
IEEE TRANSACTIONS ON CYBERNETICS 1

Elastic Differential Evolution for Automatic
Data Clustering

Jun-Xian Chen, Yue-Jiao Gong , Senior Member, IEEE, Wei-Neng Chen, Senior Member, IEEE,

Mengting Li, and Jun Zhang , Fellow, IEEE

Abstract—In many practical applications, it is crucial to per-
form automatic data clustering without knowing the number
of clusters in advance. The evolutionary computation paradigm
is good at dealing with this task, but the existing algorithms
encounter several deficiencies, such as the encoding redundancy
and the cross-dimension learning error. In this article, we propose
a novel elastic differential evolution algorithm to solve automatic
data clustering. Unlike traditional methods, the proposed algo-
rithm considers each clustering layout as a whole and adapts
the cluster number and cluster centroids inherently through the
variable-length encoding and the evolution operators. The encod-
ing scheme contains no redundancy. To enable the individuals of
different lengths to exchange information properly, we develop
a subspace crossover and a two-phase mutation operator. The
operators employ the basic method of differential evolution and,
in addition, they consider the spatial information of cluster lay-
outs to generate offspring solutions. Particularly, each dimension
of the parameter vector interacts with its correlated dimensions,
which not only adapts the cluster number but also avoids the
cross-dimension learning error. The experimental results show
that our algorithm outperforms the state-of-the-art algorithms
that it is able to identify the correct number of clusters and
obtain a good cluster validation value.

Index Terms—Clustering, differential evolution, elastic encod-
ing, subspace.

I. INTRODUCTION

DATA clustering plays a crucial role in various fields, such
as industrial informatics [1], [2]; bioinformatics [3]–[6];

and pattern recognition [7]–[9]. The task is to partition a
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dataset into different data subsets named clusters. Commonly,
data clustering is performed in an unsupervised way using
only the data distribution information. The principle is that
we need to maximize the intracluster similarity while min-
imizing the intercluster similarity. Therefore, data clustering
can be regarded as an optimization problem.

Different types of clustering algorithms were developed in
the literature, such as the partitioning methods, the agglom-
erative or divisive hierarchical clustering, the prototype-based
methods, and the density-based methods. In this article, we
focus on partitioning the clustering which organizes the data
objects into a number of exclusive clusters. The most well-
known technique in this category is the K-means clustering
algorithm [10]. Although it was proposed as early as 1979,
the algorithm is still widely used in various fields in recent
years [11], [12]. However, there are several shortcomings of
the traditional partition-based clustering algorithms such as the
K-means. First, they require a priori knowledge, namely, the
predefined number of clusters. Given a dataset, one may need
to use an analytical technique to run the algorithm repeat-
edly to identify the most suitable K value to improve the
performance. Second, these algorithms are typically the local
search algorithms which provide only locally optimal solu-
tions. The results would be highly sensitive to the initial
partitions of the data objects.

From the perspective of optimization, clustering is shown
to be a nondeterministic polynomial NP-hard problem [13]
and, therefore, the approximation algorithms, such as the
evolutionary computation (EC) algorithms become the poten-
tial solvers. Many attempts have been devoted to this area.
For example, Krishna and Murty [14] proposed a genetic
K-means algorithm (GKA) with a specified cluster number
for data clustering and replaced the crossover operator in
the genetic algorithm with one step of K-means. In [15], a
faster GKA (FGKA) was put forward by Lu et al. Merz and
Zell [16] adopted some memetic algorithms for clustering
gene expression data. In these algorithms, the cluster number
is often regarded as an input, due to the fixed-length encoding
scheme of EC algorithms. However, when dealing with
high-dimensional and big-data problems, it becomes a tedious
or even impossible task to predefine the optimal number of
clusters. Therefore, we need an automatic way to adjust the
number of clusters during the optimization process.

Recently, several techniques have been developed to address
this issue. Das et al. [17] adopted a fixed-length structure
to encode the coordinates of the cluster centroids, together
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Fig. 1. Illustrations of the cross-dimension learning error. (a) Individuals
exchange information in the wrong way (the individual X1 wrongly takes the
index-based dimensions as learning direction). (b) Invalid learning due to the
switch mechanism (the activated centroid learns invalid information from the
inactivated one).

with a zero-one switch vector to represent the state of each
cluster centroid. The cluster centroid is activated when its
corresponding switch value is decoded into one. Since the
switch vector is updated iteratively, the number of used clusters
is adjusted during the optimization. The work of Liu et al. [18]
follows this method, but it makes improvements in repre-
senting the activate state of the cluster centroids. The three
adaptive encoding schemes reduce the number of bits in the
chromosome to label the ON/OFF state of the cluster cen-
troids. In [19], a genetic algorithm was developed to perform
the clustering task, and the algorithm found the right number
of clusters according to the average Silhouette width crite-
rion. But the encoding scheme remained the constant-length
parameter vector. Hruschka et al. [20] improved a genetic algo-
rithm to estimate the number of clusters, and the algorithm
performed well in gene expression data. Although it is able
to adjust the cluster numbers, this kind of algorithm endures
two deficiencies. First, the algorithms encode and optimize the
maximum number of cluster centroids, regardless of whether
they are activated or not. The search space is large and full
of redundancy. The increase of problem dimensionality could
lower the performance of the EC algorithms. Second, to the
best of our knowledge, all existing EC-based clustering algo-
rithms encounter the problem of “cross-dimension learning
error.” Cross-dimension learning error occurs when the indi-
viduals in the population interact with each other (e.g., the
crossover of the GA and DE algorithms, or when a particle
learns information from the others in the PSO). It has two situ-
ations, which are illustrated in Fig. 1 and described as follows.

First, the individuals in the traditional EC algorithms
exchange information according to the dimension indices.
When performing data clustering, this mechanism neglects the
spatial relationship between the cluster centroids that a clus-
ter centroid can exchange/learn the information from a totally
unrelated cluster centroid. Fig. 1(a) shows a normal situation
that two parameter vectors exchange the incorrect information:
according to the dimension indices (cluster labels), the cen-
troid 1 of X1 interacts with the centroid 1 of X2. However,

Fig. 2. Elastic encoding scheme with variable lengths.

according to the spatial layout, the correct interaction should
be between the centroid 1 of X1 and the centroid 3 of X2
because they correlate with each other.

Second, for automatic data clustering, many EC algorithms
with a fixed-length structure encode the coordinates of all pos-
sible cluster centroids, while using a switch vector to represent
the state (activated or not) of each cluster centroid. In these
cases, the activated centroid may learn invalid information
from the inactivated one, as shown in Fig. 1(b). However, the
coordinates of inactivated centroids could be obsolete, which
would provide wrong guidance. Because of the above cross-
dimension learning error, the EC-based clustering algorithms
become inefficient or vulnerable to premature convergence.

To summarize, the state-of-the-art clustering algorithms
have two remaining problems to solve. First, the existing
differential evolution algorithms use a fixed-length encoding
scheme for automatic data clustering, but apply some auxiliary
space to represent the activate state of the cluster centroids.
The search space is redundant, which reduces clustering effi-
ciency. Second, the existing evolutionary clustering algorithms
commonly suffer cross-dimension learning error when per-
forming crossover or individual learning. The existence of
the cross-dimension learning error disorders the interactions
between individuals and, hence, reduces the performance of a
population-based optimization approach. To address the prob-
lems, we propose a novel elastic differential evolutionary (E-
DE) algorithm in this article. The novelties and contributions
of the E-DE algorithm are summarized as follows.

1) E-DE adopts an elastic encoding scheme where the
population consists of variable-length parameter vec-
tors, each denotes a different number of clusters. As
illustrated in Fig. 2, the encoding scheme contains no
redundancy: each vector possesses only the coordinates
of the cluster centroids that take effect in the clus-
tering of data. E-DE considers each clustering layout
(number and positions of clusters) as a whole to per-
form optimization, and it allows the parameter vector
to change its cluster number flexibly during the search
process.

2) Based on our new elastic encoding scheme, the muta-
tion and crossover operators of DE are sophisticatedly
redefined to fit the requirements arising from the vari-
ation of parameter vector length. The new mutation
adapts the cluster number and centroids according to
the differential information of individuals in the cur-
rent population. Meanwhile, we develop a subspace
crossover that takes the spatial layout of clusters into
consideration, letting each dimension of one vector learn
from the correlated dimensions of the other vectors. To
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the best of our knowledge, this article makes the first
attempt to eliminate the cross-dimension learning error
in evolutionary clustering algorithms.

3) Unlike some other peer algorithms that introduce many
complex auxiliary techniques, we keep our algorithm
conceptually simple. The framework of E-DE is identical
to the classical DE algorithm, which iteratively performs
the crossover, mutation, and selection steps to refine the
population. The adjustment and optimization of cluster
number and coordinates is realized through this process
in an inherent way. Our algorithm is lightweight and
computationally efficient.

4) We compare the performance of our algorithm with sev-
eral state-of-the-art clustering algorithms on synthetic
and real-life datasets of various characteristics. The
experimental results indicate that the E-DE algorithm
outperforms the others.

The remainder of this article is organized as follows.
Section II discusses the traditional and state-of-the-art cluster-
ing algorithms and points out some drawbacks of the remaining
methods. In Section III, we describe the elastic differential
evolution algorithm in detail. Section IV shows the experiments
and results. The conclusions are demonstrated in Section V.

II. PRELIMINARIES

A. Related Work

The data clustering problem, which aims at partitioning the
dataset into different clusters, is an NP-hard problem [13]. The
evolutionary algorithms (EAs) are commonly known as the
powerful optimizers for the NP-hard problems, so they have
received wide attention for data clustering. There are some
related survey papers on this topic [21]–[23]. In this section,
we review the evolutionary clustering algorithms according to
two categories: 1) algorithms with a fixed cluster number and
2) algorithms with a variable cluster number.

1) Clustering With Fixed Number of Clusters: In this cat-
egory, the algorithms require a specified cluster number as
a priori knowledge, in order to fit the fixed-length encod-
ing scheme of EAs. Many studies made improvements on the
evolution operators to enhance the performance of clustering.

1) Single-Objective Optimization Methods: Krishna and
Murty [14] proposed a GKA for data clustering, where
the elementary step of K-means was taken to replace the
crossover step in the evolution process. Lu et al. [15]
improved the GKA in terms of the selection and muta-
tion operators and made it run faster. Merz and Zell [16]
adopted the memetic algorithms with two mutation and
recombination operators for clustering gene expression
data. These methods enable the algorithm to quickly
converge to a near-optimal solution. Xiang et al. [24]
employed the DE/best/1 mutation strategy to develop a
dynamic shuffled differential EA (SDE) to improve the
convergence performance of data clustering. The SDE
algorithm divides the initial population into two sub-
populations to evolve and combine the best results to
form the best optimum at the end of optimization. More
recently, a density-based NK hybrid genetic algorithm

was developed in [25]. To determine the number of
clusters, the algorithm first generates a large number of
solutions and selects the solution with the best validation
index. In 2019, Guan et al. [26] proposed a particle-
swarm-optimized density-based clustering and classifi-
cation (PODCC) algorithm, which successfully offset
the drawbacks of the well-known DBSCAN algorithm
for density clustering.

2) Multiobjective Optimization Methods: In recent years,
the evolutionary multiobjective optimization (EMO)
methods have also received attention for data clus-
tering. Some studies focus on fuzzy clustering,
such as the multiobjective genetic algorithm by
Mukhopadhyay et al. [27] and the multiobjective differ-
ential EA by Saha et al. [28]. The algorithms optimize
more than one measure for the clustering goodness
and generate a set of Pareto optimal solutions for the
subsequent operations.

2) Clustering With a Variable Number of Clusters: Because
the number of clusters can hardly be known in advance, some
efforts are made to estimate the number of clusters before
performing clustering, such as the last leap and the last major
leap methods proposed in [29]. The term “automatic cluster-
ing” commonly refers to the methods that are able to adapt
the number of clusters automatically without external spec-
ification. To fulfill this goal, different kinds of heuristic or
local search strategies are incorporated into EAs to enable the
algorithms to change the cluster number during the clustering
process.

1) Single-Objective Optimization Methods: Das et al. [17]
put forward an improved differential EA called ACDE
that adjusted the cluster number through a new indi-
vidual encoding scheme. The ACDE algorithm embeds
a zero-one switch vector in the individual represen-
tation for activating or inactivating the cluster cen-
troids. An improved ACDE version was proposed by
Tam et al. [30] using a new changing schema of
threshold values. Further, Liu et al. [18] developed
three adaptive encoding schemes that represent the
activate state of the cluster centroids more efficiently.
Arellano-Verdejo et al. [31] proposed a new hybrid
differential EA (DELA), and Tvrdik and Křivỳ [32]
combined differential evolution and K-means. They
paid more attention to the center rearrangement.
Maulik and Saha [33] proposed a modified differential
evolution for automatic fuzzy clustering, which adopted
the same individual encoding scheme like the ACDE.
In addition, the global best and local best information
are utilized to accelerate the searching process. Besides,
Chang and Zhang [34] put forward a dynamic niching
genetic algorithm for data clustering. Since the nich-
ing method is able to preserve the diversity of the
population, the algorithm is more likely to find the
correct cluster number and well-formed data structure.
Sheng et al. [35] proposed a multilocal search and
adaptive niching-based memetic algorithm (MANM) for
data clustering. Two local search strategies merge and
split clusters in the evolution process. Then, at the
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end of each iteration, an adaptive niching strategy is
applied to update the population information in the off-
spring. Furthermore, Sheng et al. [36] improved the
performance of the MANM and designed a new memetic
algorithm with adaptive multisubpopulation competition
and multiniche crowding methods. In [37], the two-
stage genetic clustering algorithm (TGCA) adopts a
variable-length encoding like the proposed E-DE algo-
rithm. Then, as the name indicated, the TGCA treats
the number of clusters and the positions of clusters
separately by a two-stage method during the evolution.
The experiments showed good performance of TGCA.
Besides, in [38], a weighted Gaussian means algo-
rithm was developed, which adopts a feature weighting
learning strategy for automatic data clustering.

2) Multiobjective Optimization Methods: The multi-
objective optimization methods are also well suited
in this category. Saha et al. [39] proposed a frame-
work of multiobjective optimization to solve the
semisupervised clustering. Four objective functions are
applied: a) the total compactness of the partition-
ing; b) the total symmetry present in the clusters;
c) the cluster connectedness; and d) the adjust rand
index. Mukhopadhyay et al. [40] put forward a fuzzy
C-medoid method for categorical data clustering using
the multiobjective genetic algorithm. In the evolution
process, the fuzzy cluster variance and cluster sep-
aration are taken as two objectives to be optimized
simultaneously. Wan et al. [41] put forward an adaptive
multiobjective memetic algorithm for spectral–spatial
fuzzy clustering. The method contains two automatic
layers and accomplishes the clustering task of remote
sensing images very well. Garza-Fabre et al. [42]
proposed an improved and more scalable evolutionary
approach to multiobjective clustering. It utilizes two
encoding schemes for better population representation,
that is, the delta locus and the delta binary encoding
schemes.

The existing clustering algorithms have the following lim-
itations. First, the algorithms with a fixed number of clusters
require prior knowledge that can hardly be known in prac-
tical applications. The EC-based automatic data clustering
algorithms relieve this problem. However, as discussed in
Section I, these algorithms endure the drawbacks of encoding
redundancy and cross-dimension learning error. Besides, many
algorithms rely on auxiliary techniques, such as niching [35]
and population competition [36] to adjust the number of clus-
ters, which increase computational complexity. To tackle the
aforementioned limitations, we proposed an elastic differential
EA for automatic data clustering. The algorithm is achieved
by a new elastic encoding scheme and the corresponding new
mutation and crossover operator under the concept of subspace
swapping.

B. Validation Indices for Clustering

For the clustering problem, the ultimate purpose of the
algorithm is to find a well-formed clustering structure for

the dataset with maximum intercluster distance and mini-
mum intracluster distance. Numerical measures are applied
to judge the performance of data clustering, which include
external indices and internal indices [43]. An external index
measures the clustering results with a reference model, like
the partition result provided by a domain expert. In contrast,
an internal index directly measures the results based on the
intrinsic characteristics of clusters, which does not refer to the
external information. There exist a large number of internal
indices for clustering validation, such as the Dunn index, CH
index, Gamma index, C-index, SIL index, DB index, CS index,
I index, and so on. Since there does not exist a “perfect”
index so far, many works were devoted to make comparisons
between different indices, such as the review work [44].

In this article, we focus on proposing an efficient automatic
clustering algorithm. The developed E-DE is generic, which
is suitable to adopt any of the above-mentioned indices in the
fitness evaluation step. In the major body of this article, we
use the DB [45] and I [46] indices that are commonly adopted
in the literature. The two indices are simple to understand,
lightweight to implement, and are validated to be efficient for
various clustering datasets. Besides, we also implement and
test the algorithms by adopting the other indices, which are
reported in the supplementary file of this article.

1) DB Index: In the DB index, each cluster centroid
corresponds to an index value Ri

Ri = max
j,j �=i

(
ei + ej

Dij

)
(1)

where ei = (1/Ni)
∑

xi∈Ci
‖xi − mi‖2 is the average error

within cluster i; Dij = ‖mi − mj‖2 is the distance between the
cluster centroids; and Ni denotes the number of data points in
cluster Ci. Then, the DB index is formulated as

DB(K) = 1

K

K∑
i=1

Ri. (2)

Since we aim at maximizing the intercluster distance and min-
imizing the intracluster distance, the smaller the DB index
value is, the better the clustering result will be.

2) I Index: The I index includes three factors that compete
with each other, which can be defined as

I(K) =
(

1

K
× P

Ek
× Dmax

)p

(3)

where K is the number of clusters; P is a constant related to
the given dataset, which is set to the number of data samples
(N); and Ek and Dmax are calculated as

Ek =
K∑

k=1

∑
xi∈Ck

‖xi − mk‖ (4)

Dmax = max
i,j=1,2,...,K

∥∥mi − mj
∥∥ (5)

where mk denotes the kth cluster centroid, xi is the ith data
sample, and Ck means the kth cluster set. Besides, the power
p > 1 controls the contrast of the I index for different cluster
configurations. The three factors in (3), namely, 1/K, P/Ek,
and Dmax, have a positive or negative correlation effect on the
I index value. Generally, the larger the I index value is, the
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better the clustering result will be. The objective of the E-DE
algorithm is to maximize the I index value in the evolution
process.

3) Others: The average intracluster and intercluster dis-
tances are commonly adopted to give the details of the
clustering results, which can be defined as

Intra_dist =
K∑

k=1

∑
xi,xj∈Ck,j>i ‖xi − xj‖2

1
2 × NCk · (

NCk − 1
) (6)

Inter_dist =
∑

i,j=1,2,...,K,j>i

∥∥mi − mj
∥∥2

1
2 × K · (K − 1)

(7)

where K is the number of clusters, Ck denotes the kth cluster,
and NCk is the number of data assigned to the cluster Ck.

Besides, the adjusted rand index (ARI) [47] is a com-
monly used external index to check clustering accuracy.
Given two partitions of a dataset of N samples, namely,
X = {X1, X2, . . . , Xr} and Y = {Y1, Y2, . . . , Ys}, the overlap
between X and Y can be summarized in a contingency table
[nij], where each entry nij denotes the number of objects in
common between Xi and Yj: nij = |Xi

⋂
Yj|. Then, the ARI is

calculated as

ARI =
∑

ij

(
nij
2

)
−

[∑
i

(ai
2

) ∑
j

(
bj
2

)]
/
(

n
2

)
1
2

[∑
i

(ai
2

) + ∑
j

(
bj
2

)]
−

[∑
i

(ai
2

) ∑
j

(
bj
2

)]
/
(

n
2

) (8)

where nij, ai, and bj are values from the contingency table.
ai represents the row sum of the contingency table while bj

denotes the column sum of the table.

III. PROPOSED ALGORITHM

In this article, we propose an E-DE algorithm to deal
with the automatic data clustering problem. Generally, the DE
framework is simple and flexible, which suits our proposed
elastic encoding and reproduction method. In addition, the
literature studies widely validate that DE exhibits powerful
performance on continuous numerical optimization as well as
real-world applications [48]–[51].

The clustering problem can be defined as follows. Suppose
that a dataset A = {x1, x2, . . . , xN} contains N unlabeled sam-
ples, while each sample is represented by a D-dimensional
feature vector, namely, xi = (xi,1, xi,2, . . . , xi,D). The clus-
tering algorithm aims at partitioning the dataset A into K
clusters that are disjoint with each other, which means that
each sample in the dataset can only be assigned to one
cluster (hard partitions). The partition result is denoted as
{Cl | l = 1, 2, . . . , K}, where the clusters have no intersection
and the union of them is equal to the dataset A. We use
λj ∈ {1, 2, . . . , K} to denote the cluster label for each sample
xj, which means that xj belongs to the cluster Cλj . Thus, the
clustering result can be represented by a cluster label vector,
that is, λ = (λ1, λ2, . . . , λN).

The proposed E-DE algorithm follows the framework of the
basic differential EA, which evolves the candidate solutions
(cluster configurations) under some criteria like the clustering
validation indices. In this article, we use the DB index and the I
index in the fitness evaluation of individuals. To automatically
adapt the number of clusters, an elastic individual encoding

Algorithm 1 E-DE for Automatic Data Clustering
1: Randomly generate an initial population with np individuals, each has a

variable cluster number. (See SectionIII-B)
2: Evaluate the fitness of the individuals in the initial population.
3: Repeat the following steps for each individual i = 1, 2, ..., np until the

maximum evaluation times is met:
3.1 Mutation (See Section III-C)

3.1.1 Randomly select three individuals Xr1, Xr2 and Xr3;
3.1.2 Determine the number of clusters Kv in the mutant vector

according to Eq. (8);
3.1.3 Combine the three individuals to produce the initial mutant

vector Vi;
3.1.4 Fine-tune the cluster centroids in Vi by the Gaussian location

mutation in Eq. (9) to obtain the ultimate mutant vector Vi.
3.2 Crossover (See Section III-D)

3.2.1 Determine the length of crossover by the crossover rate CR
according to Eq. (10);

3.2.2 Retrieve the sequence of cluster centroids in Vi to determine
the subspace of crossover;

3.2.3 Exchange partial cluster layouts between Vi and the individual
Xi by Eq. (12) to generate the trial vector Ui.

3.3 Selection (See Section III-E)
3.3.1 Assign the data objects to the nearest centroids in the trial

vector Ui;
3.3.2 Evaluate the quality of clustering by the DB or I index;
3.3.3 Preserve Ui or Xi to the next generation according to Eq. (13).

4: Output the partition represented by the best individual.

scheme is designed and employed. To meet the variable-
length condition in our encoding scheme, we put forward the
new crossover and mutation operators which are defined on
the spatial layout represented by the individuals. These new
reproduction operators also avoid the cross-dimension learning
error. After a number of iterations, the algorithm terminates
and outputs the global best individual. The overall process of
the E-DE algorithm is shown in Algorithm 1. For public use,
we provide the source code of E-DE online, which can be
downloaded at [52]. The following sections describe different
components of E-DE in detail.

A. Elastic Encoding Scheme

The number of clusters influences the clustering
performance significantly in considering various types
of cluster validation measures. However, how to identify the
optimal cluster number remains a challenging issue currently.
To fulfill this goal, in the EC-based algorithms, it would be
promising to let different individuals possess different cluster
numbers. Then, with the evolution of population, because of
the survival of fitness effect, the individual with the optimal
cluster number would dominate the others and survive to
the last. In this way, the optimal cluster number is found.
The traditional fixed-length encoding scheme is rigid, while
the method of embedding a cluster switch vector works
but possesses deficiencies. We adopt an elastic encoding
scheme: the population consists of variable-length parameter
vectors, each denoting a cluster configuration with a different
number of clusters. Illustrated in Fig. 2, unlike the switch
mechanism that contains some redundant cluster centroids in
the parameter vector [17], [18], our individual possesses only
the coordinates of the cluster centroids that take effect in the
clustering of data. During the evolution process, the cluster
number in the individuals X1, X2, and X3 can be automatically
changed, along with the length of the parameter vectors.
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B. Population Initialization

Initialization of the population is to generate np individuals,
each with a specified number of clusters and the corresponding
cluster centroids. For i = 1, 2, . . . , np, we first use a random
number generator to determine the cluster number Ki, where Ki

should comply with the range [2, 20]. Afterward, Ki cluster
centroids are randomly selected from the origin dataset, which
constitutes the parameter vector of individual i. The length of
each parameter vector is D×Ki, where D represents the num-
ber of features in the dataset. For example, it can be observed
from Fig. 2 that for the dataset of three features, the first indi-
vidual has four clusters (K1 = 4) and, hence, its parameter
vector contains 12 dimensions. After randomly selecting the
cluster centroids, the first individual becomes (7.8, 2.5, 1.3,
7.5, 2.4, 1.4, 7.2, 2.6, 1.5, 7.6, 2.3, 1.4).

C. Mutation

The traditional DE mutation randomly selects three individ-
uals and then performs some arithmetic combination operation
on them, in order to generate a mutant vector. The premise of
the method is that the individuals, or parameter vectors, in
the population possess the same number of dimensions. In the
proposed E-DE, since we develop the variable-length encod-
ing for different individuals, the traditional DE mutation is no
longer suitable. Therefore, we design a new mutation operator,
which consists of two phases described as follows.

1) Phase One: In the first phase, three individuals Xr1, Xr2,
and Xr3 are randomly selected from the current population.
The number of clusters in the mutant vector Vi is calculated as

Kv = Kr1 + F × (Kr2 − Kr3) (9)

where Ki represents the cluster number of the ith individual,
F is the scaling factor, and Kv should be a round number.
Note that (8) is similar to the original DE/rand/1 mutation: the
random selection of the base vector enhances the global explo-
ration of the algorithm, while the differential length-based
perturbation realizes the contour match effect when searching
the optimum. This way, the cluster number would be optimized
and converged eventually. Besides, we restrict the cluster num-
ber in the range of [2, 20]. If Kv is smaller than 2, we set
Kv = 2; otherwise, if Kv is larger than 20, we set Kv = 20.
After deciding the number of clusters in the mutant vector,
the cluster centroids are determined according to the following
three situations.

1) Kv > Kr1, which means that the mutant vector Vi has
more clusters than the individual Xr1: the cluster cen-
troids of individual Xr1 are used as the fundamental
structure to construct the mutant vector Vi. Then, we
need to add (Kv−Kr1) more cluster centroids to Vi. They
are randomly selected from the individuals Xr2 and Xr3.
It should be noted that the selected cluster centroids are
distinct from each other.

2) Kv < Kr1, which means that the mutant vector Vi has
fewer clusters than the individual Xr1: we also start with
the cluster centroids of Xr1 and then randomly deleted
(Kr1−Kv) cluster centroids from it. The resulting mutant
vector Vi contains exactly Kv clusters.

Fig. 3. Mutation process of the E-DE algorithm. (a) Parameter vectors (Xr1,
Xr2, and Xr3 are individuals randomly selected from the current population).
(b) Spatial layouts.

3) Kv = Kr1, which means that the mutant vector Vi and
the individual Xr1 possess the same number of clusters:
in this case, the cluster centroids of individual Xr1 are
directly copied to the mutant vector Vi.

2) Phase Two: By considering the above procedures, the
increment or decrement of the cluster centroids comes from
the pool of cluster centroids held by the previous population.
To alter the centroids, in the second phase of our mutation,
the initial mutant vectors further undergo a Gaussian mutation.
The operation changes the geographic locations of centroids,
which improves the exploration ability of the algorithm. For
each cluster centroid that is contained in the mutant vector Vi,
a random number r ∈ [0, 1] is generated. If r is smaller than
the mutation probability Mu, the cluster centroid in the mutant
vector Vi is adjusted to

mk
i = mk

i + G(0, 0.1) × (ub − lb) (10)

where mk
i represents the kth cluster centroid represented by the

mutant vector, G(0, 0.1) is a Gaussian random number gener-
ator with 0 mean and 0.1 standard deviation, and ub and lb
represent the upper and lower bounds of the dataset. The uti-
lization of the Gaussian perturbation considers the following
factors: the Gaussian mutation is able to enrich the population
diversity without destroying the formulated solution structures.
In comparison, if the uniformly random mutation is applied
instead, the locations of centroids would change to a large
extent, which alters the cluster layout severely. So the Gaussian
mutation helps to keep a more well-formed clustering struc-
ture and enables the DE algorithm to search the problem in a
smooth way.

Fig. 3(a) and (b) shows a mutation example. Suppose that
Kr1 = 3, Kr2 = 4, Kr3 = 2, and F = 0.5, then the calcu-
lated Kv is 4. Since Kv is larger than Kr1, one cluster centroid
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should be selected from the individual Xr2 or Xr3 to fill the
mutant vector. After that, the location perturbation is fur-
ther performed on the mutant vector. The new operator not
only adapts the cluster number in generating the mutant vec-
tor, but also incorporates the centroid distribution information
from different individuals in the population. Next, the ultimate
mutant vector will intersect with the target vector of individual
i by the crossover operator.

D. Crossover

The existing DE crossover methods will lead to the cross-
dimension learning error in data clustering. This is because,
as illustrated in Fig. 1 and Section I, they exchange the
information between the parameter vectors based on the
dimension index abruptly, which ignores the spatial rela-
tionships of different cluster centroids. Besides, they are
unavailable to be directly applied to variable-length parameter
vectors. Therefore, we put forward a new crossover operator
to solve the above two problems. The crossover can effec-
tively exchange the information between the variable-length
individuals without incurring the cross-dimension learning
error.

Based on the exponential crossover of DE, we define and
incorporate a subspace crossover in E-DE, which is described
as follows and illustrated in Fig. 4.

Step a): First, determine the crossover segment for each
individual: a random location n is chosen as the starting point
and the following L genes will be used for crossover. The
crossover length L is determined according to the crossover
rate CR as

L = L + 1, while rand(0, 1) < CR (11)

where the initial value of L is zero. The L value determines
the length of genes that are going to be swapped in the
crossover process. This incremental way has been demon-
strated in the original DE algorithm, which is called the
exponential crossover [53].

Step b): Retrieve the cluster centroids that are contained
in the mutant vector Vi from the selected gene segment in
step a). Namely, the first cluster centroid comes from the ran-
domly selected gene location n, while the last centroid is from
the gene location n+L−1. Based on the retrieved sequence of
cluster centroids, the subspace to exchange information in the
crossover is defined as follows. First, the center of the sub-
space, denoted as csi, is calculated as the average of all the
retrieved centroids. Then, suppose that the first and last cen-
troids in the sequence are mfirst

i and mlast
i , respectively; and

the range of the subspace on each dimension is defined as the
distance between mfirst

i and mlast
i on each dimension

di,j =
∣∣∣mfirst

i,j − mlast
i,j

∣∣∣ (12)

where mfirst
i,j and mlast

i,j denote the jth attribute value of the first
and last centroids. Particularly, assume that ci,j is the jth coor-
dinate of the center csi and that di,j is the distance between
mfirst

i and mlast
i on dimension j, and the jth dimension of the

subspace ranges from (ci,j − di,j/2) to (ci,j + di,j/2).

Fig. 4. Illustration of the subspace crossover process of the E-DE algorithm.

We use the distance between mfirst
i and mlast

i to let the range
of the subspace be more sensitive to the retrieved sequence of
cluster centroids. It helps to increase the population diversity.
In contrast, if we take the distance between the maximum and
minimum value of all retrieved centroids for calculation, differ-
ent selected gene sequences could correspond to an identical
range of subspace. Besides, in the current stage, our E-DE
concentrates on continuous data clustering. If the features are
discrete, some discrete distance measures (Hamming distance,
permutation distance, etc.) should be used according to the
practical requirements.

Step c): For the other parameter vector that joins the
crossover, that is, the target vector Xi, we use the identical
area that is defined in step b) to retrieve the subset of cluster
centroids in Xi. Then, the selected cluster centroids of Vi and
Xi are exchanged to generate the trial vector Ui

Ui = Vi ⊗ Xi. (13)

The operator ⊗ corresponds to the information exchange pro-
cess in step c), which is illustrated in Fig. 4. Note that the
cluster numbers in the crossover area in Xi and Vi could be
different. This is so that the cluster number in the gener-
ated trial vector could be distinct from the current individual
Xi. Therefore, the proposed elastic length encoding scheme,
together with the mutation and crossover, is well suited for the
automatic data clustering problem that requires adjusting the
number of clusters. Besides, if the cluster number in the trial
vector Ui exceeds the maximum cluster number Kmax = 20
or lower than the minimum cluster number Kmin = 2, it will
adopt the cluster number of target vector Xi, but each cluster
centroid in the individual Xi will be replaced by the nearest
cluster centroid in the mutant vector Vi.

In addition to being capable of adjusting the cluster num-
bers, the proposed subspace crossover inherently avoids the
cross-dimension learning error since it considers the spatial
relationship between clusters. Note that the target and mutant
vectors represent different spatial layouts of cluster centroids,
as depicted in Fig. 4. In the crossover process, first, a sub-
space is selected as the swap area and, then, the target and
mutant vectors exchange their subsets of cluster centroids
that are located within the subspace. This mechanism ensures
that the exchanged clusters have a spatial relationship, which
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TABLE I
PROPERTIES OF 19 DATASETS USED IN THE CLUSTERING EXPERIMENTS

are different from the traditional DE algorithms that perform
crossover through the cluster indices. Thus, the generated
trial vector inherits different cluster centroids from the target
or mutant vectors from a spatial point of view. To summa-
rize, the subspace crossover not only fits our elastic encoding
scheme but also avoids the cross-dimension learning error of
the traditional DE algorithms.

E. Selection

To perform selection first, the fitness of the trial vector Ui is
calculated. A data assignment step is required when the cluster
centroids are determined. For each data point in the dataset,
calculate its distance to all cluster centroids in Ui. Then, each
data object is assigned to its nearest cluster centroid.

Note that sometimes there may exist some clusters which
contain less than 2 data points, which are considered empty
clusters. The empty clusters will affect the well-formed cluster
structure. However, if they are simply removed, the popula-
tion would have a hidden property to reduce the total number
of clusters during optimization, which goes against our inten-
tion. Therefore, we use a random reassignment strategy [17]
instead. Particularly, for the individual that contains an empty
cluster, it is rearranged according to the following procedure.
Select N/K data points from the dataset, use the mean of
the data points as the new cluster centroid, and redo the data
assignment. Repeat this step until no empty cluster comes up.
Then, update the individual accordingly.

After the data assignment step, the dataset is partitioned into
clusters. The validation indices can be applied to evaluate the
quality of the partition. Since how to design a good valida-
tion index for clustering is beyond the scope of this article,
here, we simply adopt the well-known DB index and I index
described in Section II-B. The selection of E-DE is identical
to the classical DE selection, namely, the algorithm compares
the fitness of the current individual Xi and the trial vector Ui,
and it selects the better one to the next generation

Xi,G+1 =
{

Xi,G, if f
(
Xi,G

)
is better than f

(
Ui,G

)
Ui,G, otherwise.

(14)

Note that if the DB index is applied, the smaller the f value
is, the better the clustering results are. Differently, for the I
index, the higher f value is preferred.

IV. EXPERIMENTS

A. Experimental Setup

In this section, we conduct several experiments to vali-
date the performance of the proposed E-DE algorithm. The
experiments are based on 19 datasets (summarized in Table I)
that are widely adopted to examine the state-of-the-art cluster-
ing algorithms [29], [54]–[61]. These datasets possess various
characteristics. The Iris, Cancer, Glass, Zoo, Vote, Ecoli,
Seed, and Customer datasets are standard datasets coming
from the UCI machinery repository [54]. In addition, the
Compound [55] is a graphical-shaped dataset with six clusters
and 339 data objects in two dimensions. The R15 [56] contains
Gaussian clusters in a ringed region, with 600 data objects
in total. The Dim2 dataset [57] is a synthetic clump includ-
ing nine clusters, with 1351 data objects in two dimensions.
The G2 dataset [58] is a typical 2-class collection, with 2048
data in two dimensions. The Dim32 [59] is a high-dimensional
dataset that contains 32 dimensions, with 1024 data objects in
total. The Unbalance dataset [60] has eight clusters of quite
different sizes and densities, with 6500 data objects in total.
The Spiral [61] is a nonconvex dataset composed of three
different trajectories of the spiral, with 312 data objects in
two dimensions. Further, we test three mock datasets, that is,
Mockdata1, Mockdata2, and Mockdata3. They are produced
according to three functions that are written by Jeroen Kools to
generate different pathological clustering datasets. Commonly,
the centroid-based clustering algorithms can hardly handle
nonconvex datasets like the spiral. The nonconvex datasets are
tested in this article for the purpose of investigations.

We compare the E-DE algorithm with six representa-
tive clustering algorithms, namely, the K-means [10], BF-
K-means [44], S-DE [24], ACDE [17], MANM [35], and
TGCA [37]. The K-means algorithm requires a predefined
cluster number as input to partition the dataset into K clusters.
The brute-force K-means (BF-K-means) is to run K-means
several times varying the number of clusters from the Kmin
to Kmax (i.e., 2 to 20), and select the best clustering solu-
tion. The S-DE algorithm is a global optimization algorithm,
while it also requires the cluster number as the prior condition.
The ACDE algorithm adopts a relatively automatic parameter
vector encoding scheme, adjusting the cluster number through
the zero-one switch. The MANM algorithm takes the memetic
algorithm as a framework, and it utilizes the multilocal search
and adaptive niching technique for automatic data clustering.
The TGCA algorithm adopts the two-stage selection and muta-
tion operations to adjust the cluster number and centroids.
The individuals that have the same cluster number will be
partitioned into the same subpopulation to perform crossover.
In the experiments, we adopt the parameter settings that are
suggested in their original references. Besides, all EC algo-
rithms are assigned a maximum number of fitness evaluation
times, 106. Both the K-means and BF-K-means algorithms are
terminated when the cluster centroids are not updated.

For the E-DE algorithm, the size of population np is set
to 10 × D, where D is the data dimensions. The minimum
and maximum cluster numbers are set to 2 and 20. The scalar
factor F and the crossover rate CR are set to 0.5 and 0.4, while
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TABLE II
COMPARING THE CLUSTERING RESULTS (MEAN AND STANDARD DEVIATION) OF THE E-DE ALGORITHM WITH THE OTHER SIX CLUSTERING

ALGORITHMS USING THE DB INDEX. NOTE: THE CORRECT CLUSTER NUMBER IS PROVIDED UNDER THE NAME OF EACH DATASET

the mutation rate Mu varies with the iteration times

Mu = 0.1 − 0.06 × G

Gmax
(15)

where Gmax means the maximum generations, that is, Gmax =
106/np, and G stands for the present generation in the evo-
lution process. All of the simulation results presented were
obtained through a PC with an Intel Core CPU at 3.30 GHz
running the Ubuntu operating system. In case of the incidental
results, we repeat each algorithm 30 times on all 19 datasets.

B. Experimental Results

1) Validation by the DB Index: First, we use the DB index
to examine seven clustering algorithms. Table II shows the

mean clustering results with the standard deviations, including
the cluster number counted in each runtime (#counts, where
the number outside the parenthesis means the cluster number
and the number inside the parenthesis indicates the frequency
of this number), the average DB index value, the intercluster
distance, the intracluster distance, and the ARI. In addition,
at the bottom of Table II, we summarize the total cluster-
ing successful ratio (CSR), that is, the ratio of the run times
that the algorithm finds the correct cluster number to the total
run times, as well as the total ARI. For K-means and S-
DE, they use a fixed number of clusters, which is set to 6.
This is because the practical number of clusters cannot be
used in automatic data clustering, while 6 is the most com-
mon and the median value of the cluster number according
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TABLE III
COMPARING THE CLUSTERING RESULTS (MEAN AND STANDARD DEVIATION) OF THE E-DE ALGORITHM WITH THE OTHER SIX CLUSTERING

ALGORITHMS USING THE I INDEX. NOTE: THE CORRECT CLUSTER NUMBER IS PROVIDED UNDER THE NAME OF EACH DATASET

to our datasets in Table I. Unlike the traditional K-means
algorithm, the BF-K-means is conducted with different clus-
ter numbers and chooses the best result as the solution. The
other four algorithms, namely, ACDE, MANM, TGCA, and
the proposed E-DE, automatically adapt the cluster number
during optimization. The best result of each dataset is selected
and marked in boldface according to the correctness of #counts
and the average DB index value. Meanwhile, the best result
according to the ARI is also marked in boldface.

It can be observed that our E-DE algorithm exhibits better
performance when comparing other data clustering algorithms
on most datasets. E-DE can always find the correct num-
ber of clusters where it reaches approximately 81% clustering

accuracy on the 19 datasets. For the compared automatic data
clustering algorithms, we can observe that the ACDE algo-
rithm fails to find the correct cluster number in many cases.
The ACDE is sometimes unstable that its clustering results in
different runs vary widely, as can be seen from the #counts for
the Vowel, Vote, Ecoli, Dim2, G2, and Customer datasets. For
the MANM column in Table II, the memetic algorithm has
similar clustering accuracy with the ACDE. Its local search
strategies consume many fitness evaluations, which leads the
algorithm to exploit too much at the beginning. For the two-
stage TGCA algorithm, its performance is slightly better than
the MANM. But the crossover way that was used still has
the cross-dimension learning error that the clustering accuracy
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Fig. 5. DB index convergence curves of S-DE, ACDE, MANM, TGCA, and
E-DE algorithms. (a) Vote dataset. (b) Dim32 dataset.

cannot improve so much. Besides, although enumerating all
possible cluster numbers, the general performance of the BF-
K-means is lower than all evolutionary clustering algorithms.
The reasons are: 1) the K-means algorithm only minimizes the
intracluster distances, whereas the EC algorithms optimize the
cluster validation index that considers both intracluster and
intercluster distances and 2) the K-means is a local search
algorithm that can find a local optimum only, whereas the EC
algorithms try to find the global optimum of the problem.

For an evolutionary clustering algorithm, the dimension of
the problem space is at least the number of features times
the number of clusters. Commonly, in the field of EC, the
problem possessing higher than 500 dimensions is considered
as a high-dimensional problem. The Dim32 dataset contains
32 dimensions and 16 clusters, whose search space has at
least 32 × 16 = 512 dimensions. It can be considered a high-
dimensional problem in the EC field. From Table II, we can see
that the E-DE algorithm performs well for the Dim32 dataset
and surpasses the other six methods a lot. This is because
the traditional evolutionary clustering algorithms endure the
problems of encoding redundancy and/or cross-dimension
learning error, whereas our elastic encoding and subspace
crossover prevents the E-DE algorithm from these deficiencies.
Nevertheless, for some extremely high-dimensional clustering
situations like deep feature-based clustering, the dimension
reduction or the cooperative evolution framework [62], [63]
is required for the evolutionary clustering methods.

Further, we compare the convergence curves of the E-DE
algorithm with those of the S-DE, ACDE, MANM, and TGCA
algorithms. (We do not consider the K-means and BF-K-means
algorithms because such methods terminate in a short time.)
Taking the Vote and Dim32 datasets as examples, Fig. 5 com-
pares the convergence curves of the DB index fitness values.
It can be observed that the E-DE algorithm converges faster
than S-DE, ACDE, MANM, and TGCA.

2) Validation by the I Index: Next, we use the I index to
examine the seven clustering algorithms, for which the results
are presented in Table III. It can be observed that our E-
DE algorithm has an outstanding performance compared with
other clustering algorithms for most of the datasets. E-DE
tends to find the correct number of clusters so that it reaches an
approximately 73% CSR on the 19 datasets. Meanwhile, the
total ARI obtained by E-DE is much higher than the others.
Taking the Vote and Dim32 datasets as examples to exam-
ine the convergence of the compared algorithms evaluated by
the I index value, the curves are presented in Fig. 6. From

Fig. 6. I index convergence curves of S-DE, ACDE, MANM, TGCA, and
E-DE algorithms. (a) Vote dataset. (b) Dim32 dataset.

Fig. 7. Clustering results of Unbalance dataset using the I index: (a) is the
original dataset while (b)–(f) are the clustering results of the E-DE, BF-K-
means, ACDE, MANM, and TGCA algorithms.

Fig. 6(a), we can see that the E-DE converges much faster
than the S-DE, ACDE, MANM, and TGCA. In Fig. 6(b), the
E-DE algorithm eventually obtains better fitness than the other
four clustering algorithms.

Further, the clustering results of the 2-D Unbalance are
displayed in Fig. 7. Fig. 7(a) is the original dataset without
adopting the clustering algorithm, while the remaining sub-
figures show the results of the E-DE, BF-K-means, ACDE,
MANM, and TGCA algorithms in turn. The visual results also
validate the powerfulness of our E-DE algorithm. Particularly,
it can be seen from Fig. 7(a) that, for the Unbalance dataset,
the groups of points possess different densities. Then, as shown
in Fig. 7(b), E-DE correctly partitions the original dataset into
eight clusters, which proves the effectiveness of our elastic
encoding strategy and the corresponding evolution operators.
In comparison, in Fig. 7(d), the ACDE cannot divide the five
clusters in the right part thoroughly, and, in Fig. 7(c)–(f), the
BF-K-means, MANM, and TGCA wrongly regard the five
different clusters as one cluster.

3) Significance Tests: We conduct statistical tests based
on the fitness evaluation indices to ensure that our improve-
ment of performance is statistically significant. Particularly, the
Wilcoxon’s rank-sum test is performed for one-on-one com-
parisons, while the Kruskal–Wallis (KW) test is conducted for
multiple comparisons. The significance test results using DB
and I indices are reported in Tables IV and V, respectively.
Meanwhile, in the tables, the symbol (+) indicates that the
performance of E-DE is significantly better than the compared
algorithm(s), whereas the symbol (−) indicates the opposite.
Considering Wilcoxon’s rank-sum test results, we can observe
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TABLE IV
P-VALUES OF WILCOXON RANK-SUM TESTS AND KW TESTS BETWEEN OUR METHOD AND THE OTHER SIX CLUSTERING ALGORITHMS OF THE DB
INDEX ON 19 DATASETS. (+) INDICATES THAT THE PERFORMANCE OF E-DE IS SIGNIFICANTLY BETTER THAN THE COMPARED ALGORITHM WITH A

CONFIDENCE LEVEL OF 95%, WHILE (−) REPRESENTS THE OPPOSITE

TABLE V
P-VALUES OF THE WILCOXON RANK-SUM TESTS AND KW TESTS BETWEEN OUR METHOD AND THE OTHER SIX CLUSTERING ALGORITHMS OF THE I
INDEX ON 19 DATASETS. (+) INDICATES THAT THE PERFORMANCE OF E-DE IS SIGNIFICANTLY BETTER THAN THE COMPARED ALGORITHM WITH A

CONFIDENCE LEVEL OF 95%, WHILE (−) REPRESENTS THE OPPOSITE

from Table IV that, in terms of the DB index, the differ-
ences between the results of E-DE and the other algorithms
are significant (the p-values are smaller than 0.05) on almost
all datasets. Meanwhile, in most cases, E-DE outperforms the
others. Similar results are also observed from Table V, show-
ing significantly better performance of the proposed method in
the comparisons using the I index. In addition, the above KW
test results prove that, on most datasets, our E-DE algorithm
is able to achieve statistically better results than the other six
algorithms.

C. Analysis of Time Complexity

For the evolutionary clustering algorithms, the computa-
tional costs involve two parts: 1) the fitness evaluation of the
clustering index and 2) the evolution operation. The complex-
ity of fitness evaluation is identical for different evolutionary
clustering algorithms. Particularly, the data assignment con-
sumes O(N × K) time in calculating the distance between
data points and cluster centroids, and the fitness evaluation
of DB and I indices both takes an additional O(K2) time to
calculate the distance between cluster centroids. Therefore,
the fitness evaluation step consumes O((N + K) × K × np)

time in each iteration. The E-DE algorithm does not bring
additional distance calculations when adopting the new muta-
tion and crossover operators. The complexity of the evolution
operation is the same as the classical DE algorithm, which is
O(K×np) in each iteration. The evolution operations of ACDE
and TGCA have the equal time consumption with our E-DE.
Besides, MANM has an additional O((K+np)×np) time cost,
which is caused by the auxiliary merging and niching proce-
dures. From the time complexity analysis, we can see that the
evolution costs of the evolutionary clustering algorithms are far

less than the evaluation costs, which can be ignored, especially
when the scale of datasets is large. Besides, as indicated in
the experimental comparisons, the proposed E-DE converges
faster than the other algorithms, which consumes fewer fit-
ness evaluation times to obtain promising results. From this
point of view, E-DE is more computationally efficient than the
others.

V. CONCLUSION

In this article, we proposed an E-DE to tackle the auto-
matic data clustering problem. First, an elastic individual
encoding scheme was introduced to adapt the number of clus-
ters without external guidance. Unlike the zero-one switch
encoding scheme used in traditional algorithms, this elastic
scheme enables the population of DE to contain individu-
als that have different dimensions and evolves this parameter
(i.e., the number of dimensions) inherently during the evo-
lution. Second, a two-phase mutation operator was designed,
which subtly utilizes the information of three individuals with
random selection, deletion, and permutation operations to gen-
erate mutant vectors. Through this mutation, the individual
learns sufficient information about the data clustering struc-
ture from the current population in order to adapt the cluster
numbers and centroids. Third, we developed an exponential
subspace crossover strategy that exchanges partial cluster lay-
outs between parameter vectors. This exchange method not
only avoids the cross-dimension learning error encountered
by the previous algorithms, but it also adjusts the number of
clusters in a flexible way. The experimental results proved
that our E-DE algorithm outperformed the other clustering
algorithms in terms of both internal and external clustering
indices.
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The E-DE algorithm showed significant improvements over
the existing methods, but some limitations still remain. The
proposed algorithm belongs to centroid-based (partitioning)
clustering. Although such methods have been widely applied
in practice, they endure the performance degradation in han-
dling the nonconvex datasets. So one of our future works
is to extend the E-DE framework by incorporating some
density or connectivity-based clustering methods for noncon-
vex datasets. In addition, the evolutionary clustering meth-
ods may encounter deficiency when handling the extremely
high-dimensional datasets like the deep feature-based image
database. Another possible extension is to make some adjust-
ments, such as incorporating a cooperative coevolution frame-
work, to further enhance the scalability of the E-DE algorithm.
Besides, due to the good performance of E-DE, it would be
appealing to apply the algorithm to some practical applica-
tions, such as image analysis, document clustering, and gene
detection. To summarize, we believe that our E-DE clustering
method is flexible and robust to solve the automatic data clus-
tering problem and there remains lots of possibilities for it to
extend to other subjects or reality fields.
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