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Anthelmintic resistance has a great impact on livestock production systems worldwide, is an emerging
concern in companion animal medicine, and represents a threat to our ongoing ability to control human
soil-transmitted helminths. The Consortium for Anthelmintic Resistance and Susceptibility (CARS)
provides a forum for scientists to meet and discuss the latest developments in the search for molecular
markers of anthelmintic resistance. Such markers are important for detecting drug resistant worm
populations, and indicating the likely impact of the resistance on drug efficacy. The molecular basis of
resistance is also important for understanding how anthelmintics work, and how drug resistant popula-
tions arise. Changes to target receptors, drug efflux and other biological processes can be involved. This
paper reports on the CARS group meeting held in August 2013 in Perth, Australia. The latest knowledge
on the development of molecular markers for resistance to each of the principal classes of anthelmintics
is reviewed. The molecular basis of resistance is best understood for the benzimidazole group of
compounds, and we examine recent work to translate this knowledge into useful diagnostics for field
use. We examine recent candidate-gene and whole-genome approaches to understanding anthelmintic
resistance and identify markers. We also look at drug transporters in terms of providing both useful
markers for resistance, as well as opportunities to overcome resistance through the targeting of the
transporters themselves with inhibitors. Finally, we describe the tools available for the application of
the newest high-throughput sequencing technologies to the study of anthelmintic resistance.
� 2014 The Authors. Published by Elsevier Ltd. on behalf of Australian Society for Parasitology Inc. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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1. Introduction

The Consortium for Anthelmintic Resistance and Susceptibility
(CARS) met for the fifth time on the 25th of August, 2013 in Perth,
Australia. The group meets every two years to discuss the latest
research aiming to elucidate mechanisms of resistance to anthel-
mintic drugs. The CARS group aims to promote research on anthel-
mintic resistance, with a view towards the development of
molecular markers for anthelmintic resistance diagnosis, and to
assist in the development of new drugs. The meeting was attended
by approximately 90 delegates drawn from universities, govern-
ment primary industry departments, national research institutes
(medical and veterinary), animal health companies, and veterinary
service providers.

Anthelmintic resistance has great impact on sheep and cattle
production systems worldwide (Kaplan, 2004; Sutherland and
Leathwick, 2011), while the impact on equine health is also
increasing (von Samson-Himmelstjerna, 2012). In addition, there
is some concern that resistance may arise in soil-transmitted hel-
minth parasites infecting humans (Vercruysse et al., 2011), and
there is evidence of ivermectin resistance emerging already in
Onchocerca volvulus (Osei-Atweneboana et al., 2011) and prazi-
quantel resistance has been reported in Schistosoma haematobium
(reviewed in Wang et al., 2012). Resistance also has an impact on
parasite control in companion animals; for example, resistance to
nicotinic agonist anthelmintics has been reported in canine hook-
worms (Kopp et al., 2007), and there is some evidence that resis-
tance to macrocyclic lactones is emerging in canine heartworms
(Geary et al., 2011). Clearly, there is a significant need for better
management of drug use in helminth control. If means existed to
reliably identify the presence of parasite populations resistant to
specific drugs, improvements in drug-use decisions could be made
to avoid ineffective treatment and, hence, slow the selection for
resistance. Sensitive molecular diagnostics are an attractive option
for providing the basis for such drug-use decisions.

Research on resistance markers is not only useful for developing
diagnostic tools, but can also help increase our understanding of
drug effects: for example, the interaction of drugs with their
molecular targets. Also, an understanding of drug resistance mech-
anisms, can assist in revealing the nature of the interactions of
anthelmintics with parasite defensive systems, including drug
efflux pumps (e.g. P-glycoprotein, P-gp) and detoxification
enzymes (e.g. cytochrome P450). The development of resistance
markers is, therefore, seen as an enabling science which will help
counter the impact of anthelmintic resistance in multiple ways;
providing new drug targets, new synergistic or combination drug
preparations, and a better understanding of how parasites evolve
to cope with any potential xenobiotic, including the next genera-
tion of anthelmintic drugs.

The last review paper produced by the CARS group was in 2011,
covering the 2009 meeting (Beech et al., 2011), and hence the pres-
ent review represents a timely ‘state of play’ document describing
the most recent research into anthelmintic resistance mechanisms
and molecular markers. The CARS2013 meeting covered the latest
research on anthelmintic resistance against each of the main drug
classes, focusing on the development of markers for resistance to
each class. For drugs where resistance has not yet been reported
(the cyclooctadepsipeptides, e.g. emodepside) or has only recently
been reported (monepantel- Scott et al., 2013), the talks described
research on the drug’s mode of action, revealing that changes at the
receptor site(s) are likely resistance mechanisms. Drug transport-
ers (e.g. P-glycoproteins, P-gps) were examined from two perspec-
tives, firstly, in terms of their potential use as markers for
resistance, and secondly, analysis of the potential to use P-gp
inhibitors as synergists to overcome transporter-mediated anthel-
mintic resistance. The meeting focused both on candidate gene-
based (Fig. 1) and worm genetics and genomics-based approaches
to elucidate resistance mechanisms. Finally, the meeting was pre-
sented with an update on the genomic resources available to
researchers studying molecular aspects of nematode and trema-
tode biology.
2. Macrocyclic lactones (MLs): the target site

The biological targets for MLs are glutamate-gated chloride ion
channel receptors (GluClRs) expressed in the neurons and muscle
cells of nematodes (Cully et al., 1994). ML drugs irreversibly acti-
vate these channels, thereby inhibiting neuronal activity and mus-
cle contractility, and thus inducing flaccid paralysis and death. MLs
also activate other ligand-gated ion channel receptors, namely the
c-aminobutyric acid (GABA) and glycine (Gly) receptors, however,
this activation requires much higher drug concentrations than
required for the GluClRs (Adelsberger et al., 2000), and hence the
GluClRs are considered to be the principal target for this class of
anthelmintics.



Fig. 1. Schematic representation of principal known anthelmintic resistance pathways, and their relevance to each of the current anthelmintic drug classes. The ability of the
drug to enter the worm and interact with its target receptor in order to trigger a harmful physiological effect (shown at top for a drug- susceptible worm) is diminished
through four principal mechanisms. These mechanisms apply to varying degrees to the major anthelmintic drug classes, as indicted by the relative font of the drug class
names at the base of the figure; ML = macrocyclic lactones, TCBZ = triclabendazole, Lev = levamisole (as a representative of the nicotinic agonist drug class), BZ =
benzimidazoles, AAD = amino-acetonitrile derivatives; ⁄denotes that resistance to the AADs is only characterised in laboratory-selected isolates.
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Early reports on the mechanism of ivermectin resistance in par-
asitic nematodes highlighted the presence of mutations in GluClRs
(Blackhall et al., 1998; Njue et al., 2004). Blackhall et al. (1998)
reported an increased frequency for an allele of a GluCl a-subunit
gene in ivermectin- and moxidectin-resistant Haemonchus contor-
tus isolates, suggesting that a mutation in this gene was associated
with ML resistance. Importantly, these resistant isolates had been
generated by repeated selections with either ivermectin or moxi-
dectin at sub-therapeutic levels rather than being field-derived.
Njue et al. (2004) detected a number of mutations in the GluCla3
subunit gene of an isolate of Cooperia oncophora recovered origi-
nally from the field in Somerset, UK (Coles et al., 1998). They found
that one of these mutations, L256F, accounted for differences in the
response to ivermectin shown by homomeric channels composed
of GluCla3 subunit genes from the resistant and susceptible isolates
expressed in Xenopus oocytes. McCavera et al. (2009) confirmed the
importance of the L256F mutation in interactions of ivermectin
with GluClRs, by showing that substitutions of various aromatic
amino acid residues for L256 in H. contortus GluCla3B genes trans-
fected into COS-7 cell membranes caused a reduction in the binding
of ivermectin to membrane preparations. They also stated that they
were looking to see whether any mutation at position 256 was pres-
ent in field isolates of H. contortus, and although the extent of this
effort was not described, they reported ‘we have had no success’.

As described above, ivermectin is also known to interact with
GABA receptors, and there is some evidence that GABA receptors
may contribute to the nematocidal activity of MLs (McCavera
et al., 2007). Changes in GABA receptors have been implicated in
ML resistance in parasitic nematodes (Feng et al., 2002; Blackhall
et al., 2003). However, these resistant isolates were derived from
repeated selections at sub-therapeutic drug doses rather than
being derived from the type of drug selection pressure occurring
in the field.
The last couple of years have seen great advances in the under-
standing of how ivermectin interacts with Cys-loop domains
within receptor proteins (Lynagh and Lynch 2010, 2012a; Hibbs
and Gouaux, 2011). Lynagh and Lynch (2010) showed that the
presence or absence of a glycine residue in the third transmem-
brane domain of these receptors (denoted M3-Gly) could predict
their ivermectin sensitivity. For instance, the M3-Gly residue is
present in GluClRs of various ivermectin-sensitive helminths such
as H. contortus, C. oncophora, and Dirofilaria immitis, but is replaced
by larger residues in ivermectin –insensitive trematodes such as
Schistosoma mansoni, S. japonica and Clonorchis sinensis (Lynagh
and Lynch, 2012a). Importantly, in terms of its possible reflection
of a ML resistance mechanism, mutation of this glycine residue
in the H. contortus GluCla3B protein expressed on HEK293 cells
resulted in the loss of ivermectin sensitivity (Lynagh and Lynch,
2010). However, while explaining ivermectin sensitivity differ-
ences between different Cys-loop receptors within species, and
between different species possessing different receptor types, the
question remained as to whether changes in the M3-Gly residue
were involved in the reduced sensitivity to ivermectin seen in field
isolates of many helminth species. Importantly, Lynagh and Lynch
(2010) noted that GluCla3 from resistant C. oncophora (Njue et al.,
2004) did have the M3 glycine residue, suggesting that changes at
M3-Gly are not necessary for reduced ivermectin sensitivity arising
as a result of drug selection pressure in the field.

Indeed, recent studies have failed to find a link between the M3-
Gly residue, or mutations equivalent to L256F in C. oncophora, and
ivermectin resistance in various field-derived isolates of several
parasitic nematode species. Further, these recent reports have failed
to find any polymorphisms in GluClRs that can be specifically linked
to the observed ML resistances. These reports have examined: (i) the
avr-14B gene in field-derived C. oncophora (including two isolates
showing 0% ivermectin efficacy) and laboratory-selected O. ostertagi



A.C. Kotze et al. / International Journal for Parasitology: Drugs and Drug Resistance 4 (2014) 164–184 167
(El-Abdellati et al., 2011); (ii) a number of ligand gated chloride ion
channels, including both GluCl and GABA channels (avr-14B, glc-5,
lgc-37 and glc-6), in field-derived resistant H. contortus
(Williamson et al., 2011), and (iii) the avr-14B gene in field-derived
Teladorsagia circumcincta (Martínez-Valladares et al., 2012). More
recently, no polymorphisms linked to resistance were found in the
glc-6 gene of two of the C. oncophora isolates examined earlier by
El-Abdellati et al. (2011) (Geldhof, unpublished data). Hence, to
date, there is no evidence that polymorphisms of GluClRs or GABA
receptors can explain the observed resistance to ML drugs in most
field isolates of a number of parasitic nematodes.

Some attention has been paid in the last couple of years to the
possible role of changes in expression levels of the ivermectin tar-
get in conferring resistance. El-Abdellati et al. (2011) showed that
transcription levels of avr-14B were decreased in resistant isolates
of both C. oncophora and O. ostertagi, however, the decreases were
‘relatively modest’. Similarly, Williamson et al. (2011) found that
transcription of two GluCls (glc-3 and glc-5) was slightly reduced
in a resistant H. contortus isolate, however, again, the changes were
modest. In contrast, Martínez-Valladares et al. (2012) reported that
avr-14B transcript levels were slightly higher in resistant isolates of
T. circumcincta compared to susceptible isolates. These modest
changes in transcription levels of GluClR subunits in both upward
and downward directions in resistant isolates may suggest that the
differences are related to differences in the genetic background of
the resistant and susceptible isolates examined in each study,
rather than specific responses to drug selection pressure in the
resistant isolates.

In conclusion, despite some early indications that resistance to
MLs may be due to specific polymorphisms in the drug target
receptors, there are not yet any mutations identified that can
explain the resistance phenotypes observed in most field isolates
of the studied parasitic nematode species. Further, recent studies
on receptor transcript levels have been inconclusive. Although
the various studies on the role of the ivermectin target in resis-
tance have not yet been exhaustive, together they suggest that tar-
get site changes are not involved in most cases of field resistance to
the ML drug class. Attention therefore turns to other potential
resistance mechanisms such as P-gps (Lespine et al., 2012) or drug
uptake pathways (for example, as suggested for C. elegans dyf
mutants, Dent et al., 2000). The role of P-gps in ML resistance is
examined later in this review.
3. Macrocyclic lactones: genetic marker association mapping

The work of Carl Johnson at Nemapharm in the 1980s estab-
lished that in C. elegans a few major genes could confer resistance
to high concentrations of ivermectin (>50 ng/mL in media) (Rand
and Johnson, 1995). Further analysis revealed that many other loci
could be mutated to impart resistance to ivermectin at lower levels
(<50 ng/mL). Later, this work was confirmed by others and
published (Dent et al., 2000). The observation of a multitude of
potential genes conferring resistance to ivermectin opened the
possibility of a more quantitative, additive genetic mechanism. In
the parasite H. contortus, some early work with the Australian Chis-
wick avermectin resistant strain (CAVR) suggested that a single
dominant allele might be responsible for resistance, so the research
focus for identifying ivermectin resistance markers in parasites
concentrated on the possibility of single genes with large effects
(Le Jambre et al., 2000).

In more recent years, the continued absence of useful molecular
markers for ivermectin and other ML resistances in field popula-
tions of parasites (as described in the previous section) has led to
a re-examination of the likely genetic mechanisms of resistance.
A study of F2 populations of H. contortus crosses between a field
resistant isolate (Wallangra2003) and a laboratory cultured sus-
ceptible parent (McMaster 1931), indicated that the level of IVM
resistance displayed by the F2 (and derived from Wallangra2003)
could not be explained using a single gene model (Hunt et al.,
2010). This has recently been supported by two serial backcross
experiments between the susceptible strain MHco3 (ISE) and two
ivermectin resistant strains MHco10 (ISE) and MHco4 (WRS) in
which the proportion of the phenotypically resistant individuals
present after the fourth backcross was consistent with a multi-
genic basis of resistance (Redman et al., 2012). A recent study also
suggests ivermectin resistance in C. elegans is multi-genic when
selected in field populations (Ghosh et al., 2012). In this work, nat-
urally occurring abamectin resistant populations of C. elegans were
isolated from the field and genetic mapping identified a four amino
acid deletion in the ligand-binding domain of GLC-1, the alpha sub-
unit of a glutamate gated chloride channel, was an important
genetic determinant of resistance. However, Quantitative Trait loci
(QTL) analysis showed this locus contributed to 26% of the variance
of the resistance phenotype, suggesting other loci were also
involved.

In parallel to drug resistance research, advances in DNA
sequencing technology, in marker association analysis techniques,
and the advent of genome projects for a range of parasite species,
have provided new opportunities. Using yeast as a model for drug
resistance, Ehrenreich et al. (2012) established some new
approaches for discovering resistance genes using genetic markers
derived from known single nucleotide polymorphisms (SNP) ana-
lysed using high throughput SNP analysis platforms, or a range of
polymorphisms assayed directly from high throughput genome
sequencing, so called extreme QTL (X-QTL) methods. To some
degree these approaches are being adopted in other species (for
example Plasmodium reviewed by Anderson et al., 2011). Some of
the characteristics of resistance alleles identified in the yeast work
have parallels in parasite drug resistance phenomena. For example,
the notion of multi-drug resistance via detoxification or efflux
pump mechanisms has been widely posited as an alternative to
drug-specific mechanisms. The yeast X-QTL study of Ehrenreich
et al. (2012) revealed more than 800 chemical resistance loci and
20% of these were associated with resistance to four or more com-
pounds, whilst 40% were specific to a single compound. Therefore,
it should not be surprising when we find that both specific and
cross-resistance mechanisms are at play in anthelmintic resis-
tance. Similarly, mutations effecting drug resistance have been
found which are identical across a wide range of populations (see
BZ resistance section below), whilst other examples of drug resis-
tance mechanisms differing between populations are also emerg-
ing. The yeast X-QTL studies have revealed the same
phenomenon, with 32% of identified resistance loci arising from
only a single parent strain from the four studied, whilst 7% of the
loci clearly originated from multiple parent strains.

Mapping anthelmintic resistance using marker association has
been a consistent topic at CARS meetings and has its origin with
some seminal work on microsatellite markers in H. contortus, Tela-
dorsagia circumcincta and Trichostrongylus colubriformis (Hoekstra
et al., 1997; Otsen et al., 2000; Grillo et al., 2006; Redman et al.,
2008) and the use of a H. contortus/placei species-hybrid system
(Le Jambre et al., 1999). Though SNP markers and small indels
may well replace the use of microsatellite markers in the near
future, these markers are still useful and have been used to estab-
lish the methodology for mapping anthelmintic resistance in H.
contortus (Hunt et al., 2010; Redman et al., 2012). The most recent
of these studies (Redman et al., 2012) used two different ivermec-
tin resistant populations, MHco10(CAVRS) (a derivative of CAVR)
and MHco4(WRS), and crossed these with an inbred susceptible
strain MHco3(ISE), which has also been used for genome sequenc-
ing in the species (Laing et al., 2013). Each of the parental strains
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was highly genetically divergent from the others, allowing parental
genotypes to be discriminated in backcross progeny. Multiple
backcrosses to MHco3(ISE) were conducted with ivermectin selec-
tion for resistance at each generation, and the parental strains and
the fourth backcross generation were analysed using a panel of
microsatellite markers. In addition, a study of survivors of ivermec-
tin treatment from the fourth backcross was undertaken. Analysis
of the ivermectin surviving backcross progeny, using a panel of
nine discriminatory microsatellite markers, showed their allelic
frequencies to be very similar to those of the MHco3(ISE) suscepti-
ble parental strain, and dissimilar to those in the resistant parental
strains, demonstrating ivermectin resistance loci had been intro-
gressed into the MHco3(ISE) genetic background. Wright’s FST
analysis and the presence of alleles specific to the resistant paren-
tal strain at high frequency in fourth generation progeny of both
backcrosses suggested one of the microsatellite markers,
Hcms8a20, was located in an introgressed region, and hence, was
genetically linked to an ivermectin resistance-conferring locus.
This is an exciting finding that should be pursued, but further work
is needed to identify the causal mutation and it is likely that this
will be just one of several important loci. Genome-wide sequenc-
ing analysis of both backcrossed lines using Illumina deep
sequencing is currently underway to map and delineate the intro-
gressed regions across the genome.

The speaker for this section of the CARS2013 meeting (PWH)
revealed some unpublished observations from their own work to
demonstrate what might be done using high throughput sequenc-
ing in place of microsatellite or SNP markers. Although these
results await peer review, it can be revealed that a cross using Wal-
langra2003 and McMaster1931 was the basis of the work (as in
Hunt et al., 2010), and so there was an expectation of polygenic
ivermectin resistance. SNP and short indel markers were readily
revealed by analysis of a reduced representation genomic DNA
sequence, and association with ivermectin resistance was explored
using three differing statistical approaches. None of these analyses
supported a mono-genic model of ivermectin resistance in Wallan-
gra2003. The methodology employed did not rely on extensive
backcrossing, but rather the creation of linkage disequilibrium
between McMaster1931 and Wallangra2003 genomic segments
in a single large scale cross, comparing the F2 generation with con-
generic survivors of ivermectin treatment.

Future comparisons between the methods employed and the
results of the Mhco3(ISE)/MHco10(CAVR) and MHco3(ISE)/
MHco4(WRS) backcross studies as compared to the Wallan-
gra2003/McMaster1931 study would seem most desirable. The
occurrence of a successful CARS meeting coinciding with the
release of two assemblies of the H. contortus genome (Laing et al.
2103; Schwarz et al., 2013) creates a major opportunity for future
work. The assemblies have been produced using an inbred version
of the MHco3 (ISE) strain resulting from a single pair mating –
MHco3(ISE).N1 (Laing et al., 2013) and separately using McMaster
1931 (Schwarz et al., 2013). This assembled sequence information
will hopefully enable the pace of method development and there-
fore drug resistance gene discovery to accelerate.

In conclusion, recent work on genome tools and ivermectin
resistance in H. contortus has opened possibilities for faster and less
expensive discovery of drug resistance genes in the future. It is
hoped that these advances not only assist those interested in this
species but also those studying other nematode and trematode
parasites of humans and livestock.

4. Benzimidazole resistance: taking SNP-based tests to the field

It is widely accepted that the major molecular target site for the
BZ anthelmintics within nematodes is b-tubulin, which plays a
vital role in a number of sub-cellular processes. Furthermore, the
major genetic determinant of BZ resistance (BZ-R) in most, if not
all, trichostrongylid nematode species is the possession of single
nucleotide polymorphisms (or SNPs), in the parasite’s isotype-1
b-tubulin gene. Pivotal amongst these is a tyrosine for phenylala-
nine substitution at codon 200 (the so-called F200Y SNP), encoded
by a change from TTC to TAC. Its role in BZ-R was elegantly
demonstrated by Kwa et al. (1994) in the mid-1990s through
transfection of BZ-R C. elegans with a BZ-susceptible (BZ-S) iso-
type-1 b-tubulin transcript from H. contortus, conferring a BZ-S
phenotype on the transgenic C. elegans. Subsequent in vitro muta-
genesis of these transgenic worms resulted in the acquisition of the
F200Y mutation, thus restoring their BZ-R phenotype. Since then,
further BZ-R-associated SNPs have been discovered at codons
167 (F167Y) and 198 (E198A) in isotype-1 b-tubulin in a number
of nematode species (Silvestre and Cabaret, 2002; Ghisi et al.,
2007, respectively), but F200Y would still appear to be the most
important with respect to BZ-R phenotype.

Thus, resistance to the BZs is, by some distance, the best under-
stood anthelmintic resistance at the molecular level. So, armed
with this precise genetic information defining the BZ-R genotype
and phenotype of key nematode pathogens, and analytical tools
for resistance detection, how far have we advanced towards
improved diagnosis and management of BZ-R in the field? This
was one of the questions posed at CARS2013. Approximately 90
publications on the general topic of ‘benzimidazole resistance’
have appeared since CARS2011. Encouragingly, a number of these
publications have attempted to evaluate DNA-based testing of
BZ-R under field/farm conditions. In the first of these studies,
Barrère et al. (2013a) evaluated the efficiency of a genetic test for
detection of BZ-R in H. contortus on sheep farms in Quebec, Canada.
Eleven farms were recruited in total, and faecal samples were col-
lected from 10 animals per group, before and after fenbendazole
treatment. H. contortus was identified by fluorescent peanut agglu-
tinin staining of eggs and found to be present on 8 of the 11 farms.
Pyrosequencing assays targeting the aforementioned F200Y, E198A
and F167Y SNPs were used to genotype individual H. contortus
eggs. BZ-R was found on each of the 8 farms where H. contortus
was present and this was backed up by faecal egg count reduction
tests (FECRTs) carried out on the same farms (FEC reductions ran-
ged from 26–54%). The average percentage of BZ-R parasites on the
8 farms was 77.7%, with the TTC to TAC at codon 200 responsible
for most of the observed BZ-R genotypes (85.4% codon 200 versus
6% codon 167). The authors concluded that the genetic test brought
substantial savings over FECRT in terms of cost, labour and time
and could detect BZ-R in the resting parasite population before
treatment, which FECRT could not. In a similar study in Ontario,
Barrère et al. (2013b) tested H. contortus eggs isolated from 16
farms using the same panel of pyrosequencing assays, targeting
the F200Y, E198A and F167Y SNPs. BZ-R was detected on all 16
farms, above an arbitrary threshold of 10% BZ-R alleles, the average
BZ-R allele frequency was 68.5%. A further field-based study on BZ-
R in H. contortus was carried out in Sao Paulo State, Brazil, by
Niciura et al. (2012), using a different molecular method, ARMS-
PCR. The frequency of the F200Y SNP was determined in L3 derived
from 33 sheep flocks in the region. Resistant allele frequencies ran-
ged from 9% to 74%, with resistance genotype frequencies of 0–
66.7%. Resistant genotype frequencies >40% were associated with
multiple risk factors, based on farm questionnaire data. These
included being new sheep enterprises, the absence of farm records,
the use of Dorper and Suffolk breeds, the frequent introduction of
new animals into the flock, the use of whole flock treatments and
failure to use treatment indicators, such as FAMACHA anaemia
charts. These studies raise interesting practical considerations for
the deployment of molecular genetic tests in the field, in that we
do not currently have agreed guidelines in relation to resistant
allele frequency, and what management interventions should
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follow, if any. These studies also raise technological issues with the
tests themselves in that the H. contortus eggs tested had to be iden-
tified, isolated and assayed individually, adding greatly to labour,
time and cost of testing. If such tests are to see widespread uptake
by testing laboratories and/or the industry, they must be able to
deal with multi-species, pooled samples. This is a significant tech-
nological challenge and a major bottleneck at this time, however
pooled samples have been used to estimate b-tubulin allele
frequencies (von Samson-Himmelstjerna et al., 2009) and the
extraction of DNA from field-derived, multispecies samples is
improving (McNally et al., 2013).

Assembly and annotation of the draft H. contortus genome
(Laing et al., 2013) recently confirmed that the complete b-tubulin
gene family in this species comprises four members (termed
isotypes), with isotype -3 and -4 genes (Hco-tbb-iso-3 and Hco-
tbb-iso-4) being identified as ‘new’ b-tubulin genes to add to the
previously identified isotype-1 and -2 genes (Saunders et al.,
2013). Although, the potential role of these two new H. contortus
b-tubulin genes in BZ-R has not been directly studied, Saunders
et al. (2013) argued that they are unlikely to be major determi-
nants of resistance since they are orthologous to the C. elegans
mec-7 and tbb-4 genes, respectively, which appear not to have a
role in BZ-R in that organism. They are likely to have specialized
functions, as they are both expressed at extremely low levels com-
pared to isotypes 1 and 2 (�1000-fold lower) with Hco-tbb-iso-3
expression being confined to just seven cells, thought to be touch
receptor neurons (Saunders et al., 2013).

Recent population genetic studies, using field samples collected
from sheep farms across the UK, have shed light on the possible
origins and spread of BZ-R alleles (Redman et al., submitted). Seven
farms with both H. contortus and T. circumcincta present were cho-
sen for population genetic analysis to allow direct comparison of
the two species under the same anthelmintic treatment regime
without confounding environmental and management factors.
High levels of F200Y were seen on most farms for both species.
F167Y was almost as common as F200Y for H. contortus but was
extremely rare in T. circumcincta. A previously unreported
mutation E198L was identified in T. circumcincta on several farms.
Interestingly, haplotypes comprising 167F:200Y and 167Y:200F
were prevalent, but not 167Y:200Y, suggesting that this combina-
tion does not provide any additional advantage under BZ selection,
and may not occur as previously found for H. contortus (Barrère
et al., 2013b). Analysis of the distribution and phylogenetic rela-
tionships of resistance haplotypes demonstrated multiple indepen-
dent origins of BZ-R in both species, even on these seven farms. The
data suggested that recurrent new mutations are an important
source of resistance mutations rather than pre-existing mutations
alone, which has been the dogma until now.

Another recent population genetics study that may have impli-
cations for the spread of BZ-R alleles involves the identification of
H. contortus/H. placei F1 hybrid worms in field populations from
Pakistan (Chaudhry et al., unpublished). The F200Y BZ-R haplotype
was found to be present in an F1 hybrid worm, opening up the
potential for introgression of BZ-R alleles from H. contortus into
H. placei. Finally, the first case of BZ-R has recently been reported
in Nematodirus battus in the UK (Mitchell et al., 2011). This parasite
is responsible for severe outbreaks of disease in lambs in spring
and has always been considered to be naturally susceptible to BZ
anthelmintics. Preliminary DNA sequence analysis has shown that
BZ-R individuals, harvested from donor lambs post BZ treatment,
carry the same F200Y mutation as most other BZ-R nematode par-
asites. There is no evidence yet of the presence of F167Y or E198A
(Morrison et al., unpublished).

Since 2011, two publications have reported on the molecular
analysis of BZ-resistance in human soil transmitted helminths. In
an extension of their earlier work (Diawara et al., 2009), during
which they had developed pyrosequencing assays for the analysis
of F200Y for Ascaris lumbricoides and Trichuris trichiura, the authors
established assays for F167Y and E198A for these parasites and
assays for all three SNPs for the hookworm, Necator americanus
(Diawara et al., 2013a). A mean 200Y allele frequency of 36% was
observed in 25 pooled hookworm egg samples (each sample with
10 eggs) originating from a region in Haiti where BZ treatment
was previously performed. Taking advantage of these molecular
assays, Diawara et al. (2013b) conducted b-tubulin codon 167,
198 and 200 SNP allele frequency analysis in A. lumbricoides, T.
trichiura and hookworm eggs isolated pre- and post-BZ treatment
during worm control campaigns in Haiti, Kenya and Panama. All
three above-mentioned sites were found to be polymorphic in T.
trichiura eggs isolated pre- and post-treatment. Significant
increases in heterozygous and homozygous resistant eggs were
mainly found at codon 200. Changes in the 198 SNP were less pro-
nounced and only documented in eggs isolated in Haiti. Notewor-
thy, for the 167 SNP, nearly 80% of the eggs from Panama showed
the homozygous resistant genotype. With respect to A. lumbrico-
ides eggs for all three study sites, polymorphism was only seen at
position 167 for which the predominant genotype found pre- and
post-treatment was the homozygous resistant genotype. With over
95%, the highest pre- and post-treatment codon 167Y frequencies
were seen in ascarid eggs isolated in Panama, while in Haiti and
Kenya, these ranged between 40 and over 70%, respectively. These
findings are particularly noteworthy since, at the same time, the
drug efficacy evaluated as ascarid egg reduction rate (ERR) was
found to be high, with approximately 99%, 97% and 89% for sam-
ples from Haiti, Kenya and Panama, respectively. To the best of
our knowledge, this is the first report where drug susceptibility
rather than resistance was correlated with a high frequency of b-
tubulin 167Y. However, the genotyping of A. lumbricoides needs
to be interpreted with some caution as there are a large number
of b-tubulin genes in the A. suum genome (at least nine, Gilleard
unpublished) and hence more work is required to identify which
of these may be involved in any observed field resistance to BZ
drugs in Ascaris spp. Finally, in hookworms from all three
countries, the frequency of eggs with the homozygous susceptible
genotype 200F was at least 97%. All eggs analysed were 198E and
167F, which was consistent with good drug efficacy according to
the faecal egg count data.

BZ resistance in parasitic nematodes of large ruminants is less
prevalent than in parasites from small ruminants or horses.
Accordingly, early detection of resistance is important since
prevention of widespread BZ resistance is still an option. In this
context, it seems an advantage to have molecular pyrosequenc-
ing-based assays for the analysis of the b-tubulin codon 167, 198
and 200 alleles now developed for some of the most prevalent
and important gastrointestinal nematodes of cattle, for example
C. oncophora, Ostertagia ostertagi and H. placei (Demeler et al.,
2013a; Chaudhry et al., in press). The testing of field isolates orig-
inating from multiple countries revealed polymorphism at all three
SNP sites in C. oncophora, O. ostertagi (Demeler et al., 2013a). The
molecular data were in good agreement with the respective pheno-
type of all isolates as examined either by egg hatch assays or faecal
egg count reduction tests. Interestingly, the codon 167Y allele fre-
quencies were at least 70% in three out of five resistant isolates,
whilst codon 200Y exceeded 70% in one isolate, and the fifth isolate
displayed low resistance allele frequencies of 17% and 22% for 167Y
and 200Y, respectively. This study also found that the isotype-1
and -2 b-tubulins of these two species of parasitic nematodes clus-
tered with the C. elegans ben-1. Importantly, in terms of its rela-
tionship to drug resistance studies in human nematodes, this
study also showed that the single b-tubulin gene in T. trichiura
clustered with C. elegans tbb-4 and mec-7 b-tubulins, rather than
with the C. elegans ben-1, suggesting that this T. trichiura gene



Fig. 2. Mechanistic and structural features of muscle nematode somatic muscle ion
channels. (A) Diagram of the putative pentameric subunit composition of the
levamisole receptor in Oesophagostomum dentatum composed of one or more
subunits of UNC-63, UNC-29, UNC-38, and ACR-8. (B) Two-micropipettes used for a
two electrode voltage-clamp oocyte recordings of expressed nAChRs from O.
dentatum. (C) Diagram of a proposed mechanism of calcium entry and muscle
contraction in Ascaris suum muscle, with entry through the sarcolemma via calcium
permeable nicotinic acetylcholine receptors (nAChRs activated by levamisole) and
voltage-activated calcium channels (VACCs) which produce the biggest component
of contraction (ryanodine-insensitive), and another component of contraction
(ryanodine-sensitive) mediated by a calcium-induced calcium-release via the
ryanodine receptors in the sarcoplasmic reticulum.
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may represent the first non-ben-1-like b-tubulin to be involved in
BZ resistance. Recently, the P200Y polymorphism was detected at
low frequency in six out of nine populations of H. placei isolated
from cattle in southern and mid-west USA, indicating the risk of
resistance emerging in this parasite should BZs be intensively used
for parasite control in US cattle (Chaudhry et al., in press).

To conclude, thanks to various ongoing genome and transcrip-
tome projects, our knowledge of the diversity of the tubulin gene
family has been increased for some important parasitic nematodes
(e.g. H. contortus, A. suum) and it seems appropriate to conclude
that the level of complexity is higher than previously anticipated.
We certainly need further insight into the identity of currently
unknown tubulin genes and isotypes but, more importantly, into
their biological role and their role, if any, in BZ-R. The recent
development of tools for quantitative analysis of BZ-R-associated
b-tubulin SNPs and their successful application in the field in
parasites of human and veterinary importance, should encourage
further progress towards routine molecular monitoring of the BZ-
resistance status in the major parasite species, wherever this drug
class is being used. Today, it is evident that the relevance for the
BZ-resistance phenotype of the three b-tubulin SNPs, i.e. at posi-
tions 167, 198 and 200, respectively, differs between different par-
asite species and even between isolates of the same species.
Accordingly, it is vital that we examine the allele frequencies of
all three SNPs in parallel. However, more experimental data is still
needed to better understand the functional significance of each of
the three SNPs, that is, the correlation between the individual SNP
allele frequencies (and potential combinations) and the phenotypic
consequences. Two recent studies have highlighted this issue:
Kotze et al. (2012) examined a population of H. contortus consisting
of various genotypes at the 198 and 200 SNP positions and found
that the most resistant individuals (as assessed in larval develop-
ment assays) were homozygous resistant at the 198 position alone;
in the second study, Barrère et al. (2012) examined a population of
H. contortus consisting of a mixture of genotypes at the 167 and
200 SNP positions and found that the percentage of individuals
homozygous resistant at the 200 SNP was significantly higher in
a sub-population able to survive a high dose of albendazole
in vivo compared to the population as a whole (in the absence of
any drug treatment). On another note, it may also prove wise to
remain open to the possibility of the combined presence of tar-
get-associated (i.e. b-tubulin), and non-specific (e.g. P-gps, drug
metabolism) resistance mechanisms.

5. Pharmacology of levamisole, derquantel and abamectin:
recent observations

Levamisole and pyrantel target the nicotinic acetylcholine
receptors (nAChRs) of nematodes. nAChRs are composed of 5 sub-
units that together form a transmembrane ion-channel. The chan-
nel receptor is opened by a ligand, which is normally acetylcholine,
to allow entry of Na+ and Ca++, producing a physiological response.
The nAChRs that have been studied most in nematodes are found
on the somatic muscle cells, but nAChRs are also present on pha-
ryngeal muscle (McKay et al., 2004) and on the nerve cells
(Segerberg and Stretton, 1993). Opening of the nAChRs on the
somatic muscle gives rise to muscle depolarization and contrac-
tion. A large (30+) number of different nAChRs subunits are present
in nematode parasites (Laing et al., 2013), and these may combine
in different pentameric structures, to give rise to an even larger
number of possible pentameric nAChRs. We do not yet know which
receptor subunit combinations are permissible, and which are not.
The various subunit combinations give rise to receptors that are
pharmacologically different, and sensitive to different cholinergic
anthelmintics (Williamson et al., 2009; Boulin et al., 2011;
Buxton et al., 2014).
The levamisole-activated nAChR receptor is believed to be com-
posed of four different receptor subunits (UNC-29, UNC-38, UNC-
63 and ACR-8), with one repeated to make up the pentamer, in
H. contortus (Boulin et al., 2011) and O. dentatum (Buxton et al.,
2014) (Fig. 2A). The expression of O. dentatum subunits in Xenopus
oocytes gives rise to receptors that are activated by levamisole
(Fig. 2B). One of the interesting observations is that different
combinations of receptor subunits, give rise to receptors that have
different pharmacological properties. For example, expression of
the subunits UNC-63 and UNC-29 gives rise to a receptor that is
sensitive to the drugs pyrantel and tribendimidine, but a receptor
which is not very sensitive to levamisole or acetylcholine. If the
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receptor subunit ACR-8 is co-expressed with UNC-63 and UNC-29,
acetylcholine becomes more potent. If the receptor subunits UNC-
63, UNC-29 and UNC-38 are expressed, a receptor more sensitive
to pyrantel than levamisole is observed. If all four receptor sub-
units are co-expressed, then a receptor that is most sensitive to
levamisole is produced. We conclude from these observations that
different pharmacological receptor subtypes can be produced by
different combinations of subunits.
5.1. Levamisole receptor contraction coupling: ryanodine receptors are
also involved

The coupling process between opening of levamisole-activated
nAChRs and muscle contraction is not direct, and is subject to
physiological control. The amplitude of contraction produced by
levamisole is dependent on extracellular calcium, and is inhibited
partially, but not completely, by ryanodine and dantrolene, indicat-
ing a role for ryanodine receptors (Robertson et al., 2010a;
Puttachary et al., 2010). These ryanodine receptors have the poten-
tial to be exploited as therapeutic targets, as they have in insects
(Isaacs et al., 2012). Nematode muscle contraction may also be pro-
duced by high concentrations of caffeine, which is known to cause
calcium release from the endoplasmic reticulum (Puttachary et al.,
2010). The potency and effect of levamisole is also altered by
FMRFamide peptides: the neuropeptide AF2 increases the ampli-
tude of contraction produced by activation of nAChRs (Trailovic
et al., 2005). These observations show that the effects of levam-
isole, although mediated via nicotinic receptors, are under more
complex regulation (Fig. 2C). This coupling between contraction
Fig. 3. Effects of derquantel and abamectin on Ascaris suum muscle strips. (A) Isometr
concentrations of acetylcholine, and antagonism by 1 lM derquantel (red bar), 1 lM de
decreases the responses to acetylcholine and that the addition of abamectin increases
showing mean ± S.E. (n = 11). Control (black); in the presence of 1 lM derquantel (red);
increases the inhibition produced by derquantel (Figure modified from Puttachary et al.,
is referred to the web version of this article.)
and levamisole receptor opening may be subject to modification,
and may contribute to the development of resistance.
5.2. Derquantel: potency on different nAChR subtypes, and effects
alone or in combination with abamectin on Ascaris muscle nAChRs and
pharyngeal GluCls.

Derquantel is a selective antagonist of nematode nicotinic ace-
tylcholine receptors (Qian et al., 2006). The compound has a
greater antagonistic effect on the pyrantel-sensitive receptor than
on the levamisole-sensitive receptor (Buxton et al., 2014). The
implication of this observation is that derquantel may remain
active as an anthelmintic in the presence of some types of levam-
isole resistance.

Derquantel and abamectin are used in combination in the oral
drench product StartectR. We were interested to determine the
effects of derquantel and abamectin alone and in combination on
different tissues of the nematode parasite Ascaris suum
(Puttachary et al., 2013). Acetylcholine caused dose-dependent iso-
metric contractions in an Ascaris muscle flap preparation (Fig. 3A).
The application of 1 lM derquantel caused inhibition; this inhibi-
tion increased in the presence of 0.3 lM abamectin. The antago-
nism showed some reversal on washing. The effect of abamectin
was to increase the antagonism of derquantel in a dose-dependent
manner (Fig. 3B). Puttachary et al. (2013) also used a two micro-
electrode current-clamp technique to observe the effects of derqu-
antel on acetylcholine responses in Ascaris muscle. Derquantel at
0.1 lM significantly reduced the responses to 3 lM acetylcholine
applied to the Ascaris muscle preparations. The inhibitory effects
ic contraction of Ascaris suum muscle strips produced by application of increasing
rquantel+0.3 lM abamectin (green bar), and wash (blue bar). Note that derquantel
the inhibition. (B) The concentration-depolarizing-response plot of acetylcholine

1 lM derquantel+0.3 lM abamectin (green) and wash (blue). Note that abamectin
2013). (For interpretation of the references to colour in this figure legend, the reader
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of derquantel on the acetylcholine responses were reversible;
washing returned the acetylcholine currents to control values.
The IC50 of derquantel was 20 nM demonstrating that derquantel
is a potent antagonist of acetylcholine receptors. Both derquantel
and abamectin produced antagonism of the acetylcholine
responses. Again, like the effects on muscle contraction described
above, abamectin potentiated the effects of derquantel on acetyl-
choline depolarisations (Puttachary et al., 2013). These authors
also tested the effects of abamectin and derquantel on Ascaris
pharynx GluCl receptors. They found that abamectin produced
hyperpolarization, and an increase in membrane conductance
which was dose-dependent. On the other hand, derquantel had
no effect on pharynx membrane potential or conductance.

5.3. Levamisole resistance

The mechanisms of laboratory-produced levamisole resistance
have been studied in the model nematode C. elegans. There are a
large number of genes that are involved in the observed resistance.
These genes code for a levamisole-sensitive muscle nAChR
(Fleming et al., 1997), the contraction signaling pathway, (eg.
Kagawa et al., 1997), the processing and assembly of subunit ancil-
lary proteins (Gottschalk et al., 2005), and the support and mainte-
nance of the levamisole-receptor (Hobert, 2013). However, the
mechanism of clinical levamisole resistance in parasitic nematodes
is less well understood, and may include some different mecha-
nisms and genes. Kopp et al. (2009) reported reduced expression
of several nAChR subunit genes associated with a decreased sensi-
tivity to pyrantel in an isolate of A. caninum. Neveu et al. (2010)
reported the existence of abbreviated isoforms of unc-63, referred
to as unc-63b, in resistant isolates of H. contortus, T. circumcincta
and T. colubriformis. The Hco-unc-63b gene encodes a truncated iso-
form that was subsequently shown to have a dominant negative
effect on the levamisole nAChR expression in Xenopus oocytes
(Boulin et al., 2011). In addition, a truncated acr-8 mRNA splice
variants of the acr-8 gene, referred to as Hco-acr-8b, was found to
be expressed in several H. contortus levamisole-resistant isolates,
highlighting its potential as a marker for levamisole resistance
(Fauvin et al., 2010; Williamson et al., 2011). Recently, the genetic
basis giving rise to the expression of this Hco-acr-8b truncated
transcript was reported to be likely associated with an insertion/
deletion of 63 bp located just downstream from the splice acceptor
site for the alternative third exon of the Hco-acr-8 gene (Barrère
et al., 2014). Neveu et al. (2010) reported the presence of 4
paralogues of the gene unc-29: Hco-unc-29.1, Hco-unc-29.2,
Hco-unc-29.3 and Hco-unc-29.4. These observations suggest that
the levamisole receptor of some parasitic nematodes may not
be the same as those found in C. elegans. The subunits that arise
from these 4 paralogues may not function in the same way, with
some rendering the receptor pentamer less sensitive to levamisole.
Sarai et al. (2013) examined the expression of levamisole receptor
subunit genes of H. contortus and found evidence of reduced
expression levels of Hco-unc-63a and all four paralogues of Hco-
unc-29 in resistant isolates. Sarai et al. (2014) subsequently exam-
ined subpopulations within a heterogeneous isolate of H. contortus
and found that expression of several P-gp genes was increased in
larvae showing a low level of resistance to levamisole, while
expression of some receptor subunit genes, as well as ancillary pro-
tein genes, were decreased in the most resistant larvae in the pop-
ulation. This suggested the presence of multiple mechanisms of
resistance within the same population (drug efflux and altered tar-
get site), with the various mechanisms conferring different levels
of resistance. Recently, Romine et al. (2014) compared levam-
isole-sensitive O. dentatum adult males with levamisole-resistant
O. dentatum adult males and found that expression of Ode-unc-63
was reduced, and that expression of acr-21 and acr-25 increased,
perhaps as a compensatory mechanism. There were also 4 SNPs
that were associated with the resistant isolate. Taken together, this
body of literature suggests that resistance to cholinergic anthel-
mintics in parasitic nematodes is polygenic rather than a simple
single-gene mechanism, and involves changes in expression of
nAChR subunits, truncated receptor subunits, and mutations in
receptor subunits, as well as a possible contribution from P-gps.
This situation complicates our ability to develop effective molecu-
lar-based diagnostic tools for the detection of resistance to this
drug class.
6. Amino-acetonitrile derivatives: mode of action

Monepantel was discovered through an intensive drug screen-
ing program by Novartis Animal Health (Hosking et al., 2009).
The first anthelmintic lead of the amino-acetonitrile derivatives
(AADs) in 2000 was the starting point for the synthesis and subse-
quent in vitro and in vivo evaluation of more than 700 analogues of
AADs, arriving finally at monepantel (Kaminsky et al., 2008b). This
compound is remarkably efficient against numerous multidrug-
resistant nematodes (Kaminsky et al., 2008a; Sager et al., 2012),
pointing to a different mode of action than other anthelmintic
drugs. Monepantel was introduced to the market in 2009 in New
Zealand and is today commercially available as Zolvix� in most
sheep farming countries of the world.

The mode of action of monepantel was primarily investigated
by identifying the drug’s target in the genetic model organism C.
elegans. In vivo studies demonstrated that monepantel interfered
with the worm’s movement, growth and viability (Kaminsky
et al., 2008a). This manifests as a hyper-contraction of the body
wall muscles leading to paralysis, spasmodic contractions of the
anterior portion of the pharynx, and ultimately death (Rufener
et al., 2013). In genetic screens for resistance to monepantel, 27
independent mutations were identified in acr-23, a gene coding
for a putative nicotinic acetylcholine receptor (nAChR) subunit.
Therefore, acr-23 was considered likely to be a major candidate
contributor to the AAD response in C. elegans (Kaminsky et al.,
2008a). The ACR-23 protein belongs to the nematode-specific
DEG-3 subfamily of nAChR subunits (Rufener et al., 2010). The
nAChR subunits targeted by the currently available nicotinic ago-
nist anthelmintics (e.g. levamisole) are different from ACR-23,
explaining the absence of cross-resistance between monepantel
and the other anthlemintics (Kaminsky et al., 2008a).

To investigate the function of ACR-23, a green fluorescent pro-
tein (GFP) fused in-frame with acr-23 was used to localize ACR-
23 in vivo expression in C. elegans (Rufener et al., 2013). Integrated
lines expressed GFP::ACR-23 in various tissues, including body
wall muscles, and head and tail neurons (Fig. 4A, B); no expression
was observed in eggs or first stage larvae. This expression pattern
(muscles and neurons) is in agreement with the paralysis pheno-
type observed with nematodes exposed to monepantel. More
insights into the expression and possible physiological role of
acr-23 came from a recent publication reporting that the acr-23
gene was strongly expressed in the six mechanosensory neurons
in C. elegans (Peden et al., 2013). These neurons innervate the loco-
motory command neurons to stimulate touch-induced movement
as well as spontaneous locomotion (Chalfie et al., 1985).

In order to functionally characterize the ACR-23 protein, which
we hypothesized to function as a membrane receptor, Xenopus
laevis oocytes were injected with acr-23 cRNA and inward current
was recorded using a Two Electrodes Voltage Clamp (TEVC) after
addition of an agonist (Rufener et al., 2013). Choline proved to be
a more potent agonist than acetylcholine or nicotine. Currents
measured with choline were characterized by a fast channel open-
ing followed by a slow desensitization. Oocytes rapidly recovered



Fig. 4. Expression pattern of monepantel receptor in C. elegans, and model for the interaction of the drug and its receptor in H. contortus. (A) Expression of ACR-23. Transgenic
L4 larva containing an integrated array expressing the acr-23 open reading frame fused to the green fluorescent protein gene. Transgene expression was mainly visible in the
body wall muscle bundles (white arrows), and in two unidentified cells, which are neither the PLM neurons nor body wall muscle cells nuclei (white arrowheads in the inset,
which shows a magnification of the tail). Gut granules emit yellow autofluorescence. (B) Image taken by differential interference contrast microscopy. Black arrows and
arrowhead indicate the pharyngeal bulbs and the position of the developing vulva, respectively. The inset shows a detail of the tail, ventral view. The rectal opening (asterisk)
is immediately anterior to the two GFP labelled cells in A. Bar, 50 lm. (C) Hypothetical model for the interaction of monepantel with its target receptor in H. contortus, Hco-
MPTL-1. In the resting situation, the MPTL-1 receptor is closed and no ion is flowing through the channel. The neurons or muscle cells are silent respectively not contracted.
When the receptor-agonist (e.g. choline or betaine) is released from a presynaptic or potentially an epidermal cell, it binds to the MPTL-1 receptors present at the postsynaptic
nerve cell or at the body wall muscle cell. An inflow of Na+ ions enters the cell through the pore formed by the opened receptor, creating a depolarization of the cell
membrane. This leads to the stimulation of the nerve cell or to the pulse contraction of the muscle cell and finally a controlled movement. The interaction of monepantel with
MPTL-1 results in a permanent stimulation or contraction creating a spastic paralysis of the nematode and its expulsion from the host. The ancillary protein RIC-3, which is
resident in the endoplasmic reticulum (ER), may play a role for the assembly of the receptor containing MPTL-1. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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to the initial resting membrane potential once the agonist was
washed away. A more recent publication describes betaine, a
ubiquitous non-canonical amino acid, as the natural agonist of
the ACR-23 receptor in C. elegans (Peden et al., 2013).

The potential of monepantel to modulate the ACR-23 receptor
was tested both in the absence and presence of an agonist. In the
absence of any agonist, monepantel showed a strong agonistic
effect on the channel at concentrations higher than 0.3 mM,
enhancing the observed maximum current peak measured as well
as the kinetics of the channel, producing characteristic ‘‘V’’ shape
like currents (Rufener et al., 2013). At lower concentrations,
monepantel was found to act as an allosteric modulator of choline
and betaine gating (Rufener et al., 2013; Peden et al., 2013). For
instance, at 300 pM, a concentration at which monepantel does
not activate the ion channel by itself, the desensitization of the
ACR-23 receptor is blocked when coupled with 1 mM betaine.

The first investigation to understand the mode of action of
monepantel in H. contortus was performed using freshly harvested
adult nematodes exposed in vitro to various concentrations of the
drug. Treated worms were almost completely paralyzed but still
able to move head and tail sections. This was in agreement with
the localization of the ACR-23 receptors in C. elegans and a strong
indicator that monepantel was targeting or interfering with neuro-
muscular signal transmission in C. elegans and in parasitic nema-
todes. In order to elucidate the molecular mechanism of
monepantel, a forward genetic approach was followed (Rufener
et al., 2009a). The primary step was to select in the laboratory a
H. contortus population able to survive a full-dose treatment of
monepantel in sheep. For this, a new ‘‘in vitro selection’’–‘‘in vivo
propagation’’ protocol was developed (Rufener et al., 2009a,b),
which allowed the successful selection of two independent AAD-
mutant lines, Hc-CRA AADM and Hc-Howick AADM (Kaminsky
et al., 2008a; Rufener et al., 2009b). With the discovery of acr-23
in C. elegans, it was possible to identify a potential homologue in
H. contortus, named mptl-1. A panel of loss-of-function mutations
were identified in the Hco-mptl-1 gene in AAD-mutant lines, pro-
viding further evidence that this subunit is the most likely target
for AAD action against H. contortus (Rufener et al., 2009a).

The identification of monepantel-resistant T. circumcincta and T.
colubriformis recovered from a goat farm in New Zealand provides a
new means to investigate potential target sites in these species
(Scott et al., 2013). Given our knowledge of MPTL-1 in H. contortus,
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and the presence of mutations in the Hco-mptl-1 gene associated
with resistance in a laboratory isolate of this species, it will be of
interest to determine whether changes in the homologous genes
in these two other species are associated with the observed
resistance.

Our current understanding of the molecular mode of action of
monepantel is illustrated in Fig. 4C. Briefly, infected sheep are
treated orally with monepantel; the drug may affect the nema-
todes either by direct contact or after absorption via the blood.
Monepantel reaches the acetylcholine receptors containing the
MPTL-1 subunits present in body wall muscle cells or neurons.
Upon binding of the drug, the monepantel-sensitive receptors
remain open allowing an unrestricted inflow of cations that pro-
duces a constant depolarization of the membrane of muscle or
neuronal cells. Consequently, spastic paralysis of the nematodes
leads to their expulsion from the host, and ultimately to their
death.
7. Cyclooctadepsipeptides: mode of action

The cyclooctadepsipeptides are a relatively new class of drugs,
and have up to now only been licensed as a combination of the
semi-synthetic emodepside with either praziquantel (Profender�)
or toltrazuril (Procox�), both for use in cats and dogs. The parental
component PF1022A is a fermentation product of the fungus Rosel-
linia spp. PF1022, forming a sterilia mycelia on the leaves of the
plant Camelia japonica (Krücken et al., 2012). The parent com-
pound, PF1022A, which is much cheaper than emodepside, has
recently been compared with emodepside for treatment of Trichu-
ris muris, as a model for the human whipworm (T. trichiura), which
is the dose-limiting gastrointestinal nematode in humans and par-
ticularly problematic due to its long period of prepatency.
Although emodepside was much more effective than PF1022A
after intraperitoneal and subcutaneous application, only a small
difference was detected after oral application (Kulke et al., 2014).
It was also shown to be able to eliminate all stages of T. muris
including histotropic L1. Using an optimised formulation will prob-
ably allow reduced dosages (and costs) and suggests that PF1022A
could be a prospect for the treatment of the soil transmitted hel-
minths which infect humans.

As this drug class has been on the market for only a limited
number of years, and has not yet been marketed for those host
species where anthelmintic resistance has been observed to arise
most rapidly for other drug classes (i.e. small ruminants and
horses), it is not surprising that there are currently no reports
of resistance towards emodepside. Nevertheless, the body of
research dealing with the mode of action of cyclooctadepsipep-
tides is seen as very relevant to the study of anthelmintic resis-
tance markers as the receptors involved in the drugs’ action
provide a likely site for molecular changes which may confer
resistance if it does arise in the field. Over the last couple of years
there have been considerable efforts to summarise the current
knowledge on the mode of action of this drug group, and to bring
the results of different studies together to build new hypotheses
(Holden-Dye et al., 2012; Krücken et al., 2012; Martin et al.,
2012b). SLO-1 is widely accepted as the major target of emodep-
side, particularly since Crisford et al. (2011) showed that ectopic
expression of SLO-1 in the pharynx muscle of slo-1 deficient C.
elegans rendered pharyngeal pumping susceptible to emodepside.
LAT-1 is also considered to be a secondary target. However, older
data presented for the first time in the review of Holden-Dye
et al. (2012) indicate that C. elegans mutants deficient in signal-
ling downstream of LAT-1 (but also of many other G-protein cou-
pled receptors such as G proteins and their interaction partners)
are more resistant to emodepside than strains deficient in the
receptor gene lat-1 itself. This suggests that not only signalling
through LAT-1 but maybe also through other unidentified G pro-
tein coupled receptors (Buxton et al., 2011) might be able to
modify the effects of emodepside. One possibility is that these
signalling pathways alter SLO-1 by posttranslational modifica-
tions such as phosphorylation.

The involvement of GABAA receptors as immediate targets of
emodepside was discussed more controversially at the CARS2013
meeting. Although very early work using A. suum preparations sug-
gested binding of emodepside in competition to the GABAA recep-
tor agonist methyl-bicuculline (Chen et al., 1996), the fact that the
latter drug does not act as a GABA agonist on Ascaris muscle prep-
arations (Holden-Dye et al., 1988) is an important argument
against binding to ionotropic GABA receptors. In contrast, slightly
increased emodepside susceptibility of C. elegans deficient in the
GABAA receptor unc-49, which could be reversed by transgenic
expression of unc-49b cDNA of Toxocara canis, suggests that iono-
tropic GABA signalling somehow also modulates emodepside
effects on nematodes (Miltsch et al., 2012).
8. Triclabendazole: mapping resistance loci in genetically
recombinant Fasciola hepatica

The BZ compound, triclabendazole (TCBZ), is the drug of choice
for controlling Fasciola hepatica infection in livestock and humans
due to its ability to target the parasite at the earliest stages of
infection as it migrates through the liver. Since TCBZ resistance
was first reported nearly 20 years ago in Victoria, Australia, in
1995 (Overend and Bowen, 1995) cases of resistance in both
sheep and cattle have been reported in multiple countries, most
recently in naturally infected Australian beef and dairy cattle
herds (Brockwell et al., 2013). The first report of the failure of
TCBZ in humans has also recently emerged (Winkelhagen et al.,
2012). Despite significant advances in our understanding of BZ
resistance, and identification of BZ resistance markers for several
nematode species, the specific nature of the mode of action of
TCBZ against F. hepatica, and mechanism of TCBZ resistance,
remain unknown.

The majority of TCBZ resistance studies have relied on compar-
ative analyses of phenotypically TCBZ-resistant (TCBZ-R) and
TCBZ-susceptible (TCBZ-S) laboratory and/or field isolates follow-
ing exposure to TCBZ either in vitro or in vivo. These studies have
primarily focused on changes in biological parameters (reviewed
by Fairweather, 2011) or on defining biochemical pathways
involved in drug uptake, efflux and metabolism (e.g. Robinson
et al., 2004; Alvarez et al., 2005). Most recently, detecting apoptotic
events in the reproductive organs of F. hepatica was proposed as an
aid in the diagnosis of TCBZ resistance in field outbreaks of fascio-
losis (Hanna et al., 2013). However, very few studies have aimed to
identify genetic markers for TCBZ resistance. Given that TCBZ is a
BZ, these analyses have echoed candidate marker gene studies (pri-
marily tubulins) that proved successful for BZ resistance in nema-
todes (see BZ section above). However, there remains little
evidence for a role for tubulins in TCBZ resistance (Ryan et al.,
2008; Fuchs et al., 2013). Similarly to anthelmintic resistance stud-
ies in other helminths, drug efflux mechanisms mediated by P-gps
have been highlighted as potential contributors to TCBZ resistance
(Reed et al., 1998; Meaney et al., 2103). Wilkinson et al. (2012)
reported single nucleotide polymorphisms (SNPs) in the nucleotide
binding domain of P-gp genes between a small number of TCBZ-S
and TCBZ-R adult F. hepatica from the field. However, further data
presented here at the CARS2013 meeting, using an increased
sample size of adult F. hepatica, found no evidence to support the
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involvement of the P-gp T687G SNP in TCBZ resistance (Skuce
et al., unpublished).

Given the lack of genetic markers for TCBZ resistance in F.
hepatica, the speaker for this section of CARS2013 (JH) described
a novel project to map loci involved in conferring TCBZ resistance
using a genome-wide analysis of genetically recombinant F. hepat-
ica that was the subject of a recent review paper (Hodgkinson et al.,
2013). Key to the success of the project was the ability to exploit
the parasite life-cycle and produce genetic crosses of TCBZ-R and
TCBZ-S isolates. Given the diversity of F. hepatica populations in
the field (Elliott et al., 2014; Hodgkinson, unpublished) the speaker
reported the generation of clonal isolates of F. hepatica derived by
infecting sheep with metacercariae shed from snails experimen-
tally infected with single miracidia. The production of three
TCBZ-R clonal isolates, using parasites recovered from naturally
infected UK sheep, was described in a series of, as yet unpublished,
experimental studies. Similarly, a TCBZ-S clonal isolate was gener-
ated using a laboratory maintained isolate known as the Shrews-
bury isolate (Ridgeway Research, UK). For subsequent mapping of
resistance markers, genetic crosses of TCBZ-S and TCBZ-R clonal
isolates were reported as underway, assisted by the use of neutral
microsatellite markers to dissect the complex reproductive biology
of F. hepatica. In the absence of a genome for F. hepatica within the
international parasitology research community, the speaker
reported that they had generated a �1.3 Gb draft genome from a
single adult parasite of the Shrewsbury clonal isolate. Future pro-
duction of F2 progeny was reported to be in progress along with
genome-wide SNP profiling of F2 populations exposed to TCBZ
in vitro and in vivo. Pooled genotyping of phenotyped F2 progeny
to localise regions of the genome associated with TCBZ resistance
was proposed.

In conclusion, recent work on genomic and genetic tools for F.
hepatica and production of clonal TCBZ-S and TCBZ –R parasite iso-
lates has forged the way for non-biased discovery of drug resis-
tance markers and genes conferring resistance in trematodes of
humans and livestock in the future. Importantly, the clonal isolates
described here represent the first such resource for this important
parasite species and are the current focus of complementary stud-
ies involving specific TCBZ-R candidate genes. Although the focus
of the project was mapping anthelmintic markers, a number of
valuable genomic, genetic and parasite resources were generated
that are already proving invaluable to the wider community of F.
hepatica researchers. This highlights the fact that studies to detect
drug resistance markers are relevant in their broadest context and
can be the driving force for advancing knowledge of many aspects
of the biological systems under study.

9. Drug transporters: potential markers for resistance, and
therapeutic targets

9.1. Role of MDR transporters in multidrug resistance in mammals,
and anthelmintic resistance in nematodes

Multidrug resistance (MDR) ABC transporters belong to an evo-
lutionarily well-conserved family of ATP-binding-cassette mem-
brane proteins. They comprise the so-called P-glycoprotein (P-gp
or MDR1 of the ABCB family), the Multidrug Resistance-associated
Proteins (MRPs of the ABCC family) and Breast Cancer Resistance
Protein (BCRP) from the ‘half-transporter’ subfamily (ABCG2).
Their main function is the active transport of a number of structur-
ally unrelated endogenous and exogenous compounds including a
large range of drugs (Gottesman and Pastan, 1993). They provide
complementary and overlapping activities as multispecific drug
efflux pumps, and are involved in multidrug resistance in cancer
cells. Interestingly, homologues of these transporters are found in
many pathogens such as protozoa, fungi, bacteria and also in
insects, and have been involved in drug resistance through an
increase of MDR transporter gene expression.

Ivermectin and other MLs are transported by mammalian P-gp
which is responsible for their elimination by the intestinal and
biliary tract (Ballent et al., 2006; Kiki-Mvouaka et al., 2010) and
for maintaining low drug concentration inside the brain, guaran-
teeing the safety of these drugs (Mealey et al., 2001). In addition,
the high affinity of MLs for P-gp (Lespine et al., 2007) and to a les-
ser extent for MRP (Lespine et al., 2006) and BCRP (Jani et al.,
2011), suggests that combined efflux-pumping activities of these
transporters may have an impact on pharmacokinetics, efficacy
and safety of these drugs.

Nematodes have a number of genes homologous to ABCB, ABCCs
and half-transporters, and there is increasing evidence that the
products of at least some of these genes, are involved in drug trans-
port. The crystal structure of C. elegans P-gp1 has provided valuable
information on the three dimensional structure of the transporter,
and several putative substrate and drug binding sites, similar to
those found in human P-gp, have been identified (Jin et al.,
2012), which strongly suggests that this protein is able to transport
chemicals. Loss of function of individual P-gps in C. elegans results
in significant increases in ivermectin susceptibility, revealing that
all the P-gps in this species interact with this ML, with P-gp1, 2,
8, 9, 11 and 12 being more important than the others (Janssen
et al., 2013b). Thus, P-gps of nematodes clearly contribute to lower
drug efficacy, probably by diminishing exposure of the target to the
drug, and this may be the basis for favouring the development of
multidrug resistance not only against MLs but also other
anthelmintics.

Modulation of ABC transporter genes has been reported in free-
living and parasitic nematodes exposed to ivermectin (Ardelli and
Prichard, 2013; Lespine et al., 2012). In C. elegans, several P-gp
genes are overexpressed after short-time exposure to ivermectin
or moxidectin (Ardelli and Prichard, 2013). Similarly, step-wise
exposure to increasing doses of ivermectin results in multidrug
resistance and overexpression of several ABC transporters (James
and Davey, 2009). Furthermore, silencing of ABC transporter gene
expression by RNA interference induced a change in phenotypic
response to ivermectin exposure (Yan et al., 2012). In addition,
constitutive overexpression of a number of P-gp genes has been
reported in multi-drug resistant H. contortus isolates (Williamson
et al., 2011; Sarai et al., 2014). A constitutive increased expression
of Tci-pgp9, with increased gene sequence polymorphism, was
reported in multidrug-resistant T. circumcincta (Dicker et al.,
2011). Similarly, pgp-11 showed increased expression in ivermec-
tin-exposed resistant populations of Parascaris equorum (Janssen
et al., 2013a) and C. oncophora (De Graef et al., 2013; Demeler
et al., 2013b). Bygarski et al. (in press) have recently used ML-resis-
tant and P-gp deletion strains of C. elegans to show that resistance
to moxidectin in this species is mediated at least in part by P-gps.
Moreover, decreased ivermectin susceptibility has also been asso-
ciated with genetic variation of ABC transporter homologues in P.
equorum (Janssen et al., 2013a), Onchocerca volvulus (Ardelli and
Prichard, 2007; Osei-Atweneboana et al., 2007, 2011) and Dirofila-
ria immitis (Bourguinat et al., 2011). All these studies are consistent
with a role for some P-gps in ivermectin susceptibility in nema-
todes, and together they raise the possibility that P-gp activity/
gene expression/SNPs could be a component of a set of diagnostic
tools for the detection and quantification of anthelmintic resis-
tance, particularly for the MLs. However, the likely polygenic nat-
ure of resistance to MLs will mean that tests based on drug
transporters will most-likely be only a part of such a diagnostic kit.
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9.2. Therapeutic potential: targeting drug transporters in order to
increase the efficacy of anthelmintics

Although ML resistance is polygenic, the final concentration of
an anthelmintic in the parasite is a key determinant for efficacy
(Lloberas et al., 2013), making the drug efflux transporters of cen-
tral interest. The challenge is to minimize the drug transporter
pumping action in order to increase drug sensitivity (Nobili
et al., 2006). Inhibition or modulation of P-gp activity therefore
represents a possible strategy for worm control. A large number
of compounds have been shown to inhibit MDR transporters.
Co-administration of MLs and these inhibitors is presumed to
lead to an increase of ML concentration in the plasma and tissues
of the host and hopefully in the parasite, thus offering the expec-
tation of increased anthelmintic efficacy (Lespine et al., 2008).
Such a strategy has been investigated in vivo in animals infected
with ivermectin-resistant nematodes. When combined with
loperamide, ML efficacy was improved in cattle and sheep
(Lifschitz et al., 2010a,b). In addition, pluronic P85 enhanced
the anthelmintic activity of ivermectin against ivermectin-resis-
tant H. contortus isolates in sheep (Bartley et al., 2012). These
results strongly support the hypothesis that MDR transporter
inhibitors enhance efficacy of MLs by blocking host P-gp, and
possibly by exerting direct effects on the nematode MDR
transporters. Accordingly, the effectiveness of inhibitors of MDR
transporters has been demonstrated in vitro and in vivo using
ML-resistant C. elegans (James and Davey, 2009), H. contortus,
T. circumcincta (Bartley et al., 2009) and C. onchophora (Demeler
et al., 2013b). In these studies, the combination of inhibitors of
P-gp, such as verapamil, partially or fully restored drug sensitiv-
ity, offering hope for future sustainable anthelmintic-based
therapy.

However, in looking to develop such a therapeutic approach to
worm control it is important to separate the potential effects on
the target worm from the effects on the host; that is, to separate
the desirable aim of inhibiting the nematode’s drug transporters
(hence increasing the amount of drug reaching its target within
the worm) from the undesirable effect of inhibiting the host ani-
mal’s drug transporters, with the negative consequences this may
have in terms of neurotoxicity and maintenance of homeostasis.
Hence, the current dogma is that for a reversing agent to be suc-
cessful, nematode specificity is crucial in order to preserve the
activity of related transporters in mammals. The speaker for this
session at CARS2013 (AL) described unpublished work from their
laboratory aiming to address this need. While ML drugs have
themselves been shown to be potent inhibitors of P-gps, and
hence have been proposed as reversing agents for multidrug
resistance (Lespine et al., 2008), the commercial ML compounds
are not suitable for this purpose due to neurotoxic effects in
mammals (Mealey et al., 2001). Indeed, when co-administrated
with a P-gp substrate drug, they may accumulate in the brain
at high concentrations and be neurotoxic due to their effects in
opening mammalian GABA receptors in the central nervous sys-
tem (Menez et al., 2012). However, many non-commercial ML
derivatives exist, and it was reasoned that among these may exist
some compounds with low affinity for nematode glutamate and
GABA receptors (hence of no use as commercial anthelmintics),
and hence likely to also exhibit low affinity for mammalian GABA
receptors, alongside useful P-gp-inhibiting activity. One such can-
didate has been identified as ivermectin aglycone (Lespine et al,
unpublished data). This compound has little anthelmintic activity
against parasitic nematodes (Shoop et al., 1995), suggesting that
it has low activity on glutamate-gated chloride channels, and
perhaps on GABA-receptors. The speaker reported that ivermectin
aglycone inhibits P-gp transport activity in cells overexpressing
human P-gp with a similar efficiency as ivermectin. When
co-incubated with vinblastin, ivermectin aglycone restored drug
sensitivity in vinblastin-resistant cells overexpressing P-gp with
a similar degree of reversal in potency as ivermectin. Ivermectin
aglycone by itself had little anthelmintic effect on ivermectin-
resistant C. elegans, but used in combination with ivermectin it
restored sensitivity to the latter. Moreover, unlike ivermectin,
ivermectin aglycone had low affinity for rat GABA receptors
and had no observable neurotoxicity in P-gp-deficient mice. Its
ability to reverse P-gp-mediated drug resistance in mammalian
cells and in nematodes and its very low neurotoxicity make iver-
mectin aglycone an interesting P-gp reversing agent for use
in vivo. Combining ivermectin aglycone with MLs to increase
drug efficacy and to reverse ML resistance opens a new perspec-
tive for sustaining anthelmintic control when ML resistance has
arisen.

The speaker also noted that because many ABC transporters
are present in nematodes, it is difficult at this stage to anticipate
which transporters may be involved in resistance to specific ML
drugs. Targeting upstream transcriptional regulators of ABC trans-
porters might control the expression of several transporters at the
same time, and hence improve anthelmintic drug efficacy in
susceptible and resistant nematodes. The success of such
approaches relies on improving knowledge of the proteins
involved in ML transport within nematodes, and the mechanism
of their regulation.
10. Advances in high-throughput sequencing and analyses

Recent years have seen major advances in the development
and application of high-throughput sequencing (HTS) technolo-
gies and their potential application in exploring the development
of anthelmintic resistance (Fig. 5). Draft genome sequences now
exist for a number of animal and plant parasitic nematode spe-
cies and more genome projects are being completed at an accel-
erating pace. Beginning with the sequencing of the Brugia malayi
genome in 2007 (Ghedin et al., 2007), draft genome sequences
have been published for Meloidogyne hapla (Opperman et al.,
2008), M. incognito (Abad et al., 2008), Trichinella spiralis
(Mitreva et al., 2011), A. suum (Jex et al., 2011), D. immitis
(Godel et al., 2012), H. contortus McMaster (Schwarz et al.,
2013) and H. contortus MHco3(ISE) (Laing et al., 2013), Loa loa
(Desjardins et al., 2013) and Trichuris suis (Jex, unpublished). A
large number of additional genome studies are currently under-
way (see 959 Nematode Genome Project (www.nematodes.org)
and 50HGI Project (www.sanger.ac.uk)), including a number of
projects on ruminant strongyle species of major importance for
veterinary health and for which anthelmintic resistance is preva-
lent (e.g., C. oncophora, O. dentatum and T. circumcincta: see
www.nematode.net).

These genomic data-sets, and their accompanying transcrip-
tomic data, provide major insights into the biology of parasitic
nematodes because they are the basis for characterizing SNPs
(e.g., DNA-seq; (Metzker, 2010)), changes in transcription and
alternative splicing patterns (i.e., RNA-seq: (Ozsolak and Milos,
2011)) and genetic regulation through epigenetic modifications
[e.g., CHIP-seq (Furey, 2012) or bisulphite sequencing (Krueger
et al., 2012)] and/or the activity of non-coding RNAs (Jacquier,
2009; Wang et al., 2011). Resources for accessing and analysing
these data-sets are developing (Box 1). WormBase (www.worm-
base.org) has expanded its data repository to include parasitic
nematodes, with the genomes, annotated gene models and
inferred function, and related files available for public access
via ftp download (ftp://ftp.sanger.ac.uk/pub2/wormbase/live_re-
lease). Nematode.net provides a wide variety of resources for
users to explore genomic and functional information for parasitic
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http://www.sanger.ac.uk
http://www.nematode.net
http://www.wormbase.org
http://www.wormbase.org


Fig. 5. Utility of high-throughput sequencing (HTS) to explore the development of anthelmintic resistance. Four separate HTS applications shown as coloured boxes in
columns A–D, with single horizontal black box representing generalized features of library construction, sequencing and post-sequencing quality control applicable to most
HTS applications (⁄fragmentation not required for small RNA sequencing). (A) Blue boxes present the detection of genetic mutations through de novo assembly and
subsequent comparative alignment, or in comparison with a reference genome. Analyses relevant to genomic sequencing include the identification of single nucleotide
polymorphisms (SNP), as well as, structural (SV) and gene copy number variation (CNV). (B) Green boxes outline the use of RNA-seq to define differentially expressed genes
(DEG) through de novo transcriptomic assembly, or a referenced transcriptome assembly through alignment to an existing genome. (C) Orange boxes demonstrate the
identification of small non-coding RNAs by their mapping to a reference genome and exploration of their potential role in regulating differentially expressed genes. These
analyses include the identification of micro-RNAs (miRNAs) by prediction of their hair-pin precursor, and their annotation using data in miRBase (www.miRBase.org).
Additional small RNAs can be explored by identifying ncRNA precursor transcripts (represented by large, contiguous clusters of small-RNA reads mapping to a reference
genome) and their annotation through comparisons [e.g., by hidden Markov modeling (HMM)] with the Rfam database (rfam.sanger.ac.uk); a small-RNAs are also identified
by their length, sequence and relative mapping position (e.g., with respect to coding genes, gene regulatory and/or transposable elements). (D) Purple boxes describe the use
of ChIP-seq and bisulfite sequencing (BSS) to explore epigenetic changes, including histone modification and DNA methylation respectively, that might impact on gene
regulation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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nematodes (Martin et al., 2012a), including specific data-mining
and comparative analysis tools such as NemaBLAST, Nema-
Browse, NemaPATH (which allows exploration of many of the
functional pathways encoded by parasitic nematodes) and Nem-
aSNP (which allows the user to explore SNPs detected in short
read sequences aligned to published nematode transcriptomic
assemblies). Tools for accessing transcriptomic data for nema-
todes, particularly those lacking a draft genome, are needed,
and have lagged behind genomic resources. NEMBASE is one such
example of an improved resource for these data (Elsworth et al.,
2011). HelmDB (Mangiola et al., 2013) was recently constructed
to further improve the accessibility and annotation of transcrip-
tomic information for parasitic worms, specifically including
data-sets for species lacking a published genomic sequence.
Often, de novo assembled transcriptomes will contain a large
number of incomplete transcripts that cannot be functionally
annotated. HelmDB uses gene clustering, data integration and
annotation transfer (Defoin-Platel et al., 2011) to provide a func-
tional inference for these sequences in helminth transcriptomes.
This approach involves clustering gene/protein sequences from
3 or more organisms based on their multiple pair-wise alignment
e.g. (Di Tommaso et al., 2011) and can be optimized by adjusting
the inclusion parameters for each cluster, including alignment
length and/or percent identity, or through the use of more
sophisticated orthology prediction algorithms (Kuzniar et al.,
2010). Once clustered, functional information can be transferred
from annotated to unannotated sequences, often with high confi-
dence. In HelmDB, the annotation transfer approach allowed the
improved functional characterization of 8–20% of the transcripts
available for each of 11 species incorporated into the database.

http://www.miRBase.org
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Box 1 Key resources and applications for high-throughput
sequencing and bioinformatic analysis.

Tool Description Source

Guidelines
MINSEQE RNA-seq

guidelines
http://www.fged.org/projects/
minseqe/

Encode Genome
Annotation
Assessment
Project (EGASP)

Genome
annotation
guidelines

Guigo et al. (2006)

RNA-seq Genome
Annotation
Assessment
Project (RGASP)

RNA-seq
analyses
guidance

Engstrom et al. (2013) and Steijger
et al. (2013)

Advice/Protocols
SEQAnswers HTS and

bioinformatics
www.seqanswers.com

Galaxy Project Bioinformatic
advice/
lectures

www.galaxyproject.org

Current Protocols
in
Bioinformatics

Command-
based
protocols

http://cda.currentprotocols.com/

Nature Protocols Command-
based
protocols

www.nature.com/nprot/

Applications
Read quality FastQC/

Trimmomatic
http://
www.bioinformatics.babraham.ac.uk/
projects/fastqc// Bolger et al. (2014)

De novo genome
assembly

Velvet/
SOAPdenovo/
SGA
Assembler

Zerbino (2010)/Li et al. (2010)/
Simpson and Durbin (2012)

Read alignment BWA/Bowtie2 Li and Durbin (2010)/Langmead and
Salzberg (2012)

De novo
transcriptome
assembly

Trinity/
TransABYSS

Grabherr et al. (2011)/Robertson et al
(2010b)

Referenced
transcriptome
assembly

Tophat-
Cufflinks

Trapnell et al. (2012)

Differential
transcriptional
analysis

Tophat-
Cufflinks

Trapnell et al. (2012)

SNP detection SAMtools/
GATK

Li et al. (2009)/McKenna et al. (2010)

Comparative
alignments

MUMMER/
BLAT

Delcher et al. (2003)/Kent (2002)

microRNA
identification

miRDeep2 Friedlander et al. (2012)

Pipelines
Geneious Graphic-based

bioinformatics
Kearse et al. (2012)

Galaxy project Web-based
bioinformatics

www.galaxyproject.org
.

Although each of these resources improves accessibility to

existing data and can help users conduct comparative analyses of
published and/or their own data, none provide specific help for
researchers interested in conducting HTS projects of their own.
Fortunately, a rapid expansion in the number of tools, community
resources, protocols, data handling and storage and experimental
design standards is occurring. The Functional Genomics Data Soci-
ety have recently developed the MINSEQE guidelines (http://
www.fged.org/projects/minseqe/) for sample information, and
experimental design relating to HTS; for example, advice on the
minimum number of biological or technical replicates needed for
RNA-seq experiments. A wide-variety of freely available software
and scripts exist for analysis of HTS applications. SGA Assembler
(Simpson and Durbin, 2012), for example, is able to conduct de
novo assembly of complete human genomes using less than
50 Gb of RAM, compared with the �1000 Gb of RAM required for
de novo assembly of large genomes using standard assemblers,
such as Velvet (Zerbino and Birney, 2008) or SOAPdenovo (Li
et al., 2010). Numerous resources now exist to aid researchers in
accessing these programs and applying them to helminth research.
Examples range from large, community-based blog sites, such
as SEQanswers.com, to dedicated protocol-based publications,
such as Current Protocols in Bioinformatics. The latter provides
step-by-step command-based instructions for everything from
extracting information from public databases, to assembling and
annotating genomes and transcriptomes, exploring CHIP-seq data,
conducting comparative genomic investigations of SNPs and struc-
tural variants, modelling regulatory elements, identifying small
non-coding RNAs, and processing proteomic, metabolomic and
other small molecular data-sets. Although not specifically dedi-
cated to bioinformatics, Nature Protocols also represents an excel-
lent resource for some of the major bioinformatic applications
currently available; key examples including excellent protocols
for refining/finishing draft genomes using the Post-Assembly Gen-
ome Improvement Tool (Swain et al., 2012) and the reconstruction
and differential analysis of transcriptomic data using Tuxedo suite
(i.e., Tophat/Cufflinks: (Trapnell et al., 2012)).

Just as guidelines are being established for experimental design
(e.g., MINSEQE), projects are under-way to assess the specificity
and sensitivity of these many software applications and establish
‘gold-standard’ methods for data analysis. A key example is the
RNA-seq Genome Annotation Assessment Project (RGASP), which
benchmarks leading RNA-seq analysis tools for their ability to
accurately reconstruct the transcriptome, identify splice isoforms
and quantify transcriptional abundance (see Engstrom et al.,
2013; Steijger et al., 2013). The increasing availability of bioinfor-
matic applications, reduced demands for computing power, and
development of guidelines and protocols for bioinformatic analy-
ses are vastly improving the accessibility of this field to the global
scientific community. Nonetheless, knowledge of Unix-commands
and some access to custom Perl/Python scripting is needed, partic-
ularly to take the output from one application and reformat it for
another. This remains a significant obstacle for many research
groups. The development of bioinformatic pipelines with a Graph-
ical User Interface (GUI) is of significant interest to many wishing
to enter this field. An example is the proprietary software Geneious
(Kearse et al., 2012), which allows users to perform many standard
bioinformatic analyses using menu-based commands on a personal
computer. These include pipelines to conduct de novo assemblies,
align reads to a reference genome/transcriptome, and conduct/
visualize a variety of comparative analyses. The Galaxy Project
(http://galaxyproject.org/) provides arguably the best of GUI-based
resources currently available, allowing users free access to a
remote server for their analyses and a web-based interface. Major
strengths of the Galaxy Project is that it utilizes a growing variety
of leading open source bioinformatic applications, including SAM-
tools (Li et al., 2009), GATK (McKenna et al., 2010) and TopHat/
Cufflinks (Trapnell et al., 2010), and is supported by a large com-
munity of bioinformaticians seeking to expand the available appli-
cations accessible to users. Users can build custom pipelines
linking these applications to create semi-automated workflows
for their analyses and, through the Galaxy Project community, have
access to a wealth of presentations, lectures and blog-based arti-
cles on conducting bioinformatics research. Collectively, these
resources improve accessibility to bioinformatic platforms for
non-bioinformaticians.

A key message from these platforms is that although experi-
mental design remains critical and data analysis/handling is not
trivial, many resources now exist to provide entry into this field

http://www.fged.org/projects/minseqe/
http://www.fged.org/projects/minseqe/
http://www.seqanswers.com
http://www.galaxyproject.org
http://cda.currentprotocols.com/
http://www.nature.com/nprot/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.galaxyproject.org
http://www.fged.org/projects/minseqe/
http://www.fged.org/projects/minseqe/
http://galaxyproject.org/


Table 1
Recent (2011-present) publications on the molecular basis of anthelmintic resistances and drug/receptor interactions.

Drug group Aspect covered References

Macrocyclic
lactones

Interactions with GluClRs and other Cys-loop receptors Hibbs and Gouaux (2011), Lynagh et al. (2011), Lynagh and Lynch (2012a) and
Lynagh and Lynch (2012b)

The lack of GluClR SNPs or gene transcription patterns able to
explain observed resistances

El-Abdellati et al. (2011), Williamson et al. (2011) and Martínez-Valladares et al.
(2012)

Amino acid deletion in a GluClR conferring resistance in C.
elegans

Ghosh et al. (2012)

Introgression of resistance genes into a susceptible isolate of
H. contortus; an important advance for resistance gene
mapping

Redman et al. (2012)

P-gp SNPs or gene transcription patterns associated with drug
resistance

Williamson et al. (2011), Bourguinat et al. (2011), Dicker et al. (2011), Lespine et al.
(2012), Yan et al. (2012), Janssen et al. (2013a), Janssen et al. (2013b), Ardelli and
Prichard (2013), De Graef et al. (2013), Demeler et al. (2013b), Sarai et al. (2014) and
Bygarski et al. (2014)

Benzimidazoles Relative role of different SNPs in conferring resistance Kotze et al. (2012) and Barrère et al. (2012)
Pyrosequencing assays for SNPs in cattle worms Demeler et al. (2013a) and Chaudhry et al. (in press)
Evaluation of SNP-based tests in the field for livestock Barrère et al. (2013a,b) and Niciura et al. (2012)
Molecular analysis in human soil-transmitted helminths Diawara et al. (2013a,b)
Description of all beta-tubulins in H. contortus Saunders et al. (2013)

Nicotinic
agonists

Altered nAChR subunit gene transcription patterns associated
with resistance

Williamson et al. (2011), Boulin et al. (2011), Sarai et al. (2013, 2014) and Romine
et al. (2014)

Putative DNA marker for levamisole resistance Barrère et al. (2014)
Derquantel/

abamectin
Description of derquantel-sensitive nAChRs Buxton et al. (2014)

Interaction of the two drugs at nAChRs on the somatic
muscle; suggestion of synergism

Puttachary et al. (2013)

Amino-
acetonitrile
derivatives

Role of C. elegans ACR-23 receptor in drug action Rufener et al. (2013)

Cyclooctadepsi-
peptides

Evidence for role of SLO-1 in drug action Crisford et al. (2011), Buxton et al. (2011)

Role for GABA signalling in drug action Miltsch et al. (2012)
Reviews on mode of action, focusing on SLO-1 Krücken et al. (2012), Holden-Dye et al. (2012) and Martin et al. (2012b)

Triclabendazole P-gp inhibitor and SNP studies linking drug efflux and
resistance

Wilkinson et al. (2012) and Meaney et al. (2103)

Lack of association between beta-tubulin and resistance Fuchs et al. (2013)
Genome-wide approach to mapping resistance loci Hodgkinson et al. (2013)
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for researchers wishing to utilize the power of HTS to explore hel-
minths and the development of anthelmintic resistance.

11. Conclusion

Our knowledge of the mechanisms of anthelmintic resistance
has increased greatly over the last few years (Table 1). However,
in most cases this has led to a realisation of greater than expected
complexity, especially for resistances that have arisen in the field.
Consequently, simple molecular-based tests for resistance to most
of the drug groups will not be possible for some years. Encourag-
ingly, more complex molecular-based tests such as high throughput
SNP tools, are becoming more affordable and their use more rou-
tine. Drug resistance may be a complex, polygenic or quantitative
trait in many instances, but the exception to this is BZ resistance
where most studies point to a small number of beta-tubulin SNPs.
Hence, some steps have recently been taken to translate SNP-based
tests for BZ resistance into the field for veterinary applications.
However, this process has revealed that in some instances even
BZ resistance can be more complex. BZ efficacy cannot in all cases
be explained by beta-tubulin allele frequencies, suggesting that
other mechanisms, perhaps P-gps or drug metabolism, may also
contribute to the observed field resistances. For MLs, the situation
is far more uncertain, with the early promise of SNP-based tests
based on GluClR genes not being realised, and some attention turn-
ing to the role of P-gps and other potential mechanisms. For the nic-
otinic agonist group, evidence is emerging of complex polygenic
resistances in which various changes in gene structure or expres-
sion levels are associated with a reduction in drug sensitive nAChRs
in resistant worms via many different specific mechanisms.
Not only does this suggest polygenic resistance within single
field-selected populations, but also the existence of completely
distinct resistance-conferring molecular changes in separate popu-
lations within a species. Hence, while most advanced for BZ drugs,
the potential for the widespread use of molecular-based tests for
detection and quantification of anthelmintic resistance remains a
research goal rather than a clinical reality.

With the publication of helminth genomes and the rapid devel-
opment of tools for analysis of high throughput sequencing data,
the prospect of utilizing whole-genome approaches to discover
markers for anthelmintic resistance becomes more real. The hope
that such approaches will provide a suite of markers for anthelmin-
tic resistance detection seems realistic. Such tools will hopefully
have a broader application than the specific candidate gene-based
SNPs or gene expression changes described to date. However,
despite the development of molecular tools with application across
many fields of biology, there are specific features of helminth biol-
ogy that will make the use of some of these tools for resistance
marker discovery more problematic. Some of these challenges
are described in Box 2; much work is needed before the complete
analysis of many helminth genomes will be a reality. Some aspects
of worm biology, such as genetic crossing methods and the costs
associated with generating inbred parental lines, also present
difficulties.

Nevertheless, as described in this paper, there have been signif-
icant recent advances in the application of genomic and genetic
tools to the study of anthelmintic resistance in H. contortus and F.
hepatica. It is anticipated that these advances will establish a path-
way for anthelmintic resistance marker discovery for these species,
and with more genomes available, marker discovery in other veter-
inary and human helminth parasites should progress within the
next few years.
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Box 2 Key challenges for the mapping of genetic markers for
anthelmintic resistance in helminth parasites.

1. Current status of genome sequences
The parasite genome assemblies available need
further improvement. Assembly has been complicated
because the genomes are generally highly
polymorphic, containing a high number of repetitive
DNA sequences, and some are very large;
Statistical methods and genome assembly methods
which can better deal with repetitive DNA sequence
are needed;
Genetic methods in parasites are difficult and so
genetic recombination maps are not available to help
genome assembly for most species;
In addition, genome projects have not progressed for
some species (most notably the various
Trichostrongylus species);

2. Genetic methodology
Improvements are needed in our ability to perform
genetic crosses in some important species;
In some cases the development of alternative animal
host models or in vitro life cycle culture may be
required;
Some consideration of the value of mixing
populations rather than deliberate crosses should be
made;

3. Inbred parental lines
In most instances the existence of a highly inbred
susceptible parent strain would assist discovery,
removing noise from the statistical analysis;
The MHco3(ISE).N1 is available for H. contortus, but
this cannot be used worldwide, and no such resource
exists for other species of interest;
The production of clonal isolates of F. hepatica has
been a significant boost for resistance studies with
this species;

4. Polygenic resistance
Evidence that resistance to most anthelmintic classes
is most likely polygenic, and the potential for multiple
origins of resistance to occur in parasite populations,
indicates that a suite of markers may be required for
use across different field isolates within single
helminth species.

5. Functional genomics methods
Functional studies using RNAi are problematic in
strongylid species as the technique has only limited
usefulness (Geldhof et al. 2007; Zawadzki et al.,
2012);
F. hepatica is however much more amenable to the use
of RNAi (McGonigle et al., 2008; Rinaldi et al., 2008).
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