pairs were predicted
in all 13 strains. Among them, prephenate dehydrogenase
and arogenate dehydrogenase pair is involved in amino acid
biosynthesis, and UDP-N-acetylglucosamine pyrophosphorylase
and phosphoglucosamine mutase pair in cell wall metabolism.
The synthetic lethal sets, i.e., the combinations of genes, which
when simultaneously deleted, abolish growth in silico, allow
to decipher complex interactions in reconstructed metabolic
networks (Thiele et al., 2011).

Strain-specific GEMs enabled phenotype predictions via
metabolic flux distributions of 64 S. aureus strains in more
than 300 growth conditions (Bosi et al., 2016). The majority of
the reactions different between the core and panmodels were
identified in amino acid biosynthesis, and these diversities may
lead to adaptation of different strains to different nutritional
conditions. For all 64 in silico strain-specific models, vitamins B1
(thiamin) and B3 (niacin) were additionally required to grow in
glucose minimal media. The thiamin and niacin auxotrophy are
due to absence of the pathways converting tyrosine to thiamin
and nicotinate-nucleotide diphosphorylase, respectively. The
prediction of growth capabilities on alternative sources (carbon,
nitrogen, phosphorous, and sulfur) indicated 238 nutrients
including glucose and glycerol as carbon sources and arginine
as nitrogen source are used by all 64 in silico S. aureus strains.
Among other strain-specific nutrients, both uracil and thymidine
were predicted as nitrogen source for 42 strains, and dulcose and

inosine as carbon source for 42 and 13 strains, respectively. The
simulations of growth resulted in the presence of two virulence
factors (staphylokinase and IgG binding protein A precursor)
and the ability to catabolize maltotriose distinguished human-
associated strains from livestock-associated strains. Thus, the
simulations based on genome-scale metabolic modeling allow the
classification of S. aureus strains according to the presence of
virulence factors.

Biothreat Agents
The Centers for Disease Control and Prevention (CDC)
evaluated the potential threats from various microorganisms and
classify them into three categories (Rotz et al., 2002). Category
A consists of the pathogens that are considered the highest
risk with mass casualties for public health and necessitates
broad-based preparedness efforts, Category B have some risk
for large-scale dissemination, and Category C pathogens are
emerging infectious disease threats. The discovery of antibiotics
against these biological agents may not be economically feasible;
however, it is clear that preventative and curative healthcare
solutions are urgently needed. Toward this end, in addition
to drug repurposing strategy, where the existing medications
are searched for new successful treatments, utilization of
antimicrobial peptides (AMPs) potentially constitute therapeutic
options for high threat pathogens (Findlay et al., 2016;
Farha and Brown, 2019; Miró-Canturri et al., 2019). The
combinatorial therapeutic potential of one 24-amino acid AMP
(WLBU2) and three early generation antibiotics (tigecycline,
minocycline and novobiocin) were studied for two Category B
pathogens (Burkholderia mallei and Burkholderia pseudomallei)
and three category A pathogens which are Yersinia pestis
Bacillus anthracis and Francisella tularensis causing plague,
anthrax, and tularemia, respectively (Cote et al., 2020).
By using the checkerboard MIC titration assays, it was
observed that the combination of novobiocin-AMP enhanced
the sensitivity of all five biological agents of interest. The
tetracycline-peptide combinations increased the sensitivities of
four agents including Y. pestis, F. tularensis, B. anthracis,
and B. pseudomallei. The results showed that combinations
of antibiotic-AMP are useful tools to fight against biological
threat agents. Antimicrobial action mechanisms of AMPs can
occur both directly and indirectly (Mahlapuu et al., 2016;
Deslouches and Di, 2017). The direct cytotoxicity of AMPs
electrostatically affects the bacterial outer surface by disrupting
a phospholipid membrane. Subsequent to entry of AMPs into
the cell, they interfere with critical intracellular processes
including RNA and protein synthesis. Indirect AMP actions
occur through immunomodulatory activities such as chemotactic
stimulation, immune cells differentiation, inflammatory cell
response regulation and cell death pathways.

A GEM study (iPC815) on Yersinia pestis revealed essential
genes that might contribute to propose possible targets for
antibiotic development (Charusanti et al., 2011). The largest
group of predicted essential genes was found within amino acid
transport and metabolism followed by nucleotide and coenzyme
metabolism, cell membrane biogenesis and lipid metabolism.
Several essential genes in these metabolisms were also identified
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as essential in in silico E. coli and S. typhimurium GEMs (Feist
et al., 2007; Thiele et al., 2011). The predicted essential genes
reflect a likely overlap among these three pathogens (Y. pestis,
E. coli and S. typhimurium), the family of Enterobacteriaceae.
The shared essential enzymes should be further exploited for
the development of broad-spectrum antibiotics that can be used
against this group of human pathogens.

The in silico analysis of Francisella strain demonstrated
that Francisella tularensis undergoes significant changes of its
metabolism upon its entry into the host cell (during intracellular
growth) (Raghunathan et al., 2010). A switch from oxidative
metabolism (TCA cycle) in the initial stages of infection to
glycolysis, fatty acid oxidation, and gluconeogenesis during
the later stages was found by flux balance and variability
analyses. Moreover, the accumulation of 5-aminoimidazole-4-
carboxamide ribonucleotide (AICAR) was found as a regulator
of fructose bis phosphatase (fbp) gene in Francisella and the
adenylyosuccinate lyase gene that catalyzes its formation, is a
condition independent lethal gene, essential for survival and
are proposed as a potential drug target. Thus, the predicted
accumulation of AICAR in the host (macrophage) revealed a role
as a potential master regulator during infection.

A multidisciplinary approach was applied to F. tularensis
to select a group of enzymes as drug targets and ∼20,000
small-molecule compounds were screened to list potential
inhibitors against these targets (Chaudhury et al., 2013). A set
of 40 candidate compounds was identified for antimicrobial
activity against F. tularensis. Moreover, based on FBA predicted
inhibition of NAD+ synthase (NadE), pantetheine-phosphate
adenylyltransferase (CoaD), chorismate synthase (AroC) and
sedoheptulose 7-phosphate isomerase (LpcA) enzymes, that
are important in various metabolic pathways, these enzymes
were suggested as potential drug targets. NadE takes part in
NAD+ biosynthesis, CoaD in coenzyme A biosynthesis, AroC in
phenylalanine, tyrosine and tryptophan biosynthesis and LpcA in
lipopolysaccharide biosynthesis. These four enzymes are putative
drug targets and the experimental validation of their enzymatic
inhibition is an important step in the development of candidate
antimicrobial compounds.

In a multiple metabolic network analysis, 19 strains of
three Category A biothreat agents Y. pestis, B. anthracis and
F. tularensis were examined toward having a common drug
target. Nine essential enzymes were shared between these
three high threat pathogens (Ahn et al., 2014). These enzymes
are phosphopantothenoyl cysteine decarboxylase (CoaB),
phosphopantothenate cysteine ligase (CoaC), pantetheine-
phosphate adenylyltransferase (CoaD), dephospho-CoA kinase
(CoaE) in coenzyme A biosynthesis pathway, dihydroneopterin
aldolase (FolB), dihydrofolate synthase/tetrahydrofolate synthase
(FolC, two distinct enzymatic activities), GTP cyclohydrolase I
(FolE) in folate biosynthesis pathway, guanylate kinase (Gmk)
and thymidylate kinase (Tmk) in nucleic acid pathways and
phosphatidyl serine decarboxylase (Psd) in phosphatidyl-
ethanolamine synthesis. The comparison of the predicted
essential enzymes in common with the experimental studies
showed that CoaE is essential for growth in M. tuberculosis, S.
aureus, H. influenza, and four other bacteria. Gmk and Tmk

were found to be essential in B. subtilis, E. coli, H. influenza, S.
aureus, and Mycoplasma genitalium. A further study of whether
existing antibiotics targeted to any of these nine enzymes
demonstrated that the antimicrobial compounds, trimethoprim
and Rab1, already targeted FolC. Trimethoprim directly
inhibits dihydrofolate synthase activity and the accumulation
of dihydrofolate indirectly inhibits tetrahydrofolate synthase
in E. coli (Kwon et al., 2008). It is effective against Y. pestis,
whereas B. anthracis is resistant against trimethoprim (Wong
et al., 2000; Barrow et al., 2007). Rab1 demonstrated broad-
spectrum applicability and inhibited growth of three category
A biothreat agents besides methicillin-resistant S. aureus and
vancomycin-resistant S. aureus (Bourne et al., 2010).

PATHOGEN-HOST MODELING

Genome-scale metabolic models provide an improved
understanding of how intracellular pathogens utilize the
existing microenvironment of the host (Figure 3). It is of
utmost importance to understand the pathogen metabolism
including metabolic virulence factors like quorum sensing
QS, lipopolysaccharides LPS, and rhamnolipids (and more
such as siderophores-based iron uptake systems, cable pili
for adhesion, motility, hemolysin, proteases, phospholipases,
secretion systems, toxins, and extracellular capsules) to unravel
mechanisms of pathogenesis. Pathogens reside in a phagosome (a
vacuole in the cytoplasm of a cell), or more specifically localize in
intracellular, extracellular-interstitial, extracellular-intravascular,
extracellular-transcellular and “semi-open” spaces in host cells
(e.g., the respiratory or alimentary tracts, etc.). Pathogens
demonstrate different biochemical phenotypes and interaction
mechanisms when inside the host vs. outside the host. Therefore,
the pathogen and host GEMs are re-compartmentalized, and the
transport across the macrophage cytoplasm are represented in
connection with the other GEM.

An integrated host-pathogen GEM (iAB-AMØ-1410-Mt-661)
was reconstructed by combining iAB-AMØ-1410 and iNJ661
which represent in silico alveolar macrophage andM. tuberculosis
metabolism, respectively (Bordbar et al., 2010). iAB-AMØ-
1410 was developed by using context-specific model extraction
algorithms (GIMME and iMAT) and manual curation based on
generic human GEM (Recon1) along with the gene expression
data (Duarte et al., 2007; Becker and Palsson, 2008; Shlomi et al.,
2008). The distribution of flux states for each reaction in the
integrated model was compared with those of the corresponding
reactions in the two pioneering models. In spite of the some
variations in alveolar macrophage part, most of the changes
were found in the pathogen part of the network where flux
of glycolysis was reduced with acetyl-CoA synthesis produced
from fatty acids. Glucose was produced through gluconeogenesis.
Fatty acid oxidation pathways were upregulated; whereas,
nucleotides, peptidoglycans and phenolic glycolipid productions
were downregulated. In the alveolar macrophage part, nitric
oxide production was increased; however, ATP synthesis,
nucleotide production and amino acid metabolism were reduced.
Due to different infection mechanisms in different tissues, three

Frontiers in Cell and Developmental Biology | www.frontiersin.org 13 November 2020 | Volume 8 | Article 566702

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


Sertbas and Ulgen GEMs in Infection Mechanism

FIGURE 3 | Life cycle of M. tuberculosis and P. falciparum and integrated analysis at system level. (A) M. tuberculosis is transmitted by aerosol. Inhaled pathogen

reaches the alveoli of the lung and grows inside the alveolar macrophages. Granuloma, where M. tuberculosis kills the macrophages and escapes from the cell for

division, is formed. Subsequent to maturation, granuloma ruptures and releases M. tuberculosis into the airways. (B) P. falciparum life cycle involves the different

(Continued)
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FIGURE 3 | stages in female Anopheles mosquito and human. Mosquito transmits sporozoites into the human. They infect hepatocytes and mature into schizonts

which release merozoites. Merozoites invade erythrocytes and resulted in release of newly multiplied merozoites by erythrocytes destruction. Some merozoites

differentiate into gametocytes which are taken up from host by mosquito. Gametocytes develop into sporozoites within mosquito. (C) Integrated analysis of tissue-

and pathogen-specific GEMs with the high-throughput multi-omics data provides insight into the cellular and interaction mechanisms between the pathogen and host

tissue at different stage of infection.

infection-specific models were developed for latent, pulmonary
and meningeal tuberculosis by mapping gene expression data
(Thuong et al., 2008). Hyaluronan synthesis was computed to be
active only in the pulmonary-specific model, suggesting that the
inhibition of hyaluronan synthase as a putative approach to cease
the activation from latent to pulmonary condition. Furthermore,
vitamin D and folate metabolism were found to be active in
pulmonary and meningeal states. Vitamin D is important to fight
against infection and folate play a critical role in DNA synthesis
and repair.

Salmonella metabolism during infection was studied by
using host-cell nutrient environment and gene expression data
obtained from S. typhimurium growing inside macrophage cell
lines (Raghunathan et al., 2009). The genome-scale metabolic
model (iRR1083) was reconstructed specific to S. typhimurium
LT2. FBA and FVA were employed in the prediction of essential
genes and active metabolic pathways during infection. 417 and
736 flux-carrying reactions were computed for optimal and
suboptimal biomass productions, respectively. Gene expressions
and nutrients availability in the host cell environment were
used as constraints in the simulations. Blocked reactions were
predicted to offer valuable insight into inactive pathways in
Salmonella metabolism under investigated conditions during
infection. Integrated gene expression and optimal growth
computations resulted in unexpressed fad genes in fatty acid
degradation; however, the same genes were predicted to be
operational under suboptimal growth conditions. Therefore,
the simulations of in silico iRR1083 model provided clues
toward metabolic shifts from early stages of infection to
chronic infection of Salmonella. The computational results were
compared with the literature-based proteome data, where 315 S.
typhimurium proteins were identified by isolating this pathogen
from macrophage at different time following infection (Shi
et al., 2006). Of the 129 proteins, which were shared between
experimental proteome data and iRR1080 model, 80 and 34
proteins were found within the reactions computed by FVA
during optimal and suboptimal growth, respectively.

Prediction of essential genes for enterobacterial human
pathogens (three E. coli and one Salmonella strains) was
performed in three different host niches including human
bloodstream, urinary tract and macrophage (Ding et al.,
2016). Together with E.coli pangenome metabolic model
(iEco1712_pan) containing all metabolic reactions and associated
genes from 16 E. coli genome, the experimentally-based nutrient
compositions were used as simulation constraints to mimic
these three host environments (Keiter et al., 1955; Putnam,
1971; Raghunathan et al., 2009; Baumler et al., 2011). Among
51 metabolites, only 15 of them were shared for all niches of
interest since the different locations inside the human body

have diverse nutrients availability, which plays a pivotal role in
pathogen survival and infection mechanism. By deleting each
gene, essential (no growth) and important (reduction of biomass
production >1% of the wild type) genes were predicted through
FBA. Only one important reaction (isocitrate dehydrogenase)
and 38 essential reactions including allantoinase, ATP synthase,
citrate lyase, enolase and pyruvate kinase were predicted in
common for all host locations. However, 121 reactions were
computed to be important in one or two host environment.
Subsequent to defining essential and important genes, these
genes were compared with genomes of E. coli UT189, E. coli
53638, and Salmonella LT2 to investigate whether these genes
were retained or lost over time. The genome of E. coli O157:H7
was utilized as control since it causes infection in a different
location of human body (intestine). Therefore, this control strain
lost highest number of these genes predicted for each of the
three host environments. As expected, most of the lost essential
or important genes were computed in intestinal pathogen E.
coli O157:H7 due to evolutionary outcomes. The simulations of
E. coli UT189 successfully predicted least amount of essential
and important genes lost in human bloodstream and urinary
tract where it causes infection. However, the inconsistencies in
urinary tract simulations demonstrated a necessity of additional
constrains for more accurate predictions in this location.

Similar to host-pathogenmodeling at system-level, unraveling
of host-parasite interactions via genome-scale metabolic
modeling draws researchers’ attention. A good example in this
sense is the parasite Plasmodium falciparum which is responsible
for the most severe form of malaria and involves the different
stages in mosquito and human (Figure 3). Subsequent to
reconstructions and integration of GEM for P. falciparum and
human erythrocyte, antimalarial drug targets were predicted
for stage-specific conditions by mapping gene expression data
from different life cycles (Huthmacher et al., 2010). Among
57 experimentally supported essential enzymes, 35 enzymes
including glutathione reductase, thioredoxin reductase, carbonic
anhydrase and acetyl-CoA carboxylase were predicted to be
putative drug targets. By applying additional assumptions
(transporter constraints of biomass precursors), another
16 enzymes including spermidine synthase and ornithine
decarboxylase were also predicted to have antimalarial effects.
Drug targets of this parasite in human liver metabolism were
simulated by using well-curated GEMs for human hepatocyte
(HepatoNet1) and P. falciparum (PlasmoNet) (Gille et al., 2010;
Huthmacher et al., 2010; Bazzani et al., 2012). Twenty-four out
of 48 experimental antimalarial drug targets including serine
transferase, sphingomyelin synthase, thioredoxin reductase,
and adenylosuccinate synthase were predicted as essential for
parasite and non-essential for human. Another study was carried

Frontiers in Cell and Developmental Biology | www.frontiersin.org 15 November 2020 | Volume 8 | Article 566702

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


Sertbas and Ulgen GEMs in Infection Mechanism

out to elucidate host response to malarial infection during the
intraerythrocytic developmental cycle (IDC) (Wallqvist et al.,
2016). Along with time series gene expression data during
IDC, the proteomic based reconstruction of red blood cell
(iAB-RBC-283) and metabolic network model of P. falciparum
were coupled to simulate infection metabolism of this parasite
inside the human red blood cells (Bordbar et al., 2011; Fang et al.,
2014). The glycolytic pathway fluxes of co-cultured uninfected
red blood cells were predicted between 13 and 19% of those in
normal cells, indicating inactivation of glycolysis pathway due
to the presence of infected cells in the same culture. Temporal
activation of the glycolytic pathway was observed among the
infected and co-cultured red blood cells. During very early and
late intraerythrocytic developmental cycle (IDC), infected and
co-cultured red blood cells showed similar patterns with high
fluxes through phosphoglycerate kinase and low fluxes through
diphosphoglycero mutase and diphosphoglycerate phosphatase.
However, the low fluxes through phosphoglycerate kinase were
predicted in the infected red blood cells during the middle IDC
because of ATP secretion from P. falciparum.

Considering the different life cycle stages (liver, blood, and
mosquito stage of parasites), the metabolism of the parasite
P. falciparum varies due to fluctuating availability of nutrients
in the different host environments. Thus, a stage-specific
metabolism of P. falciparum was studied by a context specific
GEM using gene expression data to get an idea during which
stages reactions are essential (Huthmacher et al., 2010). The
in silico analysis predicted 307 essential reactions for the
parasite. All reactions were computed as essential during at
least one developmental stage. In blood stages of its life cycle,
the parasite P. falciparum need to incorporate heme from
hemoglobin degradation into hemozoin molecules in order to
prevent intoxication and cell lysis. Consistent with this, the
predictions demonstrated several essential enzymes involved in
heme biosynthesis. In late liver stage, the fatty acid synthesis is
only essential in the apicoplast. Essential reaction predictions
demonstrated that top ranking reactions were found in the
apicoplast. In ring stage, fewer reactions corresponding to folate
biosynthesis are predicted to be active compared to subsequent
stages. In schizont and early ring stage, an increase in the
number of active reactions is predicted for the citric acid cycle
and sphingolipid metabolism. In trophozoite and schizont
stages, the parasites have a high acyltransferase activity, that
can be considered as significant for their fitness (Huthmacher
et al., 2010; Bazzani et al., 2012). Among the metabolic
reactions, P. falciparum involves a pathway to synthesize
pyrimidine nucleotides de novo of which multiple reactions were
predicted to be essential such as those catalyzed by carbonic
anhydrase, carbamoylphosphate synthase, dihydroorotase,
dihydroorotate oxidase, orotidine-5′-phosphate decarboxylase.
Moreover, the enzymatic inhibitions of Plasmodium falciparum
were investigated by a reconstructed genome-scale network
PlasmoNet (Bazzani et al., 2012). Acyl-CoA synthetase
inhibition impaired PlasmoNet sphingomyelin production,
suggesting a certain amount of sphingolipids is essential for
the growth of Plasmodium falciparum. Similarly, aspartate
carbamoyltransferase inhibition resulted in an impairment of

UDP-glucose production in PlasmoNet. The in silico inhibition
of the enzyme glycerol-3-phosphate acyltransferase impaired
the production of phosphatidylethanolamine in PlasmoNet.
This enzyme glycerol-3-phosphate acyltransferase is essential
for P. falciparum growth that necessitates high amount of
phospholipids for membrane synthesis.

Several studies have indicated that the time-of-day of host
infection influences pathogen progression (Rijo-Ferreira and
Takahashi, 2019). For example, the levels of Salmonella enterica
subsp. enterica serovar Typhimurium (S. typhimurium) were
higher if the infection occurred during the rest phase compared
to the infection initiated in the middle of the active phase
(Bellet et al., 2013). Viral infections of herpes, influenza A,
and respiratory viruses of the Paramyxoviridae family were
worse when host circadian rhythms are disrupted, e.g., by
mutation in Bmal1 gene, the main circadian regulator. The
parasite infection similarly depends on the timing of the host
circadian cycle, e.g., the load of Leishmania parasite is circadian
in nature. The circadian clock (mainly BMAL1) can regulate
cellular immunity against bacteria, viruses, and parasites (Rijo-
Ferreira and Takahashi, 2019). Infections along with the resulting
inflammation can disrupt the circadian clock by decreasing the
amplitude of circadian rhythms. Some examples are seen with
Trypanosoma cruzi, Trypanosoma brucei, Plasmodium chabaudi
(Fernández Alfonso et al., 2003; Rijo-Ferreira et al., 2018).

Host-pathogen (HP) models have unraveled the pathogen
adaptation and carbon source utilization in vivo and host
manipulation by pathogen. These HP models answer questions
regarding the causality during the infection process, condition
dependent (or context specific) differences. The diagnosis and
treatment related challenges can be solved by examining
the metabolic fluxes in tissues and develop strategies
for treatment options on the basis of few experimental
data. In brief, HP models help elucidate the role of host
environment on pathogen metabolism during the course of
an infection.

SPHINGOLIPIDS RELATED INVASION
MECHANISM OF PATHOGENS

During the microbial infection process, the sphingolipid
molecules play a critical role in host-pathogen interaction
mechanism (Sharma and Prakash, 2017; Kunz and Kozjak-
Pavlovic, 2019; Rolando and Buchrieser, 2019). The initial steps
of infection is the host-pathogen contact on the cell surface
and then penetration of pathogen into the host cell. Many of
the pathogens do not have their own sphingolipids; however,
they are able to take advantage of host sphingolipid pathway to
promote their virulence and invasion. Sphingolipids are bioactive
lipids participating in cell membrane and various cellular
processes including growth, death, adhesion, inflammation
and signaling (Hannun and Obeid, 2008). Ceramide is the
central hub metabolite in sphingolipid metabolism due to
different formation (de novo synthesis from palmitoyl-CoA
and serine, sphingomyelin hydrolysis by sphingomyelinases and
reacylation of sphingosine catalyzed by ceramide synthase)
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and consumption reactions covering conversion to sphingosine,
sphingomyelin, glucosylceramide and ceramide 1-phosphate
catalyzed by the enzymes of ceramidase, sphingomyelin synthase,
glucosylceramide synthase and ceramide kinase, respectively.

Acid sphingomyelinase (ASM) converts sphingomyelin
to ceramide and has a great importance in membrane
reorganization. Several bacterial pathogens activate the ASM
and ceramide-enriched membrane platforms are formed in
response to increase in ceramides (Simonis and Schubert-
Unkmeir, 2018). These lipid rafts facilitate the uptake of
bacterial pathogen into host. Moreover, different pathogens
demonstrate specific infection mechanisms based on their
own and host cell characteristics. In P. aeruginosa infection in
cystic fibrosis, the increase in ceramide and ceramide-enriched
platforms, where β1-integrins are located on the luminal pole
of bronchial cells, lead to the accumulation of β1-integrins
(Grassmé et al., 2017). The downregulation of acid ceramidase
expression due to β1-integrins causes further accumulation of
ceramide and a decrease in surface sphingosine, which kills
bacteria. S. aureus α-toxin activates ASM and concomitant
formation of ceramide in endothelial cells by means of binding
to ADAM10 (Becker et al., 2018; Keitsch et al., 2018). In addition
to ceramide, sphingosine and sphingosine-1-phosphate (S1P)
participate in lung inflammatory injury. S1P is produced by
the sphingosine kinase-1 (SPHK1) in cytosol and sphingosine
kinase-2 (SPHK2) in nucleus by phosphorylation of sphingosine.
P. aeruginosa infection resulted in phosphorylation of SPHK2
and increased localization in nucleus leading to enhanced level
of S1P and acetylation of histone (Ebenezer et al., 2019). M.
tuberculosis, which is directly able to use glycosphingolipids
of the plasma membrane, can bind to lactosylceramide-
enriched lipid rafts of human neutrophils (Nakayama et al.,
2016). Sphingomyelin is necessary for H. pylori entry, and
secreted vacuolating cytotoxin facilitates bacterial colonization
(Foegeding et al., 2016).

The successful response of host cell to bacterial invasion
takes full advantages of phagolysosome formation or autophagy
induction to kill bacteria. On the other hand, pathogens
develop various strategies to survive including escaping from
phagosome into the cytosol, inhibiting phagocytosis, preventing
fusion of phagosomes and lysosomes and blocking autophagy.
Sphingolipids participate in these strategies for pathogenic
survival in the host. The protein Rv0888 which shows
sphingomyelinase activity is synthesized by M. tuberculosis.
This protein converts host sphingomyelin into ceramide and
phosphorylcholine, and these metabolites are used as carbon,
nitrogen and phosphorus sources byM. tuberculosis (Speer et al.,
2015). P. aeruginosa infection activates the mitochondrial ASM
(Managò et al., 2015). This results in cell death due to formation
of mitochondrial ceramide and the release of mitochondrial
cytochrome c. Subsequent to invasion, a type-III secretion system
is required for Salmonella to constitute a specialized bacterial
survival and replication niche, which is called Salmonella-
containing vacuole (SCV) (Owen et al., 2014). Based on
the replication stage, Salmonella can induce suppression of
autophagy so as to increase survival. This can be regulated by
sphingolipids since the decreased Salmonella-induced autophagy

results from inhibition of de novo sphingolipid biosynthesis
(Huang, 2016).

These examples show that pathogens are willing to use
and manipulate sphingolipids in order to invade eukaryotic
cell and promote pathogen colonization in the host. The
cases are not limited to the above mentioned examples, and
can be extended to further pathogens like Neisseria strains
(Neisseria meningitidis, Neisseria gonorrhoeae), H. influenzae,
Chlamydia trachomatis, Legionella pneumophila, Candida
albicans, Cryptococcus neoformans, Aspergillus fumigatus, etc.
(Aerts et al., 2019; Kunz and Kozjak-Pavlovic, 2019; Rolando and
Buchrieser, 2019). Pharmaceutical reduction of sphingolipids
and glycosphingolipids such as glucosylceramide (GlcCer) was
proposed as a new strategy to fight against fungal infections.
Acylhydrazones have been determined as specific inhibitors
since they targets synthesis of fungal and not mammalian GlcCer
(Mor et al., 2015; Lazzarini et al., 2018).

CONCLUDING REMARKS

Pathogen-specific genome-scale metabolic models as well
as host-pathogen integrative constraint-based methods have
become successful tools in the research of infection mechanism
that need to be fully understood to develop therapeutical
strategies against pathogens. The analysis of essential genes and
their associated products provide a valuable insight into how
to impair bacterial growth and how these critical biomolecules
change in different environmental states which mimic different
human niches. Essential biomolecules common in different
infected host microenvironment have high potential for targeting
in the combat of pathogen in multiple human niches. Similarly,
the different stages of infection may show stage-specific essential
biomolecules to be targeted by antimicrobial agents. In such
cases, molecules shared in all stages are selected as putative
drug targets. The identification of conserved metabolic pathways
during pathogen invasionmay lead to alternative complementary
routes that can be targeted by novel interfering compounds. If it is
not possible to treat the bacterial infection with a single antibiotic,
combined treatment strategies (cocktail of drugs) would be an
alternative solution. For the rare bacterial species involved in
infections, an economically feasible route for pharmaceutical
companies may be the search for broad spectrum antibiotics.
Another option would be the development of combinatorial
treatment protocols using current drugs that are already in use
against infections. Here, it is strictly necessary not to forget the
human orthologs, which need to be excluded from being drug
targets in order to avoid side effects. The computational genome
scale models presented in this review article have not only the
ability to reduce the search space for novel drug targets in the
pathogen metabolism, but can also give insights on putative side
effects on host metabolism. These metabolic network models
can be used as an additional screening tool to predict potential
toxicity of the predicted target in a healthy cell or tissue model.
Many side effects are due to patient-to-patient genetic variability.
Using context specific constraint-based models integrated with
omics data, the potential causes of the side effects such as drug
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off-target binding, downstream transcriptional effects (changes
in gene expression that are induced with drug treatment), and the
pharmacokinetics of drug clearance can be predicted in patients
and serve as a priori guide in the drug target studies.

In case of extremely deadly pathogens, this genome scale
modeling approach is indispensable since experimental analyses
are associated with the need for high-security laboratory
conditions, and in some cases prohibited. These models identify
novel virulence genes as well as enable the evaluation of pathogen
metabolism, predict disease phenotypes and hence get the
infection scenario. They offer insight into why the samemicrobial
pathogen may cause disease in some host environments but
not others.

Pathogen species, infection stages and host niches have
great importance and need to be taken into consideration in
clinical and computational studies to extend curative strategies
against pathogens for global preventative healthcare. Throughout

the infection course, different pathogens develop various
stage-specific interaction mechanisms to host cells depending

on their invasion and response features. The experimental
elucidation of such complex infection process requires long
and difficult work alone. An effective application of stage-
specific genome-scale metabolic modeling approach guides
experimental studies and facilitate the development of novel
candidate drugs targeting key essential biomolecules at all
stages infection.
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