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Abstract
We introduce a strengthening of the notion of transience

for planar maps in order to relax the standard condition of

bounded degree appearing in various results, in particular,

the existence of Dirichlet harmonic functions proved by Ben-

jamini and Schramm. As a corollary we obtain that every

planar nonamenable graph admits nonconstant Dirichlet har-

monic functions.
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1 INTRODUCTION

A well-known result of Benjamini and Schramm [4, 5] states that every transient planar graph with

bounded vertex degrees admits nonconstant harmonic functions with finite Dirichlet energy; we will

call such a function a (nonconstant) Dirichlet harmonic function from now on. In particular, such a

graph does not have the Liouville property. Two independent proofs of this theorem were given in

[4, 5], one using circle packings and one using square tilings.

The bounded degree condition was essential in both these proofs, and is in fact necessary: consider

for example a 1-way infinite path where the nth edge has been duplicated by 2n parallel edges. Still,

there are natural classes of unbounded degree graphs where such obstructions do not occur, and it is

interesting to ask whether the above result can be extended to graphs with unbounded degrees in a

meaningful way. Recently, planar graphs with unbounded degrees have been attracting a lot of interest,

in particular due to research on coarse geometry [7], random walks [1, 3, 12, 14], and random planar
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2 CARMESIN AND GEORGAKOPOULOS

maps [2, 10]. Motivated by this, our main result extends the aforementioned result of Benjamini and

Schramm to unbounded degree graphs by replacing the transience condition with a stronger one, which

we call roundabout-transience and explain below:

Theorem 1.1. Let G be a locally finite roundabout-transient planar map. Then G admits a
nonconstant Dirichlet harmonic function.

A planar map G, also called a plane graph, is a graph endowed with an embedding in the plane. The

roundabout graph G◦ is obtained from G by replacing each vertex v with a cycle v◦ in such a way that

the edges incident with v are incident with distinct vertices of v◦ (of degree 3), preserving their cyclic

ordering; see also Section 4. We say that G is roundabout-transient if G◦ is transient.1 In Section 4

we relate G◦ with circle packings of G. We show that roundabout-transience implies transience in

Lemma 4.3.

Example 1.2. The aforementioned example of a 1-way infinite path with the nth edge replaced by 2n

edges, is transient, but not roundabout-transient. Indeed, each roundabout v◦ contains a cut consisting

of just two edges separating the root from infinity. Thus the effective resistance to infinity is infinite

in the roundabout graph, and Lyons’ criterion (Theorem 2.3) implies recurrence.

We also provide a further way to strengthen the transience condition so as to guarantee Dirichlet

harmonic functions. The idea is to require that there is a flow f from some vertex having not only finite

Dirichlet energy, as required by Lyons’ criterion, but also a finite norm in a different Hilbert space,

obtained by giving weights to the edges depending on the degrees of their end-vertices. This is made

precise in the following corollary of Theorem 1.1, which we deduce in Section 9.

Corollary 1.3. Let G be a locally finite planar graph such that there is a flow f from some vertex x
such that ∑

vw∈E(G)
[𝑑eg(v)2 + 𝑑eg(w)2]f (vw)2 < ∞.

Then G admits a nonconstant Dirichlet harmonic function.

As shown in Example 9.3, the order of magnitude of the weights here is best-possible. Hence

Corollary 1.3 is tight, which indicates a way in which Theorem 1.1 is tight too. We prove it in Section 9

(see Corollary 9.2).

Our work was partly motivated by a problem from [12], asking whether every simple planar graph

with the Liouville property is (vertex-)amenable,2 by which we mean that for every 𝜖 > 0 there is a

finite set S of vertices of G such that less than 𝜖|S| vertices outside S have a neighbor in S. As we show

in Section 8,

Theorem 1.4. Every locally finite nonamenable planar map is roundabout-transient.

Combining this with Theorem 1.1 yields a positive answer to the aforementioned problem,

and much more. This strengthens a result of Northshield [19], stating that every bounded degree

1The authors coined this term in Warwick, UK, where there are many roundabouts.
2For bounded degree graphs, vertex-nonamenability and the related notion of edge-nonamenability agree. For graphs with

unbounded degrees like ours this is no longer the case, and we always mean vertex-nonamenable when writing nonamenable.
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nonamenable planar graph admits nonconstant bounded harmonic functions, in two ways: it relaxes

the bounded degree condition, and provides Dirichlet rather than bounded harmonic functions.

Benjamini [7] constructed a bounded degree nonamenable graph with the Liouville property. The

last result shows that such a graph cannot be planar even if we drop the bounded degree assumption.

We think of Theorems 1.1 and 1.4 as indications that the notion of roundabout-transience is satis-

fied in many cases, and has strong implications. We expect it to find further applications. For example,

we expect that the results of [20, Section 2] generalize from bounded-degree nonamenable planar maps

to roundabout-transient ones. Moreover, one could try to extend the main results of [1, 12], which

identify the Poisson boundary of planar graphs with the boundary of the square tiling, and the circle

packing respectively, from the bounded-degree transient case to the roundabout-transient case, as we

did in this paper for the result of Benjamini and Schramm on Dirichlet harmonic functions. Finally,

perhaps the most interesting problem of this form is the following:

Problem 1. Let G be the 1-skeleton of a triangulation of an open disc in R2. Is it true that G admits

a circle packing in the unit disc if and only if it has a roundabout-transient subgraph3?

If true, this would extend a well-known theorem of He and Schramm [16], stating that if G is

recurrent, then it admits a circle packing whose carrier is the whole plane, and if it is transient and has

bounded degrees, then it admits a circle packing in the unit disc. (It is known that every 1-skeleton of a

triangulation of an open disc admits a circle packing in either the whole plane or the unit disc, but not

in both [15,16,22].) The reason why we do not conjecture that G admits a circle packing in the unit disc

if and only if it is roundabout-transient itself in Problem 1, is that given any circle packing in the unit

disc, it is always possible to insert enough new discs to make the contacts graph roundabout-recurrent.

We leave this as an exercise for the interested reader.

We now give an overview of the proof of Theorem 1.1. As shown in [9], a graph admits nonconstant

Dirichlet harmonic functions if and only if it has two disjoint transient subgraphs T1,T2 such that the

effective conductance between T1 and T2 is finite; see Theorem 3.1. To show that our graphs satisfy

this condition, we start with a flow provided by Lyons’ criterion. This flow lives in an auxiliary graph

which for the purposes of this illustration can be thought of as a superimposition of G and its dual.

We split this flow into four subflows, supported in disjoint regions of the plane, using the square tiling

techniques of [12]. We use two of these subflows to obtain T1,T2, and we apply a duality argument

to the other two to show that the effective conductance between T1 and T2 is finite; see Figure 1 and

Lemma 5.1. The latter step can be thought of as a variation of the idea that the effective resistance

from the top to the bottom of a rectangle equals the effective conductance from left to right, with the

latter two subflows showing finiteness of the top-to-bottom effective resistance.

The idea of handling unbounded-degree graphs by first applying a transformation into a

bounded-degree graph—in our case, the roundabout graph—also appears in [13], where the transfor-

mation used is the “star-tree transform.”

Sections 2–4 contain definitions and preliminaries about graphs and random walks, harmonic

functions, and roundabout-transience respectively. The two crossing flows of the above sketch are con-

structed in Section 5, after an introduction into square tilings which are used as a tool. In Section 6

we obtain a general criterion for the existence of nonconstant Dirichlet harmonic functions in planar

graphs, and use it to prove Theorem 1.1 in Section 7. We deduce Theorem 1.4 in Sections 8 and 9.

3Here we follow the convention that subgraphs of plane graphs are endowed with the induced embedding, and are also plane

graphs.
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FIGURE 1 A tesselation of the hyperbolic plane by 7-gons, depicted in black, and its dual graph, depicted in light purple. In

blue we color the edges in the support of a flow in the tesselation, in red we color the edges in the support of a flow in the dual.

The two subgraphs T1,T2 delimited by the dashed smooth curves are transient because of the blue flow. The dual of the red

flow (indicated by dashed nonsmooth paths) witnesses the fact that the effective conductance between T1 and T2 is finite

because this dual flow has finite energy [Colour figure can be viewed at wileyonlinelibrary.com]

2 PRELIMINARIES

2.1 Graphs

We follow the terminology of [11] for graph-theoretic terms unless otherwise stated. A graph G is a

pair (V ,E) where V is the set of vertices of G, and E is a set of directed pairs of elements of V , called

the (directed) edges of G. (Although we are studying undirected graphs, we follow the latter convention

for convenience in dealing with flows.)

All our graphs are simple: they have no loops or parallel edges. (In the few occasions where we

contract edges, one can subdivide any resulting parallel edges or loops to stay within the class of simple

graphs.) A graph is locally finite if all its vertices have finite degree, where the degree of a vertex is

the number of incident edges. Most graphs in this paper are locally finite. A locally finite graph G is

1-ended if for every finite vertex S, the graph G− S (obtained from G by deleting the vertices in S and

their incident edges) has only one infinite component. Given a vertex set X, by E(X) we denote those

edges with both endvertices in X.

A cut of a graph G is the set of edges between a set of vertices U ⊆ V(G) and its complement

V(G) ⧵ U.

2.2 Plane graphs

A graph is planar, if it admits an embedding in the plane R2. A plane graph is a (planar) graph endowed

with a fixed embedding in the plane. We will be using the notion of the dual of a plane graph in the

standard sense, but we adapt it to our directed graphs so that the directions of the edges of the primal

determine the directions of the edges of the dual as follows. The dual of a plane (directed) graph

G = (V ,E) is the graph G∗ = (F,E∗) whose vertex set is the set F of faces of G, having an edge e∗
from a face v to a face w whenever G has an edge e incident with both v and w such that v lies on

http://wileyonlinelibrary.com
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the right of e as we move along the direction of e. Note that by drawing the vertices of G∗ inside the

corresponding faces of G we can obtain an embedding in R2 such that G∗∗ = G. (To be more precise,

G∗∗ is G with all edge directions reversed.) To simplify notation we will, with a slight abuse, suppress

the bijection ⋅∗ between the edge sets E,E∗ of two dual plane graphs and pretend that E = E∗.

We will be using the following simple fact about plane dual graphs. A bond is a minimal nonempty

cut; that is, a cut that does not include any other nonempty cut.

Lemma 2.1 ([11, Proposition 4.6.1]). Let G and G∗ be dual plane graphs, and suppose they are both
locally finite. Then every finite bond b of G forms a cycle C in G∗ such that one of the components of
G − b lies in the interior of C and the other in its exterior.4

2.3 Electrical currents

Given a graph G = (V ,E) and a function i ∶ E → R, the divergence i∗(x) of i at a vertex x is the net

flow out of x, that is, i∗(x) ∶=
∑

xy∈E i(xy) −
∑

zx∈E i(zx). We say that i satisfies Kirchhoff’s node law
at x if i∗(x) = 0.

A divergence free flow is a function i ∶ E → R satisfying Kirchhoff’s node law at every vertex. In

an infinite graph it is possible for i to satisfy Kirchhoff’s node law at all vertices except a single vertex

o, at which we have i∗(o) ≠ 0. In this case i is called a flow from o (to infinity). The intensity of i is the

divergence i∗(o). For a finite vertex-set A, we say that i is a flow from A if i∗(x) > 0 for every x ∈ A
and i∗(x) = 0 for every x ∉ A. The support supp(i) of i is the edge set {e ∈ E ∣ i(e) ≠ 0}.

A potential on G is a function u ∶ V → R. The difference operator 𝜕 turns each potential u ∶ V → R

into a function 𝜕u ∶ E → R by letting 𝜕u(xy) ∶= u(x) − u(y). If 𝜕u satisfies Kirchhoff’s node law, then

u satisfies the discrete Laplace equation5:

u(x) =
∑

y∈N(x) u(y)
𝑑eg(x)

, (1)

where N(x) denotes the set of neighbors of x, and 𝑑eg(x) the cardinality of N(x). If u satisfies (1), then

we say that u is harmonic at the vertex x. Note that the above implication can be reversed to yield that

if a potential u is harmonic, then 𝜕u satisfies Kirchhoff’s node law.

A potential u ∶ V → R is harmonic if it is harmonic at every vertex x ∈ V . The (Dirichlet) energy
of a function i ∶ E → R is defined by

(i) ∶=
∑
e∈E

i2(e).

The energy of a potential u is the energy of 𝜕u; in formulas: (u) ∶=
∑

xy∈E (u(x) − u(y))2. A

harmonic function with finite Dirichlet energy is called a Dirichlet harmonic function. A graph has

the Liouville property if all of its bounded harmonic functions are constant. It is well-known that

the Liouville property implies that all Dirichlet harmonic function are constant (indeed, if there is a

nonconstant Dirichlet harmonic function, then the free-current and the wired current do not agree and

their difference is a (nonconstant) bounded Dirichlet harmonic function, see [17] for details).

4The statement that the components of G− b lie in distinct sides of C is given in the proof of [11, Proposition 4.6.1] rather than

in its statement. Although the latter is assuming the graphs to be finite, it can be easily adapted to our setup by considering an

appropriate finite subgraph of G containing b.
5This can be seen by solving the equation

∑
y∈N(x)(u(x) − u(y)) = 0 for u(x).
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A walk in a graph G is a sequence {v0, e1,… , ek, vk} alternating between vertices and incident

edges, starting and ending with a vertex. A walk is closed if its starting vertex v0 is equal to its end-

ing vertex vk. Given a function i ∶ E → R and a closed walk W = {v0, e1,… , ek, vk}, we define

curli(W) ∶=
∑

j≤k(−1)𝛿j i(ej), where 𝛿j = 1 if W traverses ej against its direction, and 𝛿j = 0 otherwise.

We say that i satisfies Kirchhoff’s cycle law if curli(W) = 0 for every closed walk W in G (equivalently,

if curli(W) = 0 for every closed walk W visiting no vertex—other than its starting vertex—more than

once). It is not hard to check that

Observation 2.2. A flow i satisfies Kirchhoff’s cycle law if and only if there is a potential u with

i = 𝜕u.

2.4 Random walks

All random walks in this paper are simple and take place in discrete time, that is, if the random walker

is at a vertex v of our graph G at time n, then at time n + 1 it is at a neighbor of v chosen uniformly at

random. The starting vertex of our random walk will always be deterministic, and usually denoted by o.

A connected graph G is transient if random walk on G almost surely visits any fixed vertex finitely

often. If G is not transient then it is recurrent. The following classical result of T. Lyons characterizes

transience in terms of flows.

Theorem 2.3 ([18], see also [17]). A connected locally finite graph G is transient if and only if for
some (and hence for every) vertex o ∈ V(G), there is a flow from o in G with finite energy.

Given a transient graph G and a vertex o, we can define a flow i = i(o) from o as follows. For every

vertex v ∈ V , let h(v) be the probability pv(o) that random walk from v will ever reach o. In particular,

h(o) = 1. By construction the potential h is harmonic at every v ≠ o. Let i = 𝜕h. By our discussion in

Section 2.3, i is a flow from o, and we call it the random walk flow from o.

3 DIRICHLET HARMONIC FUNCTIONS

In this section we explain some of the tools we use in our proofs. The following results characterize the

locally finite graphs admitting nonconstant Dirichlet harmonic functions. We write HD for the class

of graphs on which all Dirichlet harmonic functions are constant.

Theorem 3.1 ([9]). A locally finite graph G admits a nonconstant Dirichlet harmonic function if
and only if there are two transient, vertex-disjoint, subgraphs A,B of G such that there is a potential
of finite energy which is constant on each of A and B but not on A ∪ B.

Observation 3.2. By adding a finite path to the subgraph A in Theorem 3.1 if necessary, and adapting

the values of the potential on that path, we may assume that in the statement of Theorem 3.1 we

moreover have an edge joining a vertex of A to a vertex of B.

The following is a variant of Theorem 3.1 that is more convenient for our purposes in this paper.

Corollary 3.3. A locally finite graph G admits a nonconstant Dirichlet harmonic function if and
only if it admits a divergence free flow f and a potential 𝜌, both of finite energy, such that the supports
of f and 𝜕𝜌 intersect in precisely one edge.
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Proof. To prove the forward implication, assuming that G is not in HD, Theorem 3.1 and Observa-

tion 3.2 yield transient vertex-disjoint subgraphs A,B, connected by an edge e, as well as a potential 𝜌

of finite energy which is constant on each of A,B but takes different values on them. Using the tran-

sience of A and B and Theorem 2.3 it is straightforward to construct a divergence free flow f of finite

energy that is supported on the edges of A ∪ B and the edge e, with f (e) ≠ 0. The supports of f and 𝜕𝜌

then intersect only in the edge e as desired.

The backward implication can be shown using the methods of the proof of Theorem 3.1 in [9].6

Here we take a different route; we will give a new functional analytic proof.

We consider the (real) Hilbert space H of functions from E(G) to R with finite Dirichlet energy;

our scalar product is defined by ⟨f ∣ g⟩ ∶= ∑
e∈E(G) f (e)g(e).

The cycle space C of G is the closed span of the subspace of H generated by the cycles of G; that

is, for each cycle Ci of G, we let fi be a nonzero divergence free flow supported on the edges of Ci (fi
is determined by Ci up to a multiplicative constant that does not matter), and let C be the subspace of

H generated by all the fi under infinite convergent sums.

The star space D of G is the closed span of the subspace of H generated by the atomic cuts of G:

for each vertex vi of G, we let ai be the indicator on its incident edges, and let D be the subspace of H
generated by all the ai under infinite convergent sums.

Note that C and D are orthogonal spaces, since each cycle satisfies Kirchhoff’s first law. Moreover,

every divergence free flow lies in D⟂: it is straightforward to check that f ∈ D⟂ if and only if f satisfies

Kirchhoff’s node law at every vertex. Furthermore, C⟂ coincides with the space {𝜕u ∣ u is a potential}.

Therefore, to show that G admits a nonconstant Dirichlet harmonic function, it suffices to show that

D⟂ ∩ C⟂ is nontrivial, as all functions in D⟂ satisfy Kirchhoff’s node law, and so their corresponding

potentials are harmonic by the discussion in Section 2.3.

Let us apply these observations to the functions f and 𝜌 of the statement. The assumption that f
and 𝜕𝜌 intersect in precisely one edge implies that ⟨f ∣ 𝜕𝜌⟩ ≠ 0.

As D is orthogonal to C, we have C ⊆ D⟂, and so we can decompose D⟂ as D⟂ = C + (D⟂ ∩ C⟂).
Thus we can write our f ∈ D⟂ as f1 + f2 with f1 ∈ D⟂ ∩ C and f2 ∈ D⟂ ∩ C⟂. Since 𝜕𝜌 ∈ C⟂, we have⟨f1 ∣ 𝜕𝜌⟩ = 0, and since ⟨f ∣ 𝜕𝜌⟩ ≠ 0 we must have ⟨f2 ∣ 𝜕𝜌⟩ ≠ 0. In particular, f2 ≠ 0 and so we have

proved our claim that D⟂ ∩ C⟂ ∋ f2 is nontrivial. ▪

This way we obtain an alternative proof of the following result of Soardi.

Corollary 3.4 ([23]). Let G be a locally finite graph with a finite cut b such that G − b has two
transient components. Then G is not in HD.

Proof. We apply Theorem 3.1, with 𝜌 being, for example, the potential defined by 𝜌(x) = i for every

x in Ci, where Ci is the ith component of G − b in some enumeration of those components. ▪

Definition 3.5. Given a locally finite graph G, and a subgraph H ⊆ G, we will say that a function

f ∶ E(G) → R witnesses that H is transient, if the restriction fH of f to E(H) is a flow from some finite

vertex set (to infinity) with finite energy.

As we can easily modify fH at finitely many edges to turn it into a flow from a single vertex (to

infinity), such an fH implies that H is transient by Theorem 2.3.

6More precisely, from the existence of f and 𝜌 as in that theorem, one can construct transient subgraphs A and B as in Theorem

3.1.
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Observation 3.6. Let G and G∗ be locally finite dual plane graphs. Let f be a divergence free flow

in G with finite energy. Then at least one of the following is true.

(A) The function f satisfies Kirchhoff’s cycle law in G∗;

(B) there is a finite cut c of G such that f witnesses that at least two components of G−c are transient.

Proof. Suppressing the bijection ⋅∗ between the directed edges of G and G∗, the function f can be

thought of as a function on E(G∗). If f fails to satisfy (A), then there is a finite cycle C of G∗ at which f
violates Kirchhoff’s cycle law. Since G and G∗ are dual, the edges of C form a cut C∗ of G, separating

it into two subgraphs U,W. Moreover, our assumption on C means that the net flow of f from U to W
is nonzero. Thus fU is a flow from a finite set (namely, from those vertices of U incident with an edge

in C∗) witnessing that U is transient. Similarly, fW witnesses that W is transient too. ▪

Remark 3.7. For finite plane dual graphs G and G∗, a function f satisfies Kirchhoff’s cycle law in

the graph G if and only if it satisfies Kirchhoff’s node law in the dual graph G∗. Observation 3.6 could

be understood as an extension of this fact.

4 ROUNDABOUT-TRANSIENCE

The roundabout graph G◦ of a locally finite plane graph G is obtained from G by replacing each vertex

v by a cycle (roundabout) of length equal to the degree of v so that every vertex gets degree 3; formally,

the vertex set of G◦ is the set of pairs (v, e) where e is an edge and v is an endvertex of e. The embedding

of G defines the (clockwise, say) cyclic order Cv on the set of edges incident with the vertex v. The

edges of G◦ are of two types; for each edge e = −→vw ∈ E(G), we have an edge in G◦ from (v, e) to (w, e).
For any two consecutive edges e and f in the cyclic order Cv, we have an edge in G◦ from (v, e) to (v, f ).

The roundabout graph G◦ has a canonical embedding in the plane, namely, the one that induces

the embedding of G when we contract each roundabout into a single vertex.

With a slight abuse of notation, we will treat E(G) as a subset of E(G◦), with the understanding

that e = −→vw ∈ E(G) is identified with
−−−−−−−−→
(v, e)(w, e) ∈ E(G◦).

We say that a graph G is roundabout-transient if G◦ is transient.

Observation 4.1. Every cut of G is a cut of G◦.

Conversely, every cut b of G◦ with b ⊆ E(G) is also a cut of G.

Remark 4.2. The structure of G◦ depends on the chosen embedding of G. Here, we construct a

planar graph G that has both a transient and a recurrent roundabout graph (corresponding to different

embeddings).

Let G be the graph obtained from the infinite binary tree7 T2 by attaching 2n leaves at each vertex

at distance n from a fixed root of T2. Let G1 be the plane graph obtained by embedding G in the

plane in such a way that all leaves attached to v are embedded consecutively for every v ∈ V(T2). It

is straightforward to check that G◦
1

is transient: by deleting all leaves of G◦
1

and their incident vertices

(in the roundabouts) we obtain a subgraph of G◦
1

quasi-isometric to T2. Thus G◦
1

is transient since T2

is. Let G2 be the plane graph obtained by embedding G in the plane in such a way that the leaves we

attached at each vertex are separated into three equal subsets by the edges of T2. It is not hard to check

7The binary tree is the unique infinite tree in which every vertex except for the root has degree three, and the root has degree two.
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that G◦
2

is recurrent: the leaves now have the effect of introducing exponentially long subdivisions to

the edges of T2 at a certain distance from the root.

To summarize, roundabout-transience is a property of plane graphs and not of planar graphs.

Lemma 4.3. If G◦ is transient, then so is G.

Proof. Since G◦ is transient, it admits a flow f of finite energy from some vertex o ∈ V(G◦) by

Lyons’ criterion Theorem 2.3. We will show that f induces a flow of finite energy in G.

For a vertex v ∈ V(G◦), let us denote by v◦ the set of vertices lying in the same roundabout as v.

Note that f satisfies Kirchhoff’s node law at every vertex-set v◦ except o◦. Therefore, the restriction f ′
of f to the edges of G satisfies Kirchhoff’s node law at every vertex of G except the vertex o′ that gave

rise to o◦. In other words, f ′ is a flow from o′. Its energy is bounded from above by that of f , and so G
is transient by Theorem 2.3. ▪

In the following we will often use the notation G∗◦, by which we mean the roundabout graph (G∗)◦
of the dual G∗ of the plane graph G. For the rest of this section we assume G∗ to be locally finite.

The plane line graph G⋄ of a plane graph G is the plane graph obtained from G◦ by contracting all

(nonroundabout) edges of G. Another way to define G⋄, explaining its name, is by letting the vertex

set of G⋄ be the set of midpoints of edges of G and joining two such points with an arc whenever the

corresponding edges are incident with a common vertex v of G and lie in the boundary of a common

face of v. It is clear from this definition that

G⋄ = (G∗)⋄ =∶ G∗⋄. (2)

A third equivalent definition of G⋄ can be given by considering a circle packing P of G, letting V(G⋄)
be the set of intersection points of circles of P, and letting the arcs in P between these points be the

edges of G⋄. A fourth definition of G⋄ is as the dual of the bipartite graph G′, with V(G′) consisting

of the vertices and faces of G, and E(G′) joining each vertex of G to each of its incident faces.

It is easy to see that G⋄ is quasi-isometric (in fact Bilipschitz-equivalent) to G◦. Since both graphs

have bounded degrees, Theorem 2.3 easily implies the following (see e.g., [17, Theorem 2.17]).

Lemma 4.4. Let G be a locally finite plane graph. Then G◦ is transient if and only if G⋄ is.

Lemma 4.4, combined with the fact that G⋄ = G∗⋄ (2), yields that if G◦ is transient, then so is G∗◦.

Another way to state this is:

G is roundabout-transient if and only if G∗ is. (3)

Combining this with Lemma 4.3, we obtain

Corollary 4.5. If G◦ is transient, then so is G∗.

Proof. By Lemma 4.3, it suffices to show that the roundabout graph of the dual graph G∗ is transient.

Recall that the planar line graph G⋄ of G is equal to the planar line graph of the dual graph G. Thus

by Lemma 4.4 applied twice to the graph G and the graph G∗, we deduce that the roundabout graph

of G∗ is transient. ▪

Remark 4.6. It is a simple exercise to check that every bounded-degree transient plane graph is

roundabout-transient.
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5 SQUARE TILINGS AND THE TWO CROSSING FLOWS

5.1 Square tiling basics

In this section we use the theory of square tilings of (locally finite) transient plane graphs in order

to find the special flows in our roundabout-transient G mentioned in the introduction. These square

tilings were introduced in [4], and generalize a classical construction of Brooks and co-workers [8]

from finite plane graphs to infinite transient ones.

Let  denote the cylinder (R∕Z) × {0, 1], or more generally, a cylinder (R∕Z) × {0, a] for some

real a > 0 (which will turn out to coincide with the effective resistance from a vertex o to infinity).8 A

square tiling of a plane graph G is a mapping 𝜏 assigning to each edge e of G a square 𝜏(e) contained

in , where we allow 𝜏(e) to be a “trivial square” consisting of just a point (see e.g., Figure 2). A nice

property of square tilings is that every vertex x ∈ V can be associated with a horizontal line segment

𝜏(x) ⊂  such that for every edge e incident with x, 𝜏(e) is tangent to 𝜏(x), that is, one of the sides of

𝜏(e) is contained in 𝜏(x).
The construction of this 𝜏 is based on the random walk flow i from a root vertex o (as defined in

Section 2.4): the side length of the square 𝜏(e) is chosen to be |i(e)|, and the placement of that square

inside  is decided by a coordinate system where potentials of vertices induced by the flow i are used

as coordinates. For example, the top circle of the cylinder  is the “line segment” 𝜏(o) corresponding

to o, because o has the highest potential. All other vertices and edges accumulate towards the base of

, because their potentials (which equal the probability for random walk from those vertices to return

to o, normalized by the height of ) converge to 0; see [12] for details.

We let w(𝜏(e)) denote the width of the square 𝜏(e). Our square tilings always have the following

properties which we will use below:

(I) Two of the sides of 𝜏(e) are always parallel to the boundary circles of ;

(II) w(𝜏(e)) = |i(e)| for every e ∈ E, where i denotes the random walk flow out of o;

(III) the interiors of any two such squares 𝜏(e), 𝜏(f ) are disjoint;

(IV) every point of  lies in 𝜏(e) for some e ∈ E;

(V) every vertex x can be associated with a horizontal line segment9 𝜏(x) ⊂  so that for every edge

e incident with x, the square 𝜏(e) is tangent to 𝜏(x), and every point of 𝜏(x) is in 𝜏(f ) for some

edge f incident with x, and

(VI) every face F can be associated with a vertical line segment 𝜏(F) ⊂  so that for every edge e in

the boundary of F, the square 𝜏(e) is tangent to 𝜏(F).

It was shown in [4] that a plane graph G admits a square tiling exactly when G is uniquely absorbing.

We say that G is uniquely absorbing, if for every finite subgraph G0 there is exactly one connected

component D of R2 ⧵G0 which is absorbing, that is, random walk on G visits G⧵D only finitely many

times with positive probability (in particular, the subgraph of G embedded in D is transient, hence so

is G).

5.2 Cutting the random walk flow along meridians

A meridian of  is a vertical line of the form {x} × {0, 1] ⊂  for some x ∈ R∕Z. Meridians are

important, as they will allow us to “dissect” subflows of the random walk flow i. To make this precise,

8Throughout this paper we use {a, b] to denote the half-open interval between a and b (which contains b but not a).
9𝜏(x) might be a full horizontal circle of . This is always the case for x = o.
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given a vertex x ∈ V(G), we let |x| denote the vertical “strip” of the cylinder  whose horizontal span

coincides with that of the line segment 𝜏(x) as described in (V): we let |x| ∶= I × {0, a} ⊂ , where

I is the interval of coordinates appearing in 𝜏(x). Then 𝜏(x) separates |x| into two rectangles, and we

denote the bottom one (that is, the one not meeting 𝜏(o)) by ⌈x⌉.

Next, we associate to this x a flow x̌ from x that “lives in ⌈x⌉.” Let us assume that each edge

e = vz of G is directed “downwards,” that is, the height coordinate of 𝜏(v) is higher than that of

𝜏(z); we can make this assumption without loss of generality as we can always change the direction

of an edge simultaneously with the sign of its flow. To define the flow x̌, for every e ∈ E(G), let

x̌(e) ∶= w(𝜏(e) ∩ ⌈x⌉) be the width of the rectangle 𝜏(e) ∩ ⌈x⌉ ⊂  corresponding to e. (Thus if 𝜏(e)
is contained in ⌈x⌉, then x̌(e) = i(e) by (II), where i is again the random walk flow from o, and if⌈x⌉ dissects 𝜏(e), then x̌(e) < i(e).) A basic property of meridians (already observed in [12, Lemma

6.6]), is that x̌ is indeed a flow from x: to see this, let v ≠ x be any vertex such that 𝜏(v) intersects⌈x⌉, and note that x̌ brings flow into v using the edges whose squares are tangent to 𝜏(v) from above,

and it removes flow into v using the edges whose squares are tangent to 𝜏(v) from below, and the total

intensity of both these contributions equals the length of the intersection of 𝜏(v) with ⌈x⌉.

More generally, if M,M′ are two meridians intersecting 𝜏(x), we let ⌈MxM′⌉ denote the rectangle

of  bounded by M, 𝜏(x),M′ and the bottom circle of , and define the flow from x that lives in ⌈MxM′⌉
similarly to x̌, except that we replace the rectangle ⌈x⌉ with ⌈MxM′⌉ in the above definition.

The flows thus obtained always have finite energy, because the contribution of each edge e to the

energy is at most the area of 𝜏(e) by the definitions, the whole area of , and the interiors of 𝜏(e), 𝜏(e′)
are disjoint for distinct edges e, e′.

5.3 The basic lemma

The following lemma makes use of a square tiling to perform a certain “surgery” on the random walk

flow i on the plane line graph G⋄ of a roundabout-transient graph G. By recombining pieces of i
appropriately, we induce flows on G◦ and G∗◦ (or rather, on finite modifications of those graphs) that

we will later use to make the intuition of Figure 1 precise.

Every flow i on G⋄ induces a flow i◦ on G◦, called the lift of i to G◦, as follows. For every edge

e ∈ E(G⋄), we recall that e is also an edge of G◦, and just set i◦(e) = i(e). For every other edge e of G◦,

we let i◦(e) be the unique value that forces i◦ to satisfy Kirchhoff’s node law at both endvertices u, v
of e. Such a value exists because i satisfies Kirchhoff’s node law, and so the total divergence of u, v in

i◦ is 0 for any value of i◦(e).

Lemma 5.1. Let G and G∗ be locally finite dual plane graphs. If G◦ is transient, then for some graph
H obtained from G by contracting a finite connected subgraph into a vertex, there are divergence free
flows f and h of finite energy in H◦ and H∗◦ respectively, the supports of which intersect in a single
edge (of E(H) = E(H∗)).

The proof of this is a bit technical, but the main idea is quite simple. Let us assume that H = G
for a moment to explain the intuition. The interesting case is where G◦ is uniquely absorbing, in which

case we can make use of the square tiling (of G⋄ rather than G◦ for technical reasons). In this case, we

use certain pairs of meridians to “dissect” four subflows fj, from four distinct vertices xj to infinity, of

the random walk flow on G⋄ that live in four disjoint narrow rectangles of the tiling cylinder  of G⋄

using the definitions of Section 5.2. Combining these flows in pairs using two finite flows, one from x1

to x3, and one from x2 to x4, we obtain two divergence free flows f ′, h′ in G⋄ that “cross” in a manner
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FIGURE 2 An example of a square tiling, with the four meridians Mj of Lemma 5.1 in dotted lines [Colour figure can be

viewed at wileyonlinelibrary.com]

corroborating the intuition of Figure 1. It is then straightforward to lift f ′, h′ to the desired flows f , h
in the two roundabout graphs using the above definition.

The statement of Lemma 5.1 may be a bit confusing, as it involves several graphs with shared

edges. Our choice to work with G⋄ may seem to be making matters worse at first sight, as it introduces

one more graph. However, it makes life easier: rather than having to work with several graphs simulta-

neously, all nontrivial parts of the following proof deal with just one graph, G⋄. The nice aspect of G⋄

is that it provides a concise representation of the graphs G,G∗,G◦ and G∗◦. The important property to

remember is that the vertex set of G⋄ is the (common) edge-set of G and G∗, which is also the inter-

section of E(G◦) and E(G∗◦). Since the objective of Lemma 5.1 is a pair of divergence free flows in

G◦, G∗◦ with a single common edge, this boils down to finding two divergence free flows in G⋄ that

cross at a single vertex. For technical reasons, it is a bit easier to find a pair of flows with finitely many

crossings, and therefore we introduce the auxiliary graph H: after modifying a finite part of the graph

where all crossings take place, it is easier to end up with a single crossing.

Proof of Lemma 5.1. We distinguish two cases, according to whether G⋄ is uniquely absorbing or

not.

If G⋄ is uniquely absorbing, then [4] provides a square tiling of G⋄ on a cylinder  as described

above, with o being an arbitrary vertex of G⋄.

Our plan is to find four vertices x1,… , x4 far enough from each other on  and flows fj from those

vertices that live in appropriate disjoint rectangles, and combine these flows pairwise to obtain f ′, h′.

More precisely, we claim that we can choose four vertices xj, 1 ≤ j ≤ 4 in G⋄, a flow fj from each xj, and

a path Pj from xj to o, so that these objects satisfy the following properties, which can be summarized

by saying that these objects avoid to meet a common roundabout of G⋄ whenever possible.10

(A) supp(fk) ∩ supp(fj) = ∅ for k ≠ j; even stronger, no roundabout of G◦ meets both supp(fk)
and supp(fj);

10Recall that G⋄ is obtained from G◦ by contracting all edges outside roundabouts. Whenever we talk about a roundabout of G⋄

we will mean a roundabout of G◦ considered as a subgraph of G⋄.

http://wileyonlinelibrary.com
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y2y1

y = y3y4

x 1 x 2

x 3
x 4

Pf

Ph

x˚

FIGURE 3 The roundabouts O1,O2,O3,O4, and x◦, along with the x1-x3 path Pf (shown in green, if color is shown) and the

x2-x4 path Ph (dashed, red) used in the definition of f ′, h′, respectively [Colour figure can be viewed at wileyonlinelibrary.com]

(B) for every j ≤ 4 and every edge e of Pj, no edge of the roundabout of G◦ containing e is in

the support of any fk, 1 ≤ k ≤ 4, and

(C) the roundabout of G◦ containing the first edge of Pk does not contain xj and does not contain

any edge of Pj for j ≠ k.

Before proving that such a choice is possible, let us first see how it helps us construct the desired

divergence free flows f , h.

Let X be the set of vertices v of G such that the roundabout v◦ in G⋄ contains an edge of Pj but

does not contain the first edge of Pj. By construction, X spans a connected subgraph of G, since all Pj
contain o. By modifying the Pj appropriately if needed, we may assume that X is a tree. Let H be the

graph obtained from G by contracting X into a single vertex x.

It is straightforward to see that H⋄ can be obtained from G⋄ by replacing all roundabouts corre-

sponding to vertices in X by the single roundabout x◦. The desired flows f , h will be obtained as lifts—as

defined before the assertion of Lemma 5.1—of auxiliary flows f ′, h′ in H⋄ constructed as follows. By

the construction of H, the first edge of each Pj lies in a roundabout Oj that shares a vertex yj with x◦,

and Oj ≠ Ok for j ≠ k. In particular, xj lies on Oj too; see Figure 3. Note that Oj might have several ver-

tices in common with x◦, because H was obtained from G by a contraction that may have introduced

parallel edges. In this case, we choose yj so that Oj contains an xj-yj path Qj that only meets x◦ at yj.

Assume without loss of generality that y1, y2, y3, y4 appear in that order as we move around x◦
clockwise. We will construct a divergence free flow f ′ as a linear combination of f1, f3, and a constant

flow from x1 to x3 along a path Pf contained in O1 ∪ x◦ ∪ O3. We choose this Pf to be a concatenation

of Q1, of one of the two y1-y3 paths contained in x◦, and of Q3. To make the definition of f ′ precise,

suppose the intensity11 of f1 is 𝛽 ∈ R+, and the intensity of f3 is 𝛾 ∈ R+. For each edge e ∈ supp(f1),
we set f ′(e) = f1(e)∕𝛽. For each edge e ∈ supp(f3), we set f ′(e) = −f3(e)∕𝛾 . Finally, for each edge e of

Pf , we set f ′(e) = 1 if the direction of e agrees with that of Pf (which is from x1 to x3), and f ′(e) = −1

otherwise. It is straightforward to check that f ′ satisfies Kirchhoff’s node law.

Similarly, we construct the flow h′ as a linear combination of f2, f4, and a constant flow from x2 to

x4 along a path Ph contained in O2 ∪ x◦ ∪ O4, obtained by concatenating Q2 and Q4 with one of the

two y2-y4 paths contained in x◦. Finally, let f be the lift of f ′ to H◦ and let h be the lift of h′ to H∗◦.

11Recall that the intensity of fj is the divergence f ∗j (xj).

http://wileyonlinelibrary.com
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We claim that these flows satisfy our requirement |supp(f ) ∩ supp(h)| = 1. To see this, we observe

that there is a unique vertex y of x◦ at which Pf switches between two roundabouts of H◦ and simul-

taneously Ph switches between two roundabouts of H∗◦.12 Indeed, Pf stays within a roundabout of H◦

except precisely at the vertices y1 and y3, where it switches from O1 to x◦ and from x◦ to O3 respec-

tively. Moreover, Ph contains exactly one vertex y ∈ {y1, y3}, and it contains two edges of x◦ incident

with y, therefore it switches between the two roundabouts of H∗◦ incident with y.

We claim that the unique edge (of E(H) = E(H∗)) in supp(f ) ∩ supp(h) incident with x is the edge

corresponding to y. To see this, note first that supp(fi) avoids all edges incident with x by (B), and so

it remains to check our claim for the part of f and h arising as lifts of the unit flows we sent along Pf

and Ph. Since Pf stays within a roundabout of H◦ except precisely at y1 and y3, by the definition of a

lift we deduce that the only edges in supp(f ) incident with x are the edges corresponding to y1 and y3.

Since Ph contains exactly one of these vertices y, we deduce that supp(h) contains the corresponding

edge, but does not contain the other edge in supp(f ) incident with x. This proves our claim.

Finally, no edge that is not incident with x can lie in |supp(f ) ∩ supp(h)| by properties (A)-(C):

these properties were designed exactly so as to prevent further intersections.

Thus, in the uniquely absorbing case, it only remains to prove that we can indeed choose vertices

xj, flows fj, and paths Pj with properties (A), (B), and (C) above.

For this, recall that the length of the circumference of  is 1, and let Mj, 0 ≤ j < 4 denote the

meridian of  whose width coordinate is j∕4. Let S be the set of roundabouts O that contain an edge

e with w(𝜏(e)) ≥ 1∕8. As the set S is finite, we may let b > 0 be the least vertical coordinate in the

set
⋃

O∈S 𝜏(O), where 𝜏[O] ∶=
⋃

e∈E(O) 𝜏(e) comprises the squares of the edges of O. For each j, pick

hj < min(b, 1∕16). In addition, we choose hj even smaller, if needed, to ensure that if x is a vertex such

that 𝜏(x) meets Mj below height hj, then w(𝜏(x)) < 1∕8; this is possible because there are only finitely

many edges e with w(𝜏(e)) greater than any fixed constant since  has finite area, and any horizontal

line segment meets 𝜏(x) in at most three squares by (V) and the fact that G⋄ is 4-regular.

Let
⌈
hjMj

⌉
denote the subinterval of Mj with height coordinates ranging between zero and hj, and⌊

hjMj
⌋

the subinterval of Mj with height coordinates ranging between hj and 1.

It is proved in [5, Theorem 4.1 (v)] that almost every meridian with respect to Lebesgue measure

meets only finitely many squares of the tiling lying above any fixed height. We may assume that our

Mj, 0 ≤ j < 4, all have this property, for otherwise we can achieve it by rotating . Therefore, for

every j < 4, there is a lowest square 𝜏(ej) meeting
⌈
hjMj

⌉
such that the roundabout Oj of G◦ contain-

ing the edge ej also contains an edge gj meeting
⌊
hjMj

⌋
(Figure 4); this is true because

⌊
hjMj

⌋
only

meets finitely many squares of positive area, and so there are finitely many roundabouts to choose

from. There is at least one to choose from: a roundabout whose image contains the point of Mj at

height hj.

Let xj denote the endvertex of ej whose height coordinate is lower, and note that 𝜏(xj) meets Mj. Let

M′
j be a meridian meeting 𝜏(ej) (and in particular 𝜏(xj)) close enough to Mj, but distinct from Mj, that

the rectangle
⌈

MjxjM′
j

⌉
bounded by Mj, 𝜏(xj),M′

j and the bottom circle of , meets the 𝜏 image of no

roundabout meeting
⌊
hjMj

⌋
; such a M′

j exists because, by the choice of ej,Oj, no roundabout meeting⌊hjMj⌋ has an edge e such that 𝜏(e) meets Mj below 𝜏(xj), or we would have chosen e instead of ej.

As we can choose M′
j as close to Mj as we wish, we may assume that 𝑑(Mj,M′

j ) < 1∕16, which

will be useful later.

12In the example of Figure 3, we have y = y3. If we had lifted f ′ to H∗◦ and h′ to H◦ instead, then we would have had y = y2. If

we had chosen a Pf that uses the other y1-y3 path of x◦, then we would have had y = y4.
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M j
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M j́
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FIGURE 4 The choice of xj, fj and Pj

Let fj be the flow from xj that lives in
⌈

MjxjM′
j

⌉
, as defined in Section 5.2. Recall that fj must have

finite energy. We claim that

If e ∈ supp(fj), then 𝜏(e) is contained in the open vertical strip of radius 1∕8 centered at Mj. (4)

Indeed, by the definition of fj, if e ∈ supp(fj), then 𝜏(e) intersects the interior of
⌈

MjxjM′
j

⌉
. Then 𝜏(e)

cannot have a point at height higher than hj, which we recall is less than 1∕16, because it would have

to intersect the interior of 𝜏(ej) in that case, contradicting (III). Thus the height of 𝜏(e) is at most 1∕16,

and being a square, so is its width. Together with our assumption that 𝑑(Mj,M′
j ) < 1∕16, this proves

our claim.

Note that (4), combined with the choice of the Mj, immediately implies that supp(fk)∩supp(fj) = ∅
for k ≠ j; in fact, it even implies the stronger statement of (A), because by (VI) if edges e, f lie in a

common roundabout then 𝜏(e), 𝜏(f ) must meet a common meridian.

It remains to construct the paths Pj: we let Pj start with the xj-gj path in Oj containing ej, and

continue with the gj-o path consisting of all the edges whose 𝜏-image meets Mj above 𝜏(gj). Recall

that there are only finitely many such squares as we remarked above. The fact that the edges whose

𝜏-image meets Mj above 𝜏(gj) form a gj-o path follows from (V) and the fact that 𝜏(o) is the top circle

of . In fact, by the above argument, we can even assume that Mj does not contain a boundary of any

square 𝜏(e), and so Mj uniquely determines that gj-o path. Note that by construction,

every edge of Pj is in a roundabout O such that 𝜏[O] meets Mj. (5)

To see that (B) is satisfied, note that if O is any roundabout containing an edge in the support of

fj, then O cannot contain any edge in any of the Pk. This is true for k = j by the definition of M′
j (see

Figure 4). For k ≠ j, if e is in the support of fj then 𝜏(e) cannot have a point at height higher than hj.

As we chose hj < b, all the other edges e′ in the roundabout containing e have w(𝜏(e′)) < 1∕8. Thus

(B) follows from (4) and (5).
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Finally, we can prove (C) by a similar argument, now using the fact that w(𝜏(xj)) < 1∕8 by the

second part of our definition of hj, and the fact that the roundabout containing the first edge ej of Pj

cannot have any squares of side length 1∕8 or greater, and therefore 𝜏[O] cannot intersect Mk for any

k ≠ j.
Thus all three desired properties (A)-(C) are satisfied, and as discussed above this completes the

case where G⋄ is uniquely absorbing.

Suppose now G⋄ is not uniquely absorbing. Then for some finite subgraph G0 of G⋄, we have at

least two absorbing components D1,D2 in R2 ⧵G0. By elementary topological arguments, G0 contains

a cycle C such that both the interior I and the exterior O of C contain transient subgraphs of G⋄, namely

one of its face boundaries.

If any of these subgraphs I,O is uniquely absorbing, then we can repeat the above arguments to

that subgraph to obtain the two desired flows.

Hence it remains to consider the case where there is a cycle CI in I and a cycle CO in O that further

separate each of I,O into two transient sides. In fact, we can iterate this argument as often as we like, to

obtain many distinct transient subgraphs separated from any given cycle. Let us iterate it often enough

to obtain four disjoint cycles Cj, 1 ≤ j ≤ 4, and inside each Cj a cycle Dj such that the interior of Dj is

transient and no roundabout of G◦ meets any two of these eight cycles. We remark that the Dj can be

chosen internally disjoint even if some or all of the Cj are concentric.

We now apply Theorem 2.3 to each of the four interior sides of the Dj to obtain four flows of finite

energy fj from vertices xj, such that the support of fj is contained in Dj. We can then combine those

flows pairwise in a way similar to the uniquely absorbing case to obtain the two desired flows f , h: we

can let o be an arbitrary vertex outside all Cj, pick paths Pj from xj to o, and again consider a graph

H obtained from G by contracting the vertices corresponding to all roundabouts meeting the Pj except

for the first one. We then construct f ′, h′, and from them f , h, as indicated in Figure 3. The fact that| supp(f ) ∩ supp(h)| = 1 follows from the same graph-theoretic arguments about the structure of G⋄,

for which we did not need the square tiling. ▪

6 HARMONIC FUNCTIONS ON PLANE GRAPHS

In this section, we use Theorem 3.1 to prove a new existence criterion for nonconstant Dirichlet har-

monic functions in planar graphs, Theorem 6.3, which is used in the proof of Theorem 1.1. Before

proving Theorem 6.3, we prove the following which may be of independent interest, and can be thought

of as a warm-up towards the harder Theorem 6.3. The reader will lose nothing by skipping directly to

Theorem 6.3.

Theorem 6.1. Let G and G∗ be locally finite 1-ended dual plane graphs. Then the following are
equivalent:

(A) G ∉ HD;
(B) G∗ ∉ HD;
(C) there are divergence free flows f and h of finite energy in G and G∗, respectively, whose supports

intersect in a single edge.

Proof. By symmetry, it suffices to show that (A) is equivalent to (C). For this, assume first that

G ∉ HD. Then by Corollary 3.3 G admits a divergence free flow f and a potential 𝜌 such that both

f and 𝜕𝜌 have finite energy and their supports intersect in a single edge. As 𝜕𝜌 satisfies Kirchhoff’s
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FIGURE 5 An embedding of the graph G in the plane. One copy of H is embedded on the outside of the triangle. The other

copy is embedded in the gray region in an analogous way (here we embed the cycle Cn+1 inside Cn)

cycle law in G, when considered as a function on the dual G∗ it satisfies Kirchhoff’s node law at every

vertex; that is, 𝜕𝜌 is a divergence free flow of G∗. Hence f and h ∶= 𝜕𝜌 satisfy (C).

For the converse, suppose (C) holds. Consider h as a function on the edges of G. We are going to

apply Observation 3.6 to G∗ to deduce that h satisfies Kirchhoff’s cycle law in G. Since G is 1-ended,

item (B) of Observation 3.6 cannot be satisfied, hence item (A) applies and says that h satisfies Kirch-

hoff’s cycle law in G. Thus by Observation 2.2 there is a potential 𝜌 in G with 𝜕𝜌 = h, and so by

Corollary 3.3 the flow f and the potential 𝜌 witness that G ∉ HD. ▪

Example 6.2. We give a simple example of a graph G such that neither the second nor the third

condition implies the first in Theorem 6.1 if we omit the assumption that G and G∗ are 1-ended. We

first construct an auxiliary graph H from the disjoint union of a family of cycles Cn, n ∈ N, where Cn

has length 2n, by gluing Cn and Cn+1 together along an edge for each n ≥ 2; we choose the two gluing

edges in Cn so that they have distance |Cn|∕2 − 1. We obtain the graph G by attaching two copies of

H at distinct vertices of a triangle T . Clearly, the graph G is in HD. In Figure 5 we will construct an

embedding of the graph G such that the second and third condition are satisfied.

To see this, we consider the embedding of G in the plane indicated in Figure 5. The dual G∗

corresponding to this embedding is a 1-way infinite path with many parallel edges; in fact the removal

of any vertex splits it into two transient subgraphs. Easily, G∗ has a Dirichlet harmonic function (see

e.g., [23, Theorem 4.20]). To see that the third condition is satisfied, we let f be a divergence free flow

in G supported on the triangle T , and let h be a flow with infinite support in G∗ that uses only one edge

of T; the latter exists because the intersection of each side of T with G∗ is transient.

The next result provides a strengthening of condition (C) of Theorem 6.1 which implies that G ∉
HD even if G has more than one end.

Theorem 6.3. Let G and G∗ be locally finite dual plane graphs such that their roundabout graphs
G◦ and G∗◦ admit divergence free flows f and h respectively, both of finite energy, the supports of
which intersect in a single edge (of E(G) = E(G∗)). Then G ∉ HD.

Proof. Since divergence free flows satisfy Kirchhoff’s node law at finite vertex-sets, the restriction

of the flow h of G∗◦ to the edges of G∗ is a divergence free flow in G∗. We denote that flow by hG∗ .

We distinguish two cases.
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D2

D1

C b

FIGURE 6 The bond b in G∗, drawn gray, separates the components D1 and D2. The corresponding cycle C in G, drawn

thick, separates two transient subgraphs associated to the components D1 and D2

Case 1: the flow hG∗ considered as a function on the edges of G satisfies Kirchhoff’s cycle law
in G.

Then hG∗ = 𝜕𝜌 for some potential 𝜌 on G by Observation 2.2. As above, the restriction of f to the

edges of G is a divergence free flow fG in that graph. Then fG and the potential 𝜌 of G witness that

G ∉ HD by Corollary 3.3.

Having dealt with Case 1, by Observation 3.6 (applied to G∗) it remains to consider the following.

Case 2: there is a finite cut c of G∗ such that hG∗ witnesses that at least two components of
G∗ − c are transient.
We start with a slightly technical argument that essentially shows that it suffices to consider the case

that the cut c is a bond. Let D̃1 and D̃2 be components of G∗ − c such that hG∗ witnesses that they are

transient. Let b be a minimal cut contained in the cut c that separates some vertex of D̃1 from some

vertex in D̃2. Let Di be the component of G∗ − b including D̃i (for i = 1, 2). By setting hG∗ equal to

zero at components of G∗ − c different from D̃1 and D̃2, and by multiplying all its values in D̃1 by the

same constant if necessary, we may assume and we do assume that hG∗ witnesses that D1 and D2 are

transient.

Having finished this slightly technical part, we conclude that the bond b considered as an edge set

of G is the set of edges of a cycle C, such that D1 and D2 lie on different sides of C by Lemma 2.1, see

Figure 6.

Our plan is to show that the two subgraphs G1,G2 of G in either side of C—defined more formally

below—are transient, and apply Corollary 3.4 to deduce that G ∉ HD. Since we know that D1,D2 are

transient subgraphs of G∗, we would like to pass this information to the dual G to deduce that G1,G2

are transient too. The tool we have is Corollary 4.5, but there are two difficulties in applying it: firstly,

we need D1,D2 to be roundabout-transient rather than just transient to apply this tool. Secondly, Di is

not quite the dual of Gi, as the dual of a subgraph is not quite a subgraph of the dual.

To overcome the first difficulty, recall that every cut of G∗ is a cut of G∗◦ by the definitions, and

so we can think of b as a cut of G∗◦. Recall moreover that hG∗ was obtained from h by restriction. But

since hG∗ witnesses that both components D1,D2 of G∗ −b are transient, it follows from the definitions

that h witnesses that both components D′
1
,D′

2
of G∗◦ − b are transient. In other words, D1,D2 are both

roundabout-transient. (Indeed, D′
i is almost equal to the roundabout graph D◦

i of Di; that is, they agree

except at the finitely many roundabouts that contain endvertices of the bond b. However, changing

finitely many vertices does not affect transience.13) Hence their duals are transient by Corollary 4.5.

It remains to overcome the second difficulty, namely to explain the relationship between D∗
i and

Gi, where we define G1 to be the subgraph of G spanned by all vertices lying on the cycle C and its

inside, and we define G2 to be the subgraph of G spanned by all vertices lying on the cycle C and its

13Formally, we can argue similarly, as in the “second difficulty” explained below.
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outside. Let G′
i be the graph obtained from Gi by contracting C into a single vertex (we may create

parallel edges by this contraction, but this is ok).

By the definition of the dual of a plane graph, deleting an edge in the primal corresponds to contract-

ing the same edge in the dual, and vice-versa [21]. This is still true when the deleted edges disconnect

the graph into two components C1,C2; in this case, the corresponding contractions in the dual create

a cutvertex v, disconnecting it into two components C′
1
,C′

2
and the dual of each Ci coincides with the

graph spanned by C′
1

and v. Applying this fact in our situation, we observe that D∗
i coincides with G′

i ,

because D1 ∪D2 is obtained from G∗ by deleting the edges in b, and so the dual of D1 ∪D2 is the graph

obtained from G by contracting the edges in C.

To summarize, we have proved that G′
1
,G′

2
are transient. Hence so are the subgraphs G′′

1
,G′′

2
of

G obtained by deleting the contracted vertex from each of G′
1
,G′

2
(in other words, the subgraphs of

G lying in either side of C). Applying Corollary 3.4 to these subgraphs, we deduce that G ∉ HD (to

be more precise, we apply Corollary 3.4 to G′′
1
,G2(= G′′

2
∪ C) to make sure these subgraphs define a

cut of G, that is, they bipartition V(G), but as transience is preserved by finite modifications, this is

straightforward). ▪

7 PROOF OF THE MAIN RESULT

We can now prove Theorem 1.1.

Proof. We have already collected enough tools for the case where G∗ is locally finite too: in this

case, we can apply Lemma 5.1 to deduce that for some graph H obtained from G by contracting a

finite connected subgraph, there are divergence free flows f and h in H◦,H∗◦ respectively intersecting

at a single edge. Plugging this into Theorem 6.3 we deduce that H ∉ HD. Since H differs from G in

finitely many vertices and edges, we easily obtain—for example, using Theorem 3.1—that G ∉ HD
as claimed.

Thus it remains to consider the case where G∗ is not locally finite, or in other words, where G has

faces bounded by infinitely many edges. We will reduce this case to the above, by constructing a

supergraph T of G with locally finite dual T∗ such that G ∈ HD if and only if T ∈ HD.

For this, let us first construct a supergraph G′ of G obtained by adding edges in order to split every

infinite face of G into finite faces in such a way that each vertex of G receives at most 2 new edges per

incident face (any finite number would do in place of 2). This is easy to do recursively by enumerating

the vertices of G that lie on an infinite face, and in each step i adding a finite set of edges Ci, disjoint

from all Cj, j < i, that puts the next available vertex in the enumeration on a finite face boundary. As

V(G) is countable, so is the set of newly added edges. Fix an enumeration (en)n∈N of the set of newly

added edges, and subdivide en by 2n new vertices. Let T denote the resulting graph.

Note that T is locally finite, and all its face boundaries are finite, hence T∗ is locally finite. Its

roundabout graph T◦ has a subgraph T ′ which can be obtained from G◦ by subdividing each edge

at most twice: we obtain T ′ by deleting from T◦ the roundabouts corresponding to the vertices in

V(T) ⧵ V(G); the subdivisions are due to the newly added edges en. By Theorem 2.3, T◦ is transient

since G◦ is. As T∗ is locally finite, we can prove that T ∉ HD by the arguments of the first paragraph

of this proof.

We now claim that T ∉ HD implies the desired G ∉ HD. Indeed, this follows from Corollary 1.2

of [9], which states that if a connected graph G is obtained from a connected graph T by deleting a set

of edges of finite total conductance, then T ∈ HD if and only if G ∈ HD. In our setup all edges have

conductance 1, but we can replace each path of length 2n that we attached to G to obtain T by a single
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edge of conductance 1∕2n; by the classical series law (see e.g., [17, Section 2.3]), this modification

results in a network T ′ that is “equivalent” to T , in particular, T ′ ∈ HD if and only if T ∈ HD.

As the sum of these conductances is finite, the aforementioned result applies, and we deduce that

G ∉ HD. ▪

8 NONAMENABLE GRAPHS

A vertex is in the neighborhood 𝜕X of some vertex set X if it is not in X but shares an edge with a vertex

in X.14 An infinite graph G is nonamenable if there is a constant 𝛾 > 0 such that for every finite vertex

set S of G we have |𝜕S| ≥ 𝛾 ⋅ |S|. For a nonempty vertex-set X, we let ch(X) = |𝜕X||X| , and define the the

Cheeger-constant ch(G) of a graph G to be the infinimum of ch(X) ranging over all finite nonempty

vertex-sets.

Lemma 8.1. If a (simple) locally finite plane graph G is nonamenable, then so is its roundabout
graph G◦.

Proof. Let X be a finite vertex set of G◦. Let X be the set of those vertices of G whose roundabouts

contain vertices of X.

We need to show that |𝜕X| ≥ 𝛾|X| for some 𝛾 > 0. The next claim will imply this under the

assumption that X is much larger than X:

Less than 6 ⋅ |X| vertices of X have all their neighbors in X. (6)

To prove this, let Y be the set of those vertices of X with all their neighbors in X. If v ∈ Y , then the

unique vertex of G◦ that shares an edge of G with v lies in X. Thus |Y| ≤ 2 ⋅ |E(X)|, where E(X)
denotes the set of edges of G with both end-vertices in X. As the subgraph (X,E(X)) of G spanned by

X is planar, it has average degree less than 6, and so |E(X)| < 3 ⋅ |X|. Thus |Y| < 6 ⋅ |X| as claimed.

Now if |X| ≥ 12 ⋅ |X|, then by (6), at least |X|∕2 vertices of X have a neighbor outside X.

As G◦ has maximum degree three, 𝜕X then has size at least |X|∕6, which fulfills our aim with

𝛾 = 1∕6.

Hence it suffices to consider sets X with |X| < 12⋅|X|, and we will assume this is true from now on.

It is reasonable to expect that nonamenability is most difficult to prove when the set X is a union

of roundabouts. With this intuition in mind, it is natural to consider the following set. Let X be the set

of those vertices of X, the whole roundabout of which is in X. Let 𝜖 be the proportion of the remaining

vertices of X, that is, 𝜖 ∶= (|X| − |X|)∕|X|. Our next claim is

|𝜕X| > 𝜖

12
|X|. (7)

To see this, note that the roundabout x◦ of each x ∈ X ⧵ X contains a distinct vertex of 𝜕X, namely, a

vertex contained in x◦ but not in X, hence |𝜕X| ≥ |X ⧵ X| = 𝜖 ⋅ |X|. Thus the claim follows from our

assumption that |X| < 12 ⋅ |X|.
14With a slight abuse of notation we use the operator 𝜕 to denote two unrelated concepts: the difference operator of a potential,

as well as the set of neighbors of vertex-sets in the context of nonamenability.



CARMESIN AND GEORGAKOPOULOS 21

If 𝜖 is bounded below, then (7) says that G◦ is nonamenable. Our next claim will help deal with the

case where 𝜖 is small.

|𝜕X| ≥ K(𝜖) ⋅ |X|, where K(𝜖) = ch(G)⋅(1−𝜖)−𝜖
12

. (8)

Indeed, a lower bound for the neighborhood 𝜕X of X is the cardinality of the set N of roundabouts

containing vertices of 𝜕X. Clearly, a vertex x of the neighborhood 𝜕X of X is in N unless it is in X.

As x cannot be in X we can strengthen this statement slightly by replacing X by X ⧵ X. Putting these

observations together, we have

|𝜕X| ≥ |N| ≥ |𝜕X| − |X ⧵ X|
≥ ch(G) ⋅ |X| − 𝜖|X|.

Note that |X| = (1− 𝜖) ⋅ |X| by the definition of 𝜖. Since we are assuming that |X| > |X|∕12, we obtain

the desired |𝜕X| ≥ ch(G)(1−𝜖)−𝜖
12

⋅ |X|.
Combining (8) with (7) it is straightforward to check that |𝜕X| ≥ 𝛾|X| for some 𝛾 > 0 depending

on ch(G). Thus G◦ is nonamenable. ▪

We can now prove one of the main results mentioned in the introduction.

Proof of Theorem 1.4. If G is nonamenable, then so is G◦ by Lemma 8.1. Every nonamenable locally

finite graph is transient as it contains a subtree with positive Cheeger-constant by a result of Benjamini

and Schramm [6], and applying this fact to G◦ proves the statement. ▪

Remark 8.2. The nonamenability condition in Theorem 1.4 cannot be relaxed into the weaker

anchored vertex expansion. Here we say that G has anchored vertex expansion, if there is a constant

𝛾 > 0 such that for every finite connected vertex set S of G containing a fixed vertex o, we have|𝜕S| ≥ 𝛾 ⋅ |S|. (That is, we modify the definition of nonamenability by just imposing the condition

o ∈ S and connectedness.) This is shown by the following example.

Example 8.3. We construct a plane tree with nonzero anchored vertex expansion whose roundabout

graph has zero anchored vertex expansion. We start with a ray whose vertices are labeled by the non-

negative integers. For each squared number n2, we attach a large tree at the vertex with that label. More

precisely, at the vertex labeled n2 we attach (n + 1)2 new neighbors, and at each of them we attach a

full binary tree.

We embed this graph in the plane as indicated in Figure 7. The only property of this embedding

we are using is that there is a face whose boundary contains the original ray as a subpath.

It is straightforward to check that this tree T has nonzero anchored vertex expansion but T◦ contains

facial paths of length n2 that have only 2n neighbors. Hence the anchored vertex expansion of T◦ is

zero.

9 DEGREE-WEIGHTED ENERGY

In this section we prove Corollary 1.3 already mentioned in the introduction. We define the

degree-weighted energy 𝑑eg(f ) of a flow f in a graph G to be
∑

v∈V(G) 𝑑eg(v)
(∑

e∋v |f (e)|)2
.
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0 1 4 n2

(n + 1) 2

FIGURE 7 A plane tree with nonzero anchored vertex expansion whose roundabout graph has zero anchored vertex expansion

Corollary 9.1. Let G be a locally finite planar graph that admits a flow f from some vertex v such
that 𝑑eg(f ) is finite. Then G admits a nonconstant Dirichlet harmonic function.

Proof. By Theorem 1.1, it suffices to show that G◦ is transient. Towards this aim, we extend the flow

f on G to a flow g on G◦ from some vertex v′ in the roundabout of v of finite (Dirichlet) energy by

assigning values to the edges of the roundabouts.

For a vertex z of G◦, we denote by ez the unique edge of z not in any roundabout. At each roundabout

w◦ of a vertex w ≠ v of G, we have to solve a finite Dirichlet-problem: we want to find a function gw
assigning values to the edges of w◦ such that at each vertex z ∈ w◦, the superimposition of gw with f
satisfies Kirchhoff’s node law at all vertices of w◦. As f satisfies Kirchhoff’s node law at w, it is easy

to see that such a gw always exists, and it is unique up to adding a multiple of the constant flow around

w◦. Similarly, we can define a function gv on the edges of v◦ such that the superimposition of gv with

f satisfies Kirchhoff’s node law at all vertices of v◦ except at a single vertex v′ of v◦, since f does not

satisfy Kirchhoff’s node law at v.

We may assume without loss of generality that these gw satisfy

|gw(k)| ≤ ∑
e∋w |f (e)| for every edge k of w◦, (9)

since otherwise we can add a constant flow of intensity
∑

e∋w |f (e)| around w◦ to decrease all values

of gw; indeed, this is possible because |gw(k) − gw(k′)| ≤ ∑
e∋w |f (e)| holds for every two edges k, k′

of w◦ by the definition of gw.

Superimposing f with all the gx’s defines a flow g from v′ on G◦. By (9), the energy of g is bounded,

up to a constant depending on gv, by (f ) +
∑

w∈V(G) 𝑑eg(w)
(∑

e∋w |f (e)|)2
, hence it is finite by our

assumption (where we also used the fact that 𝑑eg(f ) < ∞ implies (f ) < ∞ by the definitions). Thus

G◦ is transient by Theorem 2.3. ▪

Given a locally finite graph G, for an edge e = vw we let r(e) = 𝑑eg(v)2 + 𝑑eg(w)2. We say

that G is super transient if there is a flow from some vertex with finite r-weighted energy, that is,∑
e∈E(G) f (e)2r(e) < ∞. Note that super transience implies transience. Moreover, G is super transient

if and only if the graph G[r], obtained from G by replacing each edge e with a path of length r(e), is

transient. The following implies Corollary 1.3.

Corollary 9.2. Every super transient planar locally finite graph G has a nonconstant Dirichlet
harmonic function.

Proof. By the Cauchy-Schwarz inequality,
(∑

e∋v |f (e)|)2
≤ 𝑑eg(v)

∑
e∋v f (e)2. Thus this follows

from Corollary 9.1. ▪

We remark that if we omit the assumption of planarity, then Corollaries 9.1 and 9.2 become false

as the example of the 3-dimensional grid Z
3 shows. The next example shows that Corollary 9.1 is tight

in one more sense.
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Example 9.3. We construct a locally finite planar graph G ∈ HD admitting a flow f from some

vertex such that for every 𝜖 > 0, we have

𝜖(f ) =
∑

v∈V(G)
𝑑eg(v)(1−𝜖)

(∑
e∋v

|f (e)|)2

< ∞.

In this construction, we rely on the fact that the 2-dimensional grid Z
2 contains a subdivision T of

the infinite binary tree T2 such that edges at level n are subdivided at most 2n-times. It is straightforward

to construct this subdivision T recursively and we leave the details to the reader. We obtain G from Z
2

by contracting for each edge e of T all but one of its subdivision edges.

By construction, both G and its dual G∗ are 1-ended. Moreover, G∗ is obtained from Z
2 by deleting

edges (again, we are using the fact that deleting an edge in a plane graph corresponds to contracting

the same edge in the dual, and vice-versa [21]). Thus by Theorem 6.1, G ∈ HD.

Next, we construct f . Let S be the subtree of G consisting of those edges of T that are not contracted.

By construction, the tree S is isomorphic to T2. Let f be the flow from the root of the binary tree T2

which assigns edges at level n the value 2−n. Thus f is a flow on G with support S.

Let us estimate 𝜖(f ). A vertex v at level n of S has degree at most 20 ⋅ 2n. Thus15

𝜖(f ) ≤ 1000 ⋅
∑
n∈N

2n ⋅ 2n(1−𝜖) ⋅ 2−2n = 1000 ⋅
∑
n∈N

2−𝜖n.

Hence 𝜖(f ) is finite, completing this example.
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