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ABSTRACT 
Increasing capabilities of modern microcontrollers greatly 
increase their applicability to more and more unstable and 
complex environments. Dynamic reconfiguration provides a 
powerful mechanism to adapt in such environments. However, 
the implementation of dynamic reconfiguration is still 
challenging for embedded real-time control software systems. 

In this paper, we present our real-time component framework 
which simultaneously supports hard real-time control and 
non-real-time adaption management while keeping the 
implementation as lean as possible. Our contribution is the 
hybrid component model in which one part is designed to 
support the real-time task while its non-real-time counterpart 
deals with component adaptation and management functions. A 
detailed analysis of the intra-component management interface 
was provided. XML was employed to describe and configure 
real-time task. We also designed an interface between real-time 
objects to achieve an inter-real-time task communication scheme 
based on global shared memory. In the non real-time domain, by 
mapping much of the management functions to the OSGi system 
service, we realized the components management service. Our 
framework can achieve complex component management while 
providing hard real-time assurance. 

1. INTRODUCTION 
Due to constraints on footprint and performance, development 
of mission-critical real-time systems has historically lagged far 
behind mainstream software development methodologies. 
Real-time systems are often so tightly coupled to their current 
configuration and operating environment that they cannot adapt 
readily to technology innovations, or to changes in run-time 
situational environments. Moreover, these systems often use 
relatively static methods when allocating scarce or shared 
resources to system lifecycle, i.e., well before run-time. 

For quite some time already, component-based software 
engineering (CBSE) [1] [2] has been considered to be a good 
way to cope with this increasing complexity. By dividing 

software systems into manageable parts, these components can 
be developed largely independently and reused many times in 
different application contexts. 

However, most real-time component-based software systems are 
pre-compiled. When updating or maintaining these systems, 
they need to be shut down for recompilation [10]. Yet, 
reconfiguring a system on-line is desirable for embedded 
real-time systems that require continuous hardware and software 
upgrades during system operation [1][3]. For example, real-time 
sensor-based control systems must be designed and developed 
such that software resources, e.g., controllers and device drivers, 
may change on the fly. Hence, a reconfiguration mechanism, 
enabling adding, removing, and exchanging components on-line, 
is needed to ensure that the software is updated without 
interrupting the execution of the system. 

Moreover, in complex real-time systems, the challenges of 
implementing real-time behavior include not only decoupling 
and modularizing the real-time behavior, but also the ability to 
deal with the component deployment, life cycle management, 
version control, component constrains resolution, etc. The low 
level languages currently used to program real-time systems are 
not up to the task of developing large, distributed systems that 
span a range of complexity from board-level to large enterprise 
systems. Implementing a system including all these adaptation 
and management aspects in low level programming and 
real-time model is very complex and error-prone. 

In this paper we present an adaptive framework for dynamic 
reconfigurable real-time systems. The software framework was 
developed as part of the ARFLEX Project [4]. It is an offshoot 
of a project to develop adaptive robots for flexible 
manufacturing environments. The following goals for a robotics 
programming environments were initially set forth in ARFLEX:     

l Providing hard real-time support. 
l Ability to support reconfigurable robots. 
l Dynamically changing control logic and Application logic  
l Support for different, multiple sensors. 
l Ability to support run time component reconfiguration. 
l Avoidance of downtimes during system evolution. 
l High automation level and quick re-programming 

capability. 

To solve these problems while keeping the system as lean as 
possible, we suggested a domain-specific software framework  
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Figure 1:  a split container architecture running the Hybrid real-time component 

based on OSGi [14] and RTAI [5]. In this framework, a Hybrid 
Realtime Component (HRC) model was designed. It has two 
main aspects. One aspect is focused on the support for the 
real-time requirement. RTAI is used for real-time OS support. 
Based on the so-called dual kernel technique, RTAI can provide 
hard real-time support for extended Linux kernels. At the same 
time, the real-time components are wrapped as OSGi bundles so 
that we can take full advantage of dynamic configurability, one 
of the most graceful features of OSGi. 

By mapping much management service to the OSGi system 
service, we provide the HRC’s life cycle, version, component 
constraints management which lacks in most real-time system 
designs. Reusing current mature specification makes our 
framework rather simple in design and easy for implementation. 

Thanks to the dual kernel design of RTAI, non-real-time tasks 
such as java tasks cannot interfere with the real-time tasks. 
Much of the uncertainty introduced by JVM garbage collection 
and Linux system scheduling scheme can be avoid. Meanwhile, 
a set of management interfaces were designed to manage the 
real-time task properties. The XML meta-data are employed to 
describe and configure the real-time tasks. We also designed the 
coding methods and provided templates to map the component's 
local properties, inputs and outputs into the global real-time 
RTAI shared memory which allows effective communication 
among the real-time tasks. 

The remainder of this paper is structured as follows: Section 2 
presents the structure of our hybrid component and describes a 
split framework supporting the hybrid component. In the same 
section we also introduce the XML scheme that describes and 
configures the real-time task. Then, in Section 3, we discuss the 
inter-real-time communication. Section 4 focuses on the 
intra-component interface design and briefly reviews the 
implementation methods. Section 5 then discusses the 
component runtime adaptation. Advanced techniques of 
container-managed quality assurance, which support quality 

adaptation at runtime, are presented in Section 6. Finally, in 
Section 7, we summarize our achievements and describe our 
future work in this framework. 

2. The Hybrid Adaptation Framework 
In the development of project ARFLEX (Adaptive Robots for 
FLEXible manufacturing systems, European project IST-NMP2 
016880), we have designed a hybrid adaptation framework for 
dynamic reconfiguration of real-time component. ACCORD [6] 
prescribes that real-time systems should first be decomposed 
into a set of components followed by decomposition into a set of 
aspects. Reconfigurability is supported in their real-time 
component model by weaving the new interface via offline 
weaving. We share their view of separation of concerns but use 
a different system approach.  

2.1. The Hybrid Real-time Component 
In control systems, each component can be mathematically 
modeled using a transfer function, which computes an output 
response for any given input [15]. However, with the growing 
complexity of real-time systems, the real-time component is 
characterized by more and more non real-time related 
requirements. These aspects include the deployment process of 
components, the management of component specifications and 
implementations, as well as the configuration and 
reconfiguration phase of components. A reconfigurable 
real-time component should satisfy two different types of 
requirements.  In this framework, we propose the Hybrid 
Realtime component model which consists of two main parts – 
one part runs directly in the real-time OS layer and the other part 
runs in the OSGi middleware environment.  

The real-time part of each HRC is an independent concurrent 
process, whose functionality is defined by the methods of a 
standard object. The standard object implements a set of 
functions that enable it to receive data and commands from the 
non real time parts while sending status information to its non 



real-time partner. Each real-time task has certain general 
properties such as name, description, task type etc, and task 
specific properties, which are used to (re)configure the real-time 
component for use with specific hardware or applications. 
Communication with other real-time modules is restricted to its 
input and output ports. The real-time task can also connect to 
sensors or actuators, via the digital I/O module. The details of 
accessing the hardware are encapsulated within the real-time 
task. 

In the non real-time part, we designed a reconfiguration specific 
interface containing methods for creating, deleting tasks, setting 
component parameters or changing the component state and 
frequency. The non real-time part is implemented as an OSGi 
service bundle and we use the OSGi framework service to 
realize the modules deployment, version control, life cycle 
management etc. Detailed discussion about this can be found in 
Section 5. 

In our implementation, an XML file is used to specify the 
meta-data describing the real-time task.  The example 
configuration file task.xml is shown in Figure 2. The same real 
time code may have possibly multiple versions of task.xml file. 
For instance, we can have multiple types of tasks for different 
environments by using different configurations of the same 
functional logic. Currently, we have designed the template file 
which implements predefined interfaces to set up the 
reconfigurable real-time task. The component developer merely 
will have to concentrate on the functional parts of the real-time 
task, which greatly reduces the complexity of developing such 
real-time system. A visual UI tool is also under development to 
generate interface and other configuration details for HRC code. 
In the real-time domain, the communication between real-time 
objects is restricted to their input and output ports. A global & 
local shared memory scheme has been designed to help different 
tasks exchange information, as detailed in Section 3. 

2.2. Split architecture of HRC 
In complex and distributed real-time systems, real-time 
capabilities are often not necessary for the whole large 
applications, but only for small parts of them. Consequently, we 
applied this philosophy to the component design and 
implementation. The result is a split architecture where we have 
a large non-real-time container, which is based on OSGi. We 
also have a real-time operating system. Currently, we use RTAI 
[5] for the underlying hard real-time OS support. 

By doing so, we both simplify the development by reusing 
existing software and minimize the amount of real-time program 
code. By defining a standard communication interface we 
connect the two parts and make them appear as one component 
to the application. This framework provides the mechanisms for 
quickly realizing each of these modules by using the hybrid 
model to implement them as real-time reconfigurable OSGi 
bundles.  

The non real-time container implements all functions that do not 
need to provide real-time guarantees. This includes the 
deployment process of components, the management of 
component specifications and implementations, as well as the 
initialization and startup phase of applications. In the 
implementation, we design and provide a set of general OSGi 
service interfaces. These service interfaces can be employed by 
the bundle itself or can be registered as OSGi services. External 

bundles can use the internal service oriented architecture to 
dynamically query all available managed services and change 
the HRC’s properties to suit run-time environment changes. 

The HRC’s life cycle is controlled by the OSGi framework. The 
OSGi container also controls the real-time object by invoking 
the methods in the IRealTimeManagement  interface. 
Currently, a general bundle implementation was designed and it 
can be used as a general frame to implement HRC OSGi parts.  

Real-time container:  In the real-time environments, currently, 
we designed the RTAI real-time task template. This template 
implements the standard interface and standard functions such as 
import variables and export results to out port by reading/ 
writing the global memory. It also provides a general task state 
control implementation, which executes certain code fragments. 
For example, in task init stage, the task will wait for the init 
parameters to be sent from the non real-time part to the task 
being initialized.   

2.3. Meta-data configuration and description 
The XML has become a standard method to describe data and 
the OSGi platform has very good support for it. OSGi provides 
the XML Parser service for its bundles. Each real-time bundle’s 
real-time interface and constrains are defined in XML. As a 
consequence, this approach enables a user to search for 
components suitable to a particular real-time application. 
Furthermore it enables a component to be configured when 
instantiated, and facilitates the sharing of components between 
repositories. We also use the XML to describe the real-time 
tasks’ component-specific input & output variables and 
properties, which will be used to exchange data between 
real-time tasks and configure the real-time tasks.  

By providing a detailed XML description for a real-time task’s 
binary codes, the HRC user should then be able to parse the 
XML description, and from its contents, determine the specifics 
on how to properly interact with the real-time task with 
appropriate communication methods and data formats. 
Meta-data should include the task’s unique name, description, 
properties (name, type, default value), ports (inports, outports) 
including port name (unique), port type and port size. Figure 3 
shows a fragment of meta-data file which describes a smart 
camera that can return regions of interests (subsets from a frame 
image data) on demand. 

<rttask-‐desc>	  
	   	   	   	   <preface>	   	  
	   	   	   	   	   	   <name>	  SCam01	  </name>	   	  
	   	   	   	   	   	   <desc>	   It’s	   a	   type	   of	   high	   speed	   smart	   camera	   that	   can	  

selectively	  transfer	  only	  part	  of	  the	  image	  in	  which	  the	  reference	  points	  
reside.	   	   	   </desc>	   	  

	   	   	   	   	   <tasktype>periodic</tasktype>	  
	   	   	   	   </preface>	  
	   	   <periodic_task	  >	  
	   	   <frequence>100</frequence>	  
	   	   <runoncpu>0</runoncpu>	  
	   	   <priority>2</priority>	  
	   </periodic_task>	  
<properties>	   	  
<property	   name="prfr01"	   type="int"	   desc="frame	   rate"	  

value="100"/>	   	  
	   <property	   name="prex02"	   type="int"	   desc="exposure	   time"	  

value="20"/>	   	  
	   	   </properties>	  



	   	   	  
<ports>	   	  
<inport	   name="ipx001"	   type="integer"	   size="1"	   desc="top	   x	  

position	  of	  frame	  window"/>	   	  
<inport	   name=ipy001"	   type="integer"	   	   size="1"	   desc="left	   y	  

position	  of	  frame	  window"/>	   	  
<outport	   name="ipimg01"	   type="byte"	   	   size="400"	   desc="Frame	  

video	  data	  in	  window"/>	   	  
</ports>	   	  

</rttask-‐desc>	   	   	  

Figure	  2.	   	   Sample	  configuration	  for	  smart	  camera	  task	  

In the configuration file task.xml, the name part of task is a 
global unique name which is used as reference value for the 
task. In this example, the real-time task will be created with 
global unique name "SCam01”. The properties element contains 
the parameters that need to be set during the task initialization 
and task reconfiguration phases. Each property has the unique 
name that will be used as reference by RTAI. The value field is 
used when the component is initialized. The inport & outport are 
the external references for the inport & outport values. They 
have an important property – size, which is used to allocate 
memory in the global shared memory. The inputs/outputs and 
the properties’ data are stored in the memory as raw data. The 
names of ports are used to perform the bindings between input 
and output. 

In our implementation, we use the raw data format. The type 
field of properties and ports is to be used in later possible data 
conversions. It can also be employed for validating the 
compatibility between two tasks. For example, a system 
configuration could be considered as valid only if for every RTC 
installed, any data that it requires at its input ports is produced 
by one of the other HRC as output. The system cannot have two 
HRC with same output, which may be a conflict as of which 
output should be used as a given name. 

In the current implementation, for simplicity, we directly use 
many RTAI schemes in the XML file. For example, we 
prescribe the name field should be 6 ASCII characters. In RTAI, 
tasks are referenced by using an unsigned long value. It provides 
function unsigned long nam2num (const char *name) that 
converts the 6 ASCII character name into unsigned long type. 
Similarly, the ports names and property names are also used to 
identify the object in the RTAI system. The ports values and 
properties have been defined as state variables stored in the 
global shared memory.  

3. INTER REATIME COMMUNICATION 
In realizing our HRC, how to map the intra component real-time 
communication into the RTOS Inter process communication is a 
very difficult aspect of creating dynamically reconfigurable 
real-time systems. In order to satisfy the real-time requirements, 
the communication mechanism needs to comply with the 
requirements described in what follows. 

2.1. Real-time communication requirements 
The inter real-time tasks’ communication scheme should support 
the independent process component model [1]. The process 
reads the input ports at the beginning of each cycle to obtain the 
most recent data available and writes to the output ports at the 
end of each cycle. It also needs a simple and straightforward 
way for binding between components. The communication links 

should be able to be dynamically reconfigured in bounded time. 
At the same time, an output should be able be sent to multiple 
inputs. The communication link should also support processes 
that may be executing at different frequencies. 

As in [1], the global shared memory scheme is used because it 
has the one main advantage compared to the message based 
approach: Fanning an output to multiple inputs is difficult in 
message based scheme because it requires a message to be 
duplicated for each input. Thus, a more complex mechanism is 
needed to ensure atomic multicast. Furthermore the overhead of 
sending multiple messages is comparably higher than writing 
into a single global shared memory cell. 

2.2. Variable-based Communication  
As in [1], the communication between real-time tasks is 
performed via state variables stored in global and local tables. 
Every input & output port and component properties is 
represented as a state variable stored in the global table. The 
table is stored in the shared memory. RTAI provides a set of 
real-time memory management services which can be shared by 
RTAI kernel modules and Linux processes. 

The variable-based communication has been designed and 
implemented in our framework. This includes the update of local 
and global tables. The state variables corresponding to input 
ports are updated prior to executing each cycle of a periodic 
function, or before the main event processing function for 
aperiodic tasks. After the processing for that cycle or event, the 
task may update the state variable in the global table. The 
transfer between the local and global tables are block transfers 
managed by standard C function memcpy(). The integrity of the 
data is ensured by the data transfers being performed as critical 
sections. We use one single lock for the entire global variable 
operation. This approach seems restrictive but even if multiple 
tasks have separate locks, only one of them can physically 
access the shared memory at once. Hence this approach is more 
simple and effective. 

4. INTRA-OBJECT COMMUNICATION 
Due to the hybrid structure of our HRC, the intra 
communication interface needs to be standardized to simplify 
the development of the component. We designed one set of 
interfaces that need to be implemented by the OSGi parts. An 
important note about the system is that our framework is 
designed independently of the functional part of each real-time 
task. Most of the implementation of these interfaces is identical. 
We designed classes that implement such interface. The 
programmer can simply reuse them. 

public interface IRealTimeManagement 
{ 

public boolean deploy(); 
public void startRTtask(); 
public int getstatus(); 
public int setpriority(int priority); 
public int setProperty(String name, int value); 
public int getProperty(String name); 
public int suspendRTtask(); 
public int resumeRTtask(); 
public int stopRTtask(); 

} 
  Figure 3. The interface definition in OSGi 



Firstly, we may need to use deploy() method to load the 
real-time task code. System.loadlibrary is invoked to install the 
native code library. After real-time code has been loaded, the 
task default settings are acquired by parsing the XML file 
bundled in the OSGi bundles. This information includes: task 
type, FPU usage, priority and CPU assignment etc. After getting 
this information, the task is initialized. The initialization process 
includes creating a task’s context, dynamically allocating its 
memory, creating a local table and translating I/O port symbols 
into pointers to the global table, and calling the user-defined init 
method.  

When the init procedure is finished, the process then waits in the 
standby state for a dynamic reconfiguration until the run signal 
is received, then the local table is updated to reflect the current 
state of the system, and execution begins. The startRTtask() 
method was designed to send such signal. 

The suspendRTtask and resumeRTtask are used to control the 
task state. This is very useful when the system needs to 
suspend/resume certain tasks for a while. It is especially useful 
when the system experiences errors or when system evolution is 
needed. When the task is finished or system needs to stop the 
task, the stopRTtask() can be used to send a signal to the task to 
perform task finalization function and terminate the task. The 
get/set properties methods help the programmer to dynamically 
change the tasks’ behavior. In the interface definition, there are 
no task specific parameters. All related parameters are acquired 
after parsing the XML configuration file. For example, 
startRTtask method will get the task name from XML first, and 
then get task reference by this name; finally it will send a 
message to this task to signal the task to enter the Run state. 

In the OSGi specification, part of the bundle’s lifecycle is 
managed by the framework. In our hybrid approach, the 
real-time task’s life cycle is mapped onto the corresponding non 
real-time peer. When the OSGi system starts the HRC bundle, it 
will invoke the deploy() method. When system needs to stop the 
bundle, it will invoke the stoptask() method to stop and delete 
real-time task in the bundle stop stage. By doing so, the 
real-time task’s life cycle is synchronized with its non real-time 
counterpart whose life cycle is controlled by OSGi system. 

Each HRC can expose the management interface to external 
applications as a IRealTimeManagement service provider. 
General or application specific adaptation managers can monitor 
the tasks status and adjust the parameter or even change the 
application structure according to current available resources 
and system requirements.  

Here, we have to point out that currently our framework focuses 
on providing a general adaptation framework for real-time 
systems rather than providing the guaranteed real-time 
reconfiguration. As our adaptation logic mainly operates in the 
non real-time domain, it cannot guarantee to perform certain 
adaptation actions in prescribed time constraint. However, 
guaranteed real-time reconfiguration is often data-dependent, 
mode-dependent, configuration-dependent and hardware- 
dependent. It is hard to provide a general scheme. In our 
implementation, we minimize the uncertainty brought by non 
real-time JVM by realizing the task management interface by 
creating native RTAI tasks to perform such actions. For 
example, we realize the getProperty method by creating a new 
RTAI task, performing global memory change and sending 

message via IPC functions to signal the property change. Due to 
the openness of framework, the programmer can use these 
services or design his/her own particular interface for 
application & mission specific real-time adaptation logic, which 
is out of the scope of our framework. 

5. ADAPTATION TO CHANGES 
Environment conditions or resource availability may change 
during application runtime. To deal with such situations, our 
framework enables adaptation of an application to changing 
resources and other mutating environment conditions. 
Adaptation and reservation work together in our architecture, 
which allows for adaptation on two different levels: 

1.  Adapting by adjusting parameters 
2.  Adapting by adjusting parts of an application’s structure. 

Together with the previous item, this type of adaptation can be 
achieved by using an application-specific adaptation manager. 

A key concept in our approach is that we want to separate the 
actual adaptation logic as much as possible from the business 
logic constituting the components’ code. In our implementation, 
we make full use of OSGi bundle management scheme, which 
greatly reduces the system complexity and development time. 
We can directly integrate many standard component interfaces 
that are available for common functions such as HTTP servers, 
configuration, logging, security, user administration, XML, etc 
into the target system.  

5.1. Property-based adaptation 
Our platform targets adaptive robots in flexible manufacturing 
environments. So the system requirement and control target or 
control logic may change greatly. For example, our smart 
camera component returns a window of the grabbed frame data. 
The window’s size and exposure time may change according to 
new system requirements. This kind of adaptation is what we 
call parameter-based adaptation, as parameters of the involved 
components are adapted at runtime. In order to be adaptable to 
new resource situations each component must implement an 
adaptation interface. The properties and the values are described 
in the XML meta-data file. The client component & application 
use the adaptation interface & meta-data file to correctly 
communicate with specific real-time task.  

Each application can provide the adaptation manager with 
perceived changes in the amount of available relevant resources 
and notifies components to be adapted. Our framework provides 
standard real-time management interface for each real-time 
bundle so each application can easily adapt the real-time task 
attribute according to its own application specific requirement. 
In the future, the OSGi configuration service will be integrated 
into our system to ease the system configuration process. 

5.2. Adaptation by structural modification 
In our framework, we use the OSGi system service to simplify 
the structure modification process.  In OSGi, service bundles’ 
basic constraints is managed by the Package Admin Service. In 
our implementation, we mapped the library constraints of RTAI 
modules which were implemented as Linux modules into 
constraints of the OSGi bundles’. As a simple example, the 
RTAI_hal.ko should be loaded before any other RTAI tasks. 
Constraints such as this can be expressed and solved in OSGi as 
follows. We designed a bundle which exports the org.RTAI.hal 
package. This bundle just takes responsibility to install 



RTAI_hal.ko modules.  Any our HRC bundle will try import 
this package when it needs RTAI service.  Of course, in the 
real application, the modules constraints is rather complex. 
OSGi also provides version, resolution (mandatory, optional) 
scheme to alleviate this problem. For example, in bundle A’s 
meta-data manifest.mf file, it states: 

Bundle A: Import-Package: p; 
resolution=optional; 
version=1.6  

The example shows Bundle A need package p with version 
equal 1.6 and the resolution is optional which means the bundles 
A may resolve in starting without the package being wired. 
While, when resolution is mandatory, it means the package p 
must be wired for the bundle to resolve. All these resolving 
works will be done by OSGi. Details can be found in [14]. 

In OSGi framework, service bundles can be installed, started, 
stopped and uninstalled without need to reset the system. 
However, due to our hybrid component structure, we need also 
consider the real-time task management. In the current approach, 
we deem that if two components can provide the task description 
parts in xml file which includes the task name, properties, and 
ports (inputs & outputs) description part in the XML, then the 
new component can take the place of the old component without 
restarting the whole application or system.  

In addition to manually start or stop specific bundles, the OSGi 
specification supports the Start Level Service [14]. Each bundle 
has an assigned start level and the Framework also has the active 
system start level. The start level can be dynamically changed 
during the runtime. By assigning the active start level to 
different types of bundle or changing the current system start 
level, we can easily change the application structure. For 
instance, when an error occurs in the system, we can change the 
system start level to the safe mode in which only the minimal 
fully trusted bundles are started.   

However, determining when it is safe to perform a dynamic 
reconfiguration is beyond the scope of the framework. 
Developing policies that ensure stable execution during a 
reconfiguration is usually application specific. In our 
experiments, we used a relatively conservative approach of 
ensuring that the robot is temporarily at safe state (i.e., velocity 
and acceleration are both zero before dynamic reconfiguration 
begins). Further research is required in order to develop more 
aggressive policies.  

6. RELATED WORK 
Li M. et al. [7] illustrate the software architecture of a problem 
solving environment used for the construction of scientific 
applications from software components. Each legacy component 
is encapsulated as a CORBA object, with its interface and 
constraints defined in XML. Their work lacks the consideration 
of real-time specific requirements. 

Eide E. etc [8] illustrate the design and implementation of CPU 
broker by adjust the tasks CPU reservation. Their research 
focuses on improving system QoS level and did not consider the 
real-time component management.  

In the area of real-time middleware, there has been significant 
work in both commercial standards and novel research. For 
instance, the Object Management Group has designed and 

continues to evolve standards for RT CORBA [2]. CORBA 
provides a set of middleware services, which have to be used 
explicitly by application programmers. However, our platform 
follows the approach of implicit or descriptive middleware; that 
is, the use of such services is not directly implemented within 
components’ application code but provided implicitly by the 
framework support according to additional component 
descriptors. 

CIAO [9;10] builds a QoS-enabled CCM implementation on top 
of TAO[11]. The project adhered to existing OMG 
specifications such as RT/CORBA and CORBA Component 
Model (CCM) [12] and the extension of those. In contrast, our 
focus is on the challenges of simultaneously supporting hard 
real-time control and non real-time component adaption 
management while keeping the implementation of our 
component model as lean as possible. The considerable 
overhead of implementing or extending a fully compliant CCM 
infrastructure would have been counter-productive to our system 
goal. 

Stewart D.B. et al. [1] designed a reconfigurable port-based 
object framework which has similar real-time communication 
scheme as ours. But their design used a pure real-time design 
philosophy which makes this system hard to develop upon.  

Hong W. E. et al. [13] used a similar combined approach of 
OSGi and RT-Linux, but their approach focus on the combined 
usage of the real-time and non real-time tasks by using the JNI 
and FIFO. Unlike their approach, our system focuses on the 
design of management interface and declarative description of 
real-time tasks. We also reuse the OSGi scheme which solved 
the version control and software constraints, whose schemes 
were lacking in most of previous real-time component related 
research work. 

7. CONCLUSIONS 
In this paper, we have presented our approach to guaranteeing 
real-time properties while supporting intricate component 
non-real-time requirements such as management, 
reconfiguration, version control etc.  

A key concept in our approach is that we want to separate the 
actual adaptation logic as much as possible from the business 
logic constituting the components’ code while keeping system 
implementation as lean as possible. In our framework, real-time 
task’s functionality and requirement are described by XML. The 
non real-time part uses this information to initialize and 
configure the real-time tasks. A set of communication interfaces 
has been defined which enables the non real-time bundle control 
the real-time task. We also introduced inter real-time task 
communication based on global shared memory. By mapping 
much management service to the OSGi system service, we 
achieved the HRC deployment, life cycle, version, and 
component constraints management.  

Our framework and implementation try to reuse the state of art 
middleware approach while still satisfying the real-time 
systems’ requirements. By mapping the component real-time 
part directly to the RTAI task, we achieved high real-time 
performance. While, by employing the OSGi specification, we 
can enjoy the flexibility of it. We can also enjoy many standard 
component interfaces that are available for common functions 



like HTTP servers, configuration, logging, security, user 
administration, XML, and many more.  

At the same time, our design tries to decouple and modularize 
the real-time behavior. It only deals with functions which have 
specific real-time requirements. The standard interface for 
inter/intra component communication designed in our 
framework makes our system very portable. Our framework can 
be easily migrated to other real-time OS such as RTLinux or 
TimeSys Linux while OSGi which is based on JAVA can 
naturally support various platforms. 
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