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ABSTRACT Since the last decade, power systems have been evolving dynamically due to smart grid
technologies. In this context, energy management and optimal scheduling of different resources are very
important. The main objective of this paper is to study the optimal scheduling of distributed energy
resources (OSDER) problem. This problem is a challenging, complex and very large-scale mixed-integer
non-linear programming (MINLP) problem. Its complexity escalates with incorporation of uncertain and
intermittent renewable sources, electric vehicles, variable loads andmarkets which makes it hard to be solved
using traditional optimization algorithms and solvers. However, it can be handled efficiently and without
approximation or modification of the original formulation using modern optimization algorithms such as
metaheuristics. In this paper, an improved version of the variable neighborhood search (IVNS) algorithm is
proposed to solve the OSDER problem. The proposed algorithm was tested on two large-scale centralized
day-ahead energy resource scenarios. In the first scenario, the 12.66 kV, 33-bus test system with a total of
49,920 design variables is used whilst in the second scenario, the 30 kV, 180-bus test system is used with a
total of 154,800 design variables. The optimization results using the proposed algorithmwere compared with
five existing optimization algorithms, i.e., chaotic biogeography-based optimization (CBBO), cross-entropy
method and evolutionary PSO (CEEPSO), chaotic differential evolution with PSO (Chaotic-DEEPSO), Levy
differential evolution with PSO (Levy-DEEPSO), and the variable neighborhood search (VNS). For the first
test system, the IVNS has achieved a score of -5598.89 while for the second test system it has achieved a
score of -3180.15. A comparative study of the results has shown that the proposed IVNS algorithm performs
better than the remaining algorithms for both cases.

INDEX TERMS Distributed energy resources, large-scale optimization, smart grids, variable neighborhood
search.

I. NOMENCLATURE
Bbk Real part of the admittance of a line
CDG(I ,t) Costs of generation of distributed unit

(DGU) I in period t
CDischarge(E,t) Costs of discharging of energy storage unit

(ESU) E in period t
CDischarge(V ,t) Costs of discharging of electric vehicle

(EV) V in period t
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CGCP(I ,t) Costs of curtailment of DGU I in period t
CLoadDR(L,t) Costs of load reduction (DR) of load L in

period t
CNSD(L,t) Costs of non-supplied demand (NSD) of

load L in period t
CSupplier(S,t) Costs of external supplier S in period t
EBatCap(V ) Battery energy capacity of EV V
EMinCharge(V ,t) Minimum stored energy to be guaranteed

for the EV V at the end of period t
EStored(V ,t) Stored energy for the EV V at the end of

period t
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EStored(V ,t−1) Stored energy for the EV V at the end
of period t − 1

ETrip(V ,t) EVV energy consumption forecast in
period t

Gbk Imaginary part of the admittance of a
line

NDG Number of DGUs
NE Number of ESUs
NL Number of loads
NM Number of markets
NS Number of external electricity

suppliers
Nv Number of EVs
PCharge(E,t) Active power for charge of ESU E in

period t
PCharge(V ,t) Active power for charging of EV V in

period t
PChargeLimit(V ,t) Active power maximum limit for

charging of EV V in period t
PDG(I ,t) Active power for the generation of

DGU I in period t
PDGMaxLimit(I ,t) Active power maximum limit for the

generation of DGU I in period t
PDGMinLimit(I ,t) Active power minimum limit for the

generation of DGU I in period t
PDischarge(E,t) Active power for discharging of ESU

E in period t
PDischarge(V ,t) Active power for discharging of EV

V in period t
PDischargeLimit(V ,t) Active power maximum limit for dis-

charging of EV V in period t
PGCP(I ,t) Active power for the generation cur-

tailment power of DGU I in period t
PLoad(L,t) Active power for the demand of load

L in period t
PLoadDR(L,t) Active power for the reduction of

load L in period t
PLoadDRMaxLimit(L,t) Active powermaximum limit reduces

allowed for load L in period t
PNSD(L,t) Active power for the non-supplied

demand for load L in period t
PSell(M ,t) Active power for sale to marketM in

period t
PSupplier(S,t) Active power for the generation of the

external supplier S in period t
PSupplierLimit(S,t) Active power maximum limit for the

generation of the external supplier S
in period t

PTFRMV/LV (b·t) Active power in MV/LV transformer
in period t

QDG(I ,t) Reactive power for the generation of
DGU I in period t

QDGMaxLimit(I ,t) Reactive power maximum limit for
the generation of DGU I in period t

QDGMinLimit(I ,t) Reactive power minimum limit for
the generation of DGU I in period t

QLoad(L,t) Reactive power for the demand of load
L in period t ,

QSupplier(S,t) Reactive power for the generation of the
external supplier S in period t

QSupplierLimit(S,t) Reactive power maximum limit for the
generation of the external supplier S in
period t

QTFRMV/LV (b·t) Reactive power in MV/LV Transformer
in period t

Smax Apparent power maximum limit
Vmax Voltage magnitude maximum limit
Vmin Voltage magnitude minimum limit
X(E,t) Binary decision variable for discharging

of ESU E in period t
X(V ,t) Binary decision variable for discharging

of EV V in period t
XDG(I ,t) Binary decision variable for the commit-

ment status of DGU I in period t
XSupplier(S,t) Binary decision variable for the supplier

S in period t
Y(E,t) Binary decision variable for power

charging of ESU E in period t
Y(V ,t) Binary decision variable for power

charging of EV V in period t
ybk Admittance of a line
yshunt Shunt admittance of a line
xi ith design variable
ηc(V ) Efficiency of grid to vehicle when vehi-

cle V is charging
ηd(V ) Efficiency of grid to vehicle when vehi-

cle V is discharging
θmax Voltage angle maximum limit
θmin Voltage angle minimum limit
h (x) Set of inequality constraints
x Vector of design variables
E Index for ESUs,
I Index of DGUs
In Income
L Index for loads
M Index for market/energy buyer
MPCharge(E,t) Prices for the charge process of ESU E

in period t
MPCharge(V ,t) Prices for the charge process of EV V in

period t
MPLoad(L,t) Prices for load L in period t
MPSell(M ,t) Prices for the market M in period t
OC Operation cost
Profits Profits
V Index for EVs,
V Voltage magnitude
f (x) Objective function
g (x) Set of equality constraints
k Number of equality constraints
m Number of inequality constraints
n Number of design variables
t Index for time periods
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1t Duration of time period
θ Voltage angle
{Fv} Fibonacci sequence
{Lv} Lucas sequence
{MLv} Modified Lucas sequence

II. INTRODUCTION
Development of renewable distributed energy has signifi-
cantly increased around the globe by reason of reducing
dependence on conventional power plants while at the same
time minimizing the environmental impact of electricity gen-
eration [1]. As promising energy systems, microgrids pow-
ered by renewable energy sources are a viable solution for
electricity shortages as they are close to the consumer and
are economically feasible, now and into the future. Also, of
considerable technical importance are the facts that many
countries have outlaid high capital investment and imple-
mented policies to integrate renewable energy sources into
microgrids for sustainable energy generation, and electricity
generation from renewable energy sources has received sub-
stantial consideration due to its significant benefits, such as
increasing the share of renewables in the energy mix [2]–[5].
Therefore, it is necessary to apply communication and control
technologies to microgrids to cope with continuously rising
energy consumption and the complexity of grids.

The smart grid (SG) has been developed to answer the
increasing needs of the modern electric grid and to fulfil sev-
eral technological and environmental constraints. Although
there is no universal definition of the SG, it can simply be an
‘intelligent’ grid. In contrast to traditional grids that can only
transmit and distribute power, SGs can store, communicate,
and make decisions [6]–[9]. Another advantage of SGs is that
there is no need to build new infrastructure, rather improve-
ments to existing setups to make them more autonomous and
improve their power delivery is all that is required.

SG systems have real potential by reason that existing
power grids are overly complex and overloaded, and the
current infrastructure cannot be expected to handle significant
increases in energy demand [10]. In worst-case scenarios,
insufficient grid supplies to meet peak load demands could
cause power shortages. Different problems can occur at gen-
eration, transmission, and distribution levels [11]. In addition,
power grids have numerous environmental and economic
problems as most of the electricity is generated by conven-
tional power plants [12],[13]. To counter these issues, SG
allows alternative resources to be connected to the grid in
order to supply additional power to themain supply. However,
the incorporation of such resources has increased the com-
plexity of power systems and their planning and operation
have become cumbersome tasks. This has led to the devel-
opment of new algorithms to efficiently solve the so-called
energy resource management (ERM) problem [14].

Aimed at reducing consumers’ electricity bills and inter-
connecting large-scale distributed energy generation, many
technical studies have investigated the problems and technical
challenges of ERM in SGs. For example, Moretti et al. [15]

comprehensively analyzed the environmental and economic
impact of SGs for variations in cost estimation and con-
cluded that reducing the uncertainty about the environmental
impacts and cost is important to achieving more accurate
results. Another study [16] analyzed various models of SG
for improving the power network, while Lin and Chen [17]
presented an analysis of the required enhancements of distri-
bution network automation to maintain a balance in demand
and supply and lead to efficient electrical networks. In other
studies, the application of digital communication and net-
working for SG has been evaluated [18], [19]. Research
results indicated that the SG with the latest technology and
advanced equipment is the best solution to overcome grid
problems. In addition, the distributed optimization algorithm
has been successfully used for a vast variety of SG operational
problems and constraints [20]–[22].

Several optimization approaches have been proposed to
optimize distributed energy resource (DER) scheduling in
SGs with the application of renewable generation and electric
vehicles (EVs). These include mathematical problem-based
optimization with equilibrium constraints [23], optimiza-
tion using exchange problems based on agent coupling con-
straints [24], mixed integer linear programming (MILP) with
dynamic pricing and peak power limiting [25], simulation
and implementation of vehicle-to-grid (V2G) and vehicle-
to-home (V2H) in the distribution network [26], MILP for
electricity consumption and EVs [27], and a distributed opti-
mization algorithm with a demand respond model [28].

Over the years, some computational methods have been
proposed to optimize scheduling of DER problems in SGs.
In this respect, an optimization method was developed using
an artificial neural network (ANN) and demand side man-
agement (DSM) for industrial peak load to optimize avail-
able energy resources, and an improvement in energy system
efficiency was achieved with reference to the load factor
[6]. The genetic algorithm (GA) was applied to optimally
design an SG using a generalized optimization formulation
of distributed generators [29]. It was found that the proposed
algorithm could be an effective solution to the reactive power
management problem, and its evolution process was suitable
in evaluating microgrid systems based on different multi-
objective functions. GA has also been used to solve the
economic operation problem of SG with DER (i.e., PV gen-
eration, combined heat and power (CHP), and energy storage
device) considering Demand Response (DR) [30]. Gomes
et al. [31] managed direct load control in distribution net-
works using an interactive evolutionary algorithm (EA). The
proposed method was effective for supplying evolutionary
processes and was satisfactory for use in fitness assessment
of load control strategies. In another study, Markovic et al.
[32] analyzed integration of renewable energy sources in
SGs using EAs and cloud computing and concluded that by
enhancing the renewable energy use, SGs could minimize the
environmental problems from power plants.

Binary particle swarm optimization (BPSO) algorithm
has also been used for scheduling different interruptible
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FIGURE 1. Overview of the aggregator energy management problem.

loads with multi-objective optimization problems, and the
effectiveness of the method was evaluated [33]. By sim-
plifying multi-objective functions into a single aggregate
objective function, the BPSO algorithm could provide near-
optimal solutions, was useful for challenging scheduling
tasks, and was also effective in scheduling varied interrupt-
ible loads with complex, nonlinear and noncontinuous prob-
lems. Faria et al. [34] proposed a modified particle swarm
optimization (PSO) with Gaussian mutation of strategic
parameters to minimize operation costs and manage DER
in a distribution network. They compared the solutions with
PSO without mutation, evolutionary PSO, and a determin-
istic approach using self-parametrization. A recent study
[35] applied multi-objective glow-worm swarm particle opti-
mization to optimize SGs consisting of DER and controlled
shiftable loads. In this work, the optimization algorithm was
based on a new formulation that reduced the number of
design variables and adopted a real-valued optimization, and
its performance was compared with non-dominated sorting
genetic algorithm (NSGA-II) on selected power systems.

The variable neighborhood search (VNS) algorithm is a
simple and effective metaheuristic method to solve global
and combinatorial optimization problems [36]. Over the
years, some researches have been done using VNS tech-
nique for smart grid applications. For example, a short-term
long forecasting framework for smart grid systems has been
proposed to deal with the variability and nonstationary of
loads [37]. This approach combines two heuristic methods,
i.e. Multi-Start (MS) and General Variable Neighborhood
Search (GVNS), to find solutions for the complexity prob-
lem of energy prices determination. A VNS based optimiza-
tion method was successfully developed to study demand
response in smart grids using a smart client model based on
real-time pricing [38]. The proposed algorithm, a combina-
tion of MS and Variable Neighborhood Decent (VND), is
used to minimize the total cost of the smart grid systems
consists of distributed generations, energy storage, electric
vehicles, and general loads. The VNS was also proposed to
optimize the islanded operation of renewable energy systems
by controlling the size and number of its components [39].

The application of the VNS algorithm was based on two
different approaches which concern to the mutation stage,
i.e. random selection of mutation parameters within the set
parameters and making distinction among the parameters.
In another study, differential evolutionary PSO method was
combined with VNS method to optimize smart microgrids
by solving multi-objective control model while maximizing
profit [40]. In a recent study, this multi-objective hybrid
algorithm was also used for the optimization of smart grids
management by considering electricity market [41].

The aim of this paper is to develop an improved vari-
able neighborhood search (IVNS) algorithm to solve ERM
problems more efficiently. The ERM problem investigated in
this work covers a huge variety of DERs, such as distributed
generation units (DGUs) including renewables [42], energy
storage units (ESUs), and EVs. Additionally, when demand
response (DR), market bids, V2G capabilities, and external
suppliers are considered alongwith power balance constraints
of an AC power system, the entire problem becomes a mixed-
integer non-linear programming (MINLP) problem [43],[44].
In this paper, this specific ERM problem is called the opti-
mal scheduling of distributed energy resources (OSDER)
problem.

The remainder of this paper is organized as follows. In
section II, the OSDER problem is described and mathe-
matically formulated. In section III the proposed algorithm
is explained. In section IV, the application and results are
presented and discussed. Finally, the conclusions of this paper
are drawn in section V.

III. PROBLEM FORMULATION
A. DESCRIPTION
The energy management aggregator (EMA) in an SG (Fig. 1)
is defined as any organization or individual that uses several
resources with the objective of obtaining reduced prices, bet-
ter services, or more benefits when providing energy or any
related services to the group of retail energy customers [45].
Furthermore, the EMA can use its own assets like ESUs to
supply the required load. It sets up bilateral contracts between
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the EMA and the final-end user that can, for example, be
residential or industrial customers.

Therefore, the goal of optimal scheduling is to minimize a
defined objective function such as operational costs, losses,
pollution, and so on, in order to determine the scheduling of
different available energy resources in the day-ahead context
for the 24 hours of the following day, while at the same time
respecting certain technical and operational constraints.

B. MATHEMATICAL FORMULATION
Themain objective of the EMA is to maximize profits. There-
fore, the OSDER problem formulated as an optimization
problem can be expressed by the following equations:

Minimize f (x) (1)
Subject to gi (x) = 0i = 1 : k (2)
and hj (x) ≤ 0j = 1 : m (3)
where x = [x1, x2, . . . , xn] (4)

where: f (x) represents the objective function, x represents
the vector of design variables, xi is the ith design variable,
n represents the number of design variables, g (x) represents
the set of equality constraints, k is the number of equality
constraints, h (x) represents the set of inequality constraints,
and m is the number of inequality constraints.

C. OBJECTIVE FUNCTION
Profits, aimed at being maximized while solving the OSDER
problem, can be written in terms of the income, referred to as
In, and the operation cost, referred to as OC :

Profits =In− OC (5)

In equation (5), both In and OC are given in Monetary
Units (m.u.).

The objective function of this problem, written to be min-
imized, is given by

OF = OC − In (6)

If the objective function is negative it means that the system
is profitable because the income is greater than the operation
cost. Alternatively, if the operation cost is greater than the
income it means that there are no profits.

The income can come from four sources, based on con-
sumer demand, the charging process of ESUs, the energy sold
to the electricity market, and the charging of EVs. Therefore,
In in (m.u.) can be expressed as [46]

In =
T∑
t=1





NL∑
L=1

PLoad(L,t) ·MPLoad(L,t)

+

NM∑
M=1

PSell(M ,t) ·MPSell(M ,t)

+

NE∑
E=1

PCharge(E,t) ·MPCharge(E,t)

+

NV∑
V=1

PCharge(V ,t) ·MPCharge(V ,t)


×1t


(7)

where: L, M , E , V , and t are the indices of loads, mar-
ket/energy buyer, ESUs, EVs, and time periods, respectively.
NL , NM ,NE , and Nv are the number of loads, the number of
markets, the number of ESUs, and the number of EVs, respec-
tively. PLoad(L,t), PSell(M ,t), PCharge(E,t), and PCharge(V ,t) are
the active powers in (MW) for the demand of load L in period
t , for sale to market M in period t , for charge of ESU E in
period t , and for charge of EV V in period t , respectively.
MPLoad(L,t),MPSell(M ,t),MPCharge(E,t), andMPCharge(V ,t) are
the prices in (m.u.) for load L in period t , for the market M
in period t , for the charge process of ESU E in period t , and
for the charge process of EV V in period t , respectively.

The operational cost of different DERs managed by the
Virtual Power Plants (VPP) represents the OC. This cost
includes the cost of DGUs, the cost from external suppliers,
the cost from discharging ESUs and EVs, the cost from DR
programs, the penalization with non-supplied demand, and
the penalization with DGUs generation curtailment. So OC
in (m.u) can be determined by [46]

OC =
T∑
t=1





NDG∑
I=1

PDG(I ,t) · CDG(I ,t)

+

NS∑
S=1

PSupplier(S,t) · CSupplier(S,t)

+

NL∑
L=1

PLoadDR(L,t) · CLoadDR(L,t)

+

NM∑
M=1

PBuy(M ,t) ·MPBuy(M ,t)

+

NV∑
V=1

PDischarge(V ,t) · CDischarge(V ,t)

+

NE∑
E=1

PDischarge(E,t) · CDischarge(E,t)

+

NL∑
L=1

PNSD(L,t) · CNSD(L,t)

+

NDG∑
I=1

PGCP(I ,t) · CGCP(I ,t)



×1t


(8)

where: I is an index of DGUs. NDG and NS are the number of
DG units, and the number of external electricity suppliers,
respectively. PDG(I ,t), PSupplier(S,t),PLoadDR(L,t), PNSD(L,t),
and PGCP(I ,t) are the active powers in (MW) for the gen-
eration of DGU I in period t , for the generation of the
external supplier S in period t , for the reduction of load L in
period t , for the non-supplied demand for load L in period
t , and for the generation curtailment power of DGU I in
period t . CDG(I ,t), CSupplier(S,t), CLoadDR(L,t), CDischarge(E,t),
CDischarge(V ,t), CNSD(L,t), and CGCP(I ,t) are the costs of: the
generation of DGU I in period t , the external supplier S in
period t , the load reduction due to DR of load L in period
t , the discharging of ESU E in period t , the discharging of
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EV V in period t , the non-supplied demand (NSD) of load
L in period t , and the curtailment cost of DGU I in period t ,
respectively.

D. CONSTRAINTS
The energy management problem is constrained by the
energy balance (i.e., the flow of active and reactive powers),
the limits on voltages, the generation limits of DG and suppli-
ers in each period, the capacity of ESUs, the limits of charge
and discharge rates, the capacity of EVs, the trip requirements
for EVs, and the limits of charge and discharge efficiencies
and rates [43],[44],[46].

The active power balance is expressed as
NDG∑
I=1

(
PDG(I ,t) − PGCP(I ,t)

)
+

NS∑
S=1

PSupplier(S,t)

+

NL∑
L=1

(
PNSD(L,t) + PLoadDR(L,t) − PLoad(L,t)

)
+

NV∑
V=1

(
PDischarge(V ,t) − PCharge(V ,t)

)
+

NE∑
E=1

(
PDischarge(E,t) − PCharge(E,t)

)
−

NM∑
M=1

PSell(M ,t)

=

NB∑
k=1

Vb(t) · Vk(t) ·
(
Gbk · cos

(
θb(t) − θk(t)

)
+Bbk · sin

(
θb(t) − θk(t)

))
k 6= b (9)

The reactive power balance is expressed as
NDG∑
I=1

QDG(I ,t) +
NS∑
S=1

QSupplier(S,t) −
NL∑
L=1

QLoad(L,t)

=

NB∑
k=1

Vb(t) · Vk(t) ·
(
Gbk · sin

(
θb(t) − θk(t)

)
+ Bbk

· cos
(
θb(t) − θk(t)

))
k 6= b (10)

The voltage limits (magnitude and angle) are expressed in
the following equations:

Vmin
b ≤ Vb(t) ≤ Vmax

b (11)

θminb ≤ θb(t) ≤ θ
max
b (12)

The thermal limit of lines limiting their power flows is
expressed as follows:∣∣∣∣Vb(t) × ([(Vb(t) − Vk(t)) ybk]∗ + [Vb(t) × 1

2
yshuntb

]∗)∣∣∣∣
≤ Smaxbk k 6= b (13)

The limits on the power of HV/MV transforms are
defined as√√√√√( NS∑

S=1

PSupplier(S,t)

)2

+

( NS∑
S=1

QSupplier(S,t)

)2

≤ SmaxTRFHV/MV (b) (14)

The limits on the power of MV/LV transforms are defined
as follows:

PTFRMV/LV (b·t) =
NDG∑
I=1

(
PDG(I ,t) − PGCP(I ,t)

)
+

NL∑
L=1

(
PNSD(L,t)+PLoadDR(L,t)−PLoad(L,t)

)
+

NV∑
V=1

(
PDischarge(V ,t) − PCharge(V ,t)

)
+

NE∑
E=1

(
PDischarge(E,t) − PCharge(E,t)

)
(15)

QTFRMV/LV (b·t) =
NDG∑
I=1

QDG(I ,t) −
NL∑
L=1

QLoad(L,t) (16)√(
PTFRMV/LV (b·t)

)2
+
(
QTFRMV/LV (b·t)

)2
≤ SmaxTRFMV/LV (b) (17)

Constraints imposed on DG active and reactive powers
during the online status are given by:

XDG(I ,t) ·PDGMinLimit(I ,t)≤PDG(I ,t)
≤XDG(I ,t) · PDGMaxLimit(I ,t) (18)

XDG(I ,t) ·QDGMinLimit(I ,t)≤QDG(I ,t)
≤XDG(I ,t) · QDGMaxLimit(I ,t) (19)

The constraints imposed on the upstream supplier are
defined as

PSupplier(S,t) ≤ XSupplier(S,t) · PSupplierLimit(S,t) (20)

QSupplier(S,t) ≤ XSupplier(S,t) · QSupplierLimit(S,t) (21)

Constraints imposed on the charging and discharging of
EVs, since these two phases cannot occur at the same time,
are given by

X(V ,t) + Y(V ,t) ≤ 1 (22)

The constraints imposed on the relationship between the
energy stored in an EV indexed by V and the energy used
during the trips and the charging/discharging power in each
period are given by

EStored(V ,t) = EStored(V ,t−1) − ETrip(V ,t)
+ ηc(V ) · PCharge(V ,t) ·1t

−
1

ηd(V )
PDischarge(V ,t) ·1t (23)

If the EV is connected to the grid, its charging and dis-
charging power ratings are constrained as follows:

PCharge(V ,t) ≤ PChargeLimit(V ,t) · Y(V ,t) (24)

PDischarge(V ,t) ≤ PDischargeLimit(V ,t) · X(V ,t) (25)

The charging capacity of an EV noted as V at t is restricted
by the EV’s battery and the stored energy in the battery at
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(t − 1) ; that is,

ηc(V ) · PCharge(V ,t) ·1t ≤ EBatCap(V ) − EStored(V ,t−1) (26)

Since the EV can, in a maximum case, discharge the stored
energy in the battery, the following constraints are imposed
on EVs

1
ηd(V )

PDischarge(V ,t) ·1t ≤ EStored(V ,t−1) (27)

For a given EV noted as V, the following constraint is
imposed to be the maximum energy that can be stored by the
battery:

EStored(V ,t) ≤ EBatCap(V ) (28)

A constraint is imposed on the stored energy or reserve at
each period,

EStored(V ,t) ≥ EMinCharge(V ,t) (29)

The constraints imposed on ESU are similar to the ones
imposed on EVs. Therefore, the following constraints are also
imposed on the OSDER problem:

X(E,t) + Y(E,t) ≤ 1 (30)

EStored(E,t) = EStored(E,t−1) + ηc(E) · PCharge(E,t) ·1t

−
1

ηd(E)
PDischarge(E,t) ·1t (31)

PCharge(E,t) ≤ PChargeLimit(E,t) · Y(E,t) (32)

PDischarge(E,t) ≤ PDischargeLimit(E,t) · X(E,t) (33)

ηc(E) · PCharge(E,t) ·1t ≤ EBatCap(E) − EStored(E,t−1) (34)
1

ηd(E)
PDischarge(E,t) ·1t ≤ EStored(E,t−1) (35)

EStored(E,t) ≤ EBatCap(E) (36)

EStored(E,t) ≥ EMinCharge(E,t) (37)

Finally, constraints imposed by DR on the reduction of
each load is given by

PLoad(L,t) ≥ PLoadDRMaxLimit(L,t) (38)

IV. OPTIMIZATION ALGORITHMS
As aforesaid, the energy management problem investigated
in this paper is an MINLP problem. There are two options
to solve this kind of problems either by using traditional
methods or metaheuristics. As reported in several references,
without assumptions or simplification, dealing with these
problems can be time consuming, whereas by using modern
metaheuristics, they can be solved efficiently without simpli-
fication and with far less computational time.

The main contribution of this paper is that we have
improved the initial version of VNS for solving the large-
scale OSDER problem. Therefore, in the upcoming subsec-
tions, we will present the initial version of VNS and then we
will detail our improved version IVNS.

Algorithm 1 Pseudocode of the VNS Algorithm Used to
Solve the OSDER Problem
Initialization Step

Generate a random initial solution
Considering the first group of variables, adjust each
group to optimize the objective function

Repeat the main step until the stopping criterion is met
Main Step

For i = 1 : 2
Optimize each group of variables for each
hour of the day using the CCM
Use an intelligent strategy to transform
each group of variables to individual vari-
ables→ Consider the costs of generation,
for example

End if
Use the CCM to optimize the variables, for each
hour, according to the third type of grouping.

End Main Step

FIGURE 2. First form of grouping of variables.

A. VARIABLE NEIGHBORHOOD SEARCH (VNS)
Based on metaheuristics, VNS is a global optimization algo-
rithm that systematically explores the concept of neighbor-
hood change, not only in descending to the local minima but
also by escaping the valleys which contain them [47],[48]. In
most cases, VNS and its extensions need few parameters, or
often no parameters at all, to be tuned [37].

The pseudo code of the VNS algorithm used in [42] and
reproduced in this paper is given in Algorithm 1.

The proposed approach starts first by randomly generating
an initial solution in the search space. Since the OSDER issue
is a very large-scale problem, using local search strategies
will not produce a good result. Therefore, in the initial ver-
sion of VNS, the authors proposed a procedure of grouping
variables [42]. The grouping step is made in three different
forms for each hour of the day:
First Form: Illustrated in Fig. 2, the first form of group-

ing aims to substitute all the variables with eight variables
(N1,N2, . . .N8).

N1 N2 N3 N4 N5 N6 N7 N8

Second Form: Eight variables are used for each hour of
the day.
Third Form: In this form of grouping, variables are taken

separately, only the V2G is considered: one variable of each
node per hour of the system.

After the grouping phase and the number of variables
is reduced, the Cyclic Coordinate Method (CCM) is used,
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Algorithm 2 Pseudocode of the CCM Used in the VNS
Algorithm to Solve the OSDER Problem

Initialization Step
Choose a scalar ε > 0 to be used for
terminating the algorithm.
Let d1, d2, . . . dn, be the coordinate directions
Initialize point x1
y1 = x1
k = j = 1
go to the Main Step

Main Step

Step 1

Let λj be an optimal solution to the
problem to minimize f

(
yj+λdj

)
subject to λ∈R

Let yj+1 = yj + λjdj
If j < n

j = j+ 1
repeat Step 1

Otherwise, if j = n
go to Step 2.

End if
Step 2 xk+1 = yn+1

If ‖xk+1 − xk‖ < ε

Stop
Otherwise

y1 = xk+1
j = 1
k = k + 1
go to step 1

End If
End Main Step

employing a Fibonacci algorithm to explore each neighbor-
hood.

The idea behind the CCM is conceptually simple. It
states that the initial problem with n-dimensions can be
decomposed into n-single-dimensional sub-problems. The
variables are treated one-by-one while the remaining vari-
ables remain fixed. This step is achieved by solving a one-
dimensional optimization sub-problem using any suitable
one-dimensional optimization algorithms available in the lit-
erature [49].

The CCM method uses the coordinate axes as the search
directions. In other words, it searches along the directions
d1, d2, . . . dn, where d is a vector of zeros except for a 1 at
the jth position. Therefore, only xj changes along dj and the
remaining variables remain fixed [50]. The pseudocode of the
CCM is explained in Algorithm 2.

The Fibonacci line search method used by the CCM is
given in Algorithm 3. This method is a line search algorithm
for minimizing a strictly quasi-convex bounded objective
function. It makes two evaluations of the objective function

Algorithm 3 Pseudocode of Fibonacci Line Search Method
Used by the CCM

Initialization Step
Select an allowable final length of uncertainty
` > 0
Select a scalar ε> 0
Let [a1, b1] be the initial interval of uncertainty
Select the number of observations n to be
taken such that Fn >

(b1−a1)
l

Calculate λ1 = a1 +
(
Fn−2
Fn

)
(b1 − a1) and

evaluate F (λ1)
Calculate µ1 = a1 +

(
Fn−1
Fn

)
(b1 − a1) and

evaluate F (µ1)

k = 1
Go to main step

Main Step

Step 1

IfµF (λk) > F (k)
go to step 2

Otherwise, if µF (λk) < F (k)
go to step 3

End if

Step 2

ak+1 = λk , bk+1 = bk , λk+1 = µk
µk+1 = ak+1 +

(
Fn−k−1
Fn−k

)
(bk+1 − ak+1)

Ifk = n− 2
Go to step 5

Otherwise
Evaluate F (µk+1)
go to step 4

End If

Step 3

ak+1 = ak , bk+1 = µk , µk+1 = λk
λk+1 = ak+1 +

(
Fn−k−2
Fn−k

)
(bk+1 − ak+1)

Ifk = n− 2
Go to step 5

Otherwise
Evaluate F (λk+1)
go to step 4

End If
Step 4 k = k + 1

Go to step 1

Step 5

λn = λn−1
µn = λn−1 + ε

IfF (λn) > F (µn)
an = λn
bn = bn−1

Otherwise, if F (λn) ≤ F (µn)
an = an−1
bn = λn
Stop (the optimal solution is
between [an, bn]

End if
End Main Step
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FIGURE 3. Comparison between Fibonacci, Lucas and Modified Lucas
sequences.

at the first iteration, and only one evaluation at each of the
remaining iterations [50].

B. IMPROVED VARIABLE NEIGHBORHOOD
SEARCH (IVNS)
The initial version of the VNS is demonstrably competitive; it
won first place in the ‘‘Evaluating the Performance ofModern
Heuristic Optimizers on Smart Grid Operation Problems’’
competition held at the 2017 IEEE PES General Meeting. In
this paper, an improved version of the VNS algorithm (IVNS)
was developed based on three main modifications, described
below.
Modification #1: The first modification incorporated in the

VNS was the normalization of continuous variables. The aim
was to transform all variables from their respective ranges to
a uniform range inside the interval [0, 1] using the following
expression:

xi =
xi −min (x)

max (x)−min (x)
(39)

This step was very important, because by restricting all the
variables between 0 and 1, the same importance or weight
was given to them. This was truer in the grouping phase,

FIGURE 4. Single-line diagram of the 33-bus network.

TABLE 1. Test systems overview.

where summing variables with different ranges could favorize
certain variables over others, based on their initial range.
Modification #2: The secondmodification or improvement

to the VNS algorithm was to reduce the number of variables
by removing the fixed ones. This allowed the reduction of the
size of the problem.
Modification #3: The third improvement incorporated in

the VNS was the modification of the Fibonacci line search
method based on the Fibonacci sequence, with a new method
based on a modified Lucas sequence.

Recalling that the Fibonacci sequence {Fv}, is defined as
follows [51]:

Fv+1 = Fv + Fv−1 v = 1, 2, . . .

F0 = 0

F1 = 1 (40)
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FIGURE 5. Single-line diagram of the 180-bus network.

In the Lucas sequence, the Fibonacci rule of adding the
latest two terms to get the next term was applied, but here the
sequence started with 2 and 1 (in this order) instead of 0 and
1 for the Fibonacci sequence.

Therefore, the Lucas sequence {Lv} is defined as fol-
lows [51]:

Lv+1 = Lv + Lv−1 v = 1, 2, . . .

L0 = 2

L1 = 1 (41)

In order to improve the VNS, a modified Lucas sequence
was proposed where the new rule consisted of adding the
latest two numbers while multiplying the last one by 1/2 to get
the next term. The modified Lucas sequence {MLv} is defined
as follows:

MLv+1 = MLv +
MLv−1

2
v = 1, 2, . . .

ML0 = 2

ML1 = 1 (42)

A comparison between the Fibonacci, Lucas, andModified
Lucas sequences is plotted in Fig. 3. In Fig. 3-a, the generated
numbers (10 first ones) are plotted while in Fig. 3-b, the
number ratios between two successive numbers (20 first ones)

are plotted. Noticeably, the Fibonacci and Lucas sequences
converge at 1.618 while the Modified Lucas sequence con-
verges at 1.366.

V. APPLICATION AND RESULTS
A. CASE STUDIES
The developed approach for energy management was applied
to two test systems, the 33-bus and the 180-bus test systems.
Details of these two systems are given below.

1) CASES STUDY #1: THE 33-BUS TEST SYSTEM
The first test system investigated in this paper was the
12.66 kV, 33-bus MV distribution network adopted from
[52] (Fig. 4). A summary of the data of this test system is
summarized in Table 1. More details are given in [42].

2) CASES STUDY #2: THE 180-BUS TEST SYSTEM
The second test system considered a 30 kV, 180-bus MV
distribution network (Fig. 5). Data of this test system is sum-
marized in Table 1. More details can be found in [42].

B. RESULTS AND DISCUSSION
The developed algorithm was run for both test systems
and the results are detailed and discussed in the following
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FIGURE 6. Evolution of the objective function versus iterations for the 33-bus test system.

FIGURE 7. Load scheduling for the 33-bus test system.

subsections. It is worth mentioning that, for both the VNS
and the IVNS the number of trials is 31 for each case study.

1) CASE STUDY #1: THE 33-BUS TEST SYSTEM
For the first test system, the curve of convergence (or the
evolution of the objective function versus iterations) is shown
in Fig. 6. It is worth recalling that negative values of the
objective function correspond to positive profits when the
problem is treated as a minimization one (minimization of
the negative value of the objective function) is in fact a
maximization problem.

Fig. 7 and Fig. 8 sketch the one-day load and generation
scheduling, respectively, for the 33-bus test system. Sev-
eral things can be seen from Fig. 7. The proposed algo-
rithm scheduled a load of 102.966 MWh which consequently
induced a total active loss of 1.682 MWh; the charge of EVs
was scheduled as 17.427 MWh; the ESUs charging process
was scheduled as 2.251 MWh, and the energy market selling

was scheduled as 0.348 MWh. It can also be seen that the
peak load was at hour=11 with a value of 5.303 MW, the
peak of losses was at hour=13 with a value of 0.087 MW,
the peak of EVs charging 1.753 MW occurred at hour=5,
the peak of ESUs charging, 0.540 MW, occurred at hour=1,
and the energy market selling was only scheduled in the
first hour.

Fig. 8 shows that the total DG scheduledwas 94.799MWh,
the total external supplier scheduled was 29.245 MWh, the
total DR scheduled was 0.104 MWh, the discharge of EVs
was not scheduled and the storage scheduled was 0.183
MWh. Form the same figure we can also make the following
remarks: the DGU generation peak (4.405MW) and the exter-
nal supplier peak (1.267 MW) were recorded at hour=11 at
the same time as the load peak; the DR was scheduled only
in hours 9, 10, and 21 with values of 0.013 MW, 0.079 MW,
and 0.012 MW, respectively, and the discharge of ESUs was
only scheduled in hours 5 and 10 with values of 0.013 MW
and 0.170 MW, respectively.
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FIGURE 8. Generation scheduling for the 33-bus test system.

FIGURE 9. Evolution of the objective function versus iterations for the 180-bus test system.

2) CASE STUDY #2: THE 180-BUS TEST SYSTEM
For this test system, the evolution of the objective function
versus iterations is shown in Fig. 9. Fig. 10, and Fig. 11
sketch the one-day load and generation scheduling, respec-
tively, for the 180-bus test system. It can be seen from
Fig. 10 that the proposed algorithm scheduled a load of
243.360 MWh; the total active losses of the system were
found to be 3.068 MWh; the charge of EVs was scheduled
as 49.224 MWh; the ESUs charging process was scheduled
as 1.704 MWh; and the energy market selling was sched-
uled as 0.348 MWh. It can also be seen that the peak load
(12.484 MW) was recorded at hour=12; the peak of loss
(0.205 MW) was recorded at hour=23; the peak of EVs
charging (5.788 MW) occurred at hour=4; the peak of ESUs
charging (1.148 MW) was recorded at hour=1; and the
energy market selling was only scheduled in the first hour.

Fig. 11 shows that the total DG scheduled was
251.395 MWh; the total external supplier scheduled was
0.584 MWh; the total DR scheduled was 29.985 MWh; the
discharge of EVs scheduled was 13.643 MWh; and the ESUs

discharge scheduled was 0.930 MWh. Furthermore, the DG
generation peak (13.360 MW) was recorded at hour=6; the
external supplier peak (0.032MW)was recorded at hour=16;
the DR peak (4.189 MW) was recoded at hour=16; the
discharge of EVs was scheduled only four times; and the
discharge of ESUs was only scheduled in hours 12 and 13
with values of 0.783 MW and 0.147 MW, respectively.

C. COMPARATIVE STUDY
In order to assess the competitiveness and efficiency of
the proposed algorithm, it was compared with the algo-
rithms participating in the above-mentioned competition of
SG operation problems [42]. These algorithms are: chaotic
biogeography-based optimization (CBBO), cross-entropy
method and evolutionary PSO (CEEPSO), chaotic differen-
tial eolution with PSO (Chaotic-DEEPSO), Levy differential
evolution with PSO (Levy-DEEPSO), and the VNS.

The ranking process (to rank different algorithms) used
here is the same as that used for the 2017 competition,
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FIGURE 10. Load scheduling for the 180-bus test system.

FIGURE 11. Generation scheduling for the 180-bus test system.

TABLE 2. Computed scores for the two investigated cases studies.

given by:

TotalScore =
NCaseStudies∑

i=1

Scorei (43)

where: NCaseStudies is the number of case studies investigated
and is equal to 2 and Scorei is defined in eq. (44).

Scorei = mean(fbest−i) (44)

In other words, the score is calculated as the mean value
of the objective function found over the 31 trials for each test
system.

Table 2 summarizes the final ranking for the compared
algorithms. It can be seen from this table that the proposed
IVNS is the best algorithm among the compared algorithms.
The total score of the IVNS is −8779.04, which is better
than that of the VNS (−8649.99) that ranked number one
in the 2017 competition. It can also be seen that the IVNS
is better than all the algorithms for both case studies and
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for all the compared performances. For example, the IVNS’s
score for the first case study is −5598.89 which is better
than the second algorithm, VNS (−5595.98), and the third
algorithm, CBBO (−5387.60). Likewise, the best and worst
fitness values achieved by the IVNS for the first case studies
(−5603.19 and −5596.16) are better than all the remaining
algorithms. The same analysis can be made for the second
case studies where the superiority of the IVNS is far more
evident than the first case study. For example, the score
obtained for the IVNS (−3180.15) is better than that of the
VNS (−3060.56) and the CBBO (−2652.86), ranked first and
second at the 2017 competition, respectively.

It is worthmentioning that many other methods were tested
on the investigated cases, but the results are not worthy of
presentation here because they failed to solve the problem
compared to the presented algorithms in Table 2.

VI. CONCLUSION
In this paper, an efficient algorithm was proposed, imple-
mented, and applied to solve a very large-scale OSDER
problem. This algorithm was based on a simple and effective
algorithm called the variable neighborhood search (VNS)
algorithm. Three main improvements and modifications were
incorporated to the initial VNS: 1) normalization of variables,
2) removal of fixed variables and 3) replacement of the
Fibonacci sequence with a one based on a modified Lucas
sequence in the Fibonacci line search method.

The OSDER problem solved in this paper considers differ-
ent recourses like DG units, EVs, ESUs, and DR programs.
Therefore, the treated problem is a very large-scale mixed-
integer non-linear programming (MINLP) problem. Further-
more, two test systems (or scenarios) were investigated–the
30-bus and the 180-bus test systems. The results showed that
the proposed algorithm is better than several other algorithms
used to solve the same problem. For both test systems and for
all the statistical measurement indices, the IVNS is better than
the remaining five algorithms.

As future works, more scenarios can be investigated using
other modern metaheuristics. Multi-objective scenarios can
also be an interesting axis for future research.
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