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ABSTRACT Recently, large-scale public cloud providers begin to offer spot instances. This type of

instance has become popular with more and more cloud users in the light of its convenient access mode

and low price, especially for those big data analysis jobs with high performance computation requirements.

However, using spot instances may carry the risk of being interrupted and lead to extra costs for job re-

executions because these instances are generally unstable. Yet, such cost can be greatly reduced if a backup

can be made at the right time before interruptions. For convenience and cost efficiency, users can choose the

StaaS (Storage-as-a-Service) storage provided by the same cloud provider, whose spot instances are used by

the users, to store backup data files for future job execution recovery. Since making backups too often will

incur increased costs, users need to make the backup decisions appropriately considering the condition when

an abrupt interruption will occur in the future. However, it is hard to know or predict precisely when such

an interruption will occur. For solving this problem, in this paper, we propose an online algorithm to guide

cloud users to make backups when using spot instances to execute big data analysis jobs, without requiring

any information about future interruptions. We prove theoretically that our proposed online algorithm can

guarantee a bounded competitive ratio less than 2. Finally, according to extensive experiments, we verify the

effectiveness of our online algorithm in reducing the additional cost caused by interruptions in using spot

instances and find that our online algorithm can still achieve a stable cost optimization even if interruptions

occur frequently.

INDEX TERMS spot instance, online algorithm, back up, abrupt termination

I. INTRODUCTION

THE Data Computing and Hosting Services Mar-

ket is expected to register a CAGR (Compound

Annual Growth Rate) of over 8.7% during the fore-

cast period 2020 – 2025 [1]. Companies in emerg-

ing economies are increasingly outsourcing their IT

infrastructure needs, which further promotes the busi-

ness growth of the IaaS (Infrastructure-as-a-Service)

market. These large-scale public IaaS cloud providers

like Amazon, Microsoft or Google offer multiple in-

stance purchasing options including on-demand in-

stances, reserved instances and spot instances. Transfer-

ring Hadoop [2], MapReduce [3], Spark [4] and other

frameworks from the local to the cloud has become a

choice for many data analysis users. In the face of high

fees of using high performance on-demand and reserved

instances, using spot instances becomes a popular op-

tion for cloud users to reduce their IaaS spendings.

Spot instances were firstly available to users by Ama-

zon in late 2009, which were called Amazon EC2 Spot

Instances (SI) [5]. This type of instance offers an ultra-

low discount compared to the price of corresponding

on-demand instances. Users can save 90% of the price

of an on-demand instance by selecting "spot" when

starting an EC2 instance. Yet it carries the risk of being

interrupted because the price and availability of these

instances will change dynamically with the supply and

demand of instance markets. To use spot instances effec-

tively, users must carefully weigh the low cost against

poor availability. Taking Amazon EC2 as an example,

the price of spot instances are set by Amazon and

gradually adjusted according to the long-term supply

and demand of spot instances. Thus, the price of spot

instances can fluctuate up and down. A maximum bid
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needs to be given before a user rents spot instances.

Such a bidding strategy is called "Set your max price

(per instance/hour)". Generally, users will estimate the

price and weigh reliability against the price themselves.

A user’s job will keep running in spot instances when-

ever the maximum bid, which is set by the user, exceeds

the current price of the spot instances. Once the current

price of the spot instances are higher than the maximum

bid, the user’s job will be terminated and irrecoverable.

Despite their low reliability, many case studies show

that spot instances have huge potential in rendering

on the cloud, machine learning, big data analysis and

some other batch processing fields [6]. These jobs are

generally compute intensive and cost much to run, but

often having high flexibility and not latency critical [7].

In these situations, users would rather have these jobs

delayed a little than pay high fees.

Therefore, there is a trade-off between cost and re-

liability of using spot instances. The cost management

of using spot instances has been studied by a lot of

work. There exists some work [8], [9], [10] aiming at

optimizing users’ bids for cost management. However,

they heavily rely on long-term predictions, while price

forecasts are sometimes unreliable, especially when

overwhelming demands are generated. Improving the

reliability with scheduling algorithms by combining

different pricing models (spot and on-demand instances)

[11] and different available regions [12] have also been

mentioned. In addition to the above approaches, major

cloud providers such as AWS [13] advise users to make

backups when they choose spot instances.

Using appropriate checkpoints can balance cost and

reliability. For example, a lot of big data analysis jobs

are carried out in stages and produce intermediate data

at every stage, which can be used as a checkpoint for

recovery or secondary analysis. Without any backup,

once an interruption occurs, with the right of use of

the instances being revoked, the previous job executions

will be lost and the interrupted job needs to be re-

executed from the beginning, which causes economic

and time losses. If the intermediate data are stored in

advance, a job can be recovered from the last checkpoint

after an interruption.

Since most IaaS cloud providers offer computing

capacity as well as data storage service, which is called

Storage-as-a-Service (StaaS) such as Amazon Simple

Storage Service (Amazon S3) [14] and Google Cloud

Storage [15], users can choose to store the intermediate

data on StaaS storage provided by the cloud provider of

the spot instances they choose. Virtually unlimited cloud

storage while saving maintenance costs by moving data

from internal physical servers to cloud storage is very

attractive to users. In that case, network traffic costs

will account for a significant portion of these StaaS

services. The spending of a single backup usually also

costs much, which means that we can’t do it blindly. For

TABLE 1. AWS EC2 instance price in January 2020

Instance type vCPU Memory
(GB)

Spot (per hour) On-Demand
(per hour)

a1-medium 1 2 $0.0084 $0.0255
a1.xlarge 4 8 $0.0197 $0.1020
m4-10xlarge 40 160 $0.6800 $2.0000
m5n-24xlarge 96 384 $1.6323 $5.7412

example, we consider a big data analysis job running

on a distributed system which has a master and several

slaves in different regions. Suppose this job occupies

10 GB kept in S3. Then, we calculate the cost of a

single backup as: S3 request fee + network transfer fee

= (0.005+0.02*10) USD = 0.205 USD [14]. We can see

this cost is much higher than the instance running costs

shown in Table 1. Thus, an arbitrary backup decision

can be expensive.

The problem now confronting users lies in that, for

making cost-efficient backup decisions, users need to

know exactly when an interruption will occur, which

is generally very difficult to predict. In order to solve

the above problems, in our work, we propose to use

online algorithms to guide cloud users to decide whether

and when to back up current job executions with no a
priori knowledge of future abrupt termination occur-

rence distribution. Specifically, in this paper, we use

big data analysis jobs running in AWS Spot Instance

and AWS S3 StaaS cloud as an example to illustrate

our algorithm. We design an online algorithm to deter-

mine when to back up the intermediate results of data

analysis jobs to StaaS and theoretically prove that our

online algorithm can obtain guaranteed competitiveness

in terms of saving the cost of running data analysis jobs

on spot instances. Finally, through a large number of

experimental simulations, we verify the efficiency of our

algorithm.

The rest of the paper is organized as follows. Section

II gives a brief introduction of the related work. In

Section III, we describe our system and cost model.

Section IV presents our online algorithm and analyzes

its performance. Experimental simulations are involved

in Section V. Finally, we draw conclusions and propose

future work directions in Section VI.

II. RELATED WORK
We firstly start with the work related to cost optimiza-

tion problems for cloud users. Chaisiri et al. [16] show

an optimal cloud resource provisioning algorithm for

cloud computing which uses more costly reservation

instances and less costly on-demand ones. Chiaraviglio

et al. [17] design an algorithm (MECDC) to solve the

problem of managing the power states of the servers in

a Cloud Data Center (CDC) for saving cost. Wu et al.
[18] propose an algorithm which takes both data trans-

mission cost and computation cost into account. In fact,
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cloud disaster is very common in cloud environment

and current disaster recovery services provided by cloud

providers come at very high cost [19]. Many work hopes

to avoid this part of the cost through the self-disaster

warning and recovery. Watson et al. [20] devise a cloud

migration system to achieve fast workload transition

in case of disaster. Gunawi et al. [21] propose a new

testing framework for cloud recovery so that the loss of

cloud disaster can be reduced. The above articles are all

proposed for on-demand instances or reserved instances

which have very different characteristics compared with

spot instances. In this paper, we deal with the cost

optimization problems for spot instances.

Spot instances are playing an importance role in

current instance markets. A lot of work is devoted to

analyze the spot instance environments and help users

better use spot instances by cost management. Rahul

Singh et al. [22] take spot instance as template and

design Yank with a bounded-time VM migration mech-

anism to exploit the advance warning, which dramati-

cally decreases the cost of providing high availability

relative to existing solutions. Benyehuda et al. [23]

analyze the spot price histories of Amazon’s EC2 cloud.

They construct a model and reversely engineer how

prices are set and find the price may be generated most

of the time at random from within a tight price range

via a dynamic hidden reserve price mechanism. Fabra

et al. [24] design a framework which can classify the

spot instance availability zones and then generate price

prediction models adapted to each class for generating

resource provisioning plans that get the optimal price.

The bidding strategy based on online algorithm [25] is

also proved by Guo et al. to be able to achieve price

optimization. They use various methods to optimize the

cost. In this work, we will propose a backup strategy for

cost management.

The use of appropriate checkpoints can realize cost

optimization when using spot instances. Such check-

pointing strategies are introduced in [26], [27], [28],

which are based on the prediction of future interrupt

distribution. However, accurate prediction is very dif-

ficult. Our proposed algorithm is closely related to the

research of online algorithms [29] which don’t require

any a priori knowledge of future. Our backup problem

can be seen as an analogy to the classical rent-or-buy

problems including Bahncard problem [30], ski board

rental problem [31], TCP acknowledgment problem

[32] and so on.

Based on the above discussion, our main contribution

lies in that we design an online algorithm and prove

its effectiveness for cost management in using spot

instances.

III. SYSTEM AND COST MODEL

A. SYSTEM MODEL
We consider a system which runs big data analysis ap-

plication jobs based on IaaS and StaaS cloud platforms

to illustrate our algorithm. Fig. 1 shows our system,

which is built on AWS EC2 Spot Instance cluster and S3

standard storage service. Raw data are collected from

various sources, and then analyzed by a spot instance

cluster which is a virtualized computing cluster com-

posed of multiple spot instances. The spot instances

in a cluster interact with each other and transmit data

through network. Each data analysis job runs in parallel

on a spot instance cluster and its generated data can

be stored in S3 if a backup decision is made. A data

analysis job is usually conducted in multiple stages,

and intermediate results will be generated in each stage,

which can be used for secondary analysis or checkpoint

recovery.
Fig. 1 also shows the working principle of our system.

Our system can be described as a certain web service,

which can be invoked by a user with a data analysis

job to be executed in clouds. When running a user’s

job, our system will decide when and whether to back

up the intermediate results and then store intermediate

data in a fixed storage space that the user rents. This

process will be carried out in two steps to prevent

the interruptions during a backup. First, the data are

transmitted by network and stored in the buffer, which is

a temporary block of the same size as the fixed storage

space. And then, data in the buffer are flushed to storage

only when this backup task is completed. Finally, the

buffer is released.

B. FUNDAMENTAL NOTATIONS
For Amazon cloud platform, users are charged by hours

and each user sets the max bid itself. Running spot

instances has the risk of interruptions. In general, when

the current price is lower than the max bid, a job will

keep running normally on spot instances. Otherwise,

when the current price is higher than the max bid, the

right of use of the spot instances will be revoked by the

provider and the user’s job will be suspended. The user’s

job will be lost permanently and irrecoverably. When

the current price falls again below the user’s max bid,

the user can regain the access to instances and continue

to run the job after a checkpoint recovery. If the job

hasn’t been backed up before, the system needs to restart

the job execution from the beginning. If the job has

made a backup at some point before the interruption,

the job can restart from the latest backup point. Backup

costs a certain amount of money. An arbitrary backup

decision can be costly. In order to optimize the cost

spent in cloud platform, users need to decide when and

whether to make backups.
In this paper, we deal with the situation that users

run data analysis jobs which will produce intermediate

results in our system. The interruptions can be caused
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Fig. 1. Data backup for system based on IaaS and StaaS clouds.

by price changing or insufficient instance resources. The

latter is less likely to happen, but the consequences

are the same as the former. We only consider the in-

terruptions caused by price changes in the subsequent

derivation. This will not affect the final experimental

results. For the convenience of follow-up reference, we

list the symbols used in this paper in Table 2. The

cost for each data analysis job is composed of four

parts: the cost incurred by the storage, the cost of data

computation as well as the cost of backup and recovery.

We will discuss them in detail through the following

subsections.

C. STORAGE COST

As mentioned earlier, a running job will produce in-

termediate results and store them in S3 cloud storage.

Even if the system does not have abrupt termination,

the storage cost is inevitable because raw data storage is

also required. We denote the size of intermediate results

as Sb and the cost of storage for S3 per hour as Ps. Then

TABLE 2. The symbols used in this paper.

Symbol Meaning

T the completion time for a job running without abrupt termina-
tion

n the number of abrupt terminations
Cr the cost of spot instance cluster per hour
Cm the max bid for the instance cluster
Pq the price of requesting calls to S3
Pb the price of requesting a buffer in S3
Sb the size of intermediate results
Pn the price of network transfer per GB
Ps the price of storage for S3 per hour
τ break-even point

the storage cost can be calculated as a liner function of

time t:
Cstorage(t) = SbPst. (1)

It is also mentioned above that the size of storage space

in StaaS is fixed. If the intermediate data stored in

StaaS is only used for checkpoint recovery, each backup

can overwrite the last backup to minimize storage cost.
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Suppose a storage space whose size reaches 10 GB

kept in S3 and the completion time for a job running

without abrupt termination is 24 hours. Sb is about

0.022 USD per GB per month. Then, the cost of oc-

cupying this space incurs a charge of : $10/GB × 24h

×0.002/month/GB/30= $0.0073 (per day)= $0.0003 (per

hour).

D. DATA COMPUTATION COST
Now we consider a data analysis job running in our

system. A user selects different instances to form the

entire computing cluster. Amazon charges by hours. The

price of the instance cluster is determined by the sum

of the unit price corresponding to a single instance and

denoted as Cr. Cr will fluctuate from time to time. Let

Cr(t) denote the price of the cluster in time t, and Cm

denote the user’s max bid. When Cr(t) > Cm, the job

will be interrupted and should wait for the price to fall.

The cost from start to time t can be calculated as:

Ccomputation =

t∑

i=0

Cr(i). (2)

E. BACKUP COST
The cost of backup includes the cost of storage requests

and network transmission. All operations on the cloud

storage platform are ultimately calls to the platform

API. Each backup and recovery is the request calls to

S3 from each instance in the cluster. So, this part of

cost is also constant every time and denoted as Pq .

During data transmission, we request a temporary space

in S3 for buffering. After data transmission, it will

import all the data into the fixed storage space. It will

then be released immediately. We denote the cost of

requesting a buffer in S3 as Pb. Network transfer cost

is the multiplication of network transfer fee per GB and

the size of intermediate results. Thus, we calculate the

cost of network transfer for a single backup as: SbPn.

Backup cost for an object can be calculated as:

Cbackup = Pq + Pb + SbPn. (3)

F. RECOVERY COST
When an interruption occurs, the right of use of the

instances in the cluster will be recalled and all data in the

cluster will not be kept. When the job is restarted after

an interruption, the instance cluster must reload the data

set from S3. The cost of this part is basically the same as

the backup cost without the cost of requesting a buffer in

S3. Backup is for uploading the data to S3, and recovery

is for downloading it. So the difference between the two

is only reflected in the network cost of uploading and

downloading, and in most cases they’re pretty much the

same. For the convenience of calculation, we denote the

cost of recovery as :

Crecovery = Pq + SbPn. (4)

G. THE COST OPTIMIZATION PROBLEM
As introduced earlier, we use StaaS storage to store

intermediate data for checkpoint recovery. If we make

backups too often, it will incur unnecessary extra cost. If

we do not make a backup for a too long period, the risk

of cost caused by an abrupt termination will continue to

increase. When a job keeps running, we need to decide

whether and when to make backups. An appropriate

backup time point should be determined to optimize

the cost and avoid re-executing from the beginning for

saving execution time.

Considering a job, if we can know the exact value of

future prices of spot instances, it is feasible to look at

the big picture for decisions that minimize costs. We

can then decide either to make a backup before the

price exceeds the max bid or to give up because making

a backup may cost more. However, the future abrupt

termination occurrence distribution is generally hard to

predict for cloud users. Hence, backup decisions should

be made online, without requiring any a priori knowl-

edge of future interruption occurrence distribution.

IV. ONLINE COST OPTIMIZATION ALGORITHM
In this section, we firstly discuss the problem of on-

line cost optimization and the challenges in selecting

backup decision points. Then we design a new online

cost optimization algorithm and theoretically analyze its

performance.

A. ONLINE COST OPTIMIZATION PROBLEM
In this work, what the online cost optimization problem

considers is to make a decision on when to make a

backup without any a priori knowledge of future price

changes. The key step in designing an online algorithm

is to find the break-even point denoted as τ , which is

in fact a time between two backups. At the break-even

point, the cost incurred by re-executing from the last

backup point is the same as making a backup. Next, we

show how to calculate the break-even point.

The cost incurred by re-execution is determined by

the future average price of the instance cluster, which

can only be estimated. As shown in Fig. 2, we use t
to denote the current time and Δt to denote the time

difference from the last backup point. The period of the

time between (t − Δt, t] is denoted as the estimation
window. The period of the time from the beginning of

the re-execution to the next backup is denoted as the

event window1. The upper limit of the price in event

window is the max bid of the user and the lower limit

is the lowest price of the instance cluster. The average

of historical prices in the estimation window is within

1In event analysis, the whole event is divided into estimation win-
dow and event window, and the statistical characteristics of estimation
window are used as the estimation of event window. This form of
analysis has been widely used in the fields of financial modeling [33],
disease prediction [34], computer science [35] and so on.
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this range and represents the recent trend of the prices

of the instance cluster. We use the average price in the

estimation window to estimate the average price in the

event window. As an estimation of the future average

Fig. 2. Estimation window and event window.

price of the instance cluster, the historical average price

is denoted as:

Cavg =

t∑

i=t−Δt

Cr(i)

Δt
. (5)

As mentioned above, a single backup can be described

as (3). We denote the cost of re-execution from last

backup point as:

Cre−execution = (SbPs + Cavg)Δt. (6)

Then we calculate the break-even point by solving the

equation of Cbackup = Cre−execution as follows:

Pq + Pb + SbPn = (SbPs + Cavg)Δt

→ τ = Δt =
Pq + Pb + SbPn

Cavg + SbPs
. (7)

B. DESCRIPTION FOR OUR ONLINE ALGORITHM

The operation principle of our online algorithm is sum-

marized as follows. The raw data is stored in StaaS and

the instance cluster for running a job is then started.

Our algorithm records the time duration from the last

backup point as Δt. It determines whether a backup

is needed by hours according to the break-even point

τ . The job will continue to run if Δt < τ . When

Δt ≥ τ , our algorithm decides to make a backup and

marks this time as the nearest backup point. Once the

instance cluster price exceeds the maximum bid, the

right of use of the instance cluster will be revoked and

the user’s job should wait for the price to fall. When

the price falls below the maximum bid, the job needs to

continue running from the last backup point. Our online

algorithm makes decisions automatically at run time to

achieve the trade-off between the overhead of backup

and re-execution after interruptions. The pseudo code

of Algorithm 1 and Fig. 3 present the detail how our

proposed online algorithm works and how much the cost

users need to pay under our algorithm.

Fig. 3. Description for our online algorithm.

C. PERFORMANCE ANALYSIS
The performance of an online algorithm is usually mea-

sured by the ratio of its performance compared to an

optimal offline algorithm, denoted as OPT, that is well

aware of future events. The maximum of this ratio is

measured as the competitive ratio of this online algo-

rithm. The value of competitive ratio is always greater

than one and the closer to one, the better the online

algorithm is. According to the definition of calculating

competitive ratio just given, we use the worst case

analysis to analyze it [36]. The worst case analysis

is to analyze the worst case of an online algorithm

and calculate the competitive ratio in this worst case.

Then we conclude that our algorithm can achieve a

guaranteed competitive ratio.

We denote CA as the total cost of Algorithm 1 and

COPT as the total cost of algorithm OPT. From the

definition of competitive ratio, the value of COPT is

always less than or equal to CA. For their consistency,

the two backup algorithms should run with the same

price changing. In the worst case of Algorithm 1, the

instance cluster’s price, Cr, will be stable at the max

bid except when an interruption occurs. Thus, the break-

even point is a fixed value:

τ =
Pq + Pb + SbPn

Cr + SbPs
. (8)

In this situation, backups are more frequent and running

costs are higher which makes our online algorithm cost

more.

We then make an observation that, all interruptions

occur as follows. Under normal circumstances, a backup

is scheduled if a job runs from t′ − τ to t′ and now at

the break-even point. At this point, the price exceeds

the maximum bid and the re-execution cost is firstly

higher than the backup cost. Since the optimal algorithm

knows an interruption is about to happen at the time

of the break-even point, a backup has completed at the

moment before that. But Algorithm 1 does not predict

that and thus it hasn’t made a backup promptly. There-

fore, it’s the worst case to be interrupted just before it’s

about to make a backup because the re-execution cost

that Algorithm 1 needs to pay is the largest at this point.
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Algorithm 1: An Online Backup Algorithm for

Cost Optimization

1 Let CA be the total cost of running the user’s job.

Initially, CA=0.

2 Let Ci be the price of instance cluster at time ti.
Initially, i ← 0 for all i = 0, 1, . . .

3 Let tb be the last backup point and t0 be the

initial backup point, and t0 = tb.

4 Let Cm be the max bid, Csum be the sum of the

prices over a period of time and Cavg be the

average price over a period of time.

5 while not at the end of this job do
6 if Ci > Cm then
7 An interruption occurs.

8 while True do
9 Wait for the price to fall down.

10 i ← i+ 1.

11 if Cm ≥ Ci then
12 CA= CA+ recovery cost.

13 Break.

14 end
15 end
16 end
17 Record the time duration between the last

backup point: Δt = ti − tb.

18 Calculate the historical average price:

Csum = Csum + Ci ; Cavg =
Csum

Δt
.

19 Calculate the break-even point:

τ =
Pq + Pb + SbPn

Cavg + SbPs
.

20 CA=CA+ data storage cost and data

computation cost.

21 if Δt ≥ τ then
22 Make a backup and let tb ← ti,

Csum ← 0.

23 CA=CA+ backup cost.

24 end
25 i ← i+ 1.

26 end

Let T be the completion time for a job running

algorithm OPT while α be the number of interruptions.

T can be divided into β backup point intervals and

expressed as:

T = βτ + t (0 ≤ t ≤ τ ; 0 ≤ β) (9)

As mentioned above, we set the interruptions at each

break-even point to achieve the worst case. If the num-

ber of interruptions exceeds β, there will be α − β
interruptions that have no effect on the competitive ratio

calculation according to the Pigeonhole principle2. In

this case, the upper limit of α is β. If the interruptions

2https://en.wikipedia.org/wiki/Pigeonhole_principle

happen in a row, the optimal algorithm will be finished

in T while Algorithm 1 needs to run from scratch

because of no backup. The completion time for a job

with α times of interruptions in the worst case can be

expressed as:

T ′ = T + ατ (10)

After an interruption, the price may not immediately

fall back. Users need to pay storage fee when their jobs

are stopped and waiting to be resumed. We denote the

total waiting time as Tw. Therefore, we set the running

time of the instance cluster running algorithm OPT as T ,

and the storage time as T + Tw. Similarly, the running

time of Algorithm 1 can be denoted as T ′ and the

storage time can be denoted as T ′ + Tw.

Thus, we have reached the worst case. In this case,

COPT can be calculated as:

COPT =TCr+2α(Pq + SbPn)+αPb+(T + Tw)SbPs

(11)

The meaning of each item of equation (11) is listed in

Table 3.

TABLE 3. Items in equation (11)

TCr cost of renting instance cluster
2α(Pq + SbPn) +
αPb

cost of α times of backup and recovery

(T + Tw)SbPs cost of storage

CA can be calculated as:

CA=T ′Cr+(β+α)(Pq+SbPn)+βPb+(T
′+Tw)SbPn

(12)

The meaning of each item of equation (12) is listed in

Table 4.

TABLE 4. Items in equation (12)

T ′Cr cost of renting instance cluster
(β + α)(Pq +
SbPn) + βPb

cost of β times of backup and α times recovery

(T ′ + Tw)SbPs cost of storage

Hence, we calculate the ratio of CA and COPT as :

CA

COPT

=
T ′Cr+(β+α)(Pq+SbPn)+βPb+(T ′+Tw)SbPn

TCr + 2α(Pq + SbPn) +αPb+ (T + Tw)SbPs

(13)

= 1+
ατCr+(β−α)(Pq+SbPn)+(β−α)Pb +ατSbPn

TCr+2α(Pq+SbPn)+αPb+TSbPs+TwSbPs

(14)

≤ 1+
ατCr + (β − α)(Pq + Pb + SbPn) + ατSbPn

TCr + 2α(Pq + SbPn) +αPb+ TSbPs

(15)
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≤ 1+
ατCr+(

T

τ
− α)(Pq + Pb + SbPn)+ατSbPn

TCr + 2α(Pq + SbPn) +αPb+ TSbPs

(16)

= 1+
ατ(Cr + SbPn)+(

T

τ
−α)(Pq+Pb+SbPn)

T (Cr + SbPs) + 2α(Pq + SbPn) +αPb

(17)

= 1+
α(Pq+Pb+SbPn) + (

T

τ
− α)(Pq+Pb+SbPn)

T

τ
(Pq+Pb+SbPn) + 2α(Pq+SbPn) +αPb

(18)

= 1 +

T

τ
T

τ
+ α(1 +

Pq + SbPn

Pq + Pb + SbPn
)

(19)

< 1 +

T

τ
T

τ
+ α

≤ 2 (20)

According to equation (10), we expand the molecule

of equation (13) and turn it into the form of (1 + X),
which are shown as equation (14). Based on equation

(9), we get β ≤ T

τ
and then we put it into inequa-

tion (15) for inequality amplification. In this way, we

can deduce equation (16). With equation (8), we use
(Pq + Pb + SbPn)

τ
to replace (Cr + SbPn) in equation

(17) and get equation (18). In equation (20) we derive

the final result.

As the proof shown above, we come to a conclusion

that our online algorithm has a good performance as it

can reach a competitive ratio less than 2, which means

that running our algorithm costs no more than twice as

much as the optimal solution.

V. EXPERIMENTAL EVALUATION
In this section, we evaluate our online algorithm’s per-

formance for practical cloud users via a large volume

of real-world data sets. In this section we use Online-
Spot to denote our online algorithm Algorithm 1 and

use Offline to denote the optimal offline algorithm.

A. DATASET DESCRIPTION AND PROCESSING
1) Data Description
AWS has published the historical prices of its spot

instances for the last three months. We collected more

than 2000 pieces of data from December 28, 2019 to

March 23, 2020 for simulation experiments. This data

set can in turn be divided into sub-data sets that are

differentiated by instance types, available regions and

operating systems. We can use this data set for sim-

ulation experiments by running different algorithms to

compare their performance in the context of real-world

market price fluctuations. Fig. 4 illustrates the market

price fluctuations which are randomly selected in this

data set.

Fig. 4. Price trends of different instances.

2) Data Processing
Since the AWS spot history prices span three months,

we proportionally shorten the billing cycle to one hour.

To analyze the performance of Online-Spot algorithm

under different instance market conditions, we divide

all the 2354 data records into three groups according to

their price fluctuations levels which are measured as the

ratio between the mean μ and standard deviation σ. The

results of each category are shown in Fig. 5 and their

proportion is shown in Fig. 6.

We use class_1, class_2 and class_3 to distinguish

different data categories. Specifically, class_1 consists

of the instances whose prices are highly fluctuating,

with μ<=5σ. It means that these instances usually have

dramatic change of market demand and they are more

likely to be interrupted. We use class_3 to represent

the instances whose prices have not changed at all. The

price of such instances is very stable and there is no need

to make backups. class_2 represents the most common

case in the instance market. We can see in Fig. 6 that the

size of class_3 is larger than class_1 and class_2. Many

points in this class are concentrated near the origin and

the points closed to each other are removed to avoid

redundancy.

3) User Data
We look at the case study provided by AWS [6]. Most

users who choose spot instances may pull TB or larger

files from Amazon S3, run calculation job and push the

results back to S3. They may spin up thousands of spot

instances for calculation. So using this situation as a

reference, in this experiment we start 2000 instances at

a time and a single data backup size of 1PB. Depending

on equation (10) we can arrive at a conclusion that

our Online-Spot algorithm takes longer to run a job

compared to Offline algorithms. We can easily get the
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Fig. 5. Data statistics and groups division.

Fig. 6. Quantity distribution of each class.

effective time (T ) by running Online-Spot algorithm on

each data set and use it to simulate the completion time

of a user’s job.

4) Pricing
We adopt the pricing of Amazon EC2 (multi-region) and

S3 with the network transfer fee 0.02 USD per GB and

storage fee 0.0003 USD per GB per hour.

5) Bidding strategy
As mentioned above, the interruptions caused by price

factors and non price factors have the same influence

on our online algorithm. To balance the impact of in-

terruptions caused by price and non price factors on the

algorithm, we set the highest bid to no more than twice

the lowest price in history (20% of "On-Demand price").

In reality, users should choose the bid according to their

own needs, which is not in the scope of our discussion.

B. COMPARISONS WITH USER’S MOST
FREQUENTLY USED STRATEGIES
In this subsection, we focus on evaluating the perfor-

mance of our Online-Spot algorithm, Offline optimal

algorithm and some commonly used strategies in this

real-world data set.

1) Benchmark Algorithms
We compare our proposed Online-Spot algorithm with

three benchmark algorithms. The first benchmark algo-

rithm is All-on-Demand, in which the user never needs

to make backup decisions because using on-demand

instances will not cause interruptions. This strategy is

the most common strategy in practice, especially for

short term workload. Though simple and stable, the

price of on-demand instances is usually about ten times

higher than that of spot instances. The second algorithm

is called Spot-to-on-Demand. It is a simple extension

to the All-on-Demand algorithms. Once an interruption

occurs, at the next time when the job restarts, users

will choose the corresponding on-demand instances in-

stead. The third benchmark algorithm, Offline, is the

optimal algorithm that has a priori knowledge of price

fluctuations and makes a decision on whether to make

a backup immediately before an interruption. All three

benchmark algorithms as well as our online algorithm,

are carried out for each historical price trace of the AWS

spot instances. All the incurred costs are normalized to

All-on-Demand.

Fig. 7. Cost performance for data in class_1. All costs are normalized
to the algorithm All-on-Demand.

2) Cost Performance Evaluation
We plot the average ratio of cost savings of all algo-

rithms in Fig. 11 and CDF (Cumulative Distribution

Function) in Figs. 7, 8, 9 and 10. They are all grouped

by different price fluctuations levels and set algorithm

All-on-Demand as normalization. Firstly, we see Fig. 7

which represent a stable market environment. Spot-to-
on-Demand algorithm and Offline algorithm have the

same performance in this situation. But our Online-Spot
algorithm costs more for ‘useless’ backups. Those two

algorithms can save 10% more than Online-Spot algo-

rithm and 80% less than normalized algorithm. Since
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Fig. 8. Cost performance for data in class_2. All costs are normalized
to the algorithm All-on-Demand.

Fig. 9. Cost performance for data in class_3. All costs are normalized
to the algorithm All-on-Demand.

Fig. 10. Cost performance for total data. All costs are normalized to the
algorithm All-on-Demand.

the price does not change, this strategy can enjoy the

price preference by the spot instance without consider-

ing the risk brought by interruptions. In this situation

our Online-Spot algorithm is not as cost-effective as

these two algorithms. Fig. 9 shows a situation where

Fig. 11. Cost savings of each algorithm. All costs are normalized to the
algorithm All-on-Demand.

price changes are relatively stable. All three algorithms

can save the computation cost. Online-Spot algorithm

costs 60% of the Offline optimal solution. Spot-to-on-
Demand can also get a certain cost advantage. Overall,

it saves more than 30% cost compared with the normal-

ized algorithm. But in 60% data cases, the cost is higher

than the normalized algorithm. However, when the price

fluctuates dramatically as shown in Fig. 8, our algorithm

shows its advantages. Online-Spot algorithm achieves

satisfactory cost-savings by backing up at the right

time. It can still guarantee a stable competitive ratio

compared with the Offline algorithm. As prices fluctuate

more and more dramatically the performance of Spot-
to-on-Demand algorithm becomes worse and worse. As

shown in Fig. 8, no more than 10% of the data running

the Spot-to-on-Demand algorithm cut their costs. The

total cost even exceeds 10% of the normalized algo-

rithm. Fig. 10 integrates all the data to get the final result

of the three algorithms. We can see that all the three

algorithms can achieve cost savings. The cost savings

of Online-Spot algorithm are more than half the Offline
algorithm which can confirm with the competitive ratio

that we have derived theoretically. As we can observe

from Fig. 11, a more intelligent algorithm is essential

to prevent the extra cost of interruptions when using

spot instances. No backup preparation like Spot-to-on-
Demand or simply using high price on-demand instance

will easily cause skyrocketing cost. Our Online-Spot
algorithm provides a solution that can run stably in the

above environments.

C. COMPARISONS WITH OTHER BACKUP
ALGORITHMS
In this subsection, we focus on evaluating the perfor-

mance of our Online-Spot algorithm by comparing with

other benchmark algorithms, including Offline optimal

algorithm and some backup algorithms for spot instance

cluster proposed by other scholars.

10 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.3014978, IEEE Access

1) Benchmark Algorithms
The first benchmark algorithm is called Hour-
Boundary, which is a straightforward algorithm. This

algorithm makes use of the feature that an hour is

the lowest granularity of pricing of spot instances in

Amazon EC2. When using this backup strategy, users

don’t need to pay attention to other details. Instead, they

just need to back up each hour. The second algorithm is

called Rising-Edge-Driven which makes backup deci-

sions based on the rising edge of price changes. A rising

edge of price changes is likely to indicate that the system

has less available resources, more bidding users, higher

bids from users and so on, which may indicate the

occurrence of an interruption. Users monitor the price

changes and a backup will be made when a rising edge

of price changes occurs. The third benchmark algo-

rithm, Ada-Rising-Edge-Driven, is an adaptive backup

strategy based on Rising-Edge-Driven and proposed by

Yi et al. in [27]. All the three benchmark algorithms as

well as our Online-Spot algorithm and Offline optimal

algorithm, are carried out for each historical price trace

of the AWS spot instances and all the incurred costs are

normalized to Hour-Boundary.

Fig. 12. Cost performance for data in class_1. All costs are normalized
to the algorithm Hour-Boundary.

2) Cost Performance Evaluation
We plot the average ratio of cost savings of all algo-

rithms in Fig. 16 and CDF in Figs. 12, 13, 14 and

15. Let’s look at Fig. 12, which shows a stable mar-

ket environment. Rising-Edge-Driven and Ada-Rising-
Edge-Driven have performance close to Offline opti-

mal algorithm. Ada-Rising-Edge-Driven, because of its

adaptivity, is better than Rising-Edge-Driven in most

cases. However, when the price fluctuates dramatically

as shown in Fig. 14, rising edge occurs too frequently

so that too many inappropriate backups will be made,

leading to a sharp increase in extra backup costs. Over-

all, these two algorithms can save no more than 30%

cost compared with the normalized algorithm. Online-

Fig. 13. Cost performance for data in class_2. All costs are normalized
to the algorithm Hour-Boundary.

Fig. 14. Cost performance for data in class_3. All costs are normalized
to the algorithm Hour-Boundary.

Fig. 15. Cost performance for total data. All costs are normalized to the
algorithm Hour-Boundary.

Spot is better than the two algorithms and achieves

70% cost savings, compared with backing up every

hour. As we can observe from Fig. 13, backing up

every hour has become a nice backup option in this

data set which shows the most frequent price changes.
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Fig. 16. Cost savings of each algorithm. All costs are normalized to the
algorithm Hour-Boundary.

Even Offline optimal algorithm can only save 30%

cost more than Hour-Boundary. Rising-Edge-Driven
and Ada-Rising-Edge-Driven perform even worse than

Hour-Boundary. However, Online-Spot can still guaran-

tee a stable competitive ratio compared with the Offline
algorithm. There is more than 80% of the data cutting

their costs while running the Online-Spot algorithm,

compared with running Hour-Boundary algorithm. In

general, the change of instance price depends on many

aspects. It is impossible for the rising edge of price

changes to predict the arrival of interruptions correctly

all the time. Our algorithm formally evaluates the risk

of interruption at every moment and makes a backup

decision online, which can significantly reduce the cost

in the case of medium and high interruption rates.

VI. CONCLUSION AND FUTURE WORK
Using spot instance can greatly reduce costs but carry-

ing the risk of being interrupted. Cloud providers ad-

vise users to make backups when using spot instances.

However, an arbitrary backup decision will incur unnec-

essary extra cost. In this work, we propose an online

algorithm to help users to determine when to back up

data when using spot instances, which can help users

to achieve great cost savings while without requiring

any a priori knowledge of future interruptions. We prove

that the competitive ratio between our online algorithm

and optimal offline algorithm is less than 2. Through

the historical price of more than two thousands AWS

spot instances for simulations, we show that our online

algorithm can save cost significantly especially when

interruptions occur frequently.

One situation we haven’t dealt with is when a user

chooses multiple types of spot instances. When some

instances are interrupted, other instances can take over

the work of these instances to optimize time and cost.

Our future work is to develop new online algorithms to

deal with the above more complex scenarios.
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