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ABSTRACT

Unison singing is the name given to an ensemble of singers
simultaneously singing the same melody and lyrics. While
each individual singer in a unison sings the same princi-
ple melody, there are slight timing and pitch deviations
between the singers, which, along with the ensemble of
timbres, give the listener a perceived sense of "unison".
In this paper, we present a study of unison singing in the
context of choirs; utilising some recently proposed deep-
learning based methodologies, we analyse the fundamen-
tal frequency (F0) distribution of the individual singers in
recordings of unison mixtures. Based on the analysis, we
propose a system for synthesising a unison signal from an
a cappella input and a single voice prototype representa-
tive of a unison mixture. We use subjective listening tests
to evaluate perceptual factors of our proposed system for
synthesis, including quality, adherence to the melody as
well the degree of perceived unison.

1. INTRODUCTION

Throughout history, singing has been an important cul-
tural activity for humans, serving for propagation of be-
liefs and ideas amongst the masses as well as for social
entertainment. The social aspect led to gatherings of peo-
ple singing in a group, which evolved into polyphonic
ensemble singing with multiple voices singing counter-
point melodies in complex harmonies. A group of peo-
ple singing in such an ensemble is commonly termed as
a choir and the focus of our study is on one setting of
such choirs consisting of four voices known as Soprano,
Alto, Tenor and Bass (SATB). Each voice within an SATB
ensemble has its own function and melodic range in the
whole. SATB is one of the most widely studied, docu-
mented, and practiced forms of choirs with numerous ded-
icated conservatories across Europe, highlighting the cul-
tural importance of the art form. Within each of the SATB
voices, it is common to have multiple singers of similar
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vocal range singing the same melody simultaneously, in a
form known as unison singing. While all the singers in a
unison sing the same melody, it is impossible for a group
of two or more people to perfectly synchronize and sing
the exact same pitch line. Each singer has their own nat-
ural micro-deviations, both in terms of timing and pitch,
from the prescribed score and their own distinct timbre.
The combination of micro-deviations and the ensemble of
timbres leads to the perception of unison, wherein sev-
eral singers are perceived to be singing a single pitch con-
tour [1], and is the main focus of our study.

Pitch and fundamental frequency (F0) are related but
not equivalent terms. While the F0 generally refers to the
physical frequency of vibrations of the vocal folds for a
singing voice signal, pitch refers to an abstract perceptual
concept which has been found to be closely correlated to
the F0. Frequency is usually measured in Hertz, represent-
ing the number of cycles of a periodic signal per second,
whereas pitch is described in terms of perceptual units like
cents. The cent is a unit defined on a logarithmic scale, as a
measure of the ratio between the frequency in Hertz and a
base frequency, commonly chosen to be 440 Hz, as shown
in Equation 1.

fcents = 1200 · log2
fhertz
440

(1)

Thus defined, the cent is correlated to the perceptually rele-
vant musical unit of an equally tempered semitone. Specif-
ically, one semitone spans 100 cents. Examined individ-
ually, the pitch of the singers in a unison can be repre-
sented by the F0 of each individual singer’s vocal signal,
this can be tested by synthesising a time-varying sinusoid
with the frequency of the signal. However, when the in-
dividual signals are added the resultant pitch is not merely
the sum of F0 value, and the methodology of synthesising a
sum of sinusoids as with single singers fails to produce the
same perceptual result due to physical phenomena such as
beating, among others. Past studies have utilized artificial
unison mixes created by the use of a vowel only singing
voice synthesizer to study the perception of a single pitch
contour in a unison [1]. Other areas of past research re-
lated to unison singing include single voice to unison syn-
thesis models, based on creating voice clones with varia-
tions in the input [2, 3]. Fuelled by the deep learning rev-
olution, singing voice synthesizers have evolved over the
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last few years, allowing us to take a step further both into
exploring the perception of unison and into effective solo
voice to unison synthesis. We build on the work done by
Ternström [1] by leveraging recently proposed synthesis
methodologies to synthesize a single voice prototype rep-
resenting the melodic and linguistic content of a unison
mixture. This allows use to further test the hypothesis of
a single F0 contour representative of the perceived pitch
of a unison via subjective listening tests. We also verify
the author’s findings by analysing a set of real recordings
of unison singing. In addition, we propose a methodology
combining previous research and recently developed tech-
niques to synthesize a unison mixture from a single voice
input. We follow the basic methodology used by Schnell
et al. [2] to create voice clones with variations in three as-
pects; pitch, timing and timbre, and use perceptual evalua-
tion tests to evaluate the effect of each of these parameters
on the perception of the sense of a unison.

The rest of the paper is structured as follows. Section 2
discusses previous works pertinent to our study. We then
present the analysis of the choir recordings in Section 3,
including a description of the dataset of choir recordings,
the methodology used for the analysis and the results of the
analysis. The synthesis methodology we use for synthesiz-
ing voice clones and the single voice prototype of the uni-
son mixture is described in Section 4. Section 4.3 presents
the perceptual evaluation methodology used and the results
of the perceptual tests. Finally, we present a discussion on
our findings in the analysis of the choir and the perceptual
evaluation of the synthesis in Section 6.

2. RELATED WORK

We divide the description of related works into three sec-
tions: past studies into the analysis of the perception of uni-
son, previous works on synthesising unison mixtures from
choirs and recently proposed deep-learning based method-
ologies what we will use for analysis and synthesis.

2.1 Analysis Of Unison Perception

The perception of pitch dispersion has previously been
studied in [1], wherein the author used synthesized singing
voice stimuli to investigate the preferences of expert listen-
ers in unisons. In the study, pitch dispersion is defined as
the bandwidth of the fundamental frequency and its har-
monic partials across individual singers in a unison. It
is suggested that this dispersion is related to the flutter—
small variations in F0 that are too fast to be perceived as
pitch variations. The concept of pitch scatter is presented
in the study as the standard deviation over voices in the
mean F0: the average F0 computed over the duration of
each tone of a song. The study concludes that a scatter of
0 cents–5 cents was preferred by the participants while a
scatter of 5 cents–14 cents was seen as the limit of toler-
ance before dissonance was reported. In addition, the au-
thor also highlights several differences between solo and
ensemble singing. For instance, a single performer pro-
duces tones with well-defined properties: pitch, timing,

loudness, timbre, while an ensemble of performers pro-
duces sounds with statistical distributions of each of these
properties.

A similar method for modelling scatter in choir sec-
tions was presented by Cuesta et al. [4] using small win-
dows to compute the standard deviation between individ-
ual F0s in the unison. This study used real recordings
of choral singing instead of synthesised stimuli, present-
ing a mathematical model for dispersion rather than a per-
ceptual evaluation. For the dataset used in the research,
F0 (or pitch) dispersion was found to be in the range
of 20 cents–30 cents for all SATB voice sections, being
slightly larger in the Bass.

Another recent study focused on the analysis of F0 in
vocal music is work by Weiss et al. [5], where the au-
thors proposed an approach to measure intonation quality
of choir recordings. They create an ideal 12-tone equal
temperament grid, and then calculate the deviation of each
F0 and its partials to their theoretical position in the grid.
The overall deviation is computed as a weighted sum of
each partial’s deviation. This method enables the analysis
of the overall intonation of a full choir recording, but does
not account for the deviations within sections of the choir.

2.2 Unison Synthesis

Signal processing techniques have previously been utilised
to synthesize choir unison by adding several clones of
a monophonic a cappella signal with uncorrelated pitch,
timing, and timbre deviations. Most particularly, Pitch
Synchronous Overlap Add (PSOLA) methods [2] have
been exploited as an analysis-synthesis framework to de-
compose the vocal signal into a set of constituent wave-
forms representing successive pitch periods of the signal.
Pitch and timing deviations are added to the vocal signal
using time stretching and pitch shifting techniques to cre-
ate voice clones, which are combined to form the output
unison signal.

Other proposed methodologies for creating a unison
output from an a cappella signal include morphing the
spectral and pitch components of the vowels of the input
signal as in [3]. The methodology’s effectiveness is con-
strained to low tempo inputs . Random modulation of beat-
ing partials to create a choral effect [6] has also been used.

2.3 Deep Learning For Analysis and Synthesis

For our work, we build on the work done in [1] and [4],
modelling the perceptual pitch contour of a unison mix-
ture as a single F0 contour. To this end, we use a recently
proposed Convolutional Representation for Pitch Estima-
tion (CREPE) methodology [7] for extracting F0 contours
from real world recordings of individual singers in a choir
setting as well the F0 contour of unison mixture created by
combining the individual voices. This methodology uses a
series of convolutional operations on the waveform of the
input signal and outputs a probability distribution over a
discrete representation of the underlying F0 contour of the
signal across a series of time-frames.
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To synthesize the single voice prototype representing a
unison mixture output and the voice clones for creating
a unison mixture from a single voice input, we adapt the
methodology proposed by Chandna et al. [8], which allows
for the re-synthesis of a solo single voice from a musical
mixture input via the underlying linguistic features. This
methodology builds on the idea of re-synthesizing a vocal
signal from a musical mixture by estimating the parameters
of a vocoder synthesizer [9] and uses an encoder built of a
bank of bi-directional long short-term memory (LSTM) re-
current neural networks (RNNs) to estimate a continuous
representation of the underlying linguistic features present
in the input mixture signal. The continuous representa-
tion is singer-independent and language agnostic, and was
initially proposed for zero-shot voice conversion via an au-
toencoder network [10]. The linguistic features can then be
used to generate the spectral envelope of the vocal signal
in the mixture, providing the singer identity. The authors
of [8] proposed two decoders for this process, a Singer De-
pendent Network (SDN) which takes the singer identity as
a one-hot vector, and a Singer Independent Network (SIN)
which intrinsically learns the singer identity from the given
input. The spectral envelope is then combined with the F0,
extracted via an external algorithm, to synthesize the vocal
signal. While the original framework was proposed for ex-
tracting a singing voice from a pop/rock musical mixture,
we adapt the SDN network for synthesising a unison mix-
ture from an a cappella input and the SIN network for syn-
thesizing an a cappella singing voice from a unison mix-
ture. The adaptations we apply are described in Section 4.
The SIN and SDN models [8] were trained on a proprietary
dataset with 12 hours of data comprising 205 songs by 45
male and female singers, and we have obtained a copy of
the trained model with permission from the relevant au-
thorities for our study.

3. ANALYSIS OF CHOIR RECORDINGS

We analyse the variations between individual singers in a
unison in terms of variance in pitch and timing. Below, we
present the dataset that we use in our analysis, followed by
the methodology used for analysis, and finally the results
of our analysis.

3.1 Datasets

We analyse the Choral Singing Dataset (CSD) [4], which
includes monophonic recordings of 3 choral pieces: Niño
Dios d’Amor Herido, written by Francisco Guerrero, Lo-
cus Iste, written by Anton Bruckner, and El Rossinyol, a
Catalan popular song. There are 16 different singers for
each song with 4 singers for each of the four parts; So-
prano, Alto, Tenor and Bass. The dataset also includes
manually corrected F0 annotations for each track.

3.2 Analysis Methodology

To analyse inter-singer variance in pitch, the first step is
the extraction of an F0 contour from a unison mixture of
singers. We aim to study the behavior of a monophonic

F0 extractor in such cases, assuming that we have a suf-
ficiently balanced unison performance, where the contri-
bution of each singer is similar in terms of volume and
energy. To this end, we use CREPE [7] to extract the fun-
damental frequency of the unison mixture created by sum-
ming and normalizing all corresponding individual singers
in each vocal part of the recordings. This is termed as
EstF0U .

We then measure the resemblance of the estimated
EstF0U to each of the manually annotated F0 tracks and
to the mean F0m

1 . We use standard evaluation metrics for
melody extraction including Raw Pitch Accuracy (RPA),
Overall Accuracy (OA), Voicing Recall (VR) and Voicing
False Alarm (VFA) between the EstF0U , the average the
mean F0m, and each individual singer curve, GTF0i

2

Once we have verified the accuracy of the extraction
system, we build a statistical model for the individual con-
tours in the unison, as suggested by [1]. In our model, the
framewise F0 of an individual singer, F0i, can be repre-
sented as a distribution of values around the mean F0m
with a deviation of Fdevi, as shown in Equation 2

F0i = F0M + Fdevi (2)

This equation also allows us to define the F0i+1 of a
singer in terms of the F0i of another singer in the unison
as

F0i+1 = F0m + Fdevi+1

F0i+1 − F0i = Fdevi+1 − Fdevi

F0i+1 = F0i + Fdevi+1 − Fdevi

F0i+1 = F0i + ∆F0s

(3)

Where we define ∆F0s as the inter-singer deviation, rep-
resented by Equation 4. For each pair of singers in the uni-
son, we compute the frame-wise difference between the
corresponding F0 contours in cents. For this calculation,
only frames with positive F0 values, also known as voiced
frames, were considered. We average these inter-singer de-
viations across time and songs, and obtain a single value
for each group, i.e., SATB.

∆F0s =

n∑
i=1

n∑
j=i+1

∣∣F0i − F0j
∣∣

(
n
2

) (4)

where the sub-index s indicates the choir section, s ∈
[S,A, T,B], and n is the number of singers. In our use
case, n = 4.

To study timing deviations, we focus in the transitions
from voiced to unvoiced, and vice-versa—where singers
are not entirely in sync. We call these regions transition re-
gions, where some of the singers in the mixture are voiced

1 Note that the average F0 value has to be adjusted for timing differ-
ences between the individual singers. To this end, we define the average
to be zero (unvoiced frame) if and only if all individual values for that
frame are zero. for all other cases, the average is calculated only account-
ing for the non-zero values.

2 We use the mir_eval library [11] for this evaluation, and we use a
pitch tolerance of 30 cents
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600



0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1

RPA VR VFA OA

SOPRANOS

Individual F0/Unison F0 Average F0/Unison F0

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1

RPA VR VFA OA

SOPRANOS

Individual F0/Unison F0 Average F0/Unison F0

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1

RPA VR VFA OA

TENORS

Individual F0/Unison F0 Average F0/Unison F0

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1

RPA VR VFA OA

ALTOS

Individual F0/Unison F0 Average F0/Unison F0

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1

RPA VR VFA OA

BASSES

Individual F0/Unison F0 Average F0/Unison F0

Figure 1. Resemblance of the estimated unison EstF0U
estimation to each individual GTF0i contour (green) and
the average (blue) using pitch evaluation metrics averaged
across each choir section.

Sopranos Altos Tenors Basses
0

10

20

30

40

50

60

Ce
nt

s (
f_

re
f =

 4
40

.0
 H

z)

Inter-singer F0 deviations

Figure 2. Inter-singer deviations in cents averaged across
the whole dataset for each choir section. Deviations are
calculated using Equation 4.

and others are unvoiced, with a positive or zero F0. We
measure the length of all the transition regions in every
unison from the CSD, and then average across choir sec-
tions.

3.3 Analysis Results

A summary of the results of the comparison be-
tween the fundamental frequency extracted by CREPE,
EstF0U , and the manually corrected fundamental fre-
quency, GTF0i is illustrated in Figure 1, along with a
comparison with the mean, F0m. We observe that all sec-
tions follow the same pattern with similar metric values,
and the unison F0 estimated by CREPE,EstF0U , is closer
to the average F0m ,than to the individual contours. In
addition, all metrics improve when we compare the aver-
age F0 curve to the extracted F0 contour from the unison:
RPA, VR and OA are higher in the blue plots, while VFA
is lower. We can thus use the pitch estimated by CREPE,
EstF0U , as a representative of the mean single pitch con-
tour perceived in a unison mixture [1].

The calculated ∆F0s is shown in Figure 2. We observe
an inter-singer deviation in the range of 0 cents–50 cents,
with a mean of around 20 cents. This value, representing
the inter-singer deviation in the unison mixtures, is com-
parable to the pitch dispersion studied by Cuesta et al. [4].
While the methodology for modelling is different, these re-

Section Average Timing Deviation ±
Standard Deviation

Soprano 0.134± 0.039 sec

Alto 0.093± 0.0024 sec

Tenor 0.100± 0.021 sec

Bass 0.124± 0.021 sec

Table 1. Timing deviations averaged across the CSD.
These values measure the time span in which all singers
in the unison transition from voiced to unvoiced, and vice-
versa, averaged across all transitions in each song.

sults are in accordance with their reported per-section pitch
dispersion: larger in the bass section, smaller in the sopra-
nos, and very similar for altos and tenors.

Table 1 shows the results of the timing analysis. We
observe an average timing deviation of 0.1 s between the
voices in the unison for all parts of the choir.

4. SYNTHESIS METHODOLOGY

We present two synthesis models, Solo To Unison (STU) to
synthesize voice clones for creating a unison mixture from
a single voice input, and Unison to Solo (UTS) for syn-
thesizing single voice prototype representing the melodic
and linguistic content of a unison mixture input 3 . Simi-
lar to the work presented by Schnell et al [2], we decom-
pose the input signal into the F0, harmonic spectral enve-
lope, and aperiodicity envelope. However, instead of using
Pitch Synchronous Overlap Add (PSOLA) methods, we
utilize the WORLD vocoder [12], which has been shown
to be an effective vocoding system for singing voice syn-
thesis [13, 14, 14]. Similar to [14], we use truncated fre-
quency warping in the cepstral domain [15] to reduce the
dimensions of the harmonic components from 1024 to 60
log Mel-Frequency Spectral Coefficients (MFSCs) with an
all-pole filter with warping coefficient α = 0.45. In addi-
tion, we use bandwise aperiodic analysis to reduce the di-
mensionality of aperiodic features to 4. For the rest of this
paper, we refer to these 64 features together as the spectral
envelope.

4.1 Unison to Solo (UTS)

As shown in Figure 3, we first perform a short-time Fourier
transform (STFT) to extract a spectrogram from the in-
put waveform. The magnitude part of the spectrogram is
passed through the encoder proposed in [8] to extract a
continuous representation of the linguistic features present
in the unison mixture input. The linguistic features are
decoded via the SIN network [8] to generate the spectral
envelope for vocal synthesis. This envelope is combined

3 Audio examples are provided as complementary material at https:
//pc2752.github.io/unison_analysis_synthesis_
examples/and the source code with the trained models are available at
https://github.com/MTG/content_choral_separation
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with the pitch contour output from CREPE [7], F0U to
synthesise the single voice prototype representing the uni-
son mixture input.

4.2 Solo to Unison (STU)

The analysis part of the STU case follows a similar
methodology, as we extract the linguistic features and the
EstF0i contour from the input a cappella voice signal.
To create voice clones with pitch and timing deviations,
we add randomly sampled noise from a normal distribu-
tion with a mean of 0 and a variable standard deviation,
termed as std. This represents the inter-singer deviation,
∆F0s, and allows us to model the F0i+1 of the clone as
per Equation 3. Timing deviations are added by shifting
the voiced portions of the input signal or the portions be-
tween tow blocks of silence of more than 80 ms by a vari-
able amount, randomly sampled from a normal distribution
of mean 0 and standard deviation ts. The values of std and
ts are based on our analysis of the Choral Singing Dataset
presented in Section 3.3

Finally, for variations in timbre, we generate the spec-
tral envelope of a variable number singers, ns, of the same
gender as the input using the SDN network proposed in [8].
This is based on our analysis presented in Section 3.3.
There was no overlap between singers in the set used for
training the synthesis model and the singers in the Choral
Singing Dataset used for evaluation. The various voice
clones are added together and normalized in amplitude to
produce the final unison output. We evaluate various com-
binations of std, ts, and ns on their impact of the percep-
tion of unison.

4.3 Perceptual Evaluation Methodology

We used subjective listening tests with low and
high anchors, as modified versions of the MUSHRA-
methodology [16] to evaluate subjective criteria of the syn-
thesis produced by our analysis synthesis framework.

While there are several aspects that could be evaluated,
we focused on three keys aspects: adherence to melody,
perception of unison, and audio quality. For each aspect,
the participants were presented with 4 questions, one for
each part of the SATB choir, and were asked to rate the test
cases in the question on a continuous scale of 1–5 with re-
spect to a presented reference. The test case and references
provided pertained to the the same section of the song and
were between 7 s–10 s each. The parameters used for these
tests are described below for each aspect.

4.3.1 Adherence to melody and lyrics

For this aspect, we wanted to see the similarity of the per-
ceived pitch contour of the output for both the UTS and
STU cases to that of a ground truth unison mixture. To
this end, the reference provided to the participant was a
ground truth unison sample made by summing the corre-
sponding four individual singers of a part to form a unison
mixture. This reference is referred to as REFU. The partic-
ipants were asked to rate test samples which included the
single voice prototype of the unison as output by the UTS

system, referred to as UTS. In addition, we evaluated the
output of STU with a pitch deviation with parameter std
set to 50 cents, the acceptable limit of pitch deviations, as
shown by our analysis in Section 3.3 and suggested by [1].
Four singers were used for generating this test case, with
parameter ns set to 4, and it is referred to as STU_PS.
We also evaluated the output of the UTS system with both
pitch and timing deviations with parameter ts set to 40 ms.
While our analysis in Section 3.3 suggests that higher val-
ues of ts could have been used, we found that increasing
the value beyond 40 ms leads to a unacceptable level of
degradation in output quality. We refer to this test case as
STU_PTS. We also provided a lower anchor of a sample of
the same length from another vocal part.

4.3.2 Perception of unison

Unison is a loosely defined perceptual aspect, the cogni-
tion of which we aim to study here. For this, we pro-
vide a reference of a ground truth unison sample created
in the same manner as described above, REFU. Given this,
participants were asked to rate outputs from the STU sys-
tem based on their similarity to the reference in terms of
the perception of unison. In addition to the STU_PTS and
STU_PS cases with pitch, timing and timbre variance, we
also tested the case for just timing and singer variation, re-
ferred to as STU_TS and a case with just pitch and timing
deviations, referred to as STU_PT, timbral changes were
not done for the voice clones used for creating this test
case. The a cappella sample of a single singer singing the
same example as the reference was provided as a lower an-
chor.

4.3.3 Audio Quality

Audio quality is another subjective measure that is well de-
fined in literature but not easily understood by non-expert
participants. For the evaluation, we set an upper limit of
audio quality to the resynthesis of a single voice recording
with the WORLD vocoder REFS and a lower limit to the
resynthesis of a unison mixture with the same RESSYN-
THU. The test cases provided to the participants were the
same as those provided for the adherence to melody case,
except that the lower anchor was changed.

4.4 Perceptual Evaluation Results

There were 17 participants in our evaluation, of which 10
had prior musical training. To account for inter-participant
variance in subjective evaluation, the opinion score for
each question was normalized over ratings for the refer-
ence and the lower anchor before calculating the mean
opinion scores (MOS) and the standard deviations in opin-
ion scores, presented in Table 2.

The subjective nature of the perceptual aspects evalu-
ated must be taken into account for the evaluation and the
mean opinion scores are indicative of preferences rather
than absolute measures of quantity. It can be observed that
the perceived adherence to melody for the prototypical a
cappella voice synthesized by the UTS model has higher
preference than the STU models, although a high variance
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602



STFT

Input Waveform Pitch Contour Output Waveform

Synthesis

Singer Independent Linguistic Features 

Encoder

Spectral Envelope

Decoder

Singer Identity

Pitch deviations 
for STU

CREPE [7]

Figure 3. The synthesis framework. The magnitude part of the spectrogram of the input is passed through the encoder
from [8] to extract linguistic content. For the UTS case, this is passed to the decoder along with a learned embedding to the
SIN decoder [8] to generate the spectral envelope. For STU, the linguistic features are passed to the SDN decoder along
with a one-hot vector of the same gender as the input. F0 is extracted from the input waveform via CREPE [7]. Both the
envelope and the F0 are used to synthesize the output voice. For the STU case, timing deviations are further added before
summing with the input and normalizing.

Test Adherence To Unison Audio
Case Melody Perception Quality

UTS 3.6± 0.93 2.1± 0.65
STU_PS 3.3± 0.83 2.6± 0.85 2.8± 0.45
STU_PTS 2.9± 1.14 3.2± 0.96 3.1± 0.63
STU_TS 2.3± 1.11
STU_PT 3.0± 1.23

Table 2. Mean Opinion Score (MOS) ± Standard Devia-
tion for the perceptual listening tests across the test cases
provided. The models shown corresdond to the Unison to
Solo (UTS) model, the Solo to Unison with pitch, timing
and singer variations, indicated by the addition of the let-
ters P,T and S as suffixes to the abbreviation, respectively.
The scores for each question were normalized by the re-
sponses to the upper and lower limits for the responses de-
fined in section 4.3.

is observed in the ratings for the same. The unison percep-
tion evaluation shows that the variations in either timing
or pitch alone are not as preferred as variations in both as-
pects together. Timbre variations do not have as significant
an effect on perception of unison as variances in timing and
pitch. The evaluation of audio quality shows room for im-
provement in the synthesis of the voice signals. This can
partly be attributed to the use of the WORLD vocoder [12]
and we believe that this can be improved on in the future
using recently proposed neural synthesis techniques.

5. CONCLUSIONS

We have presented an analysis of the Choral Singing
Dataset, building on the work presented in [1]. In accor-
dance with the analysis done by [4], we observe devia-
tion in the range of 0 cents–50 cents between the F0 con-
tours of the individual singers in the unison mixtures in
the dataset. We further note an timing deviation of 0.1 s
between singers in unison in the dataset.

We then used this analysis along with recently proposed
deep-learning based methodologies to present a synthesis

system for a unison mixture from a single voice input and
a single voice prototype synthesis representing the melodic
and linguistic content of a unison mixture input. Based on
these systems, we were able to conduct a perceptual eval-
uation of the unison, further supporting the claim of [1]
that the a mixture of different voices singing in unison is
perceived to have a single pitch. In addition, we found
that pitch and timing deviations together are important for
the perception of the unison, and that variations in either
aspect alone is insufficient for such. However, timbre vari-
ations were not found to be as relevant.

We present this work as the first step into the analysis of
an under-explored research area, hoping to fuel further dis-
cussion on the topic. While interesting from an academic
standpoint, the systems we present also have several com-
mercial applications such as creating a unison choral effect
to be used in music production as well as for transposition
and transcription, in conjunction with the work presented
in [17]. We also plan to incorporate the presented work
with [18], for complete source separation for choral record-
ings.

6. ACKNOWLEDGEMENTS

The TITANX used for this research was donated by the
NVIDIA Corporation. This work is partially supported by
the Towards Richer Online Music Public-domain Archives
(TROMPA H2020 770376) project. Helena Cuesta is sup-
ported by the FI Predoctoral Grant from AGAUR (Gener-
alitat de Catalunya).

7. REFERENCES

[1] S. Ternström, “Perceptual evaluations of voice scatter
in unison choir sounds,” STL-Quarterly Progress and
Status Report, vol. 32, pp. 041–049, 1991.

[2] N. Schnell, G. Peeters, S. Lemouton, P. Manoury, and
X. Rodet, “Synthesizing a choir in real-time using pitch
synchronous overlap add (psola).” in ICMC, 2000.

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020
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