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The discovery of the quasistellar radio sources has stimulated renewed interest in the 

question of gravitational collapse. It has been suggested by some authors [1] that the 

enormous amounts of energy that these objects apparently emit may result from the collapse 

of a mass of the order of 
 M)1010( 86  to the neighborhood of its Schwarzschild radius, 

accompanied by a violent release of energy, possible in the form of gravitational radiation. 

The detailed mathematical discussion of such situations is difficult since the full complexity of 

general relativity is required. Consequently, most exact calculations concerned with the 

implications of gravitational collapse have employed the simplifying assumption of spherical 

symmetry. Unfortunately, this precludes any detailed discussion of gravitational radiation – 

which requires at least a quadripole structure. The general situation with regard to a 

spherically symmetrical body is well known [2]. For a sufficiently great mass, there is no final 

equilibrium state. When sufficiently thermal energy has been radiated away, the body 

contracts and continues to contract until a physical singularity is encountered at 0r . As 

measured by local comoving observers, the body passes within its Schwarzschild radius 

mr 2  . (The densities at which this happens need not be enormously high if the total mass 

is large enough). To an outside observer the contraction to mr 2  appears to make infinite 

time. Nevertheless, the existence of a singularity presents a serious problem for any interior 

region. 

The question has been raised as to whether this singularity is, in fact, simply a property of 

the high symmetry assumed. The matter collapses radially inwards to the single point at the 

center, so that a resulting space-time catastrophe there is perhaps not surprising. Could not 

the presence of perturbations which destroy the spherical symmetry alter the situation 

drastically? The recent rotating solution of Kerr [3] also possesses a physical singularity, but 

since a high degree of symmetry is still present (and the solution is algebraically special), it 

might again be argued that this is not representative of the general situation [4]. Collapse 

without assumptions of symmetry will be discussed here. 

Consider the time development of a Cauchy hypersurface 3C  representing an initial matter 

distribution. We may assume Einstein’s field equations and suitable equations of the state 

governing the matter. In fact, the only assumption made hereabout these equations of state 

will be the non-negative definiteness of Einstein’s energy expression (with or without 

cosmological term). Suppose this matter distribution undergoes gravitational collapses in a 

way which, at first, qualitatively resembles the spherically symmetrical case. It will be shown 

that, after a certain critical condition has been fulfilled, derivations from spherical symmetry 

cannot prevent space-time singularities from arising. 



If, as seems justifiable, actual physical singularities in space-time are not to be permitted to 

occur, the conclusion would appear inescapable that inside such a collapsing object at least 

one of the following holds: 

(a) Negative local energy occurs. [6]  

(b) Einstein’s equations are violated. 

(c) The space-time manifold is incomplete. [7]   

(d) The concept of space-time loses its meaning at very high curvature – possible 

because of quantum phenomena. [2]  

In fact (a), (b), (c), (d) are somewhat interrelated, the distinction being partly one of attitude of 

mind. 

Before examining the asymmetrical case, consider a sherically symmetrical matter 

distribution of finite radius in 3C  which collapses symmetrically. The empty region 

surrounding the matter will, in this case, be a Schwarzschild field, and we can conveniently 

use the metric 

)sin()/21(2 222222  ddrrmdvdrdvds  , 

with an advanced time parameter  to describe it [8]. The situation is depicted in figure 1. Note 

that an exterior observer will always see matter outside mr 2 , the collapse through mr 2   

to the singularity at 0r  being invisible to him. 

After the matter has contracted within mr 2 , a spacelike sphere 2S  ( constt    

constrm 2 ) can be found in the empty region surrounding the matter. This sphere is an 

example of what will be called here a trapped surface – defined generally as a closed, 

spacelike, two-surface  2T  with the property that the two systems of null geodesics which 

meet  2T  orthogonally converge locally in future directions at  2T . clearly trapped surfaces 

will still exist if the matter region has no sharp boundary or if spherical symmetry is dropped, 

provided that the deviations fron the above situation are not too great. 

Indeed, the Kerr solutions with am   (angular momentum ma ) all possess trapped surfaces, 

whereas those for which  am   do not [9]. The argument will be to show that the existence of 

a trapped surface implies –irrespective of symmetry – that singularities necessarily develop. 

The existence of a singularity can never be interfered, however, without an assumption such 

as completeness for the manifold under consideration. It will be necessary, here, to suppose 

that the manifold 4

M  , which is the future time development of an initial Cauchy 

hypersurface 3C  (past boundary of the 4

M  region), is in fact null complete into the future. 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It will be shown here, in outline, that (i) – (v) are together inconsistent. 

Let 4F  be the set of points in 4

M   which can be connected to 2T by a smooth timelike curve 

leading into the future from 2T . Let 3B  be the boundary of 4F  . Local considerations show 

that 3B  is null where it is nonsingular, being generated by the null geodesic segments which 

meet  2T orthogonally at the past endpoint and have a future endpoint if this is a singularity 

(on a caustic or crossing region) of 3B . 
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be, respectively, a future-pointing tangent vector, the convergence, and the shear for these 

null geodesics, [10]  and let A  a be a corresponding infinitesimal area of cross section of 3B  . 

Then     
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The various assumptions are, more precisely, as follows: 

(i) 4

M  is a nonsingular )(   Riemannian 

manifold for which the null half-cones form two 

separate systems (“past” and “future”). 

(ii) Every null geodesic in 4

M  can be extended into 

the future to arbitrarily large affine parameter 

values (null completeness). 

(iii) Every timelike or null geodesic in 4

M  can be 

extended into the past until it meets 3C   (Cauchy 

hypersurface condition). 

(iv) At every point of 4

M  all timelike vectors  t  

satisfy   
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 (non-negativeness of local energy). 

(v) There exists a trapped surface 2T in 4

M . 



Since 2T  is trapped, 0 at A , whence A  becomes zero at a finite affine distance to the 

future of  on each null geodesic. Each geodesic thus encounters a caustic. Hence 3B  is 

compact (closed), being generated by a compact system of finite segments. We may 

approximate 3B  arbitrarily closely by a smooth, closed, spacelike hypersurface *3B  . Let 4K  

denote the set of pairs ),( sP  with *3BP  and  10  s  . Define a continuous map 

44:  MK   where, for fixed P ,   ),( sP  is the past geodesic segment normal to *3B  at 

 )1,(PP    and meeting 3C  (as it must, by (iii) ) in the point   )0,(P . At each point Q

 

of  

 4K we can define the degree )(Qd  of 

 

to be the number of points of 4K  which map to 

Q  (correctly counted). Over any region not containing the image of a boundary point of 4K ,  

)(Qd will be constant. Near *3B ,  is 1-1, so  1)( Qd . It follows that 1)( Qd   near 3C  also, 

whence the degree of the map  3*3 CB   induced by   when 0s  must also be unity. The 

impossibility of this follows from the non-compactness of 3C . 

Full details of this and other related results will be given elsewhere. 
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