A fast software-based method for upcoming cycle
detection in search trees

ir. M. N. J. van Kervinck (M.Sc.)
marcelk@bitpit.net

April 6, 2013 - for preview

Copyright © 2013

Abstract

An algorithm is presented that detects cycles one ply before they appear in the search of a game
tree. The algorithm is suitable for use in the leaf nodes of a chess program and can there shift
the detection of repetition draws to an earlier iteration. The algorithm is fast because it doesn’t
generate or iterate over candidate moves during search. Instead, the Zobrist hashes of potential
reversible moves are precalculated and stored in a cuckoo table. Further speed is gained by
employing a light-weight measure for the displacement of opponent pieces that is based on the
exclusive OR of an even number of hash history items. Measurements are given for tree size,
node speed and improved playing strength when applied to a chess program.

1. Introduction

When in chess one observes the correlation between the evaluations returned by short
searches versus long searches an anomaly from the expected cloud around x=y becomes
apparent: there is distinct set of points on x=0 and even more on y=0, together forming a cross
along the axes. See figure 1.

The presence of this cross stems from draws by repetition. It is clear that these draws make up

a tactical category that is particularly poorly anticipated by a heuristic search until in the search
tree a cycle indeed gets closed. The score disruption suggests that an early detection of such
cycles should be beneficial to a chess program.

However, it is not obvious how to do that in software without slowing down the search too much.
The chips of Deep Blue[1] contained a hardware repetition detector that could sense upcoming
repetitions efficiently thanks to the parallel operation of the comparisons in its 32 ply circular
buffer. As Hsu noted: “Also, normal software repetition detectors cannot tell us that a position is
about to repeat.”

This paper describes the derivation of a fast upcoming repetition detector in software.

—
T

Ja——. SR e e g s
N Py T ey

Fy . e
5
ﬁé* . 't + o+ +
s o

4

300-seconds result [Pawns]
N o

15-seconds result [Pawns]

Figure 1. Correlation between short and long searches (100,000 positions)

2. Regular repetition detection

Figure 2 recapitulates the basic algorithm for repetition detection as found in many chess
programs. It presumes a stack s[] of previous Zobrist position hashes. s[e] represents the hash
of the current position in the search. s[d] is the hash d ply towards the root. The number of
irreversible moves made before the current position is commonly called the halfmove clock and
is represented by the hm parameter. The halfmove clock serves both in the early return condition
and limits how far up the stack one must look for a potential match. For the sake of simplicity it is
assumed that hm < len(s). In other words: the stack may lead back to positions before the root
of the search and into to the game history when necessary. If the search employs the null move

heuristic[2] such move will be considered an irreversible move that resets hm to zero when it is
made on the internal board.

bool test_repetition(int hm, zobrist_t S[])
{
if (hm < 4) return false
for (int d=4; d<=hm; d+=2) {
zobrist_t diff = S[@] ~ S[d]
if (diff == @) return true
}

return false

Figure 2. The basic algorithm for repetition detection

This algorithm is efficient for the branch prediction friendly hm < 4 condition and the observation
that in general search trees contain many captures and therefore hm is usually a low number. As
the basic algorithm is operating on hashes and not on the positions themselves there is always a
remote possibility that a hash collision causes a wrong answer. In a heuristic based search the
impact of that can be safely ignored.

For completeness figure 3 gives the supporting code to the basic algorithm.

typedef zobrist_t unsigned long long
zobrist_t Zobrist[12][64]

void seed_random64(unsigned long long seed)
unsigned long long random64(void)

void init_zobrist()

{

seed_random64(0)
for (int piece=1; piece<=12; piece++)
for (int square=0; square<64; square++)
Zobrist[piece-1][square] = random64()

zobrist_t hash_position(int board[64], int side_to_move)

{

zobrist_t hash = 0
for (int square=@; square<64; square++)

if (board[square] > ©) hash ~= Zobrist[board[square]-1][square]
return (side_to_move == @) ? hash : ~hash

Figure 3. Basic definitions

The values of s[] have presumably all been calculated by the hash_position() function or, more
likely, were obtained by an incremental update to match the function’s result. This is all

completely standard except for the many different methods to incorporate a side to move
indicator into the hash value. For the discussion in this paper the hashes for positions with Black
to move are XOR-ed with an all-ones value, implemented by the logical NOT operator ('~).

Going back to test_repetition(), the reader will have noticed that the matching test is normally
expressed directly as

if (S[@] == S[d]) return true
instead of going through the temporary variable diff and the XOR operation in

zobrist_t diff = S[@] ~ S[d]
if (diff == ©) return true.

Compilers can be expected to emit the same quality of code for both forms. The diff form has
the advantage that it leads to explore what is necessary to detect a cycle one ply before it
actually appears: In that case diff will represent the XOR-wise Zobrist hash difference between
the two positions before and after the final move that closes such cycle. For a reversible move
the identity

diff == ~(Zobrist[piece][from] ~ Zobrist[piece][to])
must be observed as well as

diff == S[e] ~ s[d].

We call this value the Zobrist hash of the move (piece, from, to).

3. Towards upcoming repetition detection

3.1. First adaptation

With the observation from the previous section one can transform the basic algorithm into one
that detects upcoming repetitions as is shown in figure 4.

bool test_upcoming_repetition_prototype 1(board, int hm, zobrist_t S[])
{
if (hm < 3) return false
for (int d=3; d<=hm; d+=2) {
zobrist_t diff = S[@] ~ S[d]

if (is_hash_of_legal move(diff, board)) return true

}

return false

Figure 4. The basic algorithm adapted

The first change is to iterate over the odd-indexed stack items starting from 3. The second
change is the assumption of some method that efficiently determines if diff indeed represents
the hash of a legal move in the current position. For that some additional knowledge is needed
about the current position that is not available in the hash stack. This is taken care of by the
board parameter. The specifics of this parameter don’t need to be further detailed at this point.

It must be noted that the choice for this board parameter ignores an alternative line of thinking
that is worth briefly mentioning: Instead of considering move legality from the current position one
can also consider legality from the d ply up positions, because for a cycle to form the reversed
move must be a legal move from an earlier position as well. This can be tested by making sure
that for these d ply up positions all reversible moves have been generated. As there are far fewer
d 2 3 nodes than that there are leaf nodes, and each list needs to be generated at most once but
can be referenced many times down the tree, the generation cost will not have that much of an
impact as compared to performing move generation in the leaf nodes. More importantly, in the
nodes of interest presumably a complete move generation has been done already because
another reversible move is already being searched from there and many move generators
produce all such moves at once. This concept is still somewhat problematic because it needs
an efficient method to locate diff in all these move lists. Possibly a counting Bloom filter can
achieve this. Otherwise either by linear search, or by sorting the lists and performing a binary
search. None of these seems very attractive compared to the solution presented below.

3.2. Presence of a reverting move

The next step in the transformation is to find an implementation for is_hash_of _legal move().
The trick is to pregenerate all potential reversible moves on an empty board and calculate their
Zobrist hashes. In principle, with a statically defined move set the programmer should have more
methods available to efficiently search for an element in that set as compared to when dealing
with dynamically generated move sets. One such method is to generate at compile time a
gigantic switch-statement and let the compiler figure it all out. From current day compilers one
can expect at best a binary decision tree with very poor branch prediction however. Another
method is to create a hash table indexed by part of the bits in the move hash. The problem of a
regular hash table is that it either needs a lot of space to prevent collisions, or it needs an
arbitrary number of probes. A perfect hashing scheme with a small footprint seems
unobtainable.

The solution comes in the form of the cuckoo hash table technique[3]. Cuckoo tables are hash
tables that guarantee that an item can be found in a predetermined number of probes, normally
two. In that case the space overhead of the table is about a factor of two. The cuckoo table uses
two hash functions on the item to be stored (which is a hash itself here). We call them H1() and
H2(). The next prototype is given in figure 4 and the supporting definitions for the cuckoo tables

are in the appendix. The precalculated support arrays A[] and B[] hold the squares between
which the found move goes and can be used to determine its legality in the actual position as the
table cuckoo[] only holds further incomprehensible Zobrist hashes of the candidate moves. In
chess there are 7,336 reversible move hashes or half that number if we equal (piece, a, b) to
(piece, b, a) as is the case with XOR-based Zobrist hashing. The size of the cuckoo table is
therefore taken as 8,192 elements and the functions H1 and H2 can simply each select 13
different bits from the 64-bit move hash.

bool test_upcoming_repetition_prototype 2(board, int hm, zobrist_t S[])
{
if (hm < 3) return false
for (int d=3; d<=hm; d+=2) {
int i = H1(diff)
if (Cuckoo[i]==diff || (i=H2(diff), Cuckoo[i]==diff))
if (is_legal move(board, A[i], B[i]))
return true

}

return false

Figure 4. The algorithm with is_hash_of legal_move implemented

3.3. Legality of a reverting move

After it has been established that diff represents a valid move on an empty board one must
check that it is also legal on the actual board. There are four conditions that could make the
candidate move illegal:

1. The move belongs to the other side

2. The path is blocked by another piece

3. The move leaves the own King in check

4. The hash, which represents the two moves (piece, a, b) and (piece, b, a), but neither of

which is a legal move due to a hashing collision with a combination of other moves

Condition 1 is realistic in prototype 2 and in fact makes it fail as it is. One solution is making two
cuckoo tables, half in size each: one with White’s move hashes and one with Black’s. It means
that the algorithm must be aware of the side to move, which is not a big change. However it
turns out that the speedup discussed in the next subsection also cures this condition.

Condition 2 can’t be avoided. Prior to declaring a match it must be checked that in case of a

sliding move all of the squares along the path are free. Even if the opponent pieces have all
reverted, it is still possible that the prospective move crosses a piece of either side. This

happens easily, for example with a Queen having made two moves along a triangle but finding it
impossible to move back to the original square along the third edge because that is blocked.
There seems no better way to verify this legality than to examine the vacancy of the squares
along its path.

Condition 3 can be ignored because one can infer from the position appearing at level d up in the
tree that the resulting position is legal.

Condition 4 was tested for empirically and didn’t appear in deep searches from 50,000 randomly
selected positions. This can be expected as it relates to the strength of the underlying hashing
scheme.

Given these considerations and ignoring case 1 for the moment, one can therefore implement
is_legal _move() with path_is_clear(). See figure 5. In bitboard-based programs this function
can be based on the occupancy bitboard, a precalculated table and a mask operation. In
mailbox-based programs a loop is required. It is noted that once this test must be performed it is
almost always succeeding and therefore the overhead doesn’t matter much.

bool test_upcoming_repetition_prototype_3(board[64], int hm, zobrist_t S[])
{
if (hm < 3) return false
for (int d=3; d<=hm; d+=2) {
int i = H1(diff)
if (Cuckoo[i]==diff || (i=H2(diff), Cuckoo[i]==diff))
if (path_is_clear(board, A[i], B[i]))
return true

}

return false

Figure 5. The algorithm with is_legal_move implemented

3.4, Displacement of opponent pieces

The cuckoo table solution still leaves some to be desired because there are two probes at each
level in the stack. The branch prediction is not a problem because both probes are expected to
fail most of the time. However, the probes require two memory accesses, and even though the

cuckoo table is expected to reside completely in the L2 cache this is still a lot of effort for in the
leafs of a chess engine. An indicator is desired that helps avoid performing these probes in the
first place. The best such indicator comes from the problem domain: for a repetition move to be
present, the other side’s pieces must already have reverted to their original location. It would be
nice if there is a cheap way to track opponent piece displacement.

The first thought is to dedicate several bits in the Zobrist hash to each side: for example, 10 bit
positions are blanked out in the Zobrist table for all White pieces, and 10 other bits are blanked
out for all Black pieces. The other side’s pieces have likely reverted if the side to move’s group of
bits in diff are all zero. The problem is that this weakens the strength of the Zobrist hashes in
general and that it still generates a considerable amount of false positives. Another idea is to
track the from and to squares of the moves along the path up the stack and base a displacement
measure based on that, for example by summing (to - from) << piece. Wherever this

checksum yields zero the pieces likely have reverted to their original squares. For this the
sequence of moves examined must be available.

Working from this last concept a more elegant method can be found using the information
already present in the hash stack s[]. Observe that the last opponent’s move before reaching

the current position has a move hash of s[e] ~ s[1]. This expression includes the change of the

side to move status which must be excluded when considering the arrangement of pieces alone.
Without the side to move status the displacement can be thus be expressed as ~(s[@] ~ S[1]).

Then observe that the opponent’s last but one move displaces its pieces furthermore by ~(s[2]
~ s[3]). Going further up each opponent’'s move contributes ~(s[2*n] ~ S[2*n+1]) to the total
displacement. Therefore in order for the opponent’s pieces to revert to their original positions,
this sequence of move hashes must cancel out to zero under XOR. This method is faster and

about twice as precise as the earlier proposed checksumming method.

3.5. The completed algorithm

This is the observation that leads to a rather tight guard before the cuckoo table probes. The
complete algorithm becomes figure 6.

bool test_upcoming_repetition(board[64], int hm, zobrist_ t S[])
{
if (hm < 3) return false
zobrist_t other = ~(S[0] *~ S[1])
for (int d=3; d<=hm; d+=2) {
other "= ~(S[d-1] ~ S[d])
if (other != @) continue
zobrist_t diff = S[@] ~ S[d]
int i = H1(diff)
if (Cuckoo[i]==diff || (i=H2(diff), Cuckoo[i]==diff))
if (path_is_clear(board, A[i], B[i]))
return true

}

return false

Figure 6. The completed algorithm for upcoming repetition detection

In the majority of iterations nothing but the stack is probed, as is in the original algorithm. The
accumulated XOR of an even number of hash history items, modulo the side to move indicator,

can be kept in a CPU register and is therefore very fast. The probes to the cuckoo table are
avoided until the displacement condition is satisfied. Also the confusion of case 1 in the previous
subsection doesn’t occur anymore as there can be no opponent move matching s[e] ~ S[d]

when its pieces in both positions are at the same location. Both White’s and Black's move

hashes can be therefore be stored in the same cuckoo table.

3.6. Use in scout

Different from the regular repetition detection, which immediately yields a definite score and
stops deeper searching, the upcoming repetition merely gives a lower bound as it signals the
presence of a single move that yields a draw score and says nothing about the other moves. It is
therefore generally only useful in nodes where a draw score raises alpha.

In scout, which are nodes where alpha+l == beta and representing the vast majority of the
nodes in a PVS-based heuristic search, it is possible therefore to avoid the function call by first
testing alpha against the draw score.

if ((alpha < @) && test_upcoming_repetition(board, hm, S))
return ©

It is questionable if this is optimal as the test on alpha is hard on the branch predictor. Better

results can be expected from taking the first condition out of the function:

if ((hm >= 3) && (alpha < 0) && test_upcoming_repetition(board, hm, S))
return ©

3.7. Use in fail-soft alpha beta

In case of a fail-soft framework one must be a bit careful in leaf nodes. When alpha is
non-negative, even though an affirmative result from test_upcoming_repetition() will not raise
alpha, it can nonetheless impact the return score: whenever the evaluation and quiescence
search both come back negative while an upcoming repetition is present, still a draw score
should be returned. Not doing so would cause a too-low upper bound to be returned from the
search, potentially leading an unneeded inconsistency during research. This subtle and arguably
minor concern is not present in a fail-hard framework.

4. Further optimizations

Space can be saved by being more economical with the cuckoo[] table, A[] and B[]. One can
safely store just the lower 32 bits of diff in Cuckoo[] and store bytes in A[] and B[], yielding:

unsigned long Cuckoo[0x2000]
char A[0x2000], B[0x2000]
#tdefine K(h) ((unsigned long)((h) & Oxffffffff))

if (Cuckoo[i]==K(diff) || (i=H2(diff), Cuckoo[i]==K(diff))) ... etc

With this the memory for the tables is reduced to 48 kB. This can be further improved by using
three hashes instead of two to compact the cuckoo table further.

5. Performance

5.1. Tree size and node speed

The algorithm has been implemented in the author's chess program Rookie 3.7. Rookie is a
mailbox based program and therefore the function path_is_clear() loops over the board. To
measure the effect two variants are studied, the only difference being the presence of
test_upcoming_repetition(). Mind that the regular check for repetition is untouched as the two
algorithms exist next to each other. Each variant is compiled with the gcc 4.7 compiler using
performance guided optimization (PGO). From a database of Grandmaster games 1,000
positions were randomly selected and each searched to 16 ply on a laptop with a 2.6~3.6GHz

Intel i7-3720QM processor with 4 physical cores (8 virtual) and 8GB of memory. The
transposition table was set to 256MB and cleared for each position. Just one core was used and
the other cores kept idle. The higher clock rate is applicable during the experiment. Node counts
and processing times are listed in figure 7.

Nodes searched Search time Node

(average) speed

Arithmetic mean | Geometric mean [s] [Mnps]

Without upcoming 61,737,840 29,025,050 26.900 2.489
cycle detection

With upcoming cycle 61,954,608 28,969,405 26.969 2.490

detection
Delta +0.35% -0.19% +0.3% +0.0%

Figure 7. Search statistics

Node cycle time is hard to measure precisely on current day computers due to variations
introduced by the systems themselves. For that an additional measurement is done on a
selected position with a deep search repeated 2,000 times. From this it is obtained that the
speed penalty incurred by the algorithm is 5 to 6 clock cycles per node. Not bad considering it is
effectively using that time to identify a legal chess move leading to an arbitrary earlier position.

5.2. Strength

To measure the strength difference a match of 12,000 ultra-fast games was played between
both programs. The match was run on an AMD Phenom X6 1090T 3.2 GHz with 6 cores and
8GB of memory. The openings were forced from a book of 6,000 starting lines, each played
once from both sides. Learning and pondering were disabled and the programs ran in single
core mode using 256MB of hash each. This way 6 games could be played at a time. The time
control was set to 40 seconds for the whole game with a 2 second increment for each move.

The outcome was a 51.3% score for the version with the algorithm versus for that 48.7%
without. More specifically, the algorithm secured 3284 wins, suffered 2972 losses and 5744

draws (so the draw rate was 47.9%). This corresponds to a performance difference of 9.0 Elo
with a p-value, sometimes called the “likelihood of superiority”, of 99.996%.

6. Conclusions

It is demonstrated that upcoming repetition detection in software is not only feasible but that it

can indeed be beneficial to a chess program with up to 9 Elo points shown.

The existing Zobrist framework, with an XOR-based combination of piece/square hashes, is
sufficient as the basis for the algorithm. In fact, an addition-based hashing method could only
increase the size of the tables by a factor of two.

The discovered relation between s[e] ~ s[d] and the exclusive OR of s[e...d], for an even
number of items, and modulo the side to move indicator, was new for the author.

The “no progress” pruning described by Hsu has not been implemented and tested.

Appendix. Supporting code for cuckoo table

Figure 8 gives the remaining definitions and initialization for the algorithm. As is normal in cuckoo
hashing the initialization contains a potentially infinite loop. The probability of termination is high
when the size of the table is at least twice the number of items added, which is the case here.
The standard remedy against looping is to rehash and start over again. Here that could mean
either changing the seed to the pseudo-random number used to create the underlying Zobrist
hashes, or swapping or redefining the hash functions H1 and H2.

zobrist_t Cuckoo[0x2000]
int A[0x2000], B[0x2000]

#tdefine H1(h) (((h)>>32) & oxifff)

#define H2(h) (((h)>>48) & Ox1fff)

bool path_is_clear(int board[64], int a, int b)

bool is_valid_and_reversible_move(int piece, int a, int b)

#tdefine Swap(x,y) ...

void init_cuckoo()

{

for (int piece=1; piece<=12; piece++)
for (int a=0; a<64; a++)
for (int b=a+1l; b<64; b++)

if (is_valid_and_reversible_move(piece, a, b)) {

zobrist_t mv = ~(Zobrist[piece-1][a] ” Zobrist[piece-1][b])
int aa = a, bb = b
int i = H1(mv)
while (true) {
Swap(Cuckoo[i], mv)
Swap(A[i], aa)
Swap(B[i], bb)
if (mv == @) break
i = (i == Hi(mv)) ? H2(mv) : H1l(mv)

Figure 8. Extended definitions and initialization

References

[1] IBM’s Deep Blue Chess Grandmaster Chips
F.-H. Hsu (1999)
IEEE Micro, March-April 1999,Vol. 19, pp. 70-81

[2] Null Move and Deep Search
Chr. Donninger (1993)
ICCA Journal, Vol. 16, No. 3, pp. 137-143

[3] Cuckoo Hashing
R. Pagh, F. F. Rodler (2001)
ESA 2001, Lecture Notes in Computer Science 2161, pp. 121-133

