
Contents lists available at ScienceDirect

NeuroImage

journal homepage: www.elsevier.com/locate/neuroimage

Concurrent white matter bundles and grey matter networks using
independent component analysis

Jonathan O'Muircheartaigha,b,⁎, Saad Jbabdic

a Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
b Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, St. Thomas’ Hospital, King's College London, London SE1 7EH,
United Kingdom
c Oxford Centre for Functional MRI of the Brain, University of Oxford, Oxford OX3 9DU, United Kingdom

A B S T R A C T

Developments in non-invasive diffusion MRI tractography techniques have permitted the investigation of both
the anatomy of white matter pathways connecting grey matter regions and their structural integrity. In parallel,
there has been an expansion in automated techniques aimed at parcellating grey matter into distinct regions
based on functional imaging. Here we apply independent component analysis to whole-brain tractography data
to automatically extract brain networks based on their associated white matter pathways. This method
decomposes the tractography data into components that consist of paired grey matter ‘nodes’ and white matter
‘edges’, and automatically separates major white matter bundles, including known cortico-cortical and cortico-
subcortical tracts. We show how this framework can be used to investigate individual variations in brain
networks (in terms of both nodes and edges) as well as their associations with individual differences in
behaviour and anatomy. Finally, we investigate correspondences between tractography-based brain components
and several canonical resting-state networks derived from functional MRI.

Introduction

Brain mapping has historically tended to focus on local morpholo-
gical features such as cyto- or myelo-architectonic information, gleaned
from post-mortem cortical histology (Amunts and Zilles, 2015).
However, the pattern of how brain regions connect macroscopically
is increasingly important, and non-invasively tractable, using techni-
ques such as diffusion or functional MRI (Passingham et al., 2002).
Anatomical investigations of the human brain using diffusion MRI
especially has helped describe its distributed network properties as well
as characterise the white matter connections linking these networks
(e.g. Ffytche and Catani, 2005; Hagmann et al., 2007).

Defining cortical regions and their connectivity based on MRI is
challenging but has been extremely informative (Eickhoff et al., 2015).
Non-invasive diffusion tractography has demonstrated marked shifts in
connectivity patterns between adjacent regions of tissue, which have
been used to inform parcellation of cortical and subcortical grey matter
(Anwander et al., 2007; Johansen-Berg et al., 2004; Thiebaut de
Schotten et al., 2014). These shifts in the patterns of structural
connectivity are reflected in changes in function (e.g. Beckmann
et al., 2009; O’Muircheartaigh et al., 2015) and, in a neat proof-of-
principle, can predict inter-individual differences in the spatial repre-

sentation of functional responses to different visual categories (Osher
et al., 2016). Connectivity fingerprint-based approaches can also
facilitate comparisons between humans and non-human primates,
allowing a coarse link between the extensive and detailed invasive
animal work and in vivo human investigations (Mars et al., 2016).

There are many approaches for clustering functional regions based
on connectivity profiles, both data-driven and based on anatomical
prior information (Behrens and Johansen-Berg, 2005). However, for
probabilistic white matter tractography data in particular, spatial
independent component analysis (ICA) is an intuitive way to provide
anatomically meaningful parcellations (Wu et al., 2015). ICA has been
traditionally applied to resting-state functional MRI data to extract
large-scale networks displaying temporal coherence, so called resting-
state networks. ICA has only rarely been used on tractography data. In
contrast to most methods, it provides a soft parcellation of the brain,
i.e. a weighted assignment of how representative the connectivity
patterns of a voxel is of a spatial component (O’Muircheartaigh et al.,
2015), and thus different connectivity components can substantially
overlap in space. Spatial components calculated using ICA have been
shown to reflect major white matter bundles and the parcels them-
selves are functionally specific and may also be sensitive to subtle
changes in disease (O’Muircheartaigh et al., 2012; Wu et al., 2015).
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Depending on where independence is enforced, the patterns of con-
nectivity driving an ICA solution can be spatially independent in seed
space (e.g. the regions from which tractography is seeded, usually grey
matter) or in tract space, depending on which is most appropriate.

Additionally, ICA provides a single framework to identify both the
parcels (the seeds for tractography/nodes) and the white matter
tractography connections (edges). In this study, we use spatial ICA to
explore whole brain tractography connectivity data in multiple sub-
jects. We propose an approach to group ICA of tractography data that
allows efficient, accurate, and scalable analysis of very large connectiv-
ity data sets in an unsupervised way (though dimensionality must be
specified a priori). We provide multi-scale parcellations of cortex based
on this approach in both group average and single subject analyses and
we demonstrate the reproducibility of these ICA decompositions using
split-half analyses. Further we investigate the anatomical relevance of
the IC maps both cortically and in the white matter. To this aim we
compare the white matter components to traditional virtual tract-
dissection approaches and the associated gray matter components to
functional networks obtained through ICA of resting-state FMRI data.
Finally, we give a proof-of-concept use of our group ICA approach to
tractography to characterising inter-individual variation in connec-
tional neuroanatomy.

Methods

Participants and datasets

Data were made available by the Human Connectome Project
(humanconnectome.org). Of the available data, structural T1-
weighted, diffusion-weighted and functional BOLD-weighted MRI
data were downloaded from the Human Connectome Project
database (http://www.humanconnectome.org). In total 100 datasets
were included for this study. For the initial parcellation and the split-
half analysis, the “40 unrelated subjects” dataset was used, with a total
of 37 useable subjects (20 female) all aged between 22 and 35 years.
For the exploratory study investigating individual differences, an
additional 63 subjects from the “100 unrelated subjects” dataset were
used (34 female, same age range). See Fig. 1 for a summary breakdown
of which datasets were used in each analysis.

MRI data acquisition

MRI data were acquired at Washington University St Louis using a
Siemens Magnetom Connectome 3 T scanner. Acquisition and basic
spatial preprocessing protocols are described in detail elsewhere
(Andersson and Sotiropoulos, 2016; Sotiropoulos et al., 2013;
Uğurbil et al., 2013) and spatial preprocessing of the anatomical
MPRAGE T1-weighted image (FOV=224×224 mm, matrix=320, 256
sagittal slices, TR=2400 ms, TE=2.14 ms, TI=1000 ms, FA=8°, 0.7 mm

isotropic resolution) are described in detail in Glasser et al. (2013).
Diffusion MRI data consisted of 3 shells (b-values=1000, 2000, and
3000 s/mm2) with 270 diffusion directions equally spread amongst the
shells, and six b=0 acquisitions within each shell (FOV=210×180 mm,
matrix=168×144, 111 axial slices, TR=5520 ms, TE=89.5, isotropic
spatial resolution of 1.25 mm). In addition, for each subject, 4 runs of
15 min of resting state fMRI were collected (FOV=204×108 mm,
matrix=104×90, 72 axial slices, TR=0.72 s, TE=0.33 ms, FA=52°,
2 mm isotropic resolution, 1200 time points per run).

Diffusion data preprocessing and tractography

Subcortical masks and cortical surfaces were calculated using the
Freesurfer package as described in Glasser et al. (2013) and all analyses
were performed in MNI space. Each dataset was prepared for
probabilistic tractography using the bedpostX algorithm, modified to
account for multi-shell acquisitions, assuming a Rician noise model
(Jbabdi et al., 2012), and modelling for up to three fibre populations
per voxel. The probtrackx2 programme was used for the tractography
itself (Behrens et al., 2007; Hernández et al., 2013). Probabilistic
tractography was performed by seeding in standard MNI space (2 mm
resolution) from each of 9127 subcortical voxels (bilateral thalamus,
caudate, putamen, pallidum, amygdala, hippocampus and nucleus
accumbens) and from each of 59,412 cortical vertices (seeded from
the mid grey matter surface, excluding the non-cortical medial wall),
with 5000 streamline samples initiated from each voxel/vertex.
Cerebellar and brainstem regions were not used as seeds in this
analysis. In addition, stopping masks were specified on the cortical
pial surface, to avoid the possibility of erroneous cross-sulcal fibres,
and at the ventricles. The resulting dataset for each subject consisted of
a connectivity matrix of streamline visitation counts for each of 68,539
seed regions to 80,090 possible targets voxels (all voxels of the MNI
brain downsampled to 3 mm isotropic). Visitation counts were multi-
plied by the expected length of the tracts at each voxel to compensate
for the distance bias (longer tracts tend to have higher compounded
uncertainty and therefore lower visitation counts).

Independent component analysis of tractography data (Fig. 2)

Here, by tractography data, we mean a matrix with dimensions
(number of GM voxels/vertices)×(number of WM voxels), where each
entry corresponds to the number of streamlines running from a grey
matter position to a white matter location (weighted by the average
distance from the seed). Because each row of the matrix corresponds to
a single seed voxel, the matrix can be re-written as a sum of outer-
product components, where each component is a vector of white matter
pathways multiplied by the vector encoding the corresponding seed
voxel (Fig. 2a). If two seed voxels have the same WM connectivity, the
rank of the matrix drops by one. Therefore, both principal component

Fig. 1. Summary plot of the datasets used in this study and a breakdown of which datasets were used in each of the analyses conducted.
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analyses and independent component analyses will tend to group
together seed voxels with similar WM fingerprints. We first apply
PCA to reduce the dimensionality of the data matrix, followed by ICA to
relax the orthogonality constraints of PCA, allowing e.g. spatial overlap
between WM components.

For the group analysis, the tractography data matrices were first
averaged across 37 subjects. This initial average representative matrix
was then reduced in size using principal component analysis (PCA). As
this dataset was very large (68,539 seed voxels against a volume of
80,090 possible target voxels), PCA was performed using an adapted
incremental method referred to as Melodic's Incremental Groupwise
PCA (MIGP) in Smith et al. (2014) and performed in MATLAB, though
on the group-average connectivity matrix instead of a concatenation of
individual subjects (Fig. 2b).

In brief, for each iteration of PCA, a matrix of all cortical and
subcortical seeds against a random subset (10,000) of whole brain
target voxels were reduced to 4000 PCs, then a different random subset
of 10,000 whole brain voxel values were concatenated to these 4000
eigenvectors (weighted by their corresponding eigenvalues) and PCA
was run on this combined matrix, and so on until the whole brain has
been covered. At each iteration, only a relatively small matrix
(68,539×10,000) is analysed with PCA, and thus this approach can
be applied to approximate a PCA of very large matrices (Smith et al.,
2014). The fastICA algorithm (Hyvarinen, 1999), implemented in
Matlab (available at http://research.ics.aalto.fi/ica/fastica/) was then
applied to the resulting reduced dataset (Fig. 2c). We performed ICA
across a series of dimensionalities (K=50, 100, 150, 200, 300) with
independence enforced in the seed domain, thus grey matter
components were statistically independent from each other, whereas
the spatial distributions of white matter components could overlap.

This resulted in a set of K spatially independent maps in grey
matter cortical/subcortical regions with K associated spatial tractogra-
phy fingerprints. As these patterns were represented in the PCA
subspace only (i.e. keeping 4000 dimensions instead of the full
80,090), the normalised weighted ICs were projected back onto the
full average tractography connectivity matrix using linear regression to
reconstruct the whole brain tractography connectivity pattern (Fig. 2d).
The resulting components in seed space and their white matter
counterparts were fitted to a Gaussian/gamma mixture model as in
(Beckmann, 2012), with the positive gamma distribution thresholded
at p > 0.5. In addition, for each dimensionality, the cortical surface was
parcellated according to which component had highest weighting in
each vertex (i.e. winner-take-all), providing a hard parcellation of the
cortical surface. Example matlab code to perform this is included in the
Appendix. Finally, we also performed the same analysis using indivi-
dual subject tractography connectivity matrices.

Comparison with the virtual dissection approach

To investigate the anatomical relevance of the white matter
tractography ICA components, we compared them to the results of a
more traditional virtual dissection approach. We used a fully auto-
mated probabilistic tractography approach (de Groot et al., 2013)
which extracts 13 major tracts bilaterally (Supplementary Table 1)
based on an a priori set of inclusion/exclusion/seed masks, defined in
MNI152 standard space. The same 37 subjects were included in this
analysis and the patterns of connectivity were averaged across subjects
as in the group ICA analysis. Scripts and masks are freely available for
download (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/AutoPtx). Similarity of
the results of ICA and virtual dissection were assessed using spatial

Fig. 2. Independent Component Analysis on tractography matrices. (a) Probabilistic tractography is performed in 37 subjects, seeded from each cortical vertex and subcortical voxel in
the brain to the rest of the brain. This matrix is averaged across subjects to provide a group-average connectivity matrix. (b) The dimensionality of this matrix is incrementally reduced in
tractography space using principal component analysis on subsets of the matrix. (c) Independent component analysis is performed on this reduced matrix providing independent
components in seed space but without a straightforward mapping to tractography. (d) GM maps are projected back onto the group average tractography matrix using linear regression
providing a tractography representation of the independent components.
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correlation coefficient (Pearson's r).

Split-half reliability analysis

To assess the overall reliability of the resulting ICs, we split the
group of 37 into two equally sized groups of 18 (discarding one subject
for this analysis) and ran ICA with dimensionalities in steps of 25 from
K=25 to K=250. For each split-pair, Pearson correlation coefficients
were calculated between each of the component weights and their
corresponding component (the component from the other split with the
highest absolute correlation coefficient). Similarly, the Dice coefficient
was used to assess reproducibility of hard parcellations between each
split of subjects for each dimensionality (Parisot et al., 2015). This
analysis was performed on the cortical surface only and compared to
the Dice coefficients of 1000 random parcellations at the same
dimensionalities. Using ICA, spatial contiguity is not explicitly en-
forced, so the dice coefficient can be calculated between sets of non-
contiguous regions.

Assessing individual variation in tractography independent
components and their association with individual differences

We investigated individual differences in IC maps and their
relationship with demographics. To this end, we needed to first obtain
individual subjects’ versions of the group ICA results. For this we used
regression of the group ICA results onto single subject matrices as
performed commonly in fMRI (Filippini et al., 2009). In this regres-
sion, the design matrix is a group map (the group ICA maps) and single
subject tractography matrix is the data. The resulting regression
coefficients approximate single subject versions of the group maps.
We apply this method with both the cortical (node) and tractography
(edge) maps from our group ICA as the design matrices (with k=50)
providing their complement for each subject. This provided single
subject maps of the node and edges for each group component for the
63 unseen subjects (see Fig. 1).

In addition, we estimated a single value representation of each IC in
tractography and grey-matter dimensions by calculating the dot-
product of both the group tractography pattern with single subject
tractography patterns and the group grey matter IC with the single-
subject IC, providing two weights for each IC and subject. Spearman's
rank correlations were calculated between both the subject weights of
the grey matter IC (nodes) and their tractography representation
(edges) and individual differences in (1) age and gender (2) behavioural
and cognitive scales (3) tissue volume measures (4) cortical area
measures and (5) cortical thickness measures. Measures 3,4 and 5
were calculated from the T1 weighted volume as part of the Human
Connectome Project standard preprocessing scheme (Glasser et al.,
2013) and all variables used are attached as Supplementary Table 2.
Corrections for the resulting 26,300 multiple comparisons were
performed using false discovery rate across all tests, fixed at q < 0.05,
and implemented in Matlab using the Storey (2002) approach (func-
tion mafdr.m).

Relationships between group level tractography ICs and functional
resting state networks

Functional resting state networks were also calculated using group
independent component analysis using data preprocessed with the
FMRIB ICA-based Xnoiseifier (FIX; Salimi-Khorshidi et al., 2014) and
released as part of the HCP (Smith et al., 2013). Four runs of resting
state fMRI for each subject (37 total, the same sample as used in the
initial ICA used on tractography data) were input into a group ICA
analysis, also using MIGP for the initial PCA step (Smith et al., 2014),
after high pass filtering the timeseries with a 100 s filter. The number of
independent components was set to 21 and these resulting functional
networks were categorised according to their similarity with previously

published resting state networks (Smith et al., 2012).
Structure-function correspondence between resting state networks,

derived from ICA on fMRI data, and the 50 dimensionality tractogra-
phy ICA was measured using Pearson's correlation coefficient. As ICA
results in a set of components that have minimal co-linearity, we can
use the squared correlations between all structural ICs and any given
functional network as an indication of percent variance in the spatial
organisation of functional networks accounted for by the structural ICs.
Given the high dimensionality of the data considered here, we did not
perform null-hypothesis significance testing of the structure-function
associations as even very weak associations would be statistically
significant. Instead we considered relationships significant if the
proportion of variance accounted for by any structural IC for each
functional IC was higher than 5% (e.g. a spatial correlation between
modalities > 0.22).

Results

Spatial independent component analysis resulted in a series of
weighted cortical/subcortical parcels representing consistent spatial
patterns of white matter connectivity. For a low dimensionality
analysis (K=50), anatomically meaningful white matter bundles were
evident such as the arcuate and superior longitudinal fasciculi bilat-
erally (Fig. 3a-e). In addition, networks of interconnected regions were
evident, such as the inferior fronto-occipital, inferior longitudinal and
the uncinate fasciculi (Fig. 3f, g) which course via occipital and ventral
frontal cortex as well as the temporal pole. Classifying each cortical
vertex according to the IC with the highest weight provided a hard
parcellation of cortex (Fig. 3h). Higher dimensionality ICA tended to
split individual components into subparts (identified using spatial
correlation), such as different regions of motor cortex (Fig. 4a) or
splitting the uncinate and inferior longitudinal fasciculus (Fig. 4c).
Group cortical hard parcellations at k=50,100,150,200 and 300 are
included as Supplementary images 1–5. Raw and thresholded ICs and
their tractography patterns for k=50 are included as Supplementary
images 6–9.

These patterns of white matter connectivity also clearly delineated
grey matter cortical/subcortical networks with appropriate grey matter
regions mapping to known thalamo-cortico-striatal loops (Alexander
and Crutcher, 1990; Draganski et al., 2008, see Fig. 5). This signifi-
cantly extends prior work on thalamocortical diffusion connectivity by
directly including both cortex and basal ganglia in such loops (e.g.
Behrens et al., 2003; O'Muircheartaigh et al., 2015). It also reproduces
the matched dorsal to ventral (cortical) and medial to lateral (sub-
cortical) gradients described in track tracing experiments (e.g. Jbabdi
et al., 2013).

These components are also clearly symmetric. Pearson's spatial
correlations of the cortical components with their x-axis flipped
counterparts are shown in Supplementary Fig. 1. Of the 50 ICs, 6 are
bilateral, symmetric (examples are shown in Fig. 5a, e, f, and h). Of the
remaining 44, exactly half (22) are left lateralised and half are right
lateralised. All have a contralateral homologue with a spatial correla-
tion of r > 0.6 and the majority (16/22) of these have contralateral
homologues with a spatial correlation of r > 0.8 as seen in Fig. 5b, c, d
and g.

Comparison to virtual dissection

The patterns of connectivity identified using ICA were compared to
an automated tractography heuristic (de Groot et al., 2013) and
showed that a subset of the ICs matched well spatially and anatomically
to known white matter bundles (Supplementary Fig. 2). The tracks
identified using the virtual dissection approach are guided by inclusion,
exclusion and stop masks, and are therefore strongly driven by
anatomical knowledge. Though they are systematically spatially smaller
than the tractography ICs, the spatial correspondence is clear.

J. O'Muircheartaigh, S. Jbabdi NeuroImage 170 (2018) 296–306

299



Reproducibility

After performing ICA on the two splits, the resulting ICs were hard-
thresholded to parcellate the brain according to dominant patterns of
connectivity. Both the full weighted ICA analysis and the hard
parcellation showed good reliability and reproducibility across different
dimensionalities in a split-half analysis (Fig. 6). Median correlation
across grey matter components, between splits, degraded linearly from
0.9 to 0.78 as dimensionality increased from 25 to 250 components
(Fig. 6a) though the white matter tractography representation of each
independent component was highly stable between splits (Fig. 6b).
Dice coefficients of the hard parcellation decreased from median values
of 0.85 to 0.7 (Fig. 6c). Importantly, the mean Dice coefficient for all
splits was higher than random parcellations of the same dimension-
ality, even though these random parcellations explicitly imposed spatial
contiguity of parcels (a constraint not imposed in the ICA analysis), and
thus were likely to have high dice coefficients (Fig. 6d).

Projection to individual subjects

We regressed the group independent components and paired
tractography patterns onto the connectivity matrices of individual
subjects not used in the initial group ICA (n=63, see Fig. 1). This
resulted in patterns of cortical/tractography connectivity consistent
with the group patterns (see Supplementary Figs. 3–5 for examples of
the bilateral arcuate fasciculi, corticospinal tracts and superior long-
itudinal fasciculi). Across the 63 subjects both the white matter course
and grey matter origin of these tracks were stable across subjects but
inter-individual variability was evident. Supplementary Fig. 6 demon-
strates individual differences in the hard parcellation of nine individual
subjects.

There were significant associations between individual differences
in the representations of these ICs and cognitive and structural brain
indices collected as part of the HCP. In total 26,300 tests were
performed, though only 23 survived multiple comparison correction
using false discovery. The majority of the associations were with
measures derived from the structural MRI data, especially regional
cortical thickness and tissue volumes (see Fig. 7) and even initial errors
in cortical surface calculation (total defects/holes in the right hemi-
sphere).

Comparison of tractography ICs to fMRI-based resting-state
networks

Functional networks derived from a temporal concatenation group
ICA on the resting-state fMRI data resulted in 21 functional networks,
characteristic of those published previously using similar data (e.g.
Smith et al., 2013). For all functional networks except one, a clear
relationship between tractography ICs and functional networks were
apparent (Fig. 8, left panel for the full correlation matrix) and the
associated white matter patterns appeared to be anatomically mean-
ingful, with the arcuate and superior longitudinal fasciculi being most
associated with fronto-parietal networks on both cortical hemispheres
(Fig. 8, right panel). Note that the number of vertices/seeds per
correlation is very large (68,539) so even very weak correlation
coefficients are significant, so in Fig. 8 (right panel) only the two
strongest associations are shown. The correlation matrix is sparse,
indicating specificity of the relationships of structural to functional
networks. The only functional network that showed no association
between structure and function was a resting state network involving
the cerebellum, a structure not included in our tractography seeding
strategy and representing a true negative.

Discussion

The specialisation of brain regions and their integration within
networks is reflected by their connectivity patterns. Using a data-driven
technique, we illustrate cortical and subcortical regions defined by their
diffusion tractography-based connectivity fingerprints. In addition to
isolated regions, we show non-contiguous sets of brain regions that are
characterised by common pathways of connectivity both to each other
and to the rest of the brain, replicating anatomically driven manual
tractography studies. This approach is analogous to earlier track
tracing work in animals (Selemon and Goldman-Rakic, 1988) where
work has aimed to functionally link spatially disparate cortical regions
according to their whole brain connections. Through parcelling cortical
and subcortical regions in a data-driven and soft fashion, we provide
both weighted and hard atlases of structural brain connectivity that
concurrently address both the topological and hodological nature of
brain connectivity.

The connectivity profiles demonstrated here are anatomically
meaningful. In the absence of a constraint of spatial contiguity, this
method determines known cortico-cortical pathways and subcortical-

Fig. 3. Example cortico-cortical components (top rows) and their patterns of connectivity (bottom rows) taken from the K=50 independent component analysis. Note that some ICs are
represented by multiple white matter bundles (e.g. the ventral stream in components f and g). A hard parcellation of the brain based on the ICA weights is shown in h. In this and all
figures, the ICs themselves and the patterns of connectivity are thresholded using mixture modelling at p < 0.5 (see Methods). SLF – Superior Longitudinal Fasciculus, IFO – Inferior
Fronto-occipital Fasciculus ILF – Inferior Longitudinal Fasciculus, UNC – Uncinate Fasciculus.
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cortical loops without prior anatomical information or manual inter-
vention beyond specifying the number of components (Figs. 3 and 5).
The patterns are symmetric. Lateralised components have contralateral
homologues (Supplementary Fig. 1) with some being bilaterally sym-
metric. Interestingly the component corresponding to the arcuate
fasciculus (Fig. 3a, b and c) is asymmetric in their temporal termina-
tions especially, replicating prior work (e.g. Glasser and Rilling, 2008;
Takaya et al., 2015). Though this is not a validation of the parcellation
as such, it does provide some face validity. As well as being reprodu-
cible on a group level (Fig. 6), the patterns are grossly reproducible
when ICA is performed in single subjects with no prior constraints
(Supplementary Fig. 7).

As expected from Wu et al. (2015), increasing ICA dimensionality
leads to a finer delineation of cortical regions (Fig. 4), and in some
cases splitting bilateral components into lateralised components.
Fig. 4c, in particular, was selected specifically to replicate the findings
in this work. In addition, using simple linear regression of the
tractography patterns from the group ICA, our approach provides a
way of projecting population averaged parcels and white matter path-
ways (weighted or binary) back to individual subjects (Supplementary
Figs. 3–5). The parcellations are also functionally meaningful. Our

results associating structural tractography connections to functional
resting state networks replicate and extend manually delineated
tractography studies (e.g. Greicius et al., 2008; van den Heuvel et al.,
2009).

In connectivity analyses (functional or structural), the choice of
seed regions/nodes is critical. True regional and population hetero-
geneity in functional and structural architecture combine with parcel-
lation dimensionality to have a strong influence on resulting network
properties (de Reus and van den Heuvel, 2013; Smith et al., 2011;
Zalesky et al., 2010). Though functional parcellations defined by
functional homogeneity, regional timeseries correlation or some other
temporal feature, can be useful, these parcellations can change
according to attentional or cognitive state. For example, in Laumann
et al. (2015), functional MRI based parcellations using a community
detection approach showed differential boundaries in the occipital lobe
of the same subject depending on whether their eyes were open or not.

This variability should be expected; functional co-activity (and
therefore resulting connectivity-based parcellations) in fMRI reflects
context/cognitive state. Indeed, this is why it is such an important tool
in cognitive neuroscience. However, this may make functional mea-
sures of brain connectivity less appropriate for identifying consistent
parcellations of cortical areas without explicit priors guided by inter-
individual variability (e.g. Wang et al., 2015). A clear advantage of a
parcellation guided by structural connectivity is that it may be used to
illustrate how different fixed overlapping regional pathways get co-
opted by different cognitive functions (Jbabdi et al., 2015; Osher et al.,
2016; Park and Friston, 2013).

Functional networks defined by resting state fMRI interact over a
longer time scale than that which would be expected by mono- or
multi-synaptic white matter connections that may be inferred from
diffusion tractography (Petersen and Sporns, 2015). Above the thala-
mus, white matter structural connections are made up of lateralised
association and projection bundles as well as commissural bundles
which are bilateral and exhibit gross left-right symmetry (Catani and
Thiebaut de Schotten, 2008) whereas there is no such natural
constraint on fMRI-based functional connectivity. The relationships
we illustrate between white matter ICs and functional networks reflect
this mismatch, with combinations of different white matter projections
cumulatively explaining the spatial distribution of functional networks
(Fig. 8). The mismatch between methods is further confounded by
possibly non-neural functional connectivity that can be described by
population variation in vasculature, metabolic rate, ageing etc.
(Murphy et al., 2013). Through looking at a population average of
high quality data, collected within a relatively tight age-range, we
minimise these effects. So for each fMRI component we were able to
identify multiple tractography components that collectively contribute
to their full spatial pattern (Fig. 8).

A single decomposition of both grey and white matter provides the
opportunity to investigate brain injury or disease in a more natural
way. Injury to spatially distributed white matter and grey matter
regions can lead to similar cognitive and neurological outcome(Boes
et al., 2015; Corbetta et al., 2015). An approach such as this, which can
quantify injury to grey or white matter as being associated clearly with
the interruption of one or many structural networks (whether node or
edge) in place of a region, can potentially provide higher sensitivity
compared to voxel-based techniques that rely on spatial overlap (Griffa
et al., 2013). We have previously taken this approach in generalised
epilepsy (O’Muircheartaigh et al., 2012) and Wu et al. (2015) have
applied it in schizophrenia, using multivariate weights of tractography-
based independent components and using them as dependent vari-
ables. In clinically variable diseases and injuries such as multiple
sclerosis and stroke, this type of approach may also provide a good link
between grey matter atrophy and white matter injury (Filippi et al.,
2012).

Another main advantage is that the number of statistical compar-
isons can be greatly reduced. In a proof of concept, we investigated the

Fig. 4. Illustration of the effect of ICA dimensionality selection on resulting components,
here comparing components identified in a K=50 ICA with their most similar (highest
spatial correlation) equivalent components in the K=150 ICA. In three examples, (a) the
motor strip gets split into four neighbouring subregions, (b) grey matter associated with
the arcuate into three subregions with slightly different spatial trajectories of structural
connectivity and (c) a ventral and lateral network (not associated with any single specific
fibre bundle) gets split into three more anatomically distinct and identifiable regions.

J. O'Muircheartaigh, S. Jbabdi NeuroImage 170 (2018) 296–306

301



association between the weights of tractography ICs from the K=50
independent component analysis and their associations with over 250
individual differences in behavioural, cognitive and structural mea-
sures. A small subset of associations survived false discovery rate
correction (23 of 26,300 tests). Individual differences in the represen-
tation of the grey matter components and their white matter tracto-
graphy patterns were mostly associated with regional grey matter
volume and thickness (Fig. 7). Larger studies (e.g. Miller et al., 2016)
have clearly demonstrated that associations between behaviour, cogni-
tion and MRI measures can be weak in a normal population (i.e. with
no obvious pathology) and we would need significantly larger samples
to detect associations between brain measures and these individual
difference, especially in healthy adults (Gignac and Szodorai, 2016).

Clearly, there are number of reasons to be cautious in the inter-
pretation of any measure based on tractography. Firstly, there is the
obvious caveat that probabilistic tractography does not directly quan-
tify white matter integrity, but rather our uncertainty on streamlines
through the diffusion field (Jbabdi and Johansen-Berg, 2011).
Additionally, by using a group average of connectivity matrices, we
are effectively creating a sample-specific template of how the brain is
connected. Individual differences in connectivity are therefore relative
to this template. For the same reason, registration plays an important
further role, as individual differences in registration accuracy (in both
gray and white matter) will clearly affect the results. An example of this

may be seen in Fig. 7. There was a significant association between the
tractography IC corresponding to the posterior cingulum, as it leads
into the mesial temporal lobe, and topological defects in surface
extraction, which can occur in the medial temporal lobe especially, so
this may reflect true morphological changes. Spatial smoothing in
either seed or target space may help reduce the effect of subtle mis-
registration (O’Muircheartaigh et al., 2015), as may explicitly including
brain connectivity data as part of the registration cost-function (e.g.
Robinson et al., 2014).

A more obvious constraint that we chose, specific to this analysis, is
on which dimension to impose independence. In fMRI, this is a choice
between spatial and temporal independence for resulting components.
In this application in tractography, the choice is between imposing
independence in the seed domain (grey matter vertices/voxels) or the
tractography domain (presumed white matter connectivity). Previous
work, including our own, has imposed independence in tractography
space (O’Muircheartaigh et al., 2011). This was specifically to segregate
thalamocortical fibres which, at typical diffusion MRI resolution,
mostly follow a single, non-overlapping course. However, this is a
simplification and is certainly not the case for most of the brain, where
multiple fibre populations are the norm (e.g. Jeurissen et al., 2013),
even at the relatively high spatial resolution of the data used here.
Imposing independence on the tractography domain led to very
localised parcels of white matter with distributed grey matter end

Fig. 5. Basal ganglia-cortical loops decomposed using tractography and ICA. The top rows show the cortical (blue background) and subcortical (white background) representation of
independent components, following an anterior to posterior gradient from a to h. The corresponding white matter tractography maps are shown as MIP (maximum intensity projection,
orange with grey background). Some loops have lateralised components, in this case they are shown with their corresponding contralateral component (b,c,d,g) In all images, left is left.
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Fig. 6. Split-half reliability analysis across ICA dimensionalities. For each dimensionality, the reliability across individual components in one split and their representative alternate in
the other split is displayed as a box plot for the weighted grey matter (a) and tractography (b) or categorical parcels (c). The mean dice coefficient (blue dot in plots c and d) of the ICA
parcellation is higher than a random Voronoi parcellation (the red boxplots in d represent the range of mean dice coefficient for each of 100 iterations of random parcellations). An
example component from the left hemisphere, representing the arcuate fasciculus, is demonstrated for each split. As would be expected from this high reliability, hard parcellations
(right panel), shown on the left hemisphere only, are visually similar to each other at different ICA dimensionalities.

Fig. 7. Associations between independent components and 262 different behavioural, cognitive and structural MRI measures (calculated on the T1 weighted volume). Correlations are
arranged as a Manhattan plot with the dashed lines indicating the 5% and 10% line for false discovery rate across all correlations.
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points, in this case representing areas in (for example) frontal white
matter through which multiple white matter pathways course but are
not part of any single bundle.

ICA is just one possible approach to parcelling both grey and white
matter. Another approach, also working in grey matter space, by
Thiebaut de Schotten and colleagues (2014, 2016) utilised principal
component analysis to parcel occipital cortex and frontal cortex
respectively, providing anatomical regions defined by orthogonal
patterns of connectivity, though the patterns themselves rarely corre-
sponded to just one anatomical bundle (as is the case here at low model

order). An advantage of using PCA as a pre-processing step is that
components that do not describe large amount of variance are excluded
early on (Thiebaut de Schotten et al., 2014), reducing the possible
dimensionality of the data. Hierarchical clustering approaches (such as
in Moreno-Dominguez et al., 2014) demonstrate results quite compar-
able to those shown here but at the cost of increasing complexity.
Methods working in track space have been very efficient at clustering
tractography streamlines themselves, and assigning anatomical labels
to them with varying degrees of supervision, which then allows the
labelling to be propagated to new subjects (O’Donnell and Westin,

Fig. 8. Association between tractography and resting state networks (left panel). In the right panel, five example resting-state fMRI based functional networks (left column) with the two
diffusion tractography-based independent components that are most strongly associated with them (middle column), as well as their pattern of connectivity from these components as
maximum intensity projections (right column), are shown. Resting state networks shown on the right panel are highlighted in the correlation matrix on the left panel by a black box
outline and their column number in the matrix.
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2007; Tunç et al., 2014) but have not explicitly provided parcellations
of grey matter. This method sits in the middle, a hybrid (O’Donnell
et al., 2013), providing both a parcellation and an estimate of the
anatomical course of a bundle.

In summary, we have used independent component analysis to
reproducibly segregate whole brain grey matter according to diffusion
tractography based white matter connectivity, providing anatomically
meaningful networks of white matter connectivity. The approach
distinguishes known, overlapping white matter pathways and shows
good spatial correspondence to resting-state functional connectivity.
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