
 A Hybrid real-time component model for reconfigurable
embedded systems

Ning Gui, Vincenzo De Florio, Hong Sun, Chris Blondia

University of Antwerp
Dept. of Math and Comp. Science, Performance Analysis of Telecom. Systems group,

Middelheimlaan 1, 2020 Antwerp, Belgium,
and Interdisciplinary institute for BroadBand Technology

Ghent-Ledeberg, Belgium
{ning.gui, vincenzo.deflorio,hong.sun, chris.blondia}@ua.ac.be

ABSTRACT
Increasing capabilities of modern microcontrollers greatly
increase their applicability to more and more unstable and
complex environments. Dynamic reconfiguration provides a
powerful mechanism to adapt in such environments. However,
the implementation of dynamic reconfiguration is still
challenging for embedded real-time control software systems.

In this paper, we present our real-time component framework
which simultaneously supports hard real-time control and
non-real-time adaption management while keeping the
implementation as lean as possible. Our contribution is the
hybrid component model in which one part is designed to
support the real-time task while its non-real-time counterpart
deals with component adaptation and management functions. A
detailed analysis of the intra-component management interface
was provided. XML was employed to describe and configure
real-time task. We also designed an interface between real-time
objects to achieve an inter-real-time task communication scheme
based on global shared memory. In the non real-time domain, by
mapping much of the management functions to the OSGi system
service, we realized the components management service. Our
framework can achieve complex component management while
providing hard real-time assurance.

1. INTRODUCTION
Due to constraints on footprint and performance, development
of mission-critical real-time systems has historically lagged far
behind mainstream software development methodologies.
Real-time systems are often so tightly coupled to their current
configuration and operating environment that they cannot adapt
readily to technology innovations, or to changes in run-time
situational environments. Moreover, these systems often use
relatively static methods when allocating scarce or shared
resources to system lifecycle, i.e., well before run-time.

For quite some time already, component-based software
engineering (CBSE) [1] [2] has been considered to be a good
way to cope with this increasing complexity. By dividing

software systems into manageable parts, these components can
be developed largely independently and reused many times in
different application contexts.

However, most real-time component-based software systems are
pre-compiled. When updating or maintaining these systems,
they need to be shut down for recompilation [10]. Yet,
reconfiguring a system on-line is desirable for embedded
real-time systems that require continuous hardware and software
upgrades during system operation [1][3]. For example, real-time
sensor-based control systems must be designed and developed
such that software resources, e.g., controllers and device drivers,
may change on the fly. Hence, a reconfiguration mechanism,
enabling adding, removing, and exchanging components on-line,
is needed to ensure that the software is updated without
interrupting the execution of the system.

Moreover, in complex real-time systems, the challenges of
implementing real-time behavior include not only decoupling
and modularizing the real-time behavior, but also the ability to
deal with the component deployment, life cycle management,
version control, component constrains resolution, etc. The low
level languages currently used to program real-time systems are
not up to the task of developing large, distributed systems that
span a range of complexity from board-level to large enterprise
systems. Implementing a system including all these adaptation
and management aspects in low level programming and
real-time model is very complex and error-prone.

In this paper we present an adaptive framework for dynamic
reconfigurable real-time systems. The software framework was
developed as part of the ARFLEX Project [4]. It is an offshoot
of a project to develop adaptive robots for flexible
manufacturing environments. The following goals for a robotics
programming environments were initially set forth in ARFLEX:

l Providing hard real-time support.
l Ability to support reconfigurable robots.
l Dynamically changing control logic and Application logic
l Support for different, multiple sensors.
l Ability to support run time component reconfiguration.
l Avoidance of downtimes during system evolution.
l High automation level and quick re-programming

capability.

To solve these problems while keeping the system as lean as
possible, we suggested a domain-specific software framework

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’08, March 16-20, 2008, Fortaleza, Ceará, Brazil.
Copyright 2008 ACM 978-1-59593-753-7/08/0003…$5.00.

Figure 1: a split container architecture running the Hybrid real-time component

based on OSGi [14] and RTAI [5]. In this framework, a Hybrid
Realtime Component (HRC) model was designed. It has two
main aspects. One aspect is focused on the support for the
real-time requirement. RTAI is used for real-time OS support.
Based on the so-called dual kernel technique, RTAI can provide
hard real-time support for extended Linux kernels. At the same
time, the real-time components are wrapped as OSGi bundles so
that we can take full advantage of dynamic configurability, one
of the most graceful features of OSGi.

By mapping much management service to the OSGi system
service, we provide the HRC’s life cycle, version, component
constraints management which lacks in most real-time system
designs. Reusing current mature specification makes our
framework rather simple in design and easy for implementation.

Thanks to the dual kernel design of RTAI, non-real-time tasks
such as java tasks cannot interfere with the real-time tasks.
Much of the uncertainty introduced by JVM garbage collection
and Linux system scheduling scheme can be avoid. Meanwhile,
a set of management interfaces were designed to manage the
real-time task properties. The XML meta-data are employed to
describe and configure the real-time tasks. We also designed the
coding methods and provided templates to map the component's
local properties, inputs and outputs into the global real-time
RTAI shared memory which allows effective communication
among the real-time tasks.

The remainder of this paper is structured as follows: Section 2
presents the structure of our hybrid component and describes a
split framework supporting the hybrid component. In the same
section we also introduce the XML scheme that describes and
configures the real-time task. Then, in Section 3, we discuss the
inter-real-time communication. Section 4 focuses on the
intra-component interface design and briefly reviews the
implementation methods. Section 5 then discusses the
component runtime adaptation. Advanced techniques of
container-managed quality assurance, which support quality

adaptation at runtime, are presented in Section 6. Finally, in
Section 7, we summarize our achievements and describe our
future work in this framework.

2. The Hybrid Adaptation Framework
In the development of project ARFLEX (Adaptive Robots for
FLEXible manufacturing systems, European project IST-NMP2
016880), we have designed a hybrid adaptation framework for
dynamic reconfiguration of real-time component. ACCORD [6]
prescribes that real-time systems should first be decomposed
into a set of components followed by decomposition into a set of
aspects. Reconfigurability is supported in their real-time
component model by weaving the new interface via offline
weaving. We share their view of separation of concerns but use
a different system approach.

2.1. The Hybrid Real-time Component
In control systems, each component can be mathematically
modeled using a transfer function, which computes an output
response for any given input [15]. However, with the growing
complexity of real-time systems, the real-time component is
characterized by more and more non real-time related
requirements. These aspects include the deployment process of
components, the management of component specifications and
implementations, as well as the configuration and
reconfiguration phase of components. A reconfigurable
real-time component should satisfy two different types of
requirements. In this framework, we propose the Hybrid
Realtime component model which consists of two main parts –
one part runs directly in the real-time OS layer and the other part
runs in the OSGi middleware environment.

The real-time part of each HRC is an independent concurrent
process, whose functionality is defined by the methods of a
standard object. The standard object implements a set of
functions that enable it to receive data and commands from the
non real time parts while sending status information to its non

real-time partner. Each real-time task has certain general
properties such as name, description, task type etc, and task
specific properties, which are used to (re)configure the real-time
component for use with specific hardware or applications.
Communication with other real-time modules is restricted to its
input and output ports. The real-time task can also connect to
sensors or actuators, via the digital I/O module. The details of
accessing the hardware are encapsulated within the real-time
task.

In the non real-time part, we designed a reconfiguration specific
interface containing methods for creating, deleting tasks, setting
component parameters or changing the component state and
frequency. The non real-time part is implemented as an OSGi
service bundle and we use the OSGi framework service to
realize the modules deployment, version control, life cycle
management etc. Detailed discussion about this can be found in
Section 5.

In our implementation, an XML file is used to specify the
meta-data describing the real-time task. The example
configuration file task.xml is shown in Figure 2. The same real
time code may have possibly multiple versions of task.xml file.
For instance, we can have multiple types of tasks for different
environments by using different configurations of the same
functional logic. Currently, we have designed the template file
which implements predefined interfaces to set up the
reconfigurable real-time task. The component developer merely
will have to concentrate on the functional parts of the real-time
task, which greatly reduces the complexity of developing such
real-time system. A visual UI tool is also under development to
generate interface and other configuration details for HRC code.
In the real-time domain, the communication between real-time
objects is restricted to their input and output ports. A global &
local shared memory scheme has been designed to help different
tasks exchange information, as detailed in Section 3.

2.2. Split architecture of HRC
In complex and distributed real-time systems, real-time
capabilities are often not necessary for the whole large
applications, but only for small parts of them. Consequently, we
applied this philosophy to the component design and
implementation. The result is a split architecture where we have
a large non-real-time container, which is based on OSGi. We
also have a real-time operating system. Currently, we use RTAI
[5] for the underlying hard real-time OS support.

By doing so, we both simplify the development by reusing
existing software and minimize the amount of real-time program
code. By defining a standard communication interface we
connect the two parts and make them appear as one component
to the application. This framework provides the mechanisms for
quickly realizing each of these modules by using the hybrid
model to implement them as real-time reconfigurable OSGi
bundles.

The non real-time container implements all functions that do not
need to provide real-time guarantees. This includes the
deployment process of components, the management of
component specifications and implementations, as well as the
initialization and startup phase of applications. In the
implementation, we design and provide a set of general OSGi
service interfaces. These service interfaces can be employed by
the bundle itself or can be registered as OSGi services. External

bundles can use the internal service oriented architecture to
dynamically query all available managed services and change
the HRC’s properties to suit run-time environment changes.

The HRC’s life cycle is controlled by the OSGi framework. The
OSGi container also controls the real-time object by invoking
the methods in the IRealTimeManagement interface.
Currently, a general bundle implementation was designed and it
can be used as a general frame to implement HRC OSGi parts.

Real-time container: In the real-time environments, currently,
we designed the RTAI real-time task template. This template
implements the standard interface and standard functions such as
import variables and export results to out port by reading/
writing the global memory. It also provides a general task state
control implementation, which executes certain code fragments.
For example, in task init stage, the task will wait for the init
parameters to be sent from the non real-time part to the task
being initialized.

2.3. Meta-data configuration and description
The XML has become a standard method to describe data and
the OSGi platform has very good support for it. OSGi provides
the XML Parser service for its bundles. Each real-time bundle’s
real-time interface and constrains are defined in XML. As a
consequence, this approach enables a user to search for
components suitable to a particular real-time application.
Furthermore it enables a component to be configured when
instantiated, and facilitates the sharing of components between
repositories. We also use the XML to describe the real-time
tasks’ component-specific input & output variables and
properties, which will be used to exchange data between
real-time tasks and configure the real-time tasks.

By providing a detailed XML description for a real-time task’s
binary codes, the HRC user should then be able to parse the
XML description, and from its contents, determine the specifics
on how to properly interact with the real-time task with
appropriate communication methods and data formats.
Meta-data should include the task’s unique name, description,
properties (name, type, default value), ports (inports, outports)
including port name (unique), port type and port size. Figure 3
shows a fragment of meta-data file which describes a smart
camera that can return regions of interests (subsets from a frame
image data) on demand.

<rttask-‐desc>	
	 	 	 	 <preface>	 	
	 	 	 	 	 	 <name>	 SCam01	 </name>	 	
	 	 	 	 	 	 <desc>	 It’s	 a	 type	 of	 high	 speed	 smart	 camera	 that	 can	

selectively	 transfer	 only	 part	 of	 the	 image	 in	 which	 the	 reference	 points	
reside.	 	 	 </desc>	 	

	 	 	 	 	 <tasktype>periodic</tasktype>	
	 	 	 	 </preface>	
	 	 <periodic_task	 >	
	 	 <frequence>100</frequence>	
	 	 <runoncpu>0</runoncpu>	
	 	 <priority>2</priority>	
	 </periodic_task>	
<properties>	 	
<property	 name="prfr01"	 type="int"	 desc="frame	 rate"	

value="100"/>	 	
	 <property	 name="prex02"	 type="int"	 desc="exposure	 time"	

value="20"/>	 	
	 	 </properties>	

	 	 	
<ports>	 	
<inport	 name="ipx001"	 type="integer"	 size="1"	 desc="top	 x	

position	 of	 frame	 window"/>	 	
<inport	 name=ipy001"	 type="integer"	 	 size="1"	 desc="left	 y	

position	 of	 frame	 window"/>	 	
<outport	 name="ipimg01"	 type="byte"	 	 size="400"	 desc="Frame	

video	 data	 in	 window"/>	 	
</ports>	 	

</rttask-‐desc>	 	 	

Figure	 2.	 	 Sample	 configuration	 for	 smart	 camera	 task	

In the configuration file task.xml, the name part of task is a
global unique name which is used as reference value for the
task. In this example, the real-time task will be created with
global unique name "SCam01”. The properties element contains
the parameters that need to be set during the task initialization
and task reconfiguration phases. Each property has the unique
name that will be used as reference by RTAI. The value field is
used when the component is initialized. The inport & outport are
the external references for the inport & outport values. They
have an important property – size, which is used to allocate
memory in the global shared memory. The inputs/outputs and
the properties’ data are stored in the memory as raw data. The
names of ports are used to perform the bindings between input
and output.

In our implementation, we use the raw data format. The type
field of properties and ports is to be used in later possible data
conversions. It can also be employed for validating the
compatibility between two tasks. For example, a system
configuration could be considered as valid only if for every RTC
installed, any data that it requires at its input ports is produced
by one of the other HRC as output. The system cannot have two
HRC with same output, which may be a conflict as of which
output should be used as a given name.

In the current implementation, for simplicity, we directly use
many RTAI schemes in the XML file. For example, we
prescribe the name field should be 6 ASCII characters. In RTAI,
tasks are referenced by using an unsigned long value. It provides
function unsigned long nam2num (const char *name) that
converts the 6 ASCII character name into unsigned long type.
Similarly, the ports names and property names are also used to
identify the object in the RTAI system. The ports values and
properties have been defined as state variables stored in the
global shared memory.

3. INTER REATIME COMMUNICATION
In realizing our HRC, how to map the intra component real-time
communication into the RTOS Inter process communication is a
very difficult aspect of creating dynamically reconfigurable
real-time systems. In order to satisfy the real-time requirements,
the communication mechanism needs to comply with the
requirements described in what follows.

2.1. Real-time communication requirements
The inter real-time tasks’ communication scheme should support
the independent process component model [1]. The process
reads the input ports at the beginning of each cycle to obtain the
most recent data available and writes to the output ports at the
end of each cycle. It also needs a simple and straightforward
way for binding between components. The communication links

should be able to be dynamically reconfigured in bounded time.
At the same time, an output should be able be sent to multiple
inputs. The communication link should also support processes
that may be executing at different frequencies.

As in [1], the global shared memory scheme is used because it
has the one main advantage compared to the message based
approach: Fanning an output to multiple inputs is difficult in
message based scheme because it requires a message to be
duplicated for each input. Thus, a more complex mechanism is
needed to ensure atomic multicast. Furthermore the overhead of
sending multiple messages is comparably higher than writing
into a single global shared memory cell.

2.2. Variable-based Communication
As in [1], the communication between real-time tasks is
performed via state variables stored in global and local tables.
Every input & output port and component properties is
represented as a state variable stored in the global table. The
table is stored in the shared memory. RTAI provides a set of
real-time memory management services which can be shared by
RTAI kernel modules and Linux processes.

The variable-based communication has been designed and
implemented in our framework. This includes the update of local
and global tables. The state variables corresponding to input
ports are updated prior to executing each cycle of a periodic
function, or before the main event processing function for
aperiodic tasks. After the processing for that cycle or event, the
task may update the state variable in the global table. The
transfer between the local and global tables are block transfers
managed by standard C function memcpy(). The integrity of the
data is ensured by the data transfers being performed as critical
sections. We use one single lock for the entire global variable
operation. This approach seems restrictive but even if multiple
tasks have separate locks, only one of them can physically
access the shared memory at once. Hence this approach is more
simple and effective.

4. INTRA-OBJECT COMMUNICATION
Due to the hybrid structure of our HRC, the intra
communication interface needs to be standardized to simplify
the development of the component. We designed one set of
interfaces that need to be implemented by the OSGi parts. An
important note about the system is that our framework is
designed independently of the functional part of each real-time
task. Most of the implementation of these interfaces is identical.
We designed classes that implement such interface. The
programmer can simply reuse them.

public interface IRealTimeManagement
{

public boolean deploy();
public void startRTtask();
public int getstatus();
public int setpriority(int priority);
public int setProperty(String name, int value);
public int getProperty(String name);
public int suspendRTtask();
public int resumeRTtask();
public int stopRTtask();

}
 Figure 3. The interface definition in OSGi

Firstly, we may need to use deploy() method to load the
real-time task code. System.loadlibrary is invoked to install the
native code library. After real-time code has been loaded, the
task default settings are acquired by parsing the XML file
bundled in the OSGi bundles. This information includes: task
type, FPU usage, priority and CPU assignment etc. After getting
this information, the task is initialized. The initialization process
includes creating a task’s context, dynamically allocating its
memory, creating a local table and translating I/O port symbols
into pointers to the global table, and calling the user-defined init
method.

When the init procedure is finished, the process then waits in the
standby state for a dynamic reconfiguration until the run signal
is received, then the local table is updated to reflect the current
state of the system, and execution begins. The startRTtask()
method was designed to send such signal.

The suspendRTtask and resumeRTtask are used to control the
task state. This is very useful when the system needs to
suspend/resume certain tasks for a while. It is especially useful
when the system experiences errors or when system evolution is
needed. When the task is finished or system needs to stop the
task, the stopRTtask() can be used to send a signal to the task to
perform task finalization function and terminate the task. The
get/set properties methods help the programmer to dynamically
change the tasks’ behavior. In the interface definition, there are
no task specific parameters. All related parameters are acquired
after parsing the XML configuration file. For example,
startRTtask method will get the task name from XML first, and
then get task reference by this name; finally it will send a
message to this task to signal the task to enter the Run state.

In the OSGi specification, part of the bundle’s lifecycle is
managed by the framework. In our hybrid approach, the
real-time task’s life cycle is mapped onto the corresponding non
real-time peer. When the OSGi system starts the HRC bundle, it
will invoke the deploy() method. When system needs to stop the
bundle, it will invoke the stoptask() method to stop and delete
real-time task in the bundle stop stage. By doing so, the
real-time task’s life cycle is synchronized with its non real-time
counterpart whose life cycle is controlled by OSGi system.

Each HRC can expose the management interface to external
applications as a IRealTimeManagement service provider.
General or application specific adaptation managers can monitor
the tasks status and adjust the parameter or even change the
application structure according to current available resources
and system requirements.

Here, we have to point out that currently our framework focuses
on providing a general adaptation framework for real-time
systems rather than providing the guaranteed real-time
reconfiguration. As our adaptation logic mainly operates in the
non real-time domain, it cannot guarantee to perform certain
adaptation actions in prescribed time constraint. However,
guaranteed real-time reconfiguration is often data-dependent,
mode-dependent, configuration-dependent and hardware-
dependent. It is hard to provide a general scheme. In our
implementation, we minimize the uncertainty brought by non
real-time JVM by realizing the task management interface by
creating native RTAI tasks to perform such actions. For
example, we realize the getProperty method by creating a new
RTAI task, performing global memory change and sending

message via IPC functions to signal the property change. Due to
the openness of framework, the programmer can use these
services or design his/her own particular interface for
application & mission specific real-time adaptation logic, which
is out of the scope of our framework.

5. ADAPTATION TO CHANGES
Environment conditions or resource availability may change
during application runtime. To deal with such situations, our
framework enables adaptation of an application to changing
resources and other mutating environment conditions.
Adaptation and reservation work together in our architecture,
which allows for adaptation on two different levels:

1. Adapting by adjusting parameters
2. Adapting by adjusting parts of an application’s structure.

Together with the previous item, this type of adaptation can be
achieved by using an application-specific adaptation manager.

A key concept in our approach is that we want to separate the
actual adaptation logic as much as possible from the business
logic constituting the components’ code. In our implementation,
we make full use of OSGi bundle management scheme, which
greatly reduces the system complexity and development time.
We can directly integrate many standard component interfaces
that are available for common functions such as HTTP servers,
configuration, logging, security, user administration, XML, etc
into the target system.

5.1. Property-based adaptation
Our platform targets adaptive robots in flexible manufacturing
environments. So the system requirement and control target or
control logic may change greatly. For example, our smart
camera component returns a window of the grabbed frame data.
The window’s size and exposure time may change according to
new system requirements. This kind of adaptation is what we
call parameter-based adaptation, as parameters of the involved
components are adapted at runtime. In order to be adaptable to
new resource situations each component must implement an
adaptation interface. The properties and the values are described
in the XML meta-data file. The client component & application
use the adaptation interface & meta-data file to correctly
communicate with specific real-time task.

Each application can provide the adaptation manager with
perceived changes in the amount of available relevant resources
and notifies components to be adapted. Our framework provides
standard real-time management interface for each real-time
bundle so each application can easily adapt the real-time task
attribute according to its own application specific requirement.
In the future, the OSGi configuration service will be integrated
into our system to ease the system configuration process.

5.2. Adaptation by structural modification
In our framework, we use the OSGi system service to simplify
the structure modification process. In OSGi, service bundles’
basic constraints is managed by the Package Admin Service. In
our implementation, we mapped the library constraints of RTAI
modules which were implemented as Linux modules into
constraints of the OSGi bundles’. As a simple example, the
RTAI_hal.ko should be loaded before any other RTAI tasks.
Constraints such as this can be expressed and solved in OSGi as
follows. We designed a bundle which exports the org.RTAI.hal
package. This bundle just takes responsibility to install

RTAI_hal.ko modules. Any our HRC bundle will try import
this package when it needs RTAI service. Of course, in the
real application, the modules constraints is rather complex.
OSGi also provides version, resolution (mandatory, optional)
scheme to alleviate this problem. For example, in bundle A’s
meta-data manifest.mf file, it states:

Bundle A: Import-Package: p;
resolution=optional;
version=1.6

The example shows Bundle A need package p with version
equal 1.6 and the resolution is optional which means the bundles
A may resolve in starting without the package being wired.
While, when resolution is mandatory, it means the package p
must be wired for the bundle to resolve. All these resolving
works will be done by OSGi. Details can be found in [14].

In OSGi framework, service bundles can be installed, started,
stopped and uninstalled without need to reset the system.
However, due to our hybrid component structure, we need also
consider the real-time task management. In the current approach,
we deem that if two components can provide the task description
parts in xml file which includes the task name, properties, and
ports (inputs & outputs) description part in the XML, then the
new component can take the place of the old component without
restarting the whole application or system.

In addition to manually start or stop specific bundles, the OSGi
specification supports the Start Level Service [14]. Each bundle
has an assigned start level and the Framework also has the active
system start level. The start level can be dynamically changed
during the runtime. By assigning the active start level to
different types of bundle or changing the current system start
level, we can easily change the application structure. For
instance, when an error occurs in the system, we can change the
system start level to the safe mode in which only the minimal
fully trusted bundles are started.

However, determining when it is safe to perform a dynamic
reconfiguration is beyond the scope of the framework.
Developing policies that ensure stable execution during a
reconfiguration is usually application specific. In our
experiments, we used a relatively conservative approach of
ensuring that the robot is temporarily at safe state (i.e., velocity
and acceleration are both zero before dynamic reconfiguration
begins). Further research is required in order to develop more
aggressive policies.

6. RELATED WORK
Li M. et al. [7] illustrate the software architecture of a problem
solving environment used for the construction of scientific
applications from software components. Each legacy component
is encapsulated as a CORBA object, with its interface and
constraints defined in XML. Their work lacks the consideration
of real-time specific requirements.

Eide E. etc [8] illustrate the design and implementation of CPU
broker by adjust the tasks CPU reservation. Their research
focuses on improving system QoS level and did not consider the
real-time component management.

In the area of real-time middleware, there has been significant
work in both commercial standards and novel research. For
instance, the Object Management Group has designed and

continues to evolve standards for RT CORBA [2]. CORBA
provides a set of middleware services, which have to be used
explicitly by application programmers. However, our platform
follows the approach of implicit or descriptive middleware; that
is, the use of such services is not directly implemented within
components’ application code but provided implicitly by the
framework support according to additional component
descriptors.

CIAO [9;10] builds a QoS-enabled CCM implementation on top
of TAO[11]. The project adhered to existing OMG
specifications such as RT/CORBA and CORBA Component
Model (CCM) [12] and the extension of those. In contrast, our
focus is on the challenges of simultaneously supporting hard
real-time control and non real-time component adaption
management while keeping the implementation of our
component model as lean as possible. The considerable
overhead of implementing or extending a fully compliant CCM
infrastructure would have been counter-productive to our system
goal.

Stewart D.B. et al. [1] designed a reconfigurable port-based
object framework which has similar real-time communication
scheme as ours. But their design used a pure real-time design
philosophy which makes this system hard to develop upon.

Hong W. E. et al. [13] used a similar combined approach of
OSGi and RT-Linux, but their approach focus on the combined
usage of the real-time and non real-time tasks by using the JNI
and FIFO. Unlike their approach, our system focuses on the
design of management interface and declarative description of
real-time tasks. We also reuse the OSGi scheme which solved
the version control and software constraints, whose schemes
were lacking in most of previous real-time component related
research work.

7. CONCLUSIONS
In this paper, we have presented our approach to guaranteeing
real-time properties while supporting intricate component
non-real-time requirements such as management,
reconfiguration, version control etc.

A key concept in our approach is that we want to separate the
actual adaptation logic as much as possible from the business
logic constituting the components’ code while keeping system
implementation as lean as possible. In our framework, real-time
task’s functionality and requirement are described by XML. The
non real-time part uses this information to initialize and
configure the real-time tasks. A set of communication interfaces
has been defined which enables the non real-time bundle control
the real-time task. We also introduced inter real-time task
communication based on global shared memory. By mapping
much management service to the OSGi system service, we
achieved the HRC deployment, life cycle, version, and
component constraints management.

Our framework and implementation try to reuse the state of art
middleware approach while still satisfying the real-time
systems’ requirements. By mapping the component real-time
part directly to the RTAI task, we achieved high real-time
performance. While, by employing the OSGi specification, we
can enjoy the flexibility of it. We can also enjoy many standard
component interfaces that are available for common functions

like HTTP servers, configuration, logging, security, user
administration, XML, and many more.

At the same time, our design tries to decouple and modularize
the real-time behavior. It only deals with functions which have
specific real-time requirements. The standard interface for
inter/intra component communication designed in our
framework makes our system very portable. Our framework can
be easily migrated to other real-time OS such as RTLinux or
TimeSys Linux while OSGi which is based on JAVA can
naturally support various platforms.

8. References
[1] D. B. Stewart, R. A. Volpe, and P. K. Khosla, "Design of

dynamically reconfigurable real-time software using
port-based objects," IEEE Transactions on Software
Engineering, vol. 23, no. 12, pp. 759-776, Dec.1997.

[2] K. Sandstrom, J. Fredriksson, and M. Akerholm,
"Introducing a component technology for safety critical
embedded real-time systems," Component-Based Software
Engineering, vol. 3054, pp. 194-208, 2004.

[3] A. Cerpa and D. Estrin, "ASCENT: Adaptive self-
configuring sEnsor networks topologies," IEEE
Transactions on Mobile Computing, vol. 3, no. 3, pp.
272-285, July2004.

[4] ARFLEX Project, www.arflexproject.eu, 2007
[5] “RTAI Programming Guide,” 2006.

[6] Aleksandra Tesanovic, Dag Nystrom, Jergen Hansson, and
Christer Norstrom, "Aspects and Components in Real-Time
System Development: Towards Reconfigurable and
Reusable Software," Journal of Embedded Computing, pp.
17-37, Jan.2005.

[7] "CORBA Component Model v.4.0," OMG document.
formal/04-01-06, 2007.

[8] Maozhen Li, Omer F.Rana, and David W.Walker, "An
XML-based component model for wrapping legacy codes as
Java/CORBA components," 2000.

[9] Eric Eide, Tim Stack, John Regehr, and Jay Lepreau,
"Dynamic CPU Management for Real-Time,
Middleware-Based Systems," in Proceedings of the Tenth
IEEE Real-Time and Embedded Technology and
Applications Symposium(RTAS 2004) Toronto: 2004.

[10] N. B. Wang, C. Gill, D. C. Schmidt, and V. Subramonian,
"Configuring real-time aspects in component middleware,"
On the Move to Meaningful Internet Systems 2004: Coopls,
Doa, and Odbase, Pt 2, Proceedings, vol. 3291, pp.
1520-1537, 2004.

[11] A. Gokhale, D. C. Schmidt, B. Natarajan, and N. B. Wang,
"Applying model-integrated computing to component
middleware and enterprise applications," Communications
of the ACM, vol. 45, no. 10, pp. 65-70, Oct.2002.

[12] D. C. Schmidt, D. L. Levine, and S. Mungee, "The design
of the TAO real-time object request broker," Computer
Communications, vol. 21, no. 4, pp. 294-324, Apr.1998.

[13] Won Eui Hong, Bon Jin Ku, Myung Jin Lee, Hong Bae
Park, and Soon Ju Kang, "Combined Approach of OSGi
and RTLinux Framework for Supporting Software
Architecture of Internet Embedded Real-Time System,"
Toronto, Canada: 2004.

[14] OSGi Service Platform Core Specification v4.0, Aug.
2005 http://www.OSGi.org, 2005

[15] R.C. Dorf, Modern Control Systems, third edition.
London: Addison-Wesley, 1980.

