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ABSTRACT Video-based anomalous human behavior detection is widely studied in many fields such as
security, medical care, education, and energy. However, there are still some open problems in anomalous
behavior detection, such as the large and complicated model is difficult to train, the accuracy of anomalous
behavior detection is not high enough and the speed is not fast enough. A spatiotemporal representation
learning model is proposed in this paper. Firstly, the spatial-temporal features of the video are extracted by
the constructed multi-scale 3D convolutional neural network. Then the scene background is modeled by the
high-dimensional mixed Gaussian model and used for anomaly detection. Finally, the accurate position of
anomalous behavior in the video data is achieved by calculating the position of the last output feature, that
is, the position of the receptive field. The proposed model does not require specific training. Moreover,
the proposed method has the advantages of high versatility, fast calculation speed and high detection
accuracy.We validated the proposed algorithm on two representative surveillance scene datasets, the Subway
and the UCSDSped2. Results show that proposed algorithm has achieved the detection rate of 18 FPS under
the condition of common computing resources, and meet the real-time requirements. Moreover, compared
the similar methods, the proposed method has achieved the competitive results in both frame-level accuracy
and pixel-level accuracy.

INDEX TERMS Spatiotemporal representation learning, anomaly detection, 3D convolutional neural
network, mixed Gaussian model.

I. INTRODUCTION
The video-based anomalous human behavior detection aims
to intelligently discriminate whether there is anomalous
behavior in a video data captured by video sensors through
a computer algorithm and if so, give a location marker for
the anomalous behavior. Video-based anomalous behavior
monitoring is extremely valuable in both public safety and
defense security. In the past few decades, video-based anoma-
lous behavior detection has been widely studied in both
academia and industry, and it is still a hot and challenging
research issue. Difficulties faced by video-based anomalous
behavior monitoring are mainly as follows: (1) There is only
a small part of data in the background, and the absolute
dominance is non-anomalous data, that is asymmetry of data;
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(2) The definition of anomalous behavior is subjective or
context-dependent, lacking uniform standards; (3) The diver-
sity of monitored scenes has led to the diversification of
noise. Therefore, the key to video-based anomalous behavior
monitoring is whether the proposed algorithm can overcome
noise interference in various video monitoring scenarios and
robustly output various anomalous behaviors.

In video anomaly detection, behaviors that differ from the
majority of behaviors in the scene are treated as anoma-
lies, reflected as unusual object shapes, poses, and motions.
The current popular anomaly detection method firstly takes
the no-anomalous frames or the no-anomalous blocks in the
training data as the no-anomalous modes and then extracts
the features of these frames or blocks. Finally, in the test
phase, the behavior of the object is determined by discrim-
inating the difference between the test frame (or the the
blocks) and the no-anomalous modes. In this way, anomaly
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detection is a special kind of identification, so the focus
of research on these popular methods is the extraction of
features and the discrimination of anomalies. There are many
ways to describe regional features, such as histograms of ori-
ented gradient (HOG) and histograms of optical flow (HOF).
Motion trajectory-based approaches use such low-level fea-
tures to construct a spatiotemporal model. However, they
have extremely low detection accuracy in the presence of
occlusion and will fail in highly complex environments.
In recent years, deep learning has been extremely successful
in the field of recognition, and it has also been used for
anomaly detection. So in this paper, we divide the anomaly
detection into two categories: traditional video and image
processing based methods and deep learning based methods.

Traditional image processing mainly extracts features
by artificially constructing feature operators, and performs
anomaly discrimination. Representative methods include the
construction of social force model methods [1], analy-
sis of video behavior methods [2], Markov random field
method [3], construction of mixed dynamic texture model
methods [4], object motion trajectory modelings [5]–[16],
motion trajectory and shape detection [17], [18], dense opti-
cal flow and space-time gradient [3], [19], structural acquain-
tance [20], sparse semi-negative matrix decomposition to
learn local features [21], Dense trajectory algorithm [22],
attitude and motion information recovery [23], point model
[24], silhouette and contour [25]–[27], etc. These traditional
methods have achieved good results in specific scenarios.
The main disadvantage is that the model expression ability
is weak, and the detection accuracy is significantly reduced
in complex scenes. Moreover, some of them have high com-
putational complexity and it is difficult to meet the real-time
requirements of video detection.

Ddeep learning-based methods use the powerful represen-
tation learning ability to automatically extract the features
of the video data and complete the anomalous behavior dis-
crimination. Literature [28] used the deep neural network to
identify whether a window image is anomalous or not. Litera-
ture [29] constructed a very complex cascaded neural network
to extract features from cubic patches in video data and dis-
criminate the anomalies. Literature [30] proposed a method
by extracting features using 2D convolutional neural network
andmodeling anomalous behavior detection using aGaussian
model. Literature [31] used an unsupervised deep learning
framework for anomaly detection and literature [32] used
convolutional auto-encoders to perform anomaly detection.

The detection methods of anomalous behavior using the
deep neural network directly have the problems such as
low computational efficiency and difficulty in constructing
training samples. Moreover, a method of feature extraction
using 2D CNN has the problem of weak ability to express
temporal behavior features. In order to overcome these short-
comings, this paper proposes a deep neural network model
(STF-Net) for temporal and spatial representation learning,
extracts video data features through the constructed network,
and then uses hybrid Gaussian modeling to identify and

locate anomalous behavior regions. In the proposed model,
we introduce a multi-scale learning structure, which enriches
receptive field of the feature in the original image, and makes
the feature representation ability stronger. The main contri-
butions of this paper are as follows:

(1) A deep learning model for anomalous behavior repre-
sentation is proposed. This model extracts the spatiotemporal
features of video data through a 3D convolutional neural
network and enhances the feature receptive field through a
multi-scale model. The extracted features have better adapt-
ability to multiple viewing distances.

(2) The first five layers in the proposed model are directly
transfer from C3D, and only the remaining parameters of
the model need to be trained, which reduces the difficulty
of model training. At the same time, the model parameters
come from different behavioral data sets (which is similar to
multi-task regularization), and it can improve the generaliza-
tion ability of the model.

(3) The proposed model is trained using behavior recogni-
tion data, and it is not necessary to train the network model
using the video of tested surveillance scene, so the proposed
method is a completely unsupervised method.

(4) The proposed model and the corresponding training
methods have the advantages of strong behavioral repre-
sentation ability and high detection accuracy for anomalous
behavior detection. At the same time, the proposed algorithm
has high speed and can meet the requirements of real-time
detection under the general computing resources.

The rest of this paper is organized as follows. Section II
reviews related work. Section III introduces a novel method
of spatiotemporal representation learning for video anomaly
detection. Section IV describes the experiments conducted
to verify the effectiveness of the proposed method. Finally,
Section V concludes this work.

II. RELATED WORK
Accurately identifying the anomalous behavior in various
behaviors with different scenes is a very challenging task.
Anomalous behavior has varied and diverse characteristics.
For example, the definitions of anomalous behavior in the
financial field [33] and video surveillance [34] are not exactly
the same. At the same time, in complex scenarios, anoma-
lous behavior is often submerged in various no-anomalous
behaviors. The in-depth research and extensive application of
deep learning provide new ideas for this field. In recent years,
anomaly detection using deep neural networks has been a
hot-spot and new direction in the industry, and there already
has some exploratorywork in this area. Thework of this paper
is also based on deep learning, and we will introduce and
analyze some typical closely related research work.

In 2015, a C3D network proposed by Du Tran proved that
3DCNNs are significantly superior to CNNs and traditional
manual feature extraction methods in video feature extraction
[35]. However, the method of directly using deep neural
network to identify is currently faced with the problem of
lack of training data, and the unsupervised method needs
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to improve the accuracy of anomalous behavior detection in
various scenarios. This requires a designed model that can
adapt to different monitoring scenarios and does not require
a large amount of anomalous behavior data for training.

In 2016, a method of using neural networks alternately
between two-dimensional convolution and three-dimensional
convolution for anomalous behavior prediction was proposed
[28]. Thismethod first extracts the regions of interest by using
the optical flow in the video, then directly interpolates and
scales the regions of interest to the same size, and then brings
these blocks with the same size into the neural network for
identification. This method requires the use of anomalous
samples to train the network, so half of the standard data
sets are used directly to train the network and the others
are used for testing. However, the extreme lack of training
samples has affected the effectiveness of the network to some
extent. In addition, the method uses the optical flow to extract
regions of interest which brings a large computational cost.
A similar direct recognition algorithm is proposed in [29].
The algorithm adopts a cascaded network model to extract
features for each cubic patch in the video, and then designs
a set of Gaussian model to identify anomalous. Simple cubic
pathes use a simple neural network and the remained cubic
pathes (which are difficult to distinguish) use a more complex
and deep neural network to extract features.

In 2017, based on the principle that the neural network
obtained by training with no-anomalous data is difficult
to reconstruct the anomalous data frame accurately, a 2D
auto-encoder network was designed to extract the spatial fea-
tures of the images, and the long short term memory (LSTM)
was used to obtain the temporal evolution of spatial features
[32]. This algorithm trains the network using the data that
does not contain anomalies, and then inputs the image frames
to be detected into the trained network for reconstruction.
If the reconstruction accuracy is high, it is considered that
there is no anomalies, and vice versa, there are data frames
with anomalous behaviors. However, this method requires
careful setting of thresholds to classify the reconstructed
errors. Moreover, it only determines whether the entire image
frame is anomalous and cannot locate the position of anoma-
lous behavior in the frame.

In 2018, Sabokrou M [30] proposed a method that first
compresses the mean of adjacent image frames into the three
channels to obtain a sample data, and then uses the full con-
volutional networks (FCN) to obtain spatiotemporal features,
and finally uses the convolutional auto-encoders to obtain
more stable features. The Gaussian model is trained by the
videos monitored in a no-anomalous scenario, and then the
anomalous discrimination and positioning are completed by
the distance metric. Sabokrou M also proved that the feature
extraction method based on FCN can meet the requirements
of anomaly detection such as accuracy and speed. The advan-
tage of this type of method is that it is faster. However, this
simple method of compressing a video into three-channel
data would affect the accuracy of extracting time-dimensional
features.

TABLE 1. Classification network model structure and configuration.

Inspired by these efforts, this paper proposes an anomaly
detection algorithm based on the three-dimensional fully con-
volutional networks (3DFCN). This method can solve the
problems in the work of the literature [30], such as the lack
of time dimension features, and the lack of spatial features to
adapt to the scale.

III. OUR WORK
For the difficult problem of anomaly detection in video
surveillance, this paper proposes a deep neural network
model STF-Net for the representation of anomalous behavior
based on the existing research results. The STF-Net network
consists of a basic three-dimensional convolutional (3DC)
and a three-dimensional pooling (3D Pooling) and activa-
tion units (as shown in Figure 1). It is noted that the first
4 layers of STF-Net are identical to the network structure
C3D [35], which is used for the extraction of the primary
features of the video data. Further, in order to improve the
diversity of high-level features and enhance the receptive
field corresponding to high-level features to better express
the anomalous behavior of small and medium-sized targets,
a multi-scale structure is added to the STF-Net. And the
advanced spatiotemporal features of the final video data are
output through the Conv9 layer for subsequent detection
of anomalous behavior. It is noted that the spatiotemporal
representation learning of STF-Net for anomalous behavior
cannot be directly trained, so in practice, we add a 3DC layer
and a classification layer after the network. The parameters in
the added layers are shown in Table 1. When training, for the
previous part of the network we use the C3D [35] network to
get some of the features, the network parameters are obtained
by training in the data set sport1M [36]. For the rest of the net-
works, we train them through the data set UCF101 [37]. After
obtaining the high discriminative spatiotemporal features of
the video data through STF-Net, a mixed Gaussian model
is trained through no-anomalous video data. At the time of
detection, whether the input video data is anomalous is deter-
mined by calculating the Mahalanobis distance between the
extracted feature and the mixed Gaussian model. In this way,
the algorithm does not need to use a special anomalous behav-
ior dataset for training. Moreover, the trained network model
can also be used in many different monitoring scenarios.

A. SPATIOTEMPORAL REPRESENTATION LEARNING
1) MODEL FOR SPATIOTEMPORAL REPRESENTATION
LEARNING
In order to analyze the spatiotemporal information of the
video, It is used to represent the video data at the current t
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FIGURE 1. The Structure of STF-Net.

time, It+1 is the video data at time t + 1, and St is
the video sequence at time t-8 to time t . The D =

〈St , St+1, ..., Sn−1, Sn〉 set contains all video sequence sets,
where n represents the number of video sequences in the data
set. In our proposed spatiotemporal feature model STF-Net,
the data of the input layer is a video segment Si. The
learned features of the l th layer is represented by fl =
[f 1l , f

2
l , . . . , f

i
l , ..., f

d
l ], which is composed by d dimension

data vectors. And f il = [a11, ..., a
k
1], where a11 represents

the first value of the l th layer output feature of the neu-
ral network, k = Lfeats ∗ Hfeats ∗ Wfeats is the length of
the current dimension feature vector, Hfeats is the height of
the spatiotemporal feature, Wfeats is the width of the spa-
tiotemporal feature, and Lfeats is the dimension of the time.
in the STF-Net, the value of l is set to 9, the value of d is
512, which is the number of feature maps of the l th layer,
the value of Lfeats is set to 1, the value of Hfeats and Wfeats
are both 14 when the size of the input frame is 112 × 112.
The specific parameter settings of the STF-Net network are
shown in Table 2, where the item "Struct" represents the
information of configuration and structure of each layer.
The convolutional layer structure consists of conv3D-kernel-
num-padding-strides, and the pooling layer structure consists

of pooling-kernel-padding-strides. It is well known that too
short video sequences can contain insufficient temporal fea-
tures, while too long video sequences are more susceptible to
noise interference in complex scenes. Therefore, in practice,
the number of video clip frames we selected is 9, so that the
output of the Conv9 layer is extracted as a representation of
anomalous behavior after multiple three-dimensional convo-
lutions. There are a total of 512 feature maps, which contain
both the spatial texture features of pixel locations and the time
variation information at that location.

2) MODEL TRAINING
As mentioned earlier, the STF-Net network proposed in this
paper uses a general motion behavior recognition database for
training. At the same time, after adding the network structure
part (shown in Table 1) to the STF-Net, the whole network
constitutes a deep neural network model that can identify
101 kinds of motion behaviors. The sample data required by
the input layer of the STF-Net network model is a tensor with
the size N ∗ L ∗ H ∗W ∗ C , where N is the number of batch
samples, L is the time dimension of the sample, H and W
are the height and width of the sample, respectively, and C is
the number of channels in the sample. In the training phase,
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TABLE 2. STF-Net model parameter configuration.

the first 4 layers of STF-Net are initialized using the weights
obtained by C3D [35], while the no-anomalous distribution
Y v N (µ, σ 2) is used to initialize the other layer network
weights, where µ = 0, σ = 0.5. The loss function used in
the network model for classification is as follows:

Loss =
N∑
i=1

yilogy′(i) + (1− yi)log(1− y′(i)), (1)

where logy′(i) is the predicted value of the classification task,
yi is the true value of the input sample,N is the total number of
samples, and Loss is the cross entropy of the overall sample.
The strategy of STF-Net training is to update the

model parameter θ by the using mini-batch gradient
descent (MBGD) on the training setDtrain. And the condition
of the stop of the STF-Net training is that the convergence
is achieved in both the training set and the verification set
and the model no longer converges after multiple trainings,
as shown in Algorithm 1. Dtrain is the training set, S i is
the sample of the ith video clip in the Dtrain (the sample is
composed of consecutive 9 frames that do not overlap each
other), Nt is the number of training samples, Dvalid is the
validation dataset, S j is the jth validation sample in the Dvalid
(which is also composed of 9 frames of non-overlapping
images), andNv is the number of validation samples. Function
forward (S j) represents a forward calculation in the train-
ing phase, losst represents the loss value for each training,
and derivation(loss) represents the gradient of the calculated
model parameters, update(θ ,η) means to update the model
parameter θ with the learning rate η, step is the minimum
number of trainings to start the verification model, min_thr
represents the threshold of the loss caused by the early stop
of the model, epoch is the current number of training, epochs
is the predetermined total number of training the optimization
model needed, Count is the number of consecutive times
the model parameters are not updated, and batch_size is
the sample batch size. In practice, we use the following
parameters: batch_size = 2, η = 0.001, epoch = 100,000,
step = 150, min_thr = 0.5, and Count = 100.

Algorithm 1 Training Based on Multi-Scale 3D Convolu-
tional Neural Network Model for Classification
Require:

training data Dtrain = {S i, i = 0, 1, 2, . . . ,Nt }, test data
Dvalid = {S j, j = 0, 1, 2, . . . ,Nv}, behavior recognition
threshold ϕ, early stop parameters Count , minn_thr , η,
batch_size.

Ensure:
The parameter of the classification model θ

1: Data preprocessing of training and validation sets respec-
tively

2: Index ← 0;
3: for epoch← 0 to epochs do
4: for i← 0 to Nt

batch_size do
5: loss← 0;
6: for b← 0 to batch_size do
7: losst ← forward(si∗batchsize+b);
8: loss← loss+ losst ;
9: end for
10: derivation ( loss

batch_size )
11: update(θ , η);
12: end for
13: if epoch == step then
14: for j← 0 to Nv do
15: lossv← forward (S j)
16: if lossv < min_thr then
17: Index ← Index + 1
18: else
19: Index ← 0
20: end if
21: end for
22: end if
23: if index ≥ Count then
24: stop training
25: end if
26: end for

B. REVERSE CALCULATION OF ANOMALOUS POINT
POSITION
In a convolutional neural network, the output of each layer
of network features can be calculated by forward calculation.
In STF-Net, the output features of each layer can be obtained
by the following formula:

Out =
W − F + 2P

S
+ 1, (2)

where Out is the output of the convolutional layer, W is the
width or height of the input data, F is the width or height
of the convolution kernel, P is the padding performed during
convolution, and S is the step size. As shown in Figure 2(a),
assume that the input data of the C1 layer is a tensor with
size 1× 3 × 100 × 100, the size of pooling kernel is 2× 2, S
is 2, and P is 0, then the output size is 1× 3 × 50 × 50. And
as shown in Figure 2(b), assume that the input data of the S1

VOLUME 8, 2020 25535



Z. Li et al.: Spatiotemporal Representation Learning for Video Anomaly Detection

FIGURE 2. Calculation of the receptive field of a feature.

layer is a tensor with size 1 × 3 × 100 × 100, the number
of convolutional kernels is 10, and the size of the convolution
kernel is 3× 3, S is 1, and P is 0, then the size of the S2 layer
is 1 × 10 × 98 × 98.

The position and size of located anomalous feature area B
obtained by discriminating the outputting map needs to be
marked and measured on the input image frame. The whole
step is actually a reverse process of forward convolution and
pooling, including the calculation of the input receptive field
and the calculation of the positional offset.
• Calculation of receptive field

The receptive field from the hidden layer to the
input layer is calculated by reversing from the hid-
den layer to the input layer. For example, to calcu-
late the receptive field of the Conv2 layer relative
to the input layer, the absolute receptive field of
Conv2 layer is first calculated, then the receptive
field relative to the Pool1 layer is calculated, and
then the receptive field relative to the Conv1 layer is
calculated, finally the receptive field relative to the
input is calculated. The process of inverse calcula-
tion to obtain the receptive field is shown in Algo-
rithm 2. Among them, RFs is the receptive field of
each layer to the input layer, reversed_layer is the
set of reverse subscripts of the network, Stride is the
step size of a layer, K is the size of the convolution
kernel or pooled size and the function ‘‘getStride-
AndKernelFromNet’’ is to extract the step size and
convolution kernel parameters of a layer.

• Offset calculation of the receptive field position
After obtaining the receptive field size, the specific
area information of the anomalous behavior can be
calculated by the coordinates of the hidden layer,
the size of the receptive field and the offset of the
hidden layer with respect to the input layer. The
offset of the hidden layer relative to the input layer
is calculated as shown in Algorithm 3, where layers
is the set of network forward subscripts, Strides is
the offset of all layers relative to the input layer,
and the function getStrideFromNet is used to extract
the information of step size from a layer of the
convolutional neural network, Stride is the step size
of one layer.

C. CONSTRUCTING A NO-ANOMALOUS BEHAVIOR
MODEL
The spatiotemporal features of the video clips can be
extracted by the STF-Net model as f dl . In order to use

Algorithm 2Calculation of Receptive Field in Convolutional
Neural Networks
Require:

Convolutional neural network structure
Ensure:

Receptive field of each layer in the network relative to
the input layer

1: RF = 1;
2: RFs = [ ];
3: for layer in reversed_layer do
4: Stride, K ← getStrideAndKernelFromNet[layer];
5: RF ← ((RF − 1) ∗ Stride)+ K ;
6: RFs.append(RF);
7: end for

Algorithm 3Calculation of the Offset of Each Layer Relative
to the Input Layer in a Convolutional Neural Network
Require:

Convolutional neural network structure
Ensure:

Offset of each layer relative to the input layer in a convo-
lutional neural network

1: tmpStride← 1;
2: Strides← [ ];
3: for each layer in layers do
4: Stride← getStrideFromNet[layer];
5: tmpStride← tmpStride ∗ Stride;
6: Stride.append(tmpStride);
7: end for

the spatiotemporal feature to detect the anomalous behav-
ior of video, this paper uses the no-anomalous behavior
of video data to construct a mixed Gaussian model, which
is used as the background scene modeling of anomalous
behavior. The specific process is shown in Algorithm 4,
where N is the number of no-anomalous video clips, Sn

is the nth video clip sample, feats[n] is the spatiotemporal
features obtained from the nth sample, f d×Nl (i, j) is the set
of features at the (i, j) position for all samples of the l th

layer, d is the spatiotemporal feature dimension, and G(θ )
is a mixed Gaussian model for no-anomalous behavior, ⇐
adds features to the end of the array in turn, the func-
tion "predict(·)" represents the extraction of spatiotempo-
ral features, and the function FG (·) represents Gaussian
modeling.

D. ANOMALOUS BEHAVIOR DISCRIMINATION
The trained algorithm model can be used to perform anomaly
detection. First, the spatiotemporal features of the test sample
Sn are calculated through the STF-Net and then the Maha-
lanobis distance d(G(θ ), S i) between the spatiotemporal fea-
tures and themean of themixedGaussianmodel is calculated.
Finally, whether the sample has an anomaly is determined
by whether d(G(θ ), S i) is greater than a given threshold ϕ.
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Algorithm 4 Construction of No-Anomalous Model Based
on Spatiotemporal Feature Learning
Require:

Training data Dtrain={Sn, n = 0, 1, 2, . . . ,N }, model
parameters of STF-Net

Ensure:
G(θ )

1: Data preprocessing on the training set
2: for n= 0 to N do
3: feats[n]← predict(Sn)
4: end for
5: for i = 0 to Wfeats do
6: for j← 0 to Hfeats do
7: Initialize vector f d∗Nl (i, j) by using 0;
8: for n← 0 to N do
9: f d∗nl (i, j)← feats[n](i, j);
10: f d∗Nl (i, j)⇐ f d∗nl (i, j);
11: end for
12: end for
13: end for
14: G(θi,j)← FG(f d∗Nl );

FIGURE 3. Original frame and the corresponding Mahalanobis distance
matrix.

The discrimination of anomaly detection is shown in
formula (3).

f (i, j) =

{
No− anomaly if d(G(θ ), si) < ϕ

Anomaly if d(G(θ ), si) ≥ ϕ
(3)

where f (i, j) indicates whether the (i, j) position is anomalous.
The anomaly detection process is shown in Algorithm 5,
where Feats(i, j)d is the eigenvector of the test data at
the (i, j) position,

∑
−1 is the inverse of the covariance

matrix, µ is the mean of the training dataset, MahasDis(i, j)
is the Mahalanobis distance of the (i, j) position, and ϕ

is the threshold for determining the anomaly. The Maha-
lanobis distance matrix containing anomalous information
is shown in Figure 3. It can be clearly seen that the val-
ues of the small portion are significantly larger than the
values of other regions, and the threshold segmentation
can be used to extract them and its positional informa-
tion in the input data can be obtained by reverse calcula-
tion, so that the anomalous position in the sample can be
determined.

Algorithm 5 Anomaly Detection Based on Spatiotemporal
Feature Learning
Require:∑

−1, µ, test data Dtest = {Sn, n = 0, 1, 2, . . . ,N },
threshold ϕ for anomaly detection.

Ensure:
The determination of whether the given sample is anoma-
lous. If it is anomalous, the anomalous position will be
output.

1: Preprocessing test data
2: for n← 0 to N do
3: feats← predict(Sn);
4: for i← 0 to Wfeats do
5: for j← 0 to Hfeats do
6: MahasDis(i, j) ← (feats(i, j)d − µ)> ∗∑

−1
∗(feats(i, j)d − µ);

7: if MahasDis(i, j) > ϕ then
8: Reverse calculation of the area represented by

the (i, j) position in the sample Sn;
9: end if
10: end for
11: end for
12: end for

IV. EXPERIMENTS AND ANALYSES
A. EVALUATION INDEXES
In this paper, two objective evaluation indexes are introduced
to evaluate the accuracy of anomalous behavior detection.
They are the frame-level standard and the pixel-level stan-
dard. Both of them are based on the true positive rate (TPR)
and the false-positive rate (FPR). Anomalous events are posi-
tive and no-anomalous events are negative. The data contain-
ing the anomaly is positive, otherwise it is negative. The true
and false definitions under the two standards are as follows:

(1) Frame level: the algorithm predicts the frames con-
taining the anomalous event and compares them to the
frame-level annotations of anomaly in the video clips to deter-
mine the number of true positive and false positive frames.

(2) Pixel level: The algorithm first predicts the pixels asso-
ciated with the anomalous event and then compares it to the
pixel-level annotations of anomaly to determine the number
of true positive and false positive frames. If at least 40% of
the anomalous pixels are identified, the frame is anomalous,
otherwise, it is no-anomalous.

The calculations of TPR and FPR are given by equations
(4) and (5), respectively, and the receiver operating character-
istic curve (ROC) is plotted with FPR as the horizontal axis
and TPR as the vertical axis. Next, a straight line (given by
Equation 6) is used to intersect the curve, and the resulting
intersection is the equal error rate (EER), which is the evalu-
ation index used in this paper.

TPR =
tp

tp+ fn
, (4)
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FPR =
fp

fp+ tn
, (5)

Y = −x, (6)

where tp is the number of frames (or pixels) that are predicted
to be positive and marked as positive, fn is the number of
frames (or pixels) that are predicted to be negative andmarked
as positive, tp + fn is the number of all positive samples, fp
is the number of frames (or pixels) that are predicted to be
positive and marked negative, tn is the number of frames(or
pixels) that are predicted to be negative and marked negative,
and fp+ tn is the number of all negative samples.

B. DATASETS
Mahadevan et al. [4] created no-anomalous behaviors based
on the mixture of dynamic textures (MDT), and the outliers
were anomalous behaviors. Two data sets (UCSDped1 and
UCSDped2) for anomaly detection and the baseline detection
rate of the corresponding data set are given in the reference
[4]. Adam et al. [19] divided the scene into multiple mon-
itoring areas to monitor anomalous events separately. Two
data sets (the Subway and the Mall) for anomaly detection
and the baseline detection rate of the corresponding data set
are given in the reference [19]. The data sets published in
the above two papers are the standard data sets with the
highest frequency of reference in the current research work
for anomalous behavior detection.

The Subway [19] data set contains two videos: the sub-
way entrance video and the subway exit video. The sub-
way entrance video contains 144,249 frames for 1 hour
and 36 minutes. The exit video contains 64,900 frames for
43 minutes. Most behaviors in these two videos are no-
anomalous, and the anomalous behavior is determined by
the direction in which the pedestrian moves. For example,
a pedestrian passes through the subway exit into the subway
or passes a security check without a card.

The UCSDSped [4] dataset is obtained by mounting on a
highly fixed camera overlooking the sidewalk. In this data
set, the population density in the aisle varies from sparse
to very crowded. Common anomalies come from cyclists,
skaters, strollers, people walking across the sidewalk or
around the grass, and some people in wheelchairs. All anoma-
lies occur naturally, and the data is divided into two sub-
sets, each of which corresponds to a different scene. The
UCSDSped1 contains 34 training video samples and 36 test
video samples, the UCSDSped2 contains 16 training video
samples and 12 test video samples. There is a binary label
on each frame in each segment indicating whether there is an
anomaly in the frame. In addition, there are 10 segments in the
UCSDSped1 and 12 segments in the UCSDSped2 that pro-
vide a manually generated pixel-level binary mask that indi-
cates the anomalous regions. This helps to evaluate whether
the algorithm can be accurately located.

The UCF101 [37] data set has 13320 video clips for a
total of 24 hours. There are 101 behavioral categories, which
are divided into five broad categories: interactions between

FIGURE 4. Part of the experimental results on the UCSDSped2.

people and objects, body movements, interactions between
people and people, playing instruments and sports. The data
image has a resolution of 320 × 240 and a sample frame
rate of 25 FPS. In this paper, we use this data set to train the
network model.

C. EXPERIMENTAL RESULTS AND ANALYSIS
1) EXPERIMENTAL RESULTS ON THE UCSDSped2
Figure 4 is a partial test result of the proposed algorithm. The
figure shows the test results of three samples, where (a1),
(b1), (c1) are test samples, and (a2), (b2), (c2) are heat maps
of theMahalanobis distancematrix, (a3), (b3), (c3) are results
of anomalous positioning. It can be seen from the results that
even in the case of high population density, the algorithm
can detect anomalous behavior better. Moreover, whether the
anomaly is from a bicycle or a car can be reliably determined.

2) EXPERIMENTAL RESULTS ON SUBWAY
Some of the subway data test results are given in
Figures 5 and 6. The scene view of the Subway is small and
the anomalous behavior is mainly reverse walking, so the
detection is difficult. It can be seen that our algorithm has
obtained relatively reliable detection results both in the exit
of the subway and at the entrance of the subway.

D. COMPARATIVE ANALYSIS OF EXPERIMENTAL RESULTS
The ROC curves for the UCSDSped2 test data set are shown
in Figures 7 and 8. Fig. 7 is an ROC curve of accuracy of
anomalous frame detection. It can be seen that the EER value
of the proposed algorithm is the smallest, indicating that the
method of this paper works best on this data set. The curve of
Sabokrou 2015 in the figure is the result of method proposed
in [20]. The curve of Sabokrou 2017 is the result of method
proposed in [29]. The curve of MDT is the result of the
method for anomalous behavior detection proposed in [4].
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FIGURE 5. Part of the experimental results at the entrance to the subway.

FIGURE 6. Part of the experimental results at the exit of the subway.

The curve of DanXua et al is the result coming from the refer-
ence [29] directly, which is considered reasonable because it
is a standard published data. Among them, Sabokrou 2017 is
closest to the algorithm proposed in this paper, and its per-
formance is even slightly higher than the algorithm when
the FPR is close to zero. However, with the increase of the
FPR, it gradually loses its competitiveness, indicating that
the recognition-based algorithm is insufficient in versatility
and robustness. In addition, it can be clearly seen from the
figure that the ROC curve of this paper covers the largest area
in two-dimensional coordinates. In general, the ROC curve of
the proposed algorithm is not only optimal in the EER index,
but also optimal in the AUC index. Fig. 9 is an ROC curve of
pixel-level detection accuracy of anomalous behavior. It can
be seen that at the pixel-level, the proposed algorithm is sig-
nificantly better than the currently popular algorithms in the

FIGURE 7. Frame-level based ROC curve on the UCSDSped2.

FIGURE 8. Pixel-level based ROC curve on the UCSDSped2.

EER index. In the figure, MPCC is the result of the algorithm
proposed in [3], SF is the result of the algorithm proposed
in [1], SF+MPCCA is the result of the algorithm proposed
in [4], and Adam is the result of the algorithm proposed in
[19]. It can be seen that an pixel-level based detection method
requires locating anomalies in the frame accurately which is
more difficult than themethod of frame-level based detection,
so that most algorithms have lower detection accuracy on
pixel-level based detection. Combining the EER index and
the AUC index at the frame-level and pixel-level, the anomaly
detection algorithm proposed in this paper extracts spatiotem-
poral features of video clips through the multi-scale 3D deep
neural network, and has the best results and reaches the cur-
rent leading level. Especially at the pixel-level, the algorithm
proposed in this paper is obviously superior to the other
algorithms.
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FIGURE 9. The ROC curve for anomaly detection at the entrance of the
Subway.

FIGURE 10. The ROC curve of anomaly detection at the exit of Subway.

We also conducted a comparative test on the Subway
dataset to verify the effectiveness and performance of
the anomaly detection algorithm proposed in this paper.
Figures 9 and 10 are the ROC curves for the anomaly detec-
tion of the entrance and exit of the subway, respectively.
Among them, entrance SRC and exit SRC are the results
of the algorithm proposed in [19]. The entrance MDT and
exit MDT are the results of the algorithm proposed in [4].
Entrance M Sabokrou et al and exit M Sabokrou et al are the
results of the algorithm proposed in [29]. TheMDT algorithm
has poor performance when FPR is less than 20, and its
detection accuracy is close to the algorithm when FPR is
higher than 25. It can be seen from Fig. 10 and Fig. 11 that
the EER index of this paper is obviously better than the other
methods and the AUC index is obviously superior to other
comparison methods. Compared with the currently popular

TABLE 3. The EER results of frame-level on the Subway.

TABLE 4. The EER results of frame-level and pixel-level on the
UCSDSped2 respectively.

methods, the proposed method achieves a leading level in the
anomaly detection of subway entrance and exit, and the effect
is optimal on the anomaly detection of the entrance.

Through experiments on the UCSDSped2 and the Sub-
way, we can see that the proposed algorithm has very good
results of the detections in different scenarios, especially
the pixel-level based anomaly detection. Experiments show
that the proposed algorithm has better performance on the
generalization ability and evaluation indexes. The two eval-
uation indexes of different algorithms on different datat-
sets (or different locations in the same dataset) are given
in Tables 3 and 4. As can be seen from the EER values of
frame-level and pixel-level indexes on different algorithms
in Tables 3 and 4, the proposed algorithm in this paper has
obtained better effects in different scenarios. In particular,
the EER of pixel-level index of method on the UCSDSped2
is 1.2% higher than that of the currently second-ranked
method, and the EER index on the entry in the Subway of
our method is 6.6% higher than that of the second-ranked
method. Methods based on direct recognition would obtain
better values on frame-level EER by special training [21],
[29]. The method proposed in reference [21] comprehen-
sively uses algorithms with high complexity such as sparse
non-negative matrix factorization, histogram feature con-
struction, and probability model. The experimental results
show that it takes 0.29 seconds to process an average frame on
the UCSDSped2 dataset, which fails to meet the requirements

25540 VOLUME 8, 2020



Z. Li et al.: Spatiotemporal Representation Learning for Video Anomaly Detection

of real-time detection. The method in [29] adopts a cascade
method to improve the detection speed, but it needs to divide
the image into multiple cubic patches, and each cubic patch
needs to be identified individually. This method uses local
features of a region for identification, thus losing global and
contextual information. Therefore, this method has higher
accuracy on frame-level detection, while has lower accuracy
on pixel-level detection.

V. CONCLUSION
Anomalous behavior detection in complex scenarios remains
a challenging issue, such as crowd-intensive scenarios.
At present, the existing algorithms still have insufficient
robustness and are difficulty to train. The detection algorithm
based on spatiotemporal feature extraction proposed in this
paper learns the anomalous behavior features by a multi-scale
3D deep neural network. The background is modeled by
a mixed Gaussian model, and the anomalous behavior is
discriminated by theMahalanobis distance of the feature. The
algorithm proposed in this paper has the advantages such
as simple training, needing no special anomalous behavior
database, having fast speed and high accuracy of detection.
The performance of the algorithm is verified on a variety
of representative data sets. The experiments show that the
proposed algorithm has achieved the currently best results,
especially in the field of pixel-level accuracy. This shows
that the proposed algorithm has stronger ability to express
anomalous behaviors and has better versatility and robust-
ness. The work worthy of further research in this paper is
as follows: (1)The combination of 2D convolution and 1D
convolution can be used instead of 3D convolution, which
would reduce the numbers of learning parameters of the
network and make the learned spatiotemporal features more
descriptive and discriminative by deepening the network.
(2) The STF-Net model proposed in this paper has adopted
multi-scale to enhance the receptive field of features. The
combination of more popular multi-scale algorithms (such as
FPN [28], DCN [44], SSD [45]) can be designed to increase
the multi-scale learning ability of spatiotemporal extraction
models.
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