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ABSTRACT In this paper, a novel loss function is proposed to measure the correlation among different
learning tasks and select useful feature components for each classification task. Firstly, the knowledge map
we proposed is used for organizing the affiliation relationship between objects in natural world. Secondly,
a novel loss function–orthogonality loss is proposed to make the deep features more discriminative by
removing useless feature components. Furthermore, in order to prevent the extracted feature maps from
being too divergent and causing over-fitting which will reduce network performance, this paper also added
the orthogonal distribution regularization term to constrain the distribution of network parameters. Finally,
the proposed orthogonality loss is applied in a multi-task network structure to learn more discriminative
deep feature, and also to evaluate the validity of the proposed loss function.The results show that compared
with the traditional deep convolutional neural network and a multi-task network without orthogonality loss,
the multi -task based orthogonality loss is significantly better than the other two types of networks on image
classification.

INDEX TERMS Orthogonality loss, multi-task learning, orthogonal distribution regularization.

I. INTRODUCTION
In recent years, image classification [1]–[8] has becomemore
andmore widely used in field exploration and daily life due to
the rapid development of deep learning, and image classifica-
tion also receives much attention in optical machine learning
such as [9] and [10]. Currently, the best tool for feature
extraction is the deep convolutional neural network. Deep
convolutional neural networks [3]–[8]can not only extract
edge information in shallow layers, but also learn more high-
level feature representations which becomemore abstract and
closer to human cognitive behavior with the deeper semantic
information. The multi-task network [11]–[14] derived from
deep learning has gradually entered people’s sight. Different
tasks of the multi-task network are mutually assigned and
trained at the same time, but each task has its own inde-
pendent loss function. However, in the multi-task network,
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the joint training of parameters in hidden layer can not make
the feature extraction and classification completely matched,
and the useless feature components may bring negative influ-
ence to the final classification result. Therefore, in order to
achieve such an ambitious goal, we must solve the following
problems first.

The first problem is how to guide classification task in each
level to assist other classification tasks. It is a gradual process
from coarse-level to fine-level when identifying thousands
of object classes in the real world by imitating the human
learning experience. People may only identify coarse classes,
such as birds, cars, and plants when they are young. As the
brain system matures, the identifiable targets may be refined
in the process of learning common sense. For example, one
specific type of bird have parrots, sparrows, etc., and there are
buses or cars in the types of car. The recognition of the coarse-
grained genera is considered as the high level task, and there
are many subtasks that identify fine-grained classes under
each genera. Therefore, the knowledge [15]–[17] acquired in
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the high level classification task can also be added to the new
task of identifying the fine grained species, which can help
separating fine-grained object classes. At the same time, you
can better understand the high level classification tasks after
learning new tasks. The multi-task scheme constructed in
this paper simulates the human learning process, using deep
convolutional neural networks as a hidden layer to simulate
human brain for feature extraction. Also a hierarchical tree
classifier [18]–[20] is leveraged as a task-related output layer
for progressive classification, the classification process from
easy to difficult and interrelated constitutes different learning
tasks. Therefore, based on these progressive relationships,
this paper establishes a knowledge map about the database to
guide the network learning during the training process. Just
as humans need to learn by means of books or predecessors,
additional information is used to guide each classification
task to assist each other.

The second problem is the classifier and the features
extraction network are not completely matched. In the multi-
task network structure, the feature representation is shared by
multi-level tree classifiers because the weight parameter in
hidden layer are shared. But for the different classification
tasks of the task-related output layer-hierarchical tree classi-
fier, the features that multi-level classification task need are
not exactly the same. For example, when identifying coarse-
grained object classes, identifying steering wheel or wheels
can help the network accurately identify the car category. But
when identifying fine-grained object classes, these common
features may have a greater effect on bringing SUVs and vans
into the same category, and we expect the network to pay
more attention to their unique feature components, such as
appearance, shape, which can be used to distinguish them.
Therefore, in the process of performing different classifica-
tion tasks in the multi-task network, we need to distinguish
the common feature components and unique feature compo-
nents. Considering previous description, a novel loss func-
tion — orthogonality loss is proposed for feature selection
in multi-level hierarchical classifier. Orthogonality loss uses
the cosine similarity in metric learning [21]–[23] to measure
the similarity of multi-level deep features. When a vector is
divided into a projection vector and an orthogonal vector with
another vector, the area of the projection vector represents the
cosine similarity. If the cosine similarity between the coarse
level deep feature vectors and the fine level deep feature
vectors approximate to 0, the two vectors are orthogonal,
and the overlap features (projection vectors) can be filtered
out, leaving their own useful feature components (orthogonal
vectors) only. Such method can allow our proposed network
structure get more discriminative deep features for different
classification tasks.

The last question is how to prevent the network from
overfitting. After the feature selection is added to the loss
function, the feature is too divergent and overfitting phe-
nomenon is caused. In order to prevent such problem, this
paper adds orthogonal distribution regularization term in the
orthogonality loss to constrain the feature distribution, so that

the partial distribution of deep feature under same learning
task is required to be close to the overall distribution. So it is
necessary to prevent the network from overfitting by adding
regularization, since overfitting may prevent the network
from global optimum.

Based on above discussions, the orthogonality loss pro-
posed in this paper is used in multi-task network to select
useful feature components for different classification tasks to
improve the accuracy of image recognition. The rest of the
paper is arranged as follows: section 2 introduces the related
work of this paper, section 3 introduces the network structure
and orthogonality loss, section 4 introduces the experimental
results and explanations, and section 5 draws the conclusions
of the full paper.

II. RELATED WORK
In order to extract rich and vivid deep features, we generally
train a deep convolutional neural network. With the advance-
ment of many theories [1]–[8] of deep learning and hard-
ware devices from the earliest time-delayed neural network
(TDNN) [1] and LeNet-5 [2], convolutional neural networks
have developed rapidly and been widely used in the fields of
computer vision [24], natural language processing [25] and
optical imaging [26], [27]. Deep convolution neural network
is a kind of deep network structure with convolution oper-
ation and characterization learning ability, which consisting
of convolutional layers, pooling layers, nonlinear activat-
ing layers and fully connected layers. This kind of network
extracts the invariant features through parameter sharing and
sparse connections between convolution kernels. Among this,
Resnet [7] is widely used because of significant advantages
in recognition accuracy and calculation amount. However,
the N-way softmax classifier is unable to pay attention to the
similarity imbalance between classes.

With the development of classification technology
[28]–[36], the application of multi-task network [37]–[40] in
recent years has accelerate this problem. The most common
way for applying multi-task learning into deep convolutional
neural networks is the hidden layer parameter sharing mech-
anism: the sharing mechanism first proposed in [41], which
proposed the hidden layer parameters were shared but the
task-related output layers were independent. Such technology
has also been rapidly developed and been widely used in nat-
ural language processing [37], facial landmark detection [39]
and object detection [42]. The multi-task network mentioned
in [43] states that the deep convolutional neural network is
applied as a hidden layer for parameter sharing, which can
be further used to extract the high level representation of
object image, and the tree-classifier is used as the task-related
output layer for different classifications tasks. Moreover,
the construction method of the label tree mentioned in [13]
and the ontology tree mentioned in [44]can guide the tree-
classifier for multi-task classification.

However, guiding multi-task classification through knowl-
edgemap inmulti-task network [45] is the closest approach to
human behavior. Knowledge map [46], as a novel knowledge
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structure and retrieval technology in the era of big data, has
gradually revealed its advantages in various aspects and has
received extensive attention. The knowledge map was orig-
inally proposed by Google in 2012 to improve the capabili-
ties of search engines [46]. However, the powerful semantic
processing ability of knowledge map makes it one of the key
technologies in the development and application of artificial
intelligence [47]. In a multi-task network, the knowledge
map is applied to construct a two-layer semantic structure
[19] for representing the relationship between objects in the
real world, which can be used to guide the transmission
of information between different classification tasks of the
multi-task network, and guide backpropagation for gradient
updates.

The orthogonal transformation of images is widely used in
the fields of image feature extraction [48], image enhance-
ment [49], image restoration [50] and image classification
[51]. The orthogonal matching pursuit algorithm (OMP) [52]
has also been well applied in the field of image fusion.
And the Go-CNN network mentioned in [53] can learn the
foreground and background of the feature. Therefore, orthog-
onal transform can be used to extract and distinguish image
features. In addition, the projection vectors of the two vectors
are common parts and the orthogonal vectors are unique com-
ponents in geometry. If the two feature vectors are orthogonal,
it can be proved that the two feature vectors are completely
independent. Therefore, orthogonal transform can also be
utilized for feature selection. In order to achieve end-to-end
learning, the loss function is usually used to update the net-
work structure to reduce the gap between the predicted value
and the true value. The classic losses are Hinge Loss (multiple
for SVM) [54], Softmax cross entropy (classification task
and feature extraction task) [55], Contrastive Loss (contrast
loss function, LeCun proposed in the siamese twin network)
[56]. The most fundamental criterion of the loss function is
to achieve the defining ultimate goal of the model. Therefore,
network performance can be improved by optimizing the loss
function.

Based on these observations, this paper proposes a
loss function optimization method for multi-task networks.
Firstly, the softmax loss of each classification task is pre-
served. On this basis, the orthogonal part is added to complete
feature selection, so that the sub-classifier and the parent
node classifier feature vector are orthogonal and the extracted
features are relatively independent. Orthogonal distribution
regularization is also added to constrain the distribution of
features, so that the overall distribution of each sub-task
feature vectors is closer to the distribution characteristics of
its parent task. Therefore, the orthogonality loss mentioned in
this paper obtains a multi-task network with higher classifica-
tion accuracy and better robustness through feature selection.

III. ALGORITHM
A. KNOWLEDGE MAP
During the training process, completely ignoring the simi-
larity between different classes makes it difficult to achieve

the global optimum. The knowledge maps are widely used
in large-scale classification task as it can efficiently orga-
nize large-scale object classes in a course to fine fash-
ion. In this paper, based on the taxonomic knowledge of
object classes in real world, Fashion-60 [43] and Caltech-
UCSD Birds-200-2011 [57] are divided into two semantic
structures, including coarse-grained genus and fine-grained
classes. For Fashion-60 database, there are 60 classes of
clothes (including dress, shoes, etc.). The two-layer knowl-
edge map constructed with reference to the functional rela-
tionship of each item is shown in Fig.1. According to the
function of each item, 60 fine classes are used to represent
60 specific classes of clothing and all of them are assigned
into 5 different coarse-grained genus; for Caltech-UCSD
Birds-200-2011 database, a knowledge map of 200 species
of birds, constructed with reference to the natural system
relationships of birds, is shown in Fig.2, which containing
10 coarse-grained genus to represent 10 species of birds and
200 fine classes to represent the specific classes of birds under
each genus.

FIGURE 1. Knowledge map of Fashion-60.

FIGURE 2. Knowledge map of Caltech-UCSD Birds-200-2011.

The knowledge map consists of the two-layer semantic
structure is used to guide the hierarchical tree classifier for
multi-level classification tasks. Each tree structure constitutes
a learning task, and a tree classifier is constructed for consid-
ering the inter-species relations betweenmultiple classes, and
the knowledge map guide tree classifier replaces the tradi-
tional softmax classifier. The objective function we proposed
can be used to help to efficiently update weight parameters
in both classifier and base deep network to make the gradient
distribution under the same task more uniform.

B. ORTHOGONALITY LOSS
In this paper, the multi-task classification is been divided
in two different classification tasks. The classifier in each
level corresponded for different tasks, so the required deep
features should be very different. According to the knowl-
edge map, when dealing with coarse level classification task,
the network is expected to pay more attention on the common
feature components that all the fine grained classes which
under the same learning task, and ignores the unique feature
components of their own, then a specific classifier is trained
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to recognize those fine grained classes. In addition, it is more
difficult when dealing with fine classification tasks, because
the similarity between the fine-classes which under the same
coarse class is much higher. Therefore, we expect the network
focus on the unique feature components of each fine classes
and ignore their common feature components to make sure
the visual relevance between classes can be ignored, making
the network have a higher chance to distinguish images.

Based on the multi-task network for classification,
an orthogonality loss is proposed in this paper for feature
selection. Orthogonality loss completes feature selection like
this: it randomly selects an image among the whole training
set for feature extraction, and then the features are input to
different task-related output layers. Under the guidance of
the loss function in different classification tasks, the task-
related output layer features are divided into coarse level deep
features and fine level deep features. The coarse level deep
features are used for the coarse classification task which aims
to find out which coarse class the image belonging to; the
fine level deep features are used for the fine classification
task to determine which fine class under the coarse class the
image belonging to. As shown in Fig.3, the spatial projection
of the coarse classifier feature and the fine classifier feature
is the overlap feature components. The overlap feature com-
ponents contain the overlap components of the coarse level
deep features and the fine level deep features: in the coarse
level classification task, the overlap feature components of
the coarse level deep feature will contain some unique feature
components of each fine classes, which restrain to classify
the same coarse class images together. Similarly, when per-
forming a fine level classification task, the overlap feature of
the fine classifier feature will have some common feature of
the same coarse class, which will restrain to separate the fine
classes belonging to a same coarse class.

FIGURE 3. Learning with orthogonality loss.

Therefore, we hope the coarse level deep feature and
the fine level deep feature are orthogonal in space, which
makes the overlap feature approximate to 0. We used the loss
function to achieve the ultimate goal by adding the target
of the feature selection to the loss function and measuring
the size of the overlap feature with orthogonality loss. So,
the network can automatically complete feature selection
and distinguish the two feature vectors spatially to help

different classifiers remove features that are useless to their
own classification tasks.

C. THE STRUCTURE OF THE MULTI-TASK NETWORK
Based on the above understanding of the orthogonality loss,
the structure of the network is first described in this section,
as shown in Fig.4. Considering an image as input, one clas-
sifier is used to complete the coarse classification task to
determine which coarse class the image belongs to; the cor-
responding fine-grained classifier is selected to determine
which fine class under a coarse class the object image belong
to. The hidden layers of the two classification tasks are the
deep convolutional neural networks, whose parameters are
shared. In this paper, the hidden layer of the network is
used for feature extraction. After the features are passed to a
fully connected layer FC6, they enter the task-related output
layer, which also called the tree classifier. The tree classifier
consists of different sub-classifiers, each of them has the
same structure but the weight parameters are not shared,
where the same structural means that they both contain two
fully connected layers and a softmax layer for classification
tasks. Therefore, the feature vectors through the task-related
output layer – coarse classifier and fine classifier can be
differentiated.

FIGURE 4. The structure of the multi-task network.

As shown in Fig.4, suppose the input image is X , CNNs
with shared weight are used for two different tasks, and then
features are extracted through a same FC6 layer, so that all
processing is the same and the extracted features is the same.
But there are two independent fully connected layer of the
sub-classifiers and their parameters are not shared, so the
FC7 and fc7 extracted features are different. So when per-
forming a coarse level classification task, the coarse classifier
feature isfg(x); andwhen performing a fine classification task,
the fine classifier feature is fs(x). So fg(x) and fs(x) can
be used to calculate the orthogonality loss of the network.
Assuming that N training images are input, the orthogonality
loss function can be formulated in following (1):

L1(x) =
1
N

min
f1,f2,...,fk

∑
αTr[fs(x)f Tg (x)] (1)
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where k represents the number of coarse classes, f1, f2, . . . , fk
represents k fine classification tasks (only one fine classifier
structure is drawn in Fig.4). fg(x) represents the coarse classi-
fier feature ofN images and fs(x) represents the fine classifier
feature of N images.The trace of fs(x)f Tg (x) represents the
sum of dot products of the coarse classifier features and fine
classifier features with the N images. When Tr[fs(x)f Tg (x)]
approaches to 0, it means that the corresponding vectors of
the coarse grained deep feature and the fine grained deep
feature tend to be orthogonal. α is a hyper parameter, and the
magnitude of α represents the influence of orthogonality loss
of the entire network parameters during backpropagation.

Under the guidance of orthogonality loss function, fg(x)
and fs(x) tend to be orthogonal, so that the network’s derived
classifier features and fine classifier features may become
more discriminative. Then fg(x) and fs(x) are transferred to
the softmax layers for classification, the coarse classifica-
tion result and the fine classification result are respectively
obtained. Combining the two results determines which fine
class under the coarse class the object image should belong-
ing to. Different tasks have different losses, so the loss by the
classification is composed of the gap between the predicted
value and the coarse class label in the coarse classification
task and the difference between the predicted value and the
fine class label in the fine classification task. In Fig.4, soft-
max loss 1© maens the gap between the predicted value and
the coarse class label in the coarse classification task; and
softmax loss 2© means the difference between the predicted
value and the fine class label in the fine classification task.
which can be measured by the following loss function (2):

L2(x) = min
g∈G,s∈Sg

1
N

N∑
i=1

kg∑
j=1

l(y(i) = j)log
eθ

T
gjx

(i)∑kg
l=1 e

θTglx
(i)

+
1
N

N∑
i=1

ks∑
j=1

l(y(i) = j)log
eθ

T
sj x

(i)∑ks
l=1 e

θTsl x
(i)

(2)

where g represents the coarse class and s represents the fine
class. l(y(i) = j) represents characteristic function, if y(i) = j,
l(y(i) = j) = 1. X represents the depth features of the input
image obtained, θg and θs represents the model parameters
in the coarse and fine classifiers respectively, kg and ks the
number of categories of the coarse-grained class and the
fine-grained class respectively.When the loss function (2) is
infinitely close to 0, the predicted value is infinitely close to
the true value.

D. ORTHOGONAL DISTRIBUTION REGULARIZATION
Considering large-scale training data, the choice of features
using orthogonality loss distinguishes fg(x) and fs(x). How-
ever, the features obtained after several training iterations
may over-fit the requirements by different learning tasks,
making fg(x) and fs(x) too divergent and may cause over-
fitting. Therefore, orthogonal distribution regularization term
is constructed in this paper to limit the distribution of param-
eters. According to the laws of natural systems, there is a

FIGURE 5. The structure of the task-related output layers.

fixed relationship between things. Therefore, the knowledge
map constructed in this paper is a fixed tree structure, and
the corresponding tree classifier also has a fixed compo-
sition. There is a fixed number of fine-grained classes for
each coarse-grained class. As shown in Fig.5, there are k
parent nodes (coarse genus) and N fine gained child nodes
(object classes). Each parent node contains S leaf nodes
(S1, S2, . . . . . . , Sk are different). Therefore, there is a cor-
respondence relation between parent nodes and leaf nodes.
We assign leaf nodes into the same parent node according to
the commonality of each leaf node. Therefore, we construct
the following distributionmodel to limit the deep feature from
being too divergent:

F ∼ N (0,
1
γ1
Dg) fs ∼ N (Fparent(k),

1
γ2
Ds) (3)

where F represents the parameter distribution of the coarse
classifier features, which conforms to the normal distribution
with a mean of 0 and a variance of 1

γ1
Dg. fs represents the

parameter distribution of the fine classifier feature, and its
mean value is the parameter of its parent node. Just like the
feature points of fslipper and fboot will be closer Fshoes to and
the variance is 1

γ2
Ds.

When the feature selection is implemented, the limitation
for model can make the partial distribution tend to become
whole distribution no matter how to distinguish the fine clas-
sifier features from the coarse classifier features, and also
make the distribution not too divergent due to over-fitting
classification tasks. Similarly, in this paper, like (4), orthogo-
nal distribution regularization is added to the loss function to
make the network self-learning:

L3(x) = min
w1,w2,...,ws

β[(
1
n

∑
fs)− Fparent(k)] (4)

where fs represents the fine classifier feature of the network;
Fparent represents the network classifier feature of the net-
work; and β represents the influence factor of the orthogonal
distribution regularization on the multi-task network.

IV. EXPERIMENT
Datasets: In this paper, there are two image databases
been used to validate the orthogonality loss function and
the knowledge map are constructed for each database: (1)
Fashion-60, containing 60 costume classes and 5 coarse
grained classes. (2) Caltech-UCSD Birds-200-2011, contain-
ing 200 fine grained classes and 10 coarse grained classes.
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Experiment Environment In this paper, those experiments
were performed on a GeForce GTX 1080 GPU. The learn-
ing rate was set to 0.01 and multiplied by 0.1 every
40 epochs.
The Basic Architecture of Hierarchical Deep Network In

this paper, we used Resnet-18 as the feature extraction net-
work and tree classifier as the task-related output layers to
build the multi-task network. We used the Resnet-18 for
feature extraction and tree classifier for multi-classification.
The loss function is the combination of softmax loss function
and orthogonality loss function. When using the multi-label
classification on the database, we fuse the softmax losses of
two layers.
Compared Baseline Models In this paper, we propose

an orthogonality loss function to improve the classification
performance of the multi-task network. There are a few
baseline models that we can compare with. One is the tra-
ditional deep learning network like Alexnet [3], VGG-19
[5] or Resnet-18 [7]. The other one is the standard multi-
task network model with Resnet-18. We simply make the
standard multi-task network as the baseline. In the experi-
ment, we trained the standard multi-task network added with
orthogonality loss function to verify the effectiveness of our
proposedmethod.Compared with the network without adding
the loss function, there will be extra computational cost at
the same time, but the extra computational cost at the same
time are very low. When using the proposed loss function,
the network training will be slightly slower, but the testing
time will not change.

A. EXPERIMENT WITH FASHION-60
In this section, we apply our proposed method with mul-
tiple baseline method on the Fashion-60 database which
contains 60 fine grained classes and 5 coarse grained
classes. First, the influence of the influence factor α is
observed on the experimental results when we add the
orthogonality loss function. Then the appropriate value of
α is selected to compare the experimental results with
the baseline. Finally, we validate whether there is any
improvement after the orthogonal distribution regularization
is added.

1) THE VALUE OF α
First, we need to select appropriate α for training. Therefore,
we have selected 14 different values for α from 0.001-6.
The experimental results are shown in Fig.6. As can be seen
from the figure, when α is 2.5, the network performs best.
When the impact factor is small, the effect of the orthog-
onality loss function on the network is not obvious. When
the value is gradually increased, the performance of the net-
work will gradually decrease, which indicates that the role
of the orthogonality loss function will increase to affect the
original performance when the value is too large. Therefore,
we choose α = 2.5 to train the network and compare it with
the baseline network.

FIGURE 6. The accuracy of different α with Fashion-60.

TABLE 1. The accuracy of some methods with Fashion-60.

2) COMPARISON WITH STATE-OF-ART METHODS
The accuracy of some methods with Fashion-60 are shown
in Table 1, the results show that compared with the traditional
deep convolutional neural network and a multi-task network
without hierarchical orthogonality loss, the multi-task net-
work based on orthogonality loss is better than the other two
types of networks in classification. The result proves that
the orthogonality loss function proposed in this paper effec-
tively completes the feature selection, making the features
obtained in the multi-task network more in line with the task
requirements.

Subsequently, we compare the accuracy of each class
between baseline and themulti-task network based on orthog-
onality loss where α = 2.5. The comparison of accuracy on
the coarse level classification task is shown in Fig.7. The red
bars represent the accuracy of the multi-task network based
on orthogonality loss, and the blue bars represent the accuracy
of the baseline methods. It can be seen from the data in the
Fig.7 that in the coarse classification task, the recognition
accuracies of each coarse class after adding the orthogonality
loss are improved. The experimental results show that the

FIGURE 7. The accuracy of 5 coarse classes on two methods. (The red
represents the multi -task network based on orthogonality loss, the blue
represents the baseline.)
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FIGURE 8. The accuracy of 10 fine classes with more obvious changes on
two methods. (The red represents the multi -task network based on
orthogonality loss, the blue represents the baseline.)

orthogonality loss guides the multi-task network to elimi-
nate the useless feature components in the coarse grained
deep feature. We extract the fine-grained classes with more
obvious changes in the fine classification, as shown in Fig.8.
As can be seen from Table 1, the overall recognition accuracy
of the multi-task network has been improved when adding
the orthogonality loss. However, from the data with obvious
changes extracted in Fig.8, it can be easily found out that in
the fine-grained classification task, the recognition accuracy
of most fine-grained classes after adding the orthogonality
loss is improved, but there are also some classesİŕ recognition
performance is degraded. It can be seen that the recogni-
tion accuracy shows a huge differences, but after adding the
orthogonality loss, the lower accuracy of some fine classifica-
tions has been improved. In comparison, the higher accuracy
of some fine classifications has been declined. The reason
may be that the orthogonality loss reduces the gap between
the accuracies of fine classifications task and makes the
network global optimal to improve the overall performance of
fine classification tasks by increasing lower fine classification
accuracy.

3) ORTHOGONAL DISTRIBUTION Regularization(ODP)
Finally, we observe whether there is any improvement after
the orthogonal distribution regularization is added. The
parameter β in (4) takes the same value as α in (1). (4)
(orthogonal distribution regularization term) is a regular term
added to (1) (orthogonal loss function) to limit the distribution
of feature parameters and prevent overfitting. Therefore,
(4) and (1) need to have the same influence factor on
the multi-task network in order to balance the restriction
and discrimination. As shown in Table 2, we compared
three methods. And compared with the multi-task network
added with center loss, our proposed method achieves some
improvement in recognition accuracy. According to the data
in this table, after adding orthogonal distribution regulariza-
tion, the performance of the multi-task network has improved
on Fashion-60. The experimental results show that not only
the orthogonality loss function effectively completes the
feature selection, making the features obtained in the multi-
task network more in line with the task requirements. And
the orthogonal distribution regularization added can also

TABLE 2. The accuracy of some advanced methods with Fashion-60.

effectively limit the distribution of parameters to avoid over-
fitting of the network.

B. FURTHER EXPERIMENT ON CALTECH-UCSD
BIRDS-200-2011
In order to verify the effectiveness of the algorithm, we con-
ducted further experiments on the Caltech-UCSD Birds-
200-2011, which contains 200 fine classes and 10 coarse
classes.

1) THE VALUE OF α
Similarly, we select 14 different values for α from 0.001-6.
The experimental results are shown in Fig.9. As can be seen
from the figure, the network performs best when α is 2.
When the impact factor α is small, the orthogonality loss
function is not stable to the network. And when the value
gradually increases beyond a certain range, the performance
of the network will gradually decrease. Compared with the
experimental results on Fashion-60, the optimal value of α is
different, but for both types of databases, the overall trend of
the effect of α on network performance is the same. Further
experimental results show that the value of αmay be different
in different databases, but the influence of α on network
performance is regular. Therefore, it will not work when the
value of α is too small, and counteraction appears when the
value is too large. We need to find a balance point between
orthogonality loss and softmax loss. Therefore, when give for
a new dataset, our suggestion for the value of α is to first
select a number between 1 and 4.5 for training and check
whether the network performance is improved. However,
because of the diversity of the database, experiments with
values between 0.001 and 10 can further ensure the optimality
of the value of α.

2) COMPARE WITH THE BASELINE
In addition, we combine the algorithm mentioned in
this paper with the traditional deep convolutional neural

FIGURE 9. The accuracy of different α with Caltech-UCSD Birds-200-2011.
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TABLE 3. The accuracy of some methods with Caltech-UCSD
Birds-200-2011.

TABLE 4. The accuracy of some advanced methods with
Caltech-UCSD Birds-200-2011.

network and a multi-task network without orthogonality loss,
the experimental results are shown in Table 3. As can be seen
from the data in the Table 3, the multi-task network based
on orthogonality loss is better than the other two types of
networks in classification onCaltech-UCSDBirds-200-2011.
This further proves that the orthogonality loss function pro-
posed in this paper effectively completes the feature selection,
making the features obtained in the multi-task network more
discriminative.

3) ORTHOGONAL DISTRIBUTION Regularization(ODP)
After adding orthogonal distribution regularization, the per-
formance of the multi-task network has also improved. The
parameter β also takes the same value as α. As shown
in Table 4,the experimental results on Caltech-UCSD Birds-
200-2011 further prove that not only the orthogonality loss
function effectively completes the feature selection, making
the features obtained in the multi-task network more in line
with the task requirements,and also the orthogonal distribu-
tion regularization added can effectively limit the distribution
of parameters to avoid over-fitting of the network.

V. CONCLUSION
In this paper, a novel loss function-orthogonality loss is
proposed to achieve feature selection in multi-task network
structure, which helps achieving improvements on image
classification. The orthogonality loss can guide the multi-
task network extract more specific deep features for different
classification tasks and improve the overall classification
performance of the whole network. And the orthogonal dis-
tribution regularization term is also added to limit the distri-
bution of parameters to reduce the risk of over-fitting. Finally,
the results of the classification experiment on Fashion-60 and
Caltech-UCSDBirds-200-2011 prove the effectiveness of the
proposed algorithm in this paper. It is worth noting that when
a new dataset is given, using this method needs to build a
knowledge map consisted of two-layers semantic structure
firstly, which is used to guide the hierarchical tree classifier
to perform multi-level classification tasks.
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