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Modeling Cell-to-Cell Communication Networks Using 
Response-Time Distributions

Kevin Thurley1,2,3,*, Lani F. Wu1,*, and Steven J. Altschuler1,*

1Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, 
CA 94158, USA

SUMMARY

Cell-to-cell communication networks have critical roles in coordinating diverse organismal 

processes, such as tissue development or immune cell response. However, compared with 

intracellular signal transduction networks, the function and engineering principles of cell-to-cell 

communication networks are far less understood. Major complications include: cells are 

themselves regulated by complex intracellular signaling networks; individual cells are 

heterogeneous; and output of any one cell can recursively become an additional input signal to 

other cells. Here, we make use of a framework that treats intracellular signal transduction 

networks as “black boxes” with characterized input-to-output response relationships. We study 

simple cell-to-cell communication circuit motifs and find conditions that generate bimodal 

responses in time, as well as mechanisms for independently controlling synchronization and delay 

of cell-population responses. We apply our modeling approach to explain otherwise puzzling data 

on cytokine secretion onset times in T cells. Our approach can be used to predict communication 

network structure using experimentally accessible input-to-output measurements and without 

detailed knowledge of intermediate steps.
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Interacting cellular communities have critical roles in biological functions such as tissue 

development or immune responses. Cell-to-cell communication networks comprise both intra- and 

intercellular processes, making detailed mathematical models intractable. Here, we develop a 

scalable framework for modeling extra-cellular communication networks that treats intracellular 

signal transduction networks as “black boxes” with characterized input-to-output response 

relationships. We discover that a range of dynamic cell-population behaviors, including cellular 

synchronization, delays, and bimodal responses, can emerge from simple cell-to-cell 

communication networks.

INTRODUCTION

In multicellular organisms, cells live in communities and constantly exchange signaling 

molecules. Prominent examples of short-range communication are diffusible ligands shaping 

immune responses (Schwartz et al., 2015) and the tumor microenvironment (Balkwill et al., 

2012), notch-delta-mediated signals (Guruharsha et al., 2012), and microvesicles (Raposo 

and Stoorvogel, 2013). In the mammalian immune system, cell-to-cell communication can 

involve multiple cell types (e.g., T cells, neutrophils, macrophages, and epithelial cells) 

communicating through tens of different types of cytokine species (Burmester et al., 2014; 

Schwartz et al., 2015). In many cases, cytokines secreted by one cell type act in a relay on 

other cell types, as well as affect the original cell type. An important example is interferon 

gamma (IFN-γ), which is secreted by Th1 cells (a subclass of T cells), stimulates 

macrophages, and also induces the differentiation of T cells toward Th1 cells. The levels of 

various cytokine species vary by an order of magnitude or more between supernatants of 

isolated cells and cell populations (Schrier et al., 2016; Shalek et al., 2014; Xue et al., 2015), 

suggesting pronounced effects of cell-to-cell communication on the cytokine milieu.

Within a cell, extensive research has identified many molecules and pathways involved in 

signal transduction and, in many cases, has also developed an understanding of their 

function. In particular, the identification and analysis of generic network motifs has led to an 
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understanding of how certain interaction topologies can function to suppress noise, amplify 

signals, or provide robustness (Alon, 2007; Alon et al., 1999; Heinrich et al., 2002; Hornung 

and Barkai, 2008; Shen-Orr et al., 2002). For this purpose, mathematical models of 

simplified systems have often been an important driving force, which have helped to reveal 

engineering principles such as feedback control and perfect adaptation (Altschuler et al., 

2008; Fritsche-Guenther et al., 2011; Ma et al., 2009).

At the level of communication among cells, the mapping from general network motif to 

function is poorly understood. In cell-to-cell communication networks, each node is a type 

of cell and each type of cell processes input signals through intracellular networks to elicit 

an output; outputs are a cell-state change and (potentially) an input signal to other cell types 

or even its own cell type. Thus, cell-to-cell communication networks are complex: they are 

“networks of networks”; they can contain different cell types with different input-to-output 

relationships; the response times of cells—even within one type—to identical input stimuli 

is heterogeneous; and output of any one cell can recursively become an additional input 

signal to other cells.

Whereas the well-studied rules of chemical kinetics can be applied to model the building 

blocks of intracellular networks (e.g., proteins, metabolites, etc.), it is unclear how best to 

model cell-to-cell communication networks. Existing studies of cell-to-cell communication 

have largely focused on specific cases—such as the cytokines interleukin-2 (IL-2) 

(Feinerman et al., 2010; Fuhrmann et al., 2016; Thurley et al., 2015; Waysbort et al., 2013), 

IFN-γ (Helmstetter et al., 2015; Schulz et al., 2009), or tumor necrosis factor alpha (TNF-

α) (Paszek et al., 2010; Tay et al., 2010). However, in most settings, most if not all 

intracellular network parameters are unmeasured or inaccessible with current experimental 

approaches. Thus, there is a need to develop more general approaches for investigating the 

behaviors of cell-to-cell communication networks.

Here we propose response-time modeling as a framework to unify and interpret knowledge 

on intra- and intercellular signaling pathways. In this framework, temporal input-to-output 

relationships of intracellular signaling networks are captured by “response-time 

distributions.” These distributions, which measure the probability over time of observing a 

cellular output to a given input, can be measured from experiment or estimated from 

theoretical models. Focusing on response-time distributions allows us to elide detailed 

descriptions of intermediate intracellular signaling steps and focus on emergent properties 

that arise at the population level from cell-to-cell communication. Below, we first 

characterize response-time distributions that can arise from intracellular networks and find 

that, in many cases, they can be well modeled by gamma distributions. Second, we use this 

observation to analyze common cell-to-cell communication network motifs, and discover 

that different interaction topologies can regulate a rich set of dynamic behaviors, including 

delayed, synchronized, and bimodal cellular responses to a stimulus. Finally, we apply our 

approach to investigate recent data on cytokine secretion onset times.
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RESULTS

Response-Time Modeling of Cell-State Dynamics

Temporal heterogeneity has been widely observed for cellular processes that involve cell-to-

cell communication, such as onset of cytokine secretion or cell differentiation (Figure 1A; 

Table 1). The timing of cellular responses often cannot be described by a simple Poisson 

process, which would characteristically show exponentially distributed response times 

(Figure 1B) (Gillespie, 1992). Rather, single-peaked and even bimodal distributions have 

been observed, reflecting the complex networks underling many biological processes.

We wondered whether cell-to-cell communication networks could be modeled and analyzed 

in a way that abstracts molecular detail yet still captures essential dynamic properties. By 

analogy, a full description of elementary chemical reactions requires knowledge of the 

positions and velocities of all molecules at all times (Gillespie, 1992); however, these 

reactions can be well approximated by a single phenomenological parameter, namely the 

reaction rate constant. For modeling cellular state changes, one must take into account that 

the response of a cell to an input signal is not a single-step reaction but rather a result of a 

multi-step intracellular reaction network (Figure 1C). Further, the response of the cell may 

also depend on input it receives from other cells that have processed their own input signals, 

changed state, and, consequently, produced their own signals. Experimentally, “cell state” is 

typically observed phenomenologically as distinct phenotypic states of a cell (e.g., based on 

threshold intensities of fluorescence markers).

The time elapsed until an observable cellular state-change happens—the response time—is a 

random variable, and its distribution across a cell population can be interpreted as a 

normalized probability distribution function (Box 1). In contrast to the times until the next 

molecular event in a single-step reaction (Figures 1B and 1C), the response times of cells 

are, in general, not exponentially distributed. Rather, the cellular response-time distribution 

is a signature function depending on and describing the relevant intracellular processes, with 

no known a priori properties (Box 1). The advantage of response-time modeling is that it 

focuses on a small number of key measurable events (Chevalier and El-Samad, 2009; 

Mastny et al., 2007), and the behaviors of cell populations can be described with a rather 

small number of parameters (Figure 1D).

Simple Intracellular Networks Induce Single-Peaked Response-Time Distributions

In a literature survey, we found that many reports of experimentally measured response-time 

distributions indicate a single-peaked type of distribution. Such distributions have been 

reported for a wide range of cellular systems from gene transcription over cellular Ca2+ 

spikes to cytokine secretion (Table 1; Figure 1A). Notable exceptions are some processes 

where exponential distributions have been measured, and bimodal IFN-γ secretion onset 

times in T cells, which we discuss in detail later.

Why does this widespread occurrence of single-peaked response-time distributions occur, 

and what does it mean for the typical dynamics of a cell population? Response times for 

single-step reactions are exponentially distributed (Figures 1B and 2A, top). However, 

cellular signal transduction typically is driven by intracellular networks comprising 
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phosphorylation cascades, feedback, crosstalk, etc. As a simple illustration, consider a 

uniform, irreversible reaction chain, i.e., the cellular response is triggered after completion 

of n reaction steps all driven by the same rate constant μ = λ/n (Figure 2B, top). This process 

has the same average response time as a single reaction with rate λ, but the distribution 

ψn(t) (see Box 1 for exact definitions) of the response times over a cell population changes: 

The process can be regarded as a sum of n single-step processes (elementary reactions), and 

therefore the over-all response time is the n-fold convolution (Van Kampen, 2002)

ψn(t) = [μe−μt ∗ μe−μt ∗ …]
n times

= tn − 1e−μtμn

(n − 1)! = γ(n, μ; t) . (Equation 1)

Here, * denotes convolution and γ(α, β; t) is known as the gamma distribution with shape 

parameter α and rate parameter β (in general, α can take non-integer values, see the STAR 

Methods).

Indeed, the single-peaked response-time distributions observed experimentally can be 

described by gamma distributions (Table 1), as, for α > 1, the gamma distribution is an 

asymmetric (right-skewed) distribution with a single peak at t > 0. The observed exponential 

distributions for single-enzyme kinetics, offset of transcription, and intracellular Ca2+ puffs, 

indicate single-step processes (Figure 2A): All these processes are likely dominated by a 

single molecular reaction (binding of a metabolite to an enzyme, unbinding of a 

transcription factor from DNA, opening of a Ca2+ channel subunit).

Intracellular signaling pathways are usually not simple irreversible chains, and, therefore, we 

asked whether the observed single-peaked distributions can be generated by a broader class 

of intracellular network models. Indeed, single-peaked distributions have previously been 

reported for more realistic models of cellular signal transduction like kinetic proofreading 

(Bel et al., 2010), multiple phosphorylation (Lu et al., 2006), and Ca2+ signaling (Thurley et 

al., 2014). Here, we studied three additional simple network motifs in more detail: The 

signaling cascade (Heinrich et al., 2002) (Figure 2C), a set of parallel irreversible chains 

reflecting m receptor molecules that each can trigger a cellular response as a “race to the 

nucleus” (Lu et al., 2006) (Figure 2D), and the reversible chain (Figure S1A). The response 

times of all those examples are well approximated by gamma distributions (Figures 2C, 2D, 

and S1A, top, and S1B and S1C), although some fitting errors arise in models that tend to 

induce long tails (e.g., cascade model with high degree of heterogeneity, see Figure S1B).

Apart from intracellular networks, another complication is cellular heterogeneity: in a cell 

population, even a clonal one, we cannot expect that each cell has the same reaction rate for 

a certain intracellular process. Rather, gene expression and receptor expression levels show 

heterogeneity (Altschuler and Wu, 2010). To investigate the effect of such heterogeneity on 

the response-time distribution, we used log-normal distributed reaction-rate parameters 

(Figures 2A–2E and S1A, bottom). In all models, the response-time distribution shifts 

toward longer tails and earlier peaks after incorporating cellular heterogeneity, but is still 

well approximated by a gamma distribution (Figures 2A–2D and S1A, bottom, and S1B). 

This is expected: intuitively, adding cellular heterogeneity should reduce predictability—
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indeed, adding heterogeneity can never induce a peak in the single-step process and rather 

leads to long tails (STAR Methods). However, adding high numbers of intermediate 

intracellular steps increases the predictability of the process, due to the central limit theorem 

(Van Kampen, 2002); it tightens the peak in the response-time distribution (Figures 2F and 

2G).

Thus far, we only studied unbranched multi-step processes. Finally, we considered crosstalk 

within an intracellular multi-step process (Figure 2E). In this case, a bimodal response-time 

distribution can occur, but, even here, heterogeneity of rate parameters shifts the distribution 

toward a gamma distribution (Figure 2E, bottom panel), offering another demonstration of 

the versatility of gamma distributions. Therefore, in the following discussion, we will focus 

on cell population responses that induce gamma-distributed response times.

Response-Time Modeling of Intercellular Network Motifs

Having established the typical response-time patterns emerging from intracellular processes, 

we next asked how more general cell-state transitions shape dynamic response patterns of 

cell populations. For this purpose, we made use of response-time modeling (Figure 3A), 

which describes a cell-state change from a state Si to Sj at time t, when starting at time τ, by 

a response-time distribution ψij(t − τ). We provide an introduction to response-time 

modeling with definitions and technical references (Box 1), and a case study on IL-2 

competition between Th and regulatory T cells (Box 2).

In our implementation of response-time modeling, we specifically chose gamma-distributed 

response times (Equation 1) because of their frequent occurrence in intracellular processes 

(Table 1; Figures 2B–2E). An advantage of this approach is that we can consider cell-to-cell 

interactions including feedback (e.g., by exchange of diffusible ligands) simply as a 

dependence of the parameters of the gamma distribution on the fraction of cells in a certain 

cellular state Sl (Box 1):

ψ ij(Sl(t), t − τ) = γ(αij(Sl), βij(Sl); t − τ) . (Equation 2)

To completely determine the system, one needs to also provide probabilities pij for the 

execution of each possible reaction (with Σipij = 1), e.g., in the case of branching reactions. 

Note that, in the basic framework presented here (Equation 2), we assume a “well-stirred” 

situation and do not take into account spatial effects like concentration gradients in diffusible 

messengers (Thurley et al., 2015).

Using response-time modeling, we analyzed a set of simple toy models or “network motifs” 

that often appear in larger cell-to-cell communication networks (Figure 3B). In analogy to 

the simple multi-step models studied in Figure 2, our main readout is the a posteriori 
distribution of arrival times in an absorbing state Sa (Figure 3C) (in general, every state of 

interest can be treated as an absorbing state by removing transitions leaving that state [Van 

Kampen, 2002]). In contrast to the response-time distributions from simple models shown in 

Figures 2A–2E, the arrival-time distributions are not normalized, but are analyzed separately 

within each motif to reveal the effect of parameter values (see STAR Methods).
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As a first example, consider a single cell-state transition with feedback (Figures 3B–3D, 

“feedback”). We found that positive feedback decreases and negative feedback increases the 

width of the arrival-time distribution. In our model, that effect is stronger for feedback 

between cells than for intracellular feedback (Figures S2A and S2B). Intuitively, this 

happens in this simple model because intercellular feedback immediately and globally 

activates all cells, whereas intracellular feedback acts just within single cells and has no 

“snowballing” effect across the population. For quantification, we defined the 

“synchronization time” as the minimal time frame in which a certain fraction of cells (here 

75%) responds after an initial delay time (see STAR Methods). Feedback between cells has 

only minor effects on this delay time (Figures S2C and S3A), but has strong effects on the 

synchronization time (Figures 3D and S2C). Thus, feedback regulation between cells is well 

suited to generate highly synchronized or desynchronized responses across a cell population.

Conversely, we asked whether a simple cellular communication network could control the 

delay without changing synchronization—a sort of “timer” circuit for the cellular 

population. Indeed, we found that long delays can be achieved without increased 

synchronization times by adding a bottleneck, e.g., in terms of the positive interaction or 

“gate” motif (Figures 3B–3D, “gate”). The gate motif increases delay without changing 

synchronization over a wide parameter range (Figures 3D and S3A). Adding delay by 

simply slowing down the intracellular processes that induce one or two consecutive cell-state 

changes is not sufficient for this effect, as here the synchronization time increases 

substantially when adding delay (Figures S3B–S3D). Intuitively, the higher level of 

synchronization in the gate motif can be explained by the global positive interaction, which 

increases synchronization similar to the positive feedback case, and therefore compensates 

for the loss of synchronization.

Finally, we studied the redundant, coherent feedforward loop. This motif is a simple model 

of the situation that cellular activation (reaching state Sa) can be induced in several different 

ways, for example by means of different types of cytokines. We found that this motif can 

generate a bimodal distribution of arrival times in the absorbing state (Figures 3B–3D, 

“feedforward”). Intuitively, that bimodality is caused by the contributions from the “direct” 

and the “indirect” (via S1) ways to reach Sa. However, substantial bimodality only arises if 

there is a timescale separation between the two routes to Sa, as implemented here by a longer 

average time in the process S1→Sa; otherwise there is no clear separation between the two 

peaks (Figures 3C and 3D), giving rise to a single long-lasting cellular response of moderate 

intensity (i.e., larger synchronization time, see Figure S3A). While bimodal distributions can 

also occur by crosstalk inside intracellular networks (essentially also a feedforward loop) 

(Figure 2E), a feedforward loop of elementary reactions is not sufficient for bimodality 

(Figures 3C and 3D, dashed lines, and STAR Methods).

Cell-to-Cell Communication Allows Independent Control of Delay and Synchronization

Above, we used the prototypic response-time distributions arising in intracellular signal 

transduction networks to analyze common network motifs of cell-state dynamics. We found 

that, in the framework of response-time modeling, simple network motifs can induce 
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emergent behavior such as bimodal response times, which does not arise in the 

corresponding single-step models that neglect the multi-step nature of cell-state changes.

In addition, our simulations revealed important roles of cell-to-cell interaction circuits in 

shaping signaling dynamics. We found that simple circuits, such as the feedback or gate 

motif, can control synchronization and delay independently (Figure 4). In contrast, for 

intracellular multi-step processes described by a gamma distribution, synchronization and 

delay were linearly related and could not be controlled separately (Figure 4, blue line).

Delay-Induced Persistence Detection

A network that rejects transient activation signals and only responds to persistent signals has 

been termed a “persistence detector” (Mangan et al., 2003; Shen-Orr et al., 2002). 

Persistence detection in cell-to-cell communication has recently been demonstrated in the 

context of a paracrine signal induced by opto-genetic tools, which can precisely control the 

timing of an input stimulus (Toettcher et al., 2013) (Figure 5A). In that experiment, a 2-hr, 

but not a 1-hr stimulus, causes the cell-state change of a silent “receiver cell” to a cell with 

detectable fluorescence signal. Toettcher et al. (2013) report that this cell-state change is 

mediated by a paracrine cytokine signal (the IL-6 family cytokine leukemia inhibitory 

factor), but the precise mechanism of persistence detection in that system is still to be 

resolved. Following our observation that cytokine-secretion onset often shows considerable 

delays with gamma-distributed onset times (Table 1), we wondered whether such delays are 

sufficient to explain the persistence detection reported by Toettcher et al. (2013). To study 

that question, we analyzed a simple model (Figure 5B) where cell-state transitions are 

executed with the response-time distribution measured for IL-2, and are triggered by an 

external stimulus that is present for either 1 or 2 hr. Indeed, we found that the response-time 

model, but not the single-step model, yields a strong difference in cell activation between the 

1- and 2-hr stimuli (Figures 5C and 5D). Thus, delays in cytokine secretion onset can indeed 

explain the reported persistence detection.

For a more generic analysis, we started from our finding that signaling circuits, such as the 

gate motif, can control delay independently of synchronization (Figure 4). We again 

assumed an input stimulus triggering a cell-state change (see Figure 5B), now acting on a 

cell-state change controlled by an underlying “delay-inducing” gate or transition network 

motif. We modeled these motifs using our response-time approach (i.e., fit gamma 

distributions to their input-to-output relationship) and scaled the average response times for 

both motifs, so that they have the same delay (3 time units). Our simulations show that both 

delay-inducing motifs exhibit some degree of persistence detection compared with a simple, 

single-step process (Figure S4A), but only the gate motif allows for 100% of the cells to be 

activated for a long stimulus (e.g., 5 time units) while still rejecting a short stimulus (e.g., 3 

time units). Moreover, the gate motif has a sharp transition in signal amplitude for varying 

stimulus duration or delay time (Figure S4B).

In summary, effective persistence detection requires both substantial synchronization and a 

delay longer than the stimulus duration (Figure S4B). Both conditions are fulfilled for 

reported cytokine secretion onset times (Figures 5C and 5D), which therefore might have a 

functional role in rejecting transient input signals to interacting cell populations. Future 
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experimental research will show to what extent that mechanism of persistence detection 

applies to the system studied by (Toettcher et al., 2013) and other interacting cell 

populations.

Bimodal IFN-γ Secretion Onset Times

In our literature survey (Table 1), an example of a response-time distribution that clearly 

deviates from the commonly observed single-peaked pattern is the bimodal IFN-γ secretion 

onset times (Han et al., 2012) (Figure 1A). Our analysis of intercellular communication 

networks suggested that a feedforward loop motif can evoke a bimodal response-time 

distribution (Figures 3B–3D, feedforward). As it is known that IL-2 stimulates IFN-γ 
secretion of CD8+ T cells (Kasahara et al., 1983; McDyer et al., 2002), we next examined 

whether a combination of direct (antigen driven) and indirect (IL-2-mediated) stimulation of 

IFN-γ secretion is sufficient to explain the bimodal distribution.

Response-time modeling allows annotating cell-state models by directly using measured 

transition probabilities and response-time distributions. In that way, we were able to 

completely specify the process (except for the IL-2 interaction strength, see Figure S4C) 

based on a published dataset (Han et al., 2012) (Figure 5E; Table S1): The onset times of 

IL-2 secretion are well described by a gamma distribution, and the same is true for the early 

IFN-γ onset times. For late (indirect) IFN-γ secretion, we used the same distribution 

modified by IL-2 interaction (Figure 5F, model 1) (STAR Methods). The reasoning was that 

likely similar pathways are involved in the production and secretion of IFN-γ in both the 

direct and indirect case, but that they are activated either directly by antigen or indirectly via 

IL-2 (possibly after weak antigenic pre-stimulation). To simulate the process, we used a 

generalized Gillespie algorithm (Boguñá et al., 2014), which is necessary here because some 

of the input gamma distributions have a small non-integer valued shape parameter (see 

STAR Methods).

Clearly, the response-time distribution generated by model 1 is not bimodal, and does not 

explain the data even qualitatively (Figure 5G). The reason is that the initial onset time 

distributions for IL-2 and IFN-γ are too similar, and therefore their combination leads to a 

single broad peak rather than a second peak in the response times (cf. Figure 3C, 

feedforward loop). Thus, we reasoned that another mechanism must account for this 

observed delay. In fact, unstimulated T cells express only very limited amounts of the high-

affinity IL-2 receptor CD25, and therefore we asked whether stimulation-induced CD25 

upregulation may cause that additional delay (Figure 5F, model 2). For this process, we used 

CD25 expression kinetics of CD8+ T cells measured in (Dorner et al., 2009), which are also 

well described by a gamma distribution (Figure 5E). Indeed, model 2 generates a bimodal 

distribution for IFN-γ secretion onset, and is in good qualitative agreement with the reported 

values (Figure 5G). The IL-2 induction is not strictly necessary for a bimodal distribution 

and merely shifts probability mass to the left peak (Figure S4C)—thus, the model results do 

not qualitatively change over a substantial range of the only free parameter, the IL-2 

interaction strength. In contrast, the corresponding single-step model (dashed line) cannot 

reproduce the bimodal shape of the distribution. That demonstrates that our approach using 
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the full response-time distribution is necessary to explain the data, and cannot be replaced by 

single-step models using only average response times.

DISCUSSION

Our approach focuses on cell-to-cell communication and builds on the observation that 

intracellular cascades are often well described by gamma distributions (Table 1; Figure 2). 

We apply response-time distributions to model cell-to-cell communication networks, 

distinguish properties of simple network motifs, and apply this modeling approach to 

experimental data already in the literature to make testable predictions. Our goal with this 

approach is to facilitate the analysis of large and complex cell-to-cell communication 

networks.

Previous modeling studies of cell-to-cell communication networks have either represented 

cell-state changes using single-step processes, thus treating a cell-state change as if it was 

caused by a single molecular reaction (Gupta et al., 2011; Hart et al., 2012; Mathew et al., 

2014; Sontag, 2017), or they have focused on specific cases and modeled the intracellular 

dynamics in some detail (Feinerman et al., 2010; Fuhrmann et al., 2016; Schulz et al., 2009; 

Tay et al., 2010; Thurley et al., 2015; Youk and Lim, 2014). Response-time distributions 

have been explored earlier for model reduction techniques (Chevalier and El-Samad, 2009; 

Mastny et al., 2007) and to analyze specific biological systems (Callard and Hodgkin, 2007; 

Chevalier and El-Samad, 2014; Duffy et al., 2012; Hawkins et al., 2007; Helmstetter et al., 

2015; Mittler et al., 1998; Paszek et al., 2010; Pedraza and Paulsson, 2008; Zilman et al., 

2010), applications including gene expression dynamics, viral infection, T cell population 

dynamics, and noise propagation in signaling pathways. Those studies demonstrate that 

many complex biological systems cannot be adequately described by single-step-rate 

equation models, or at least not in their physiological environment.

The challenge in detailed modeling of cellular dynamics is not only that biological networks 

are incompletely understood, so that pathway maps are incomplete. Rather, the fundamental 

problem is that the parameters needed to describe cellular networks (e.g., reaction rate 

parameters for all subprocesses involved in expression of a gene) cannot all be determined in 
vivo. In contrast, response-time distributions and branching probabilities can be measured 

with high temporal accuracy via current single-cell technologies, such as multi-color 

fluorescence-activated cell sorting or mass cytometry, live-cell imaging, and RNA 

sequencing (Polonsky et al., 2016; Shalek et al., 2014; Spitzer and Nolan, 2016) (see Table 

1).

Here, we explored a recursive implementation of response-time modeling as a framework 

for mathematical analysis of cell-to-cell communication networks (Figure 1). This approach 

relies on the finding that intracellular dynamics often evoke single-peaked response-time 

distributions (Figure 2). Analyzing simple network motifs, our approach revealed dynamical 

properties such as bimodal arrival times and enhanced synchronization, which are masked 

when treating cell-state changes as molecular reactions (Figures 3 and 4). Finally, we 

demonstrated that our framework can be used to analyze currently available experimental 

data on cytokine secretion onset times (Figure 5). We note that, in a mathematical sense, it is 
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somewhat arbitrary which parts of a network are isolated and summarized as “subnetworks” 

for a response-time modeling approach. In fact, compartments inside a cell might be 

regarded as interacting subunits, or several cells in a certain microenvironment might form a 

community that interacts with other communities; such cases may, in principle, be treated 

analogously in the framework of response-time modeling.

The analysis of common network motifs has a long tradition in systems biology, and was 

used to elucidate metabolic networks (Heinrich et al., 1977) and gene-regulatory networks 

(Hornung and Barkai, 2008; Ma et al., 2009; Shen-Orr et al., 2002), among others. The 

reasoning is that large, physiologic networks are composed of small, functional network 

motifs and can be rationalized based on these building blocks. To demonstrate such an 

approach for cell-to-cell signaling, we elucidated two published examples of intercellular 

interaction. We found (1) that the paracrine persistence detector (Toettcher et al., 2013) can 

be explained by a delayed response-time distribution, which possibly stems from the onset 

of cytokine secretion, and (2) our analysis of IFN-γ secretion onset times (Han et al., 2012) 

revealed that the observed secondary response can be explained by a feedforward loop motif 

consisting of IL-2 secretion and IL-2 receptor upregulation. Those results provide a rationale 

for plausible mechanisms that can be tested experimentally in future research. Moreover, 

both examples demonstrate an advantage of our modeling approach, which is that no or very 

few free parameters need to be assigned if the response-time distributions of key processes 

are measured directly.

Cell-to-cell interaction is crucial for many functions of higher organisms, and complex 

intercellular communication networks have been discovered over the last decades. While the 

experimental capabilities to elucidate cellular responses to specific input stimuli are 

becoming increasingly available—sometimes even for spatiotemporal, single-cell analysis 

(Polonsky et al., 2016)—there will always be missing information. Response-time modeling 

offers a timely approach for predicting communication network structure and behavior using 

experimentally accessible input-to-output measurements even without detailed knowledge of 

intermediate steps.
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○ Measures of Response-Time Distributions

• DATA AND SOFTWARE AVAILABILITY

STAR★METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Kevin Thurley (kevin.thurleydrfz.de).

METHOD DETAILS

Simple Models of Intracellular Processes

General Approach: The model schemes in Figures 2B–2E were translated into differential 

rate equations by standard methods (see section Model Equations below). In all models with 

a single absorbing state xn (except the parallel chain) and without cellular heterogeneity in 

the reaction rate parameter, the response-time (or first-passage time) distribution can be 

obtained directly from the differential equation solutions as the flux into the absorbing state 

xn (Van Kampen, 2002): ψn(t) =
dxn
dt . In the case of the irreversible chain, the response-time 

distribution has a closed-from expression, the gamma distribution γ(α, β; t) = tα − 1e−βtβα

Γ(α) , 

where Γ(α) is the Euler gamma function. In that parameterization of the gamma distribution, 

α may be interpreted as the “non-integer valued step number”, and then is the reaction rate 

of each step (see Equation 1). For the parallel chain, the probability to reach the final state n 

in the first-out-of-m parallel processes, f m(t) = mψn(t)(1 − 0
t ψn(t′)dt′)m − 1

 (Lu et al., 2006), 

is taken as the response-time distribution.

To account for cellular heterogeneity, we replaced the uniform rate parameter λ by a log-

normal distributed rate parameter λ, i.e. λ was drawn from a log-normal distribution 

g(λ) = 1
sλ 2π exp − (ln(λ) − m)2

2s2  for each cell. The parameters s and m are chosen as to have a 

coefficient of variation CV (standard deviation/average) as indicated. Subsequently, the 

response-time distribution is obtained by stochastic simulation (n = 20000) using Gillespie’s 

algorithm.

Model Equations: For all models (except the cascade model), we impose the normalization 

condition ∑i = 0
n xi = 1 and the initial condition x0(0) = 1 and xi(0) = 0, for i > 0.

a) Single step process: Single irreversible, molecular reaction.

Master equation: 
dx1
dt = λx0.

Response-time distribution: ψ1(t) = λe−λt, exponential distribution.

b) Irreversible chain: A chain of n molecular reactions.
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Master equation: 
dxi
dt = λ

n (xi − 1 − xi), i = 1…n − 1; 
dxn
dt = λ

n xn − 1.

Response-time distribution: ψn(t) = tn − 1e−λtλn

Γ(n) , i.e. the gamma distribution.

c) Parallel irreversible chain: Here, we assume that the active state of a cell can be reached 

by any of m molecules transitioning to the active state through a multi-step process.

Response-time distribution (Lu et al., 2006): ψn,m(t) = mψn,1(t)(1 − ∫ ψn,1(t)dt)m−1

where ψn,1(t) = ψn(t) in the irreversible chain. In words, ψn,m(t) is the probability density to 

reach state n for the first time at t, and can be computed as m times the probability for a 

single molecule to reach the active state, given that it has not been reached earlier by any of 

the other m−1 molecules.

d) Reversible chain: Here instead of Equation 1, we consider reversible reactions.

Master equation: 
dxi
dt = λ

n (xi − 1 − xi) + k
n (xi + 1 − xi), i = 1…n − 1, k > λ.

Response-time distributions are computed numerically from the master equation.

e) Cascade: We adopted the model from Heinrich et al. (Heinrich et al., 2002).

Master equation: 
dxi
dt = λ(1 − xi)xi − 1, i = 1…n, and x0(t) = 1 for all t > 0 (an activated 

receptor). Here, xi(t) is the probability that the i-th kinase is active, and therefore the xi(t) are 

separately normalized and take values in the interval [0,1]. Initial conditions: xi(0) = 0, i = 

1…n.

Response-time distributions are computed numerically from the master equation.

f) Cross-talk: Similar to irreversible chain, but with a “short-cut” reaction from xl to xn.

Master equation: 
dxi
dt = λ

n (xi − 1 − xi), i = 1…n − 1, i ≠ l; 
dxl
dt = λ

n (xl − 1 − xl) − λxl;

dxn
dt = λ

n xn − 1 + λxl .

Response-time distributions are computed numerically from the master equation.

Implementation of Response-Time Models

Network Motifs: All models shown in Figures 3 and 4 are implemented using a “linear 

chain” framework (Box 1). That means the models depicted in Figures 3B and S3B each 

result in a system of ordinary differential equations. Here, feedback and interaction are 

modelled by a dependence of the rate parameter β of the input gamma distribution to the 

fraction of cells in a state Sl (Equation 2, Box 1). For positive and negative feedback 
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(Figures 3B–3D, “feedback”, and Figure S2), we used β(Sl) = βbaseK + ηSl
K + Sl

 in Equation 2, 

where βbase is the base-level rate parameter, and the fold-change η determines feedback type 

and strength (positive feedback: η > 1, negative feedback: η < 1). For cellular interaction 

(Figures 3B–3D, “gate”; Figure 5E), we used β(Sl) = βbase Sl
K + Sl

.

Persistence Detector Model: The persistence detector model (Figure 5A and B) can be 

expressed in the linear-chain formulation as follows:

dS0
dt = − λ f (t)S0

dxk
dt = λ f (t)(xk − 1 − xk),    for  k = 2…n;

dS1
dt = λ f (t)xn

where x1 = S0, f (t) =
1, t < td
0, otherwise

, and td is the stimulus duration. The above equations are 

used in Figures S4A and S4B. In Figures 5C and 5D, the corresponding gamma distribution 

formulation is used with the gamma distribution parameters representing IL-2 secretion 

(Table 1). In that case, the model is implemented by step-wise, direct integration of the 

gamma distribution over the period of time where the stimulus f(t) is present.

Bimodal IFN-γ Secretion Model: The model (Figure 5E) implements the generalized 

reactions shown using response-time distributions, and in addition degradation of the IL-2 

and IFN-γ secreting cell populations is considered, as described in the main text. The 

branching reaction (differentiation of CD8+ T cells towards IL-2+ cells or IFN-γ+ cells, 

directly or indirectly) is realized by assigning separate pools of CD8+ T cells in the initial 

conditions, according to the ratios experimentally observed by (Han et al., 2012) (see Table 

S1). The only free parameter is the strength of the IL-2 dependence on response-time for 

differentiation towards IFN-γ+ cells. Simulations are run using the generalized Gillespie 

algorithm described below, with n = 5000 cells.

IL-2 Competition Model: In the case study described in Box 2, response-time distributions 

for Th and Treg cell activation (i.e. CD25 up-regulation) are generated using the IL-2 

receptor model from (Busse et al., 2010; Thurley et al., 2015) without IL-2 secretion, and at 

a given extracellular IL-2 concentration (Box Figure A, and Section “IL-2 receptor model” 

below). From that model, we use the kinetics of IL-2/IL-2 receptor complexes as a read-out 

(Figure S5A), which corresponds to the experimentally accessible parameter CD25 up-

regulation (Busse et al., 2010; Thurley et al., 2015). That output is normalized after 
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neglecting the initial steep increase to a basal level (1st hr), so that the final curves reflect the 

kinetics of receptor up-regulation (Box Figure B). We identify that curve with the response-

time distribution for T cell activation (i.e. IL-2 receptor up-regulation) and use best-fit 

gamma distributions to proceed (dashed lines Box Figure B), similar to the approach taken 

with the experimentally obtained response-time distributions (Figure 5E). Such response-

time distributions are generated for both Th and Treg cells under a range of extracellular 

IL-2 concentrations (Figure S5B). The resulting α and β parameters of the gamma 

distributions (see Equation 1) for varying IL-2 concentrations are used to fit interpolating 

functions (dashed lines in Figure S5B): α([IL − 2]) = Cα + (Kα/[IL − 2])n and β([IL − 2]) = 

Vβ[IL − 2]/(Kβ + [IL − 2]), each separately for Th and Treg cells. Taken together, the fitting 

parameters Cα, Kα, n, Vβ, Kβ completely describe the response-time distributions for Th 

cell and Treg cell activation in dependence of the extracellular IL-2 concentration.

To close the response-time model, it remains to determine the concentration of extracellular 

IL-2 depending on the degree of Th and Treg cell activation. A rigorous discussion of that 

question requires solving a non-linear diffusion problem in 3 spatial dimensions (Oyler-

yaniv et al., 2017; Thurley et al., 2015). In a simplified scenario at steady state, the IL-2 

concentration in the vicinity of a single cell can be calculated as the ratio of the production 

rate and IL-2 consumption by both diffusive escape and absorption by IL-2 receptors 

(Thurley et al., 2015): [IL − 2] = q/[konR + 4πDρ], where q is the IL-2 secretion rate, kon is 

the IL-2 receptor binding rate, D = 10 µm2/s is the diffusion constant, and ρ = 5 µm is the 

typical cell diameter. Summing over all available IL-2 secreting cells and IL-2 receptors, and 

switching from absolute cell numbers to fractions fTh (Th cells) and fTreg (Treg cells) of the 

total cell density σ, we obtain: [IL − 2] =
qσ f Th

kon(RThσ f ThATh + RTregσ f TregATreg) + 4πDρ/Vol  where 

ATh, ATreg is the current fraction of active cells among the Th or Treg cells, RTh, RTreg is the 

total numbers of IL-2 receptors per Th or Treg cell (here: RTh = 1000 molecules, RTreg = 

2000 molecules), and we consider a fixed diffusive volume Vol = 1 µl. The equation above 

calculates the extracellular IL-2 concentration based on the fraction of already activated Th 

and Treg cells and thus closes the response-time model.

In Box 2, the described model is simulated using the generalized Gillespie algorithm (see 

below) for IL-2 receptor dynamics, with n = 2000 cells (Th and Treg cells combined).

IL-2 Receptor Model: In Box 2 and Figure S5, we refer to the IL-2 receptor model from 

(Busse et al., 2010; Thurley et al., 2015). Here we re-print the equations for convenience of 

the reader (see Figure B1A in Box 2 for a model scheme and brief description):

dR
dt = v(C) − (konRI + kiR)R + koffC + krecE

dC
dt = konRI − (koff + kiC)C
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dE
dt = kiCC − (krec + kdeg)E

v(C) = v0 + v1
C3

K3 + C3

Parameter values are as in the original publication: kon = 112 nM−1h−1, kiR = 0.64 h−1, koff = 

0.83 h−1, krec = 9 h−1, kiC = 1.7 h−1, kdeg = 5 h−1, K = 1000 molecules/cell; v0 = 150 

molecules/[cell h], v1 = 3000 molecules/[cell h] for Th cells, and v0 = 1000 molecules/[cell 

h], v1 = 8000 molecules/[cell h] for Treg cells.

Generalized Gillespie Algorithm—In the models describing bimodal IFN-γ secretion 

and competition for IL-2, we used a recently published algorithm (Boguñá et al., 2014), 

which efficiently simulates semi-Markov processes using an approximation that is valid for 

large numbers of cells. Indeed, our implementation shows excellent agreement with the 

exact solution available for a multi-step process when using > 1000 cells (Figures S4D and 

S4E). Essentially, the generalized Gillespie algorithm replaces the reaction rates γi used in 

the classic Gillespie algorithm by the hazard rates γi(τ) = ψi(τ)/φi(τ), where τ is the elapsed 

time since the last reaction, ψi(t) is the response-time distribution of process i and φi(t) is the 

corresponding survival probability. In analogy to Gillespie’s algorithm, an “average rate” 

γ({tk}) = N−1∑k = 1
N γk(tk) is computed (N is the number of active processes at a given 

reaction step), and the next reaction time and next reaction process are computed based on 

the expressions Nγ̄({tk})e−Nγ̄({tk})τ and γi(ti)/(Nγ̄({tk})), respectively. A subtlety arises at 

time 0, where ti = 0 for all i, and therefore in the case of the gamma distribution, also γi(ti) = 

0 for all i. To avoid that case, whenever no active processes with ti > 0 are available (in 

particular at start), we used the exact implementation of the process (Equations 4 and 5 in 

(Boguñá et al., 2014)). In brief, a random time τ is drawn from the over-all survival 

probability θ(τ | {tk}) = ∏k = 1
N ψk(τ + tk)/ψk(tk) by solving θ(τ|{tk}) = u (u is a uniform 

random number), and a reaction channel i is chosen from the reaction probability 

γi(ti + τ)/∑k γk(tk + τ), where γi(τ) is defined as above. Here we implemented that exact 

stochastic simulation algorithm using an adaptive step-size h and repeatedly testing the 

condition q(h + … + h|{tk}) < u, until the next reaction time is found.

Formal Calculations

The Heterogeneous Single-Step Process Has a Monotonous Response-Time 
Distribution: In the main text, we claim that the heterogeneous single-step process never 

produces a peak in the response-time distribution; rather, monotonically decreasing, broad or 

long-tailed distributions arise, no matter how λ is distributed. This can be seen by the 

following calculation:

Consider two random variables, the time t until an event occurs, and the reaction rate λ, 

which is different in each cell. The joint probability distribution is given by ψt,λ(t,λ) = 
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ψt|λ(t|λ)ψλ(λ), where ψt|λ(t|λ) is the response-time distribution conditioned on a fixed 

parameter λ. So in a single-step process, ψt|λ(t|λ) = λe−λt, and the response-time 

distribution resulting from a stochastic parameter λ with distribution g(λ) is the marginal 

distribution ψλ(t) = ∫ ψt,λ(t|λ)ψλ(λ)dλ = ∫ λe−λtg(λ)dλ. How does the distribution g(λ) 

effect the response time? With g(λ) > 0,

dψλ
dt = λ d

dt (e−λtg(λ))dλ = − λ2g(λ)e−λtdλ < 0 (Equation 3)

Thus, for any λ > 0, ψλ(t) always decreases monotonically and cannot have a peak, in 

contrast to the distributions arising from a multistep process.

Number of Peaks in Response-Time Distributions: In the main text, we claim that in the 

feed-forward loop motif (Figures 3B–3D, right panels), the a posteriori response-time 

distribution ϕ02(t) to reach the absorbing state Sa = S2 when starting in S0 cannot be bi-

modal (i.e. cannot have two maxima) when the state transitions are governed by exponential 

distributions. This can be seen by the following calculation:

The network of state transitions can be described by a Master equation (Van Kampen, 2002) 

for a vector S(t) of the occupancy probabilities to be in state Si at time t:

dS
dt = WS(t) (Equation 4)

where the matrix element Wij = λij is the transition rate for a jump from i to j, and we 

impose initial conditions S0(0) = 1, Si(0) = 0, i = 1 … n.

For the feed-forward motif with transition rates λ01 = a, λ12 = b, λ02 = c, the matrix W 
reads

W =
−a − c 0 0

a −b 0
c b 0

.

We next solve Equation 4. The first derivative of S2 is the a posteriori arrival time 

distribution, and the number of zeros of the second derivative informs us about the number 

of possible maxima. We consider two cases:

i. For b ≠ a + c, W has three eigenvalues μi = (−a−c, −b, 0) and three independent 

eigenvectors, which form a basis for the solution of Equation 4. The solution is 

S2(t) = Σkie−μit where k1 = b − c
a − b + c , k2 = −a

a − b + c , k3 = 1. The derivative of the a 

posteriori arrival-time distribution, 
d2S2
dt2

= k1μ1
2e

−μ1t
+ k2μ2

2e
−μ2t

, can have at 
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most one zero, which happens in cases where k1, k2 have different signs (e.g. for 

a + c > b and b > c).

ii. In the degenerate case, b = a + c in Equation 4, the solution reads 

ϕ02(t) =
dS2
dt = e−(a + c)t[(a + c)(1 + at) − a], which has a single maximum at 

t = c
a(a + c) .

Thus, the feed-forward loop with elementary reaction steps only constrains the system to 

either a single or no peak.

QUANTIFICATION AND STATISTICAL ANALYSIS

Measures of Response-Time Distributions

Delay: We defined the delay time tdelay as the longest time before ≤5% of a cell population 

reach the active state, so it is the 5-percentile of the response-time distribution.

Bimodality: To quantify bimodality, we used the standard error (root-mean square of the 

sum of residuals) of a best-fit to the gamma distribution, with the rational that a bimodal 

distribution cannot be fit by a single gamma distribution. This approach has been widely 

used with normal distributions (“dip-test” (Freeman and Dale, 2013)).

Synchronization: We define the synchronization time tsync to a given arrival time 

distribution ψ(t) by the time elapsed after the delay time (see above) in which a certain 

fraction d of cells (here d = 75%) has responded for the first time. That time is given by the 

condition P(tdelay, tsync) = d, where P(t,τ) = F(t + τ) − F(t)/[1 − F(t)] is the future life time, 

and F(t) is the cumulative probability distribution to ψ(t).

DATA AND SOFTWARE AVAILABILITY

All computer simulations and analyses were carried out in Matlab R2015a. The code is 

available from the authors upon request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Scalable modeling framework for modeling cell-to-cell communication 

networks

• Intracellular, input-to-output processing described by response-time 

distributions

• Emergent behaviors of cell-to-cell communication network motifs are 

identified

• Response-time modeling is applied to published cytokine secretion data
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Box 1

Response-Time Modeling

In cell-cell communication networks, cells receive signaling input from other cells. They 

process this information to potentially effect an internal state change, which in turn 

regulates when and which signals they output to affect the overall milieu of signals 

received by other cells. The approach we take is to replace complex, detailed models of 

intracellular signaling networks with probability distributions of cellular response times 

for changing states (see Box 2 for an instructive example). We model cell-cell 

communication by stochastic cell-state changes, and response-time distributions are 

dynamically updated based on cellular output signals (Figure 3A). The response-time 

distributions are also known as phase-type distributions in queueing or risk theory (Bladt, 

2005) or as first-passage-time distributions in physics (Van Kampen, 2002). Moreover, 

response-time modeling can be formulated in terms of semi-Markov processes and a 

corresponding set of integral equations (generalized master equations) (Howard, 1971; 

Kenkre et al., 1973).

More formally, each cell can be in multiple states {Si}. The time between each direct 

state transition Si→Sj is determined by a response-time distribution ψ(j,t|i,τ), the 

probability to arrive in state j for the first time at time t after having entered state i at time 

τ. In many cases, we can assume ψ(j,t|i,τ) = ψij(t−τ); i.e., the response times depend 

only on the time elapsed since the previous state change. To completely determine the 

process, we assign probabilities pij for the occurrence of each state change Si→Sj that 

can occur at a branching point, with the normalization Σjpij = 1 (Howard, 1971). Given 

that the cellular interaction network has an absorbing state Sa, then the a posteriori 
arrival-time distribution ϕ0a(t) (arrival times in Sa after starting in S0) can be computed as 

the flux into that absorbing state, ϕ0a(t) =
dSa
dt  (Van Kampen, 2002). Adding feedback or 

interaction may require an additional dependency on the number of cells in a certain state 

Sl (see Equation 2 in the main text): ψij = ψij(Sl(t),t−τ), which means that the integral 

equations describing the process become non-linear (Howard, 1971). Note that such 

feedback in the response times is different from delayed feedback (such as in a rate 

equation 
dSi
dt = F[Si,

0

t
Sl(τ)ψn(t − τ)dτ], which has been widely studied in population 

biology; Smith, 2010).

Solving non-linear integral equations describing generalized state transitions is an 

analytically and numerically hard problem. However, a direct solution is possible in the 

case of gamma-distributed response times with integer-valued shape parameters. In this 

case, we can replace each response-time distribution by the corresponding irreversible n-

step process, reducing the problem to an ODE system (see Equation 1 and Figure 2B). 

Specifically, we can replace each of the processes Si→Sj by an n-step linear reaction 

chain
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dSi
dt = − λSi

dxk
dt = λ(xk − 1 − xk), x1 = Si, k = 2…n

dS j
dt = λxn

This procedure is a variant of the “linear chain trick” (Smith, 2010), and it naturally 

generalizes to systems with interaction or feedback in the rate parameter λ. In that case, 

we can write λ = λ(Sl(t)), yielding a non-linear system of differential equations for Sj(t).
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Box 2

Case Study of Response-Time Modeling for IL-2 Competition between Th 
and Treg Cells

Here, we examine a case study of an immunological cell-cell communication network in 

which previous studies revealed an interesting “competitio” mechanism among cells. 

(Busse et al., 2010; Feinerman et al., 2010; Fuhrmann et al., 2016; Oyler-yaniv et al., 

2017; Thurley et al., 2015). In this cell-cell communication network, we consider (Figure 

B1A): nodes are helper T(Th) and regulatory T(Treg) cells; input is the cytokine IL-2, 

which comes from Th cells after antigenic stimulation; and the output is the cell state 

(inactive/active) as determined by IL-2 receptor (IL-2R) levels (down/up regulated; this is 

typically measured by the surface marker CD25). An interesting property of this 

particular cell-cell communication network is that IL-2R binds IL-2 with high affinity, 

followed by receptor integration and degradation, so that active cells substantially reduce 

the extracellular IL-2 concentration. In this way, Treg cells may outcompete Th cells for 

IL-2 and thus prevent sufficient stimulation of Th cells and initiation of a strong immune 

response (Busse et al., 2010; Feinerman et al., 2010; Fuhrmann et al., 2016; Oyler-yaniv 

et al., 2017; Thurley et al., 2015). Here, we show how key results of those studies can be 

obtained through response-time modeling.

Our first step is to characterize the input-to-output relationships of cell types. The 

response-time distribution for IL-2R up-regulation, as functions of the extracellular IL-2 

concentration, could be obtained experimentally or even guessed. For simplicity, here we 

obtained the distributions computationally from an existing mathematical model, which 

considers IL-2R expression, degradation and binding to IL-2 molecules as intracellular 

building blocks (Figure B1B, Figure S5A, STAR Methods) (Busse et al., 2010). The 

resulting response-time distributions indicate that the probability to respond early 

increases with increasing IL-2 concentration, and is much higher for Treg cells than for 

Th cells (Figure B1C, Figure S5B). The second step is to model cell-cell interactions 

(Figure B1A). Here, we considered a previously characterized reaction-diffusion process 

of extracellular IL-2 secreted by Th cells and “consumed” by active cells via binding to 

IL-2R (Oyler-yaniv et al., 2017; Thurley et al., 2015), and we derived a simplified 

mathematical description (STAR Methods).

In this cell-cell-communication network, Treg cells effectively inhibit cell activation at 

weak-to-moderate antigen-induced IL-2 secretion rates, but Treg cells cannot prevent Th 

cell activation at strong stimulation. This can be directly observed from the response-time 

model (Figure B1D), recapitulating a “tug-of-war” scenario previously modeled 

(Feinerman et al., 2010) (note that despite qualitative agreement, that study differs, e.g., 

in the assumed IL-2 diffusion constant and therefore in the level of cell density required 

for activation). Finally, our response-time model recovers the steep all-or-none decision 

curve at high fractions of Treg cells, which was reported earlier based on extensive 3D 

multi-scale simulations (Figure B1E) (Thurley et al., 2015).

In summary, this response-time model unified and showed good qualitative agreement 

with previous, more detailed models. The approach did not rely on details of how the 
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response-time distributions were generated and allowed us to abstract behaviors arising 

from intracellular dynamics and focus on cell population responses.
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Figure B1. Case Study: Cell-to-Cell Communication between Th and Treg Cells
(A) Cell-to-cell communication network of a Th cell population competing for IL-2. Th 

cells secrete IL-2, which is taken up by activated Th and Treg cells. In response to that 

IL-2, Th and Treg cells are activated, which is indicated by up-regulation of IL-2 receptor 

(IL-2R). Activated cells take up high amounts of IL-2 and thus reduce the extracellular 

IL-2 concentration.

(B) Input-to-output relationship of Th and Treg cells based on the IL-2 receptor model 

from (Busse et al., 2010). In response to antigen recognition, Th and Treg cells express 

IL-2R with rate v (Treg cells have higher v). IL-2 receptors are degraded with rate kiR, 

and they may bind IL-2 and form IL-2/IL-2R complex (on and off rates kon, koff), which 

further stimulates IL-2R expression. That complex is internalized into the cell (variable 

E) and either degraded with rate kdeg or recycled with rate krec.

(C) Response-time distributions as obtained by simulations of the model shown in (B), 

with indicated extracellular IL-2 concentration (Th cells) or [IL-2] = 1 nM (Treg cells). 

Dashed lines are best-fit curves of the gamma distribution (fit parameters are shown in 

Figure S5B).

(D) (Left panel) Typical simulation of the model shown in (C) (high cell-density limit), 

with strong stimulation (IL-2 secretion rate 20,000/hr) and 30% Treg cells. (right panel) 

Simulations with varying cell density, showing that effects of the cell density saturate 

above ~103 cells/µL. Moderate stimulation (mod. stim.): 3000 IL-2 molecules/hr; strong 

stimulation: 20,000 IL-2 molecules/hr.

(E) Simulations as in (D) for a range of stimulation strengths (i.e., IL-2 secretion rates) 

and percentages of Treg cells and in the limit of high cell-density. See STAR Methods for 

details and model equations.
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Figure 1. Response-Time Modeling of Cell-State Dynamics
(A) Cytokine secretion onset times in CD8+ T cells from Han et al. (2012). Data were taken 

from the original publication and re-normalized to probability distributions. For TNF-α and 

IL-2, also best-fit curves to the gamma distribution and the exponential distribution are 

shown (fitting parameters in Table S1).

(B) An elementary chemical reaction is well described by a simple rate equation, with a 

single rate parameter λ (concentration per time). However, the waiting time until the next 

reaction occurs is a random variable. Chemical reaction kinetics dictate that the response 

times are exponentially distributed.
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(C) Cellular state changes require a set of chemical reactions forming an intracellular 

reaction network. That network can be described by differential equations for each reaction, 

whose solutions reveals the fraction of cells containing each molecular species at every time 

point. From that information, we can calculate the response-time distribution for a cell state 

of interest. That response-time distribution does not need to be exponential or monotonic, 

but can have one or even several peaks.

(D) The response of a cell population to a stimulus is often not only dependent on 

intracellular networks, but may also evolve by intercellular communication. Response-time 

modeling uses the response-time distributions for all considered cell-state changes, and their 

dependence on other cell states, to characterize the intercellular communication network.
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Figure 2. Intracellular Reaction Networks Are Often Well Described by Gamma-Distributed 
Response Times
(A–E) Response-time distributions of the multi-step models shown in the top row of each 

panel. Top: each arrow represents an elementary (i.e., single-step) reaction (see STAR 

Methods for model equations). Response-time distributions are computed by solving the 

corresponding system of differential equations and normalizing by the distribution average. 

Bottom: to account for cellular heterogeneity, the rate parameter λ is drawn from a log-

normal distribution (SD = mean), and normalized response-time distributions are obtained 

by stochastic simulation. For all models, heterogeneous λ results in longer tails and earlier 

peaks. Blue lines: best-fit gamma distributions, labels indicate the shape parameter α. 

Parameters: n = 10, λ = 1, l = 1.

(F) Plots of the gamma distribution (Equation 1) with rate parameter β = 1/α (i.e., the 

average time is constant) and shape parameter as indicated.

(G) Shape parameter α of best-fit gamma distributions to the indicated models (A–D) and 

(Figure S1A). “No. steps”: parameter n in the models. Cellular heterogeneity: coefficient of 

variation of the log-normal distribution generating λ.
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Figure 3. Network Motif Analysis Using Response-Time Modeling
(A) Illustration of response-time modeling: each reaction arrow represents an intracellular 

multi-step process represented by a gamma distribution γ(α, β; t) (Equation 1). The process 

is started in state S0 and continues until all cells reach the absorbing state Sa. Dashed arrow: 

positive feedback. Arrival time: a posteriori distribution of the times to reach state Sa 

considering feedback.

(B) Simple models (network motifs) of cell-to-cell communication.

(C and D) Simulations of the models shown in (B). To keep the response-time models and 

single-step models comparable, we scaled the rate parameter of the gamma distributions as 

β→αβ, so that the average of the distribution is 1/β independently of α. Feedback and 
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interaction (gate motif) are modeled by Michaelis-Menten type equations (see STAR 

Methods). Parameter values used in (C) are indicated by small color-coded arrows in (D). 

“Average time”: Average 1/βbase of the gamma distribution representing the respective 

reaction. “eq. velocities”: equal average times for both reactions. Parameters not stated 

otherwise: α = 10 (“response-time model”) or α = 1 (“single-step model,” i.e., the 

exponential distribution is used), K = 0.1, βbase = 1, feedback fold-change η = 5 (positive 

feedback) and 0.2 (negative feedback). In the feedforward loop motif, the branching 

probability is p01 = p02 = 0.5.
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Figure 4. Independent Control of Delay and Synchronization
Comparison of the gate and feedback motifs (Figures 3B–3D), and the single-or double-state 

transition motifs (Figures S3B–S3D). The gate motif allows for variable delays for the same 

degree of synchronization while, conversely, the feedback motif allows variable 

synchronization for the same delay. Synchronization and delay cannot be decoupled for the 

single transition model, which represents intracellular multi-step processes alone (see 

Figures 2A–2D). All curves are generated by changing the timescale or feedback strength 

parameters as in Figures 3D and S3D.
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Figure 5. Persistence Detection and Bimodal IFN-γ Secretion Onset
(A) Persistence detection: in the experiment by Toettcher et al. (2013), receiver cells showed 

a fluorescent signal (state-change) when exposed to an opto-genetic stimulus for 2 hr but not 

for 1 hr; a paracrine cytokine signal was essential for the effect.

(B) Model schema: a stimulus triggers a cell-state change that is governed by a response-

time distribution. The reaction is stopped when the stimulus terminates.

(C and D) Simulation of the model in (B) with the best-fit gamma distribution (“response-

time model”) or the best-fit exponential distribution (“single-step model”) derived from 

measured IL-2 secretion onset times (Figure 1A; Table 1). (C) Kinetic simulations. Gray 

bars indicate stimulus duration. (D) Fold increase: relative increase in maximal activity from 

short to long stimulus.

(E) IFN-γ secretion onset: input data used for the models (see also Table S1). IL-2 and IFN-

γ secretion onset times were taken from Han et al. (2012) (Figure 1A), and the initial IFN-γ 
secretion onset times were obtained by cutting after the dip at 10 hr and renormalizing. 

Kinetics of CD25 (α subunit of IL-2R) upregulation were taken from Dorner et al. (2009) 

and normalized to maximal expression. Fitting lines show best-fit curves to gamma and 

exponential distributions (for CD25, the corresponding cumulative distribution function was 

used).

(F) Response-time models of IL-2 and IFN-γ secretion onset. Solid arrows represent an 

intracellular multi-step process represented by a response-time distribution and a probability 

to execute each of the branching reactions (see Table S1). Dashed arrows represent positive 

interaction.

(G) Simulation of the models in (F): a posteriori arrival times to reach state “IFN-γ+,” i.e., 

initiate IFN-γ secretion. Note that the probabilities pij for each differentiation path (IL-2+, 

CD25+, and IFN-γ+) are determined independently of the response-time distributions (see 

Table S1), and therefore the shown arrival times are normalized to the corresponding 

fraction of cells: given a certain differentiation path, it is certain that the new state will be 

reached eventually. “Response-time model”: simulations with best-fit gamma distributions 
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(here non-integer valued shape parameters are possible); “single-step model”: simulations 

with best-fit exponential distributions.
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Table 1

Literature Survey of Response-Time Distributions

Description Average CV Distribution References

Secretion onset of IL-2 6.3 hr 0.4 gamma (Figure 1A) Han et al. (2012)

Secretion onset of TNF-α 3.6 hr 0.5 gamma (Figure 1A) Han et al. (2012)

Secretion onset of IFN-γ 9.6 hr 0.4 bimodal (Figure 1A) Han et al. (2012)

Production period IFN-γ (CD4+ T cells) 5.9 hr 0.61 gamma Helmstetter et al. (2015)

Onset of IFN-β induction 3.3 hr 0.4 gamma Rand et al. (2012)

IL-2 receptor upregulation 54 hr 0.35 gamma Waysbort et al. (2013)

Transcription on times 5–20 min 1 exponential Suter et al. (2011)

Transcription off times 0.5–3 hr 0.9 double-exponential Suter et al. (2011)

Calcium interspike intervals in HEK cells 0.5–8 min 0.27 single-peaked Thurley et al. (2014)

Calcium interpuff intervals in HEK cells 0.5–2 s 0.94 exponential or single-peaked Thurley et al. (2011)

Lambda induction in bacteria (lysis) 100 min 0.13 single-peaked Amir et al. (2007)

TLR4 endosome maturation time 4.4 hr 0.3 normal Cheng et al. (2015)

Enzymatic reaction 10–50 ms 1–1.5 exponential or multi-exponential English et al. (2006)

Cell-cycle time of retinal progenitor cells 56 hr 0.34 normal Gomes et al. (2011)

Note that normal, gamma, and double- or multi-exponential distributions all fall into the class of “single-peaked” distributions. CV, coefficient of 
variation.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

Generalized Gillespie algorithm This paper; Boguñá et al., 2014 N/A

Other

Cytokine secretion kinetics in CD8+ T cells Han et al., 2012 N/A

CD25 expression kinetics in CD8+ T cells Dorner et al., 2009 N/A

Models for IL-2 receptor expression and IL-2 diffusion This paper; Busse et al., 2010; Thurley et al., 2015 N/A
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