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SUMMARY 
Monocytes, dendritic cells, and macrophages, commonly referred to as mononuclear          
phagocytes (MNPs), are innate immune cells capable of adopting diverse homeostatic and            
pathogenic phenotypes. Recent single-cell RNA-sequencing studies across many diseases in          
the lung have profiled this diversity transcriptionally, defining new cellular states and their             
association with disease. Despite these massive cellular profiling efforts, many studies have            
focused on defining myeloid dysfunction in specific diseases without identifying common           
pan-disease trends in the mononuclear phagocyte compartment within the lung. To address            
these gaps in our knowledge, we collate, process, and analyze 561,390 cellular transcriptomes             
from 12 studies of the human lung across multiple human diseases. We develop a              
computational framework to identify and compare dominant gene markers and gene expression            
programs and characterize MNP diversity in the lung, proposing a conserved dictionary of gene              
sets. Utilizing this reference, we efficiently identify disease-associated and rare MNP           
populations across multiple diseases and cohorts. Furthermore, we demonstrate the utility of            
this dictionary in characterizing a recently published dataset of bronchoalveolar lavage cells            
from COVID-19 patients and healthy controls which further reveal novel transcriptional shifts            
directly relatable to other diseases in the lung. These results underline conserved MNP             
transcriptional programs in lung disease, provide an immediate reference for characterizing the            
landscape of lung MNPs and establish a roadmap to dissecting MNP transcriptional complexity             
across tissues. 
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INTRODUCTION 
Monocytes, dendritic cells, and macrophages represent a group of innate immune cells            
commonly referred to as the mononuclear phagocyte system (MPS) (Guilliams et al., 2014;             
Jenkins and Hume, 2014). These cells are derived from either fetal, yolk sac, or adult               
hematopoietic progenitor cells. These cells are responsible for a range of critical functions, such              
as phagocytosis of foreign bodies, presentation of antigens, cytokine secretion, and tissue            
maintenance. (Blériot et al., 2020; Nutt and Chopin, 2020). To perform these functions, these              
cell types execute diverse and distinct transcriptional programs in response to local and             
systemic cues (Jaitin et al., 2019; Maier et al., 2020; Okabe and Medzhitov, 2016; Reyes et al.,                 
2020). This transcriptional diversity has been particularly appreciated in macrophages, where           
the classically-defined dichotomous spectrum has been progressively expanded in favor of a            
complex spectrum both in vitro and in vivo (Gautier et al., 2012; Li et al., 2019; Rajab et al.,                   
2019; Sica and Mantovani, 2012; Xue et al., 2014). Defining the landscape of transcriptional              
states occupied by these cell types will be critical to uncovering, interrogating, and targeting the               
molecular signals and factors responsible for driving these states (Chow et al., 2011; Ginhoux et               
al., 2016; Hashimoto et al., 2011). 
 
The diversification of macrophages across tissue niches has been defined by specific            
transcription factors, chromatin architecture, and gene expression programs (Blériot et al., 2020;            
Lavin et al., 2014). However, the diversification within tissue niches has been a target of more                
recent work, focusing on four main driving signals: origin, the local microenvironment and its              
immune state, and time (Blériot et al., 2020). The lung is one such tissue niche containing a                 
dynamic MNP population, including various resident macrophage populations, in addition to           
monocytes, recruited macrophages, and a host of dendritic cell subsets. Local macrophage            
populations can be replenished by blood monocytes in mice, which can progressively            
differentiate and acquire macrophage lineage and lung transcriptional markers (Liu et al., 2019;             
Misharin et al., 2017). The remodeling of the lung myeloid compartment as a whole is a                
recurring theme across lung diseases based on conventional markers (Baharom et al., 2017).             
Most recently, large shifts in MNP populations have been described in COVID-19 (Liao et al.,               
2020). However, the conserved and distinct aspects of this remodeling has not been fully              
explored. 
 
Single-cell RNA-sequencing (scRNA-seq) has been used to profile millions of cells across            
human tissues and diseases, providing the opportunity to better define the complex phenotypes             
MNPs can occupy across health and disease (Svensson et al., 2019). Broadly, numerous             
studies have identified unique monocyte, dendritic cell, and macrophage subsets associated           
with various tissue and sample classifications (Jaitin et al., 2019; Maier et al., 2020; Masuda et                
al., 2019; Ramachandran et al., 2019; Reyes et al., 2020; Smillie et al., 2019). The lung has                 
been the subject of extensive profiling across multiple studies and diseases (Habermann et al.,              
2019; Lambrechts et al., 2018; Laughney et al., 2020; Madissoon et al., 2019; Mayr et al., 2020;                 
Morse et al., 2019; Raredon et al., 2019; Reyfman et al., 2019; Travaglini et al., 2019; Vieira                 
Braga et al., 2019; Zilionis et al., 2019). These studies have revealed substantial diversity of the                
MNP compartment, including SPP1+ macrophages (Morse et al., 2019; Reyfman et al., 2019),             
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activated dendritic cells (Laughney et al., 2020), and chemokine-expressing macrophages          
(Zilionis et al., 2019). Moreover, two recent studies compared MNP populations between            
humans and mice in great detail, showing broad correspondence between states but caution             
when identifying more specific states and genes (Leach et al., 2020; Zilionis et al., 2019). While                
these studies have reinforced intra-niche diversity, the similarities and differences of the niche             
between diseases and cohorts remains unexplored. 
 
To address the aforementioned gaps in our knowledge, here we harmonize consensus            
transcriptional signatures across 12 studies spanning 149 donors in order to advance our             
nomenclature and understanding of myeloid diversity. Utilizing two complementary methods, we           
identify conserved gene sets describing discrete cell states and more continuous gene            
programs, observing similar MNP populations in multiple cohorts and diseases. We capture both             
established MNP populations, such as blood monocytes, tissue-resident macrophages, and          
plasmacytoid dendritic cells, while also providing additional support of emerging signatures,           
such as intermediate, fibrotic, and chemokine-expressing macrophages states. We use this           
reference to dissect disease-associated trends in cancer, interstitial lung disease, and viral            
infection, highlighting efficient interrogation, interpretation, and support of lung MNP scRNA-seq           
profiles in the context of many diverse studies. This reference can be utilized similarly to               
common enrichment databases, but offers transparent sources and focuses on consistent,           
highly-detected genes in single-cell technologies. Our results establish a high-dimensional          
transcriptional reference for MNPs revealing the drivers of transcriptional heterogeneity in the            
lung and enable rapid contextual description of published and new data. 
 
RESULTS 
Standardized processing of lung MNPs generates robust markers and variable genes 
To analyze the lung MNP diversity, we obtained, processed, and annotated cellular profiles             
across 12 studies and 149 donors split across 160 technical batches. These samples profile              
idiopathic pulmonary fibrosis, non-small cell lung cancer, and systemic sclerosis-associated          
interstitial lung disease, among others (Table S1 and S2). We only included droplet-based             
single-cell RNA-sequencing technologies. To maintain the integrity of disease-specific effects          
within each dataset, we split the count matrices into healthy and disease count matrices,              
creating 18 total datasets representing the expression per gene per cell for each cohort of               
samples. Count matrices were processed using a semi-automated standardized pipeline,          
applied consistently to all datasets to ensure uniform computational transformations (Figure 1A,            
S1A-S1C, Methods) (Germain et al., 2020; Hie et al., 2020; Stuart et al., 2019). First, we                
identified high-quality cells by filtering on technical metrics such as library size and percentage              
of mitochondrial reads. Significant batch effects were observed in all datasets, so we employed              
Harmony to correct for these effects in the PCA-generated low-dimensional space, which was             
used for downstream clustering and visualization only (Korsunsky et al., 2019; Traag et al.,              
2019). We found that the proportion of variance explained by principal components was similar              
across datasets (Figure S1D), which may be expected due to the similar cellular populations.              
After this initial pre-processing, we sought to broadly annotate cell populations and identify             
monocytes, dendritic cells, and macrophages. 
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We used multiple, complementary procedures to annotate clusters, including inspecting          
differentially-expressed genes, classifying cells using the immunoStates expression reference         
(Vallania et al., 2018), and scoring cells based on a recent healthy lung atlas (Travaglini et al.,                 
2019). To score cells, we extracted the top 20 defining genes (e.g. SFTPC for alveolar epithelial                
cells, COL1A1 for lipofibroblasts, MS4A1 for B cells, and S100A8 for classical monocytes) from              
each major cell type defined in this atlas. These scores represent the expression of the gene set                 
above baseline expression (Figure S1E) (Tirosh et al., 2016). To annotate clusters in an              
unsupervised manner, we utilized a voting procedure by assigning each cell a class label (e.g.               
Immune), subclass (Lymphocyte), and cell type label (e.g. B cell) based on the maximum score.               
Clusters were broadly annotated based on which assigned cell types were most frequent             
(Figure S1F), providing both a cluster annotation and a measure for the strength of that               
annotation.  
 
To specifically identify clusters representing MNPs, we calculated a total MNP score for each              
cell, representing the difference between all MNP and all non-MNP scores. We defined a              
threshold score from this bimodal distribution by fitting two Gaussian distributions to these             
scores (Methods). Using this threshold, we extracted high-confidence clusters based on a            
median MNP score above threshold and a low frequency of non-MNP cell labels from the voting                
procedure. These clusters were processed and filtered in a semi-supervised manner to ensure             
high-quality MNP profiles based on all three metrics described here (Methods). Retained MNP             
clusters consist of cells classified as MNPs by Bayesian classifiers, show high and broad              
expression of previously published lung MNP markers, and are not defined by technical or              
non-MNP gene markers. After filtering, these cells were again reprocessed. This procedure            
produced concordant annotations with available, published annotations (Figure S1G). Overall,          
following gating and quality control filters, we analyzed 180,629 MNP scRNA-seq profiles, out of              
561,390 total profiles, from 160 batches, 149 donors, and 12 studies (Figure S1H). 
  
We next sought to define a signature of MNPs built using single-cell RNA sequencing data that                
was robust across multiple datasets. By determining the most predictive genes for each MNP              
cluster versus all non-MNP cells, we defined a 20-gene signature that performed well in broadly               
classifying MNPs (AUC range 0.87-0.996 based on MNP annotation described previously)           
(Figure 1B and 1C). This signature included well-known mononuclear phagocyte markers, such            
as the MHC Class II molecules (HLA-DRA, HLA-DRB1, CD74) and recently identified markers             
from purified populations (TYROBP, FCER1G) (Dang et al., 2020), as well as genes associated              
with other various functions, such as iron regulation (FTH1, FTL), complement (C1QA, C1QB),             
and lysosomal processing (CTSS, CTSB, LYZ, PSAP). ACP5 was also identified, which            
encodes a critical regulator of osteopontin (SPP1), which has been implicated in lung cancer              
and fibrosis (Figure 1C) (Kim et al., 2020; Reyfman et al., 2019). MNPs represented a large                
proportion of leukocytes in each technical batch, but varied widely across samples (Figure 1D).  
 
We next sought to broadly delineate the dominant highly variable genes underpinning diversity             
within these cell populations. Single-cell analyses typically leverage this subset of genes to             
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focus on the most differentiating signals and reduce noise from uninformative genes.            
Consistent, variable genes represent critical molecular features responsible for, or a           
consequence of, intra-tissue cellular diversity. We identified a set of 3,665 consensus highly             
variable genes that underpin the heterogeneity in the lung MNP compartment (Figure 1E and              
Table S3). These genes included well-established immunological markers and targets, such as            
IDO1, CXCL10, CCR7, and FOLR2 as well as less canonical genes FABP4, CHIT1, RBP4,              
SERPINB2, SPP1, SEPP1, and AREG. These genes should be studied further for their role in               
shaping MNP population structure. Robust, highly variable features within the MNP           
compartment in the lung could be a consequence of the underlying diversity or have a role in                 
creating that diversity. Gene set enrichment of these consensus variable genes using GO             
Biological Process database revealed a diversity of functional associations related to the host of              
roles MNPs perform, most notably in angiogenesis, metabolic homeostasis, and mechanical           
extracellular interactions (Okabe and Medzhitov, 2016). Indeed, the enrichment of a diverse            
functional set suggests that the transcriptional diversity is indicative of the many functions MNPs              
perform, supportive of the “variation is function” hypothesis (Dueck et al., 2016).  
 
Pan-cluster comparison reveals conserved cell subsets and markers 
Previous single-cell studies identified distinct transcriptional subpopulations in the lung MNP           
compartment, including macrophage, monocyte, and dendritic cell subtypes. To date, our           
understanding of the similarities across these subpopulations and studies remains limited. We            
first investigated whether distinct MNP transcriptional states were conserved and defined           
similarly across studies. To systematically compare cell states across each dataset, we            
established clusters, representing cells with similar expression profiles, and their respective           
gene markers within each dataset. Choosing the resolution of clustering remains an open and              
consistent challenge in single-cell RNA-sequencing analysis, so we focused on clustering cells            
at higher resolutions (creating more clusters with fewer cells) and retaining only clusters strongly              
described by multiple, highly-expressed genes based on various metrics such as the log fold              
change (Methods). This enabled us to capture the most distinctive, well-described cell states in              
each dataset (n = 295 total clusters, n = 267 with strong markers) described by up to 50 unique                   
gene markers (Table S4). For example, in two studies, Lambrechts et al. and Laughney et al.,                
clusters emerged that were defined by strong inflammatory markers, such as CXCL10 and             
GBP1. 
 
To determine the extent to which the diversity of the MNP populations are conserved across               
samples and diseases, we calculated the similarity of all states using the Jaccard distance,              
which represents the overlap of two gene lists (Jaccard distance = 0, perfect overlap) (Kinker et                
al., 2019). We focused on 151 clusters that reached a minimum Jaccard index of 0.2 (Jaccard                
distance of 0.8) with at least one other cluster (Methods). These states were then hierarchically               
clustered to identify partitions of similar cell states defined by similar gene markers across              
various studies (Figure 2B). To determine the number of partitions, we defined a cutoff based on                
cluster distances and agreement with other methods, resulting in 21 partitions (Dynamic Tree             
Cutting, adjusted Rand index = 0.92 where 1 is perfect agreement; Cluster Bootstrapping, ARI =               
0.94, Figure S2A-S2C) (Hennig, 2007; Langfelder et al., 2008). These partitions contained            
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clusters from multiple datasets (Shannon diversity between 1.5 and 2.5, Figure 2C). Partitions             
with low diversity and reproducibility were filtered out and removed from downstream analyses             
(partitions 6, 14, 19, 21). To further confirm the similarity of cell states within partitions, we                
utilized scmap, an unsupervised, high-performing classifier, to calculate a similarity metric for all             
pairwise combinations of all clusters (Kiselev et al., 2018). Consensus partitions were            
significantly more similar than random equally-sized partitions (P < 0.001, Figure S2D,            
Methods). We define these distinct partitions as consensus markers denoted as “M[X]” where X              
is an arbitrarily assigned number (Figure S2E, Table S5). 
 
We sought to define a conserved set of marker genes describing these partitions. To define               
these gene markers, we utilized the auROC metric which provides a relative indication of how               
well expression of specific genes signifies a specific cell state as defined by cluster membership               
(auROC = 1, perfect classifier, Figure 2D). This revealed highly concordant marker genes within              
partitions, both confirming the consensus cell states as well as highlighting dominant signatures             
defining heterogeneity in the MNP compartment. As expected, we found prominent signatures            
of more familiar signatures, such as replicating cells (H2AFZ+, M2), CD14+ monocytes            
(S100A9+, M20), CD1C+ dendritic cells (PKIB+, M11), and plasmacytoid dendritic cells           
(GZMB+, M1) (Travaglini et al., 2019). These integrated signatures offer a highly detected and              
consistent reference. Moreover, these consensus cell states reveal multiple macrophage states.           
These states reflect mature alveolar-like states PPARG+ (M13) and C1QB+ (M5), as well             
non-tissue resident states SPP1+ (M10), APOE+ (M18) and SEPP1+ (M9) states, and            
immune-associated states GBP1+ (M7) and MX1+ (M15) (Reyfman et al., 2019; Zilionis et al.,              
2019). Additionally, this approach uncovered a rare recently described anti-tumor-associated          
cross-presenting dendritic cell subset (LAMP3+, BIRC3+, CCR7+), identified in both healthy and            
interstitial lung disease samples as well (Maier et al., 2020). 
 
Enrichment of these gene sets using the Reactome Pathway database highlights a wealth of              
distinct functional processes (Figure 2E), owing to the diversity in cellular states identified. M7              
and M15 are similarly associated with interferon signaling, although M7 is enriched for IFNγ              
signaling versus antiviral signaling in M15. M18, comprising apolipoprotein and lipid-associated           
genes, is enriched for sphingolipid processes suggesting a role for these molecules in             
population diversity. As expected, dendritic cell-like states were enriched for MHC Class II             
presentation and T-cell signaling (M11, M16, M17). Projection of these consensus cell states             
and their underlying populations using UMAP visualizes and reinforces this transcriptional state            
landscape (Figure S2F) seen in the MNP compartment. Indeed, projection of the auROC values              
for each contributing state and the resulting consensus states reveals highly distinct and             
coherent groups (Figure S2G). Overall, these consensus cell states, defined by robust,            
consistent genes, broadly define the diversity of the MNP population in a large cohort of lung                
samples. 
 
Integrated gene expression programs show similar concordance across datasets 
Given the transcriptional spectrum seen in the mononuclear phagocyte compartment (Figure           
S3A), we utilized an orthogonal approach to capture more continuous gene expression            
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programs (GEPs). These GEPs aim to capture coregulated genes that describe cellular            
behavior both within and across cell types, such as a type I interferon response or general                
response to stress. Non-negative matrix factorization (NMF) has been established in single-cell            
RNA-sequencing analysis to identify gene expression programs descriptive of cellular identity           
and activity (Kinker et al., 2019; Kotliar et al., 2019; Welch et al., 2019). Thus, by comparing                 
GEPs across datasets, we aimed to identify consensus GEPs which consistently describe            
variation in the MNP compartment. We combined two previous approaches, consensus NMF            
and integrative NMF, to define 20 consensus, integrated factors representing GEPs (Figure 3A).             
In this approach, we perform integrative NMF across batches many times to generate robust              
batch-agnostic GEPs and utilize the top 5% contributing genes to each GEP for comparisons              
(Methods) (Kotliar et al., 2019; Welch et al., 2019). 
 
Using the same approach described for markers, we identify 23 initial partitions, resulting in 20               
partitions after inspection and filtering (Dynamic Tree Cutting, ARI = 0.97, Cluster            
Bootstrapping, ARI = 0.88, Figure 3B, Figure S3B-S3D). Similarly, passing partitions are highly             
diverse, comprising program gene sets from many datasets (Figure 3C). To define a set of               
genes for each partition, we selected the top 50 genes with the highest median contribution to                
the GEPs within the partition (Methods). We define these consensus program gene sets as              
“P[X]” where X is an arbitrary assigned number (Table S6). We compared these consensus              
programs to the previously defined consensus markers, revealing unique concordance between           
pairs of gene sets, such as P4-M1 and P2-M9 (Figure 3D). Some gene sets also show                
redundant overlapping, reflecting the similarity seen between certain gene sets, such as the             
monocyte-like marker sets defined by P1 and M3/12/20. Interestingly, P13 shows distinct            
similarity with M20, representing inflammasome-related genes IL1B and NLRP3. While P9 is            
similar to M7 and M15, P19 shows strong similarity with just M7, due to CXCL10, CXCL11, and                 
GBPs. These gene sets provide corresponding descriptions of dominant cellular states and their             
underlying gene programs in the lung MNP compartment in health and disease. 
 
Using the loadings of each gene for each GEP which represent the genes’ importance in that                
GEP, we visualized the programs from each dataset, producing an embedding with no             
discernable batch effects (Figure 3D and 3F). Programs that clustered together based on             
overlap of the most-defining genes also clustered distinctly within the embedding, supporting the             
consensus partitions. Moreover, these consensus GEPs are distinctly defined by the median            
gene contributions (Figure 3G), highlighting both the congruence of dominating genes in each             
GEP. This supports the ability to represent and analyze cellular variation from disparate             
datasets as GEPs derived from NMF (Welch et al., 2019). 
 
Inspection and enrichment of the consensus programs produces similar pathways to the            
consensus markers, but also includes enrichment of lipid-associated processes in P10 (APOC1,            
APOC2, LIPA, and TREM2) and P11 (FABP3, FABP4, FFAR4, LPL, SCD). Moreover, we see              
the appearance of P15 associated with the heat shock protein response and P14 associated              
with the metal ion response. P13 is enriched for chemokine expression and GPCR signaling,              
described by a host of immunoregulatory genes including CCL3, IL8, IL1B, IL6, NFKB1, and              
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TNFAIP3. Comparison to conventional M1 and M2 signatures suggests moderate correlation           
between signature scores (M1 with P9, P13, P17, and P19 and M2 with P2, P8, and P10)                 
(Figure S3F). This GEP-focused approach produced similar and additional gene sets compared            
to the marker-based approach, providing both support for these findings and expanding our             
definition of underlying molecular signatures. Overall, we present two concordant lists of marker             
and program gene sets which describe conserved, consistent transcriptional signatures in the            
lung mononuclear phagocyte compartment. 
 
Consensus programs and markers describes disease- and cell type-associated variability 
Dysregulation of MNPs has been hypothesized or shown to contribute to lung diseases included              
in this work (Reyfman et al., 2019; Zilionis et al., 2019), so we reasoned that we could leverage                  
our consensus gene programs and markers to define the transcriptional programs associated            
with these cells during disease. We focused on comparing healthy and disease samples in a               
subset of 6 studies where this comparison was possible. We utilized a scoring approach that               
calculates a normalized expression for each gene set relative to a control gene set (Smillie et                
al., 2019; Tirosh et al., 2016) (Methods). To do so, we calculated scores for each gene set                 
(either consensus markers or programs) across all healthy- and disease-derived cells by            
averaging the scaled expression for each gene and corrected for random expression of 30              
control genes per gene in each gene set. This procedure generates scores for each gene set                
and cell, representing relative expression levels of each gene set. Across clusters within each              
dataset, scores for both marker and program gene sets were commonly expressed in a subset               
of clusters (Figure S4A). We captured expression changes using a mixed linear model on the               
most expressing clusters (top 2, Methods), identifying both disease- and health-associated           
gene sets with variance across datasets (Figure 4A).  
 
Using these scores, we focused on marker and program gene sets of interest. In one of the                 
studies analyzed here, the authors identify that SPP1 expression is associated with idiopathic             
pulmonary fibrosis (Reyfman et al., 2019). In our analysis, we uncovered a consensus cell state               
M10, which includes SPP1 and is statistically associated with disease in multiple fibrosis             
datasets (Figure 4B). This supports their findings and reveals additional candidate genes that             
are robust across multiple fibrosis datasets (Reyfman, Habermann, and Morse studies) that can             
be collectively studied in order to define and target the dysregulated pathways responsible for              
this state. Additionally, we see a shift in the 90th percentile of these scores between health and                 
disease, further suggesting an overall shift in expression (Figure 4B). P17 represents an             
activated, migratory dendritic cell program typically expressed in a low fraction of cells (Maier et               
al., 2020). In several datasets, these cells were not originally identified, so we utilized this               
program to identify the appearance of these rare cell types. We identified a fraction of cells in                 
each dataset with a high P17 score and high DC likelihood based on the immunoStates               
reference, representing rare immunomodulatory dendritic cells (Figure 4C) (Maier et al., 2020;            
Vallania et al., 2018). These cells were identifiable in both healthy and disease samples. P10,               
which contains several genes related to the immune response including CXCL9, CXCL10, and             
the surface marker SIGLEC1, is associated with tumor samples from Lambrechts (Lambrechts            
et al., 2018). These genes were also defined by Zilionis and associated with poor prognosis               
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(Zilionis et al., 2019). Visualization of P10 scores and a similar marker gene M7 across all 6                 
datasets highlights expression of these genes in a subpopulation of cells in all datasets and               
suggests association with disease (Figure 4D, S4B). Further focus and profiling of this             
population is warranted, considering the immunomodulatory mRNAs defining these cells and           
appearance in other studies (Giladi et al., 2020; Goldberg et al., 2018; House et al., 2019). 
 
Given the continuous and heterogeneous expression of these programs, we sought to further             
annotate the association of each gene set with the likelihood of each major mononuclear              
phagocyte cell type. We calculated the Pearson correlation of each program score with the              
likelihood across all cells, revealing a ternary spectrum between monocytes, macrophages, and            
dendritic cells (Figure 4E). Certain programs highly associated with monocyte or macrophage            
likelihood did contain canonical genes associated with these cell types, such as VCAN and              
APOE, respectively. However, many programs showed weaker association, suggesting that          
many MNP populations are not well-defined by classical definitions and may represent            
intermediate or transitory populations (Giladi et al., 2020; Rizzo et al., 2020). Overall, we              
demonstrate broad utility of these gene sets to identify critical subsets, disease-associated            
trends, and broad population structure.  
 
COVID-19 myeloid dysregulation is described by MNP gene set references 
We next sought to demonstrate the utility of these consensus marker and gene sets and applied                
our scoring methodology to interrogate phagocyte dynamics in viral infection. Given the            
documented dysregulation of the myeloid compartment in COVID-19, we processed recently           
published profiles of bronchoalveolar lavage (BAL) samples from healthy, mild, and severe            
COVID-19 patients (Liao et al., 2020). Viewing new profiles through this reference lens can              
enable quick access to biological interpretations and tools from previous work. We processed             
healthy, mild and severe patients separately and identified clusters using the same procedure             
described previously (Figure 5A).  
 
We combined all cellular profiles and scored each cell by each consensus cell state and GEP                
gene set. Comparison of these scores across healthy, mild, and severe patients reveals broad              
increases in antiviral and inflammasome-associated GEPs identified previously in cancer, no           
shifts in fibrosis-related gene sets, and a decrease in GEPs describing both general and              
lipid-associated macrophage states (Figure 5B). M7 and P9, which similarly contain CD38,            
GBP1, and ISG15, and uniquely contain OAS1 and SOD2 respectively, show the highest             
expression in severe patients with a negative graded expression towards healthy samples.            
These cells expressing antiviral interferon-induced genes and lymphocyte chemokine genes          
have been previously annotated in cancer (Zilionis et al., 2019) and found to be associated with                
poor cancer prognosis. Conversely, we find that M5 (MARCO, MSR1+) and P11 (FABP3/4+),             
which describe an alveolar macrophage-like signature, are more prominent in healthy samples,            
supporting the observation of a shift away from a resident-dominated phagocyte population            
towards monocyte-associated populations expressing antiviral, inflammasome, and       
lymphotaxis-associated genes. 
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We next sought to describe the population dynamics within each condition using these             
consensus gene sets. We used an approach analogous to flow cytometry gating where we              
asked what proportion of cells were above a threshold. By determining the percentage of cells               
above an expression threshold, we quantified and visualized relative shifts in the population             
between each condition (Methods). Using this complementary approach, we find distinct           
infected versus healthy shifts (e.g. M7 and P9 described earlier), severe-only shifts (e.g. M3 -               
FCN1+, P19 - GBP5+), and graded shifts from healthy to severe (e.g. M4 - TCF4+ , M13 -                  
PPARG+ , P7 - LILRB2+) (Figure 5C). Moreover, we see little expression and difference in gene                
sets associated with other macrophage populations (for example, M10 - SPP1+ and P2 -              
FOLR2+), suggesting an absence of these states. Lastly, we visualize the overall population             
scores of P1 (associated with monocyte likelihood) and P8 (associated with macrophage            
likelihood), highlighting a gradual shift of the population structure towards a monocyte-like            
dominated population (Figure 5D). Using this reference reveals specific identity and functional            
expression shifts in COVID-19 samples that can be directly contextualized in the context of              
broader lung populations. 
 
Enrichment of gene sets suggests associated molecular factors 
These marker and program gene sets broadly describe phagocyte heterogeneity within the lung             
context. To generate candidate hypotheses for future studies which can define the underlying             
molecular factors for these gene sets, we performed enrichment analyses to nominate            
transcription factors, ligands, and receptors that may be associated with particular states. 
  
Using the ARCHS4 transcription factor coexpression database in Enrichr, we identified several            
transcription factors that were significantly enriched in program gene sets versus background            
with prior literature support for their contribution to MNP and lung macrophage development             
(e.g. IRF8, MAFB, PPARG) (Figure 6A) (Lavin et al., 2014; Mass et al., 2016). PPARG               
expression for example is associated with lung, liver, and splenic macrophage identity, but is              
also associated with specific functions and metabolic states (Lavin et al., 2014; Varga et al.,               
2016). Most notably, several transcription factors implicated in macrophage polarization were           
enriched, including NR1H3 (liver X receptor alpha), NR4A2, ATF3, CEBPA, RUNX2, STAT1/2,            
and EGR2 (Bagnati et al.; Labzin et al., 2015; Lehtonen et al., 1997; Ramachandran et al.,                
2019; Satoh et al., 2013; Shaked et al., 2015; Veremeyko et al., 2018). While these transcription                
factors have been largely studied in isolation for their effect on macrophages (and other MNP               
types), enrichment of multiple factors suggests that dissecting higher-order interactions between           
these transcription factors may be fruitful. 
 
To nominate potential ligand drivers of gene programs identified using NMF, we utilized             
NicheNet (Browaeys et al., 2020). For each dataset, we set the receiver population as the top 2                 
expressing clusters for each gene set and the sending populations as all other cells. These               
populations were used to define expressed target and background genes, enabling us to collate              
an average ligand signal (Pearson correlation coefficients) for each program gene set (Figure             
6B) in each dataset, which was aggregated (Methods). This identified a range of known and               
potential ligands involved in MNP programming, such as ANXA1, IL10, IFNG, and IL33 (Ip et al.,                
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2017; Lu et al., 2020; McArthur et al., 2020; Nathan et al., 1983). Interestingly, several hits                
included unappreciated ligands, such as JAG1, VEGFA, SPP1, EREG, and BMP2. 
 
Lastly, cell surface proteins provide a means to isolate specific subpopulations for powerful,             
targeted analyses. To identify candidate receptors that differentiate cell states or indicate activity             
of gene expression programs, we utilized a reference of cell surface proteins to calculate the               
Spearman correlation of receptor counts with program scores (Figure 6C). This enabled an             
unbiased look at receptors that may be positively or negatively correlated with these broad              
descriptors of MNP heterogeneity. As expected, we identify frequent strong correlations with            
MHC class II receptors with various programs (P8, P10) and canonical MNP markers, such as               
CD63, CD68, CD83, MERTK. This analysis also reveals additional markers that have been             
briefly investigated, but are not typically considered. These markers, such as CD109, CD276             
(B7-H3), CD48, and LILRA5, may be useful in describing MNP variation in future investigations              
(Alivernini et al., 2020; Lee et al., 2017; Rizzo et al., 2020; Ydens et al., 2020).  
 
Overall, this collection of enrichment analyses provides an initial suggestion of which molecular             
factors could be responsible or associated with these reference cell states and programs. 
 
DISCUSSION 
A wealth of single-cell RNA-sequencing atlases have enabled unbiased profiling of cellular            
populations across conditions in the lung. The myeloid compartment within these atlases has             
received varying annotation and no harmonization across these findings has been attempted.            
Moreover, while specific pathogenic expression signatures have been identified in individual           
studies, the application and validation of these signatures in other cohorts has yet to be               
conducted. We hypothesized that standardized processing and comparison of genes describing           
cluster-specific and cluster-agnostic variation could reveal highly conserved gene sets. Our           
analysis across 12 studies generated 17 marker and 20 program consensus gene sets. This              
reference offers a robust, fast, and interpretable framework to decipher the single-cell            
transcriptional states of mononuclear phagocytes within the lung. 
 
We first took a cluster-based approach to defining consensus signatures. By splitting each             
published cohort into disease and healthy samples, we sought to correct for batch effects              
without over-correcting any variation potentially attributable to disease biology. After identifying           
granular clusters and retaining defining markers, the broad comparison reveals strong partitions            
representing similarly-defined populations. Although coexpression patterns and nuances may         
vary between communities, we find consistent marker genes across all communities defined            
within a partition. A complementary approach using the gene expression programs (defined            
from NMF factors) reveals similar robust partitions defined by consistent genes. Visualization of             
clusters or programs across datasets by these scaled metrics describe the unique features of              
these populations with no identifiable dataset effects. This offers the ability to project new              
programs or marker gene sets into this low-dimensional embedding of community-defining gene            
sets. Additionally, this approach avoids complex integration methods across datasets from           
different cohorts and combines information across individual cell profiles which can be noisy.             
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The combination of these complementary marker- and program-based approaches underscored          
concordant results, supporting these gene sets as dominant features of variation within the lung              
MNP populations in both healthy and diseased samples. 
 
Careful inspection of these consensus gene sets revealed expected descriptions of major cell             
populations, such as alveolar macrophages or CD14+ monocytes, and rarer subsets, such as a              
fibrosis-associated gene set containing previously validated genes (Reyfman et al., 2019) and            
an inflammation-associated gene set related to poor cancer prognosis (Zilionis et al., 2019).             
These gene sets offer all the same utilities as the commonly used Gene Ontology resource, with                
the significant benefit of using well-detected and well-expressed genes captured using single            
cell technologies. We demonstrate these utilities by comparing gene set scores between healthy             
and disease samples, expanding upon the contribution of myeloid dysregulation to pulmonary            
diseases. M10 and P9 scores show an enrichment in disease samples in fibrosis and cancer,               
respectively, and should be utilized to further investigate the association of these genes and              
populations with disease. Moreover, identifying high P17-scoring cells enables the annotation of            
a rare immunoregulatory dendritic cell population recently described (Maier et al., 2020). While             
several interesting trends exist amongst all these data, these trends were of particular interest.              
These scores enable the easy interrogation of critical expression trends, analogous to            
fluorescence intensity shifts in flow cytometry analyses. These gene sets provide more context             
to individual genes typically focused on for validation in studies. Identifying how genes associate              
and behave similarly across contexts can provide new insight into gene function and gene-gene              
relationships in cell populations. Moreover, given the continuous nature of the MNPs broadly in              
single-cell RNA-sequencing data, correlation of these programs with an alternative measure of            
cell type similarity (the maximum likelihood calculated from a purified bulk reference) provides             
additional context to the interpretation of cells expressing these gene sets above baseline.  
 
We further utilize this reference to dissect single-cell expression dysregulation in COVID-19            
bronchoalveolar lavage samples. While two groups have described distinct clusters and           
proportional shifts in their analyses, we focus on expression shifts related to these gene sets,               
since they can be quickly interpreted and related back to all the studies analyzed in this study.                 
Most notably, the M7 and P9 gene sets related to activated myeloid expression are dramatically               
increased in disease samples versus M5 and P11 related to resident macrophage expression             
increased in healthy samples. When we define a general threshold across all samples and              
calculate the percentage of cells above threshold, robust shifts in population structure,            
consistent between individual donors, is revealed. Overall, these findings provide          
complementary insights into the dysregulation of the myeloid compartment during COVID-19           
infection. While we see a shift towards monocytes and monocyte-derived phagocytes based on             
expression patterns, we also see increased expression of distinct markers and programs found             
in other disease pathologies. This provides evidence for the dysregulation of mononuclear            
phagocytes in COVID-19 pathogenesis, specifically the shift away from resident,          
lipid-associated macrophages to inflammatory (defined by type 1 IFNs and inflammasome           
genes) monocyte-like cells. 
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While many opportunities still exist for interrogating these datasets broadly, as well as the gene               
sets defined here, we performed enrichment analyses to identify potential molecular factors.            
These analyses provided a host of molecules for follow-up including MNP-related TFs (e.g.             
NR1H3, CREB5, PPARG, SP110), active ligands (e.g. ANXA1, AREG, JAG1, IL1RN,           
SCGB3A1), and descriptive markers (e.g. LILRA5, MERTK, MRC1, PLAUR, SERPING1,          
SIGLEC1, STAB1). Cataloging in vitro behavior of these molecules could enable improved            
interpretation of these suggestive enrichment, NicheNet, and correlative results. 
 
This study focused on identifying consistent trends across lung datasets that were robustly             
codescriptive of similar states and similar gene expression programs. We recognize that more             
subtle patterns in gene expression or coexpression may be lost and look forward to addressing               
this in future work. These profiles are limited by the sensitivity and type of technology used to                 
generate these profiles, as well as the availability of raw count matrices and associated              
metadata. While we focused on the lung here due to the available data, scientific interest, and                
unmet need, understanding how these findings translate to other tissues remains unknown.            
Extending this work to other tissues and datasets is a priority. This raises the important question                
of how similar MNP populations are intra-niche versus inter-niche. Lastly, we recognize the             
enormous potential of many tools developed by the single cell community and expect that the               
application of these tools to these data can provide additional complementary and novel insights              
into the transcriptional landscape of these cells. 
 
Collectively, these analyses provide a reference to interrogate past and future transcriptomics of             
monocytes, dendritic cells, and macrophages. While this study is focused on lung datasets, we              
imagine that these findings will be a useful starting point for studying the MNP compartment in                
other tissues. Robust and diligent compilation of cellular states from in vivo data provides the               
opportunity to more efficiently co-opt biological insights across disease contexts within a tissue.             
As additional attention is given to re-engineering innate immune cells therapeutically, this            
reference can serve to annotate states, identify new cellular and gene-gene relationships, and             
repurpose myeloid-directed therapies across diseases. We imagine a tight feedback loop           
between well-controlled in vitro and model in vivo modulation of these states with deeply defined               
human in vivo states to attempt to better define the disease and tissue signals responsible for                
these states. The continued generation and integration of single cell transcriptomics will provide             
a map to deciphering clinically-relevant in vivo cellular states.  
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MATERIALS AND METHODS 
 
Resource Availability 
 
Lead Contact.  
Further information and requests for resources and reagents should be directed to Bryan             
Bryson (bryand@mit.edu).  
 
Materials Availability.  
This study did not generate new unique reagents. 
 
Data and Code Availability 
Machine-readable files describing gene modules are available on Github         
(https://github.com/joshpeters/lungmps). Data used for these studies are available to download          
using the links in Supplementary Table 1. These datasets, annotated and formatted as Seurat              
objects (.rds), are available on Zenodo (https://doi.org/10.5281/zenodo.3894750). 
 
Experimental Model and Subject Details 
This study did not use any new experimental models or subjects. 
 
Method Details 
Clarification of Nomenclature 
Given the confusing and variable usage of common nomenclature used in transcriptomic            
analysis, we define terms used in this work for clarity. Within each dataset, we define clusters,                
or groups of cells that have similar transcriptomic profiles in low-dimensional space. We             
describe these clusters with marker genes ("markers" for short) which are expressed and             
detected at higher levels in these clusters. Additionally, we define gene expression programs             
(GEPs, “programs" for short), which are the factors of matrix W describing the loadings of each                
gene generated from non-negative matrix factorization algorithms. These are sometimes          
referred to as "metagenes". The generation and interpretation of these programs is described in              
previous work (Kotliar et al., 2019; Welch et al., 2019). Broadly, we refer to these markers or                 
programs as gene sets. When we compare gene sets across datasets, we generate partitions,              
which represent larger groups of programs or markers defined from individual datasets.            
Ultimately, we describe these cellular populations and their transcriptional landscape by deriving            
both markers, derived from defining distinct clusters, and programs, derived from describing            
major axes of variation.  
 
Preprocessing 
Raw count matrices were downloaded from respective published sources. To ensure the gene             
names were harmonized as best as possible, they were mapped to the Ensembl database using               
the R package EnsDb.Hsapiens.v86. Gene names that did not map were searched using an              
HGNC reference of gene names, aliases, and Ensembl IDs. Identified Ensembl IDs were             
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reconverted to gene symbols. Any unidentified gene symbols were left as is. Raw matrices were               
then split based on disease status for applicable datasets. Seurat objects were populated with              
these raw data and processed using the same procedure. First, cells were filtered based on               
technical covariates: < 20% mitochondrial reads, <50% ribosomal reads, <5% hemoglobin           
reads, <5% heat shock protein family reads, > 200 UMI counts, > 100 genes detected. Filtered                
cells were then batch-corrected (based on broad observation of batch effects across datasets)             
using Harmony (RunHarmony, Harmony R package) (Korsunsky et al., 2019). 
 
Downstream dimensionality selection 
20 downstream dimensions were used for each dataset. Several heuristics were calculated for             
each dataset, including identification of elbow point based on maximum distance to the line              
between the first and last components' variance and the global maximum likelihood based on              
translated Poisson Mixture model using default parameters (maxLikGlobalDimEst,        
intrinsicDimension R package). Visual inspection in combination with these methods suggested           
between 10 and 20 dimensions for each dataset. For ease and consistency, we utilized 20               
Harmony-corrected dimensions for downstream clustering for all datasets. As others have           
suggested, we reasoned that this accurate or slight over-estimation of dimensionality would            
work well universally across datasets. 
 
Clustering and visualization 
Cells were clustered using the Leiden algorithm using default parameters on the SNN graph              
utilizing the default parameters (leiden_base_partition, leidenbase R package). First, resolution          
values were scanned for parameters that generated between 5 and 30 clusters. 30 resolution              
parameters were then tested between this range to identify the value that generated the              
maximal modularity. This value is then used for an additional 30 iterations to determine a final                
clustering. Any clusters with less than 10 cells were merged utilizing a modified implementation              
of GroupSingletons (Seurat R package). To assess the potential number of clusters and             
agreement with Leiden results, cells were also clustered using the walktrap algorithm            
(cluster_walktrap, igraph R package). Clusters were renumbered based on the phylogenetic           
tree generated from averaged cluster expression and visualized using UMAP (RunUMAP,           
Seurat R package).  
 
Global, general cell annotation 
Cell clusters were annotated using a semi-supervised approach. First, we extracted           
high-confidence marker genes defined in a published, comprehensive healthy lung atlas           
(differentially-expressed genes, average log FC > log(2), BH-adjusted P value < 1E-10, top 20              
based on average log FC) (Travaglini et al., 2019). Each label was expanded into cell class                
labels (e.g. immune, epithelial) and subclass labels (e.g. myeloid, lymphocyte) manually. Each            
cell was scored based on each set of DEGs and assigned a class, subclass, and cell type label                  
based on its maximum score. Clusters were then annotated using a voting approach. We found               
this voting approach to be superior to a threshold-based approach using Gaussian mixture             
models. Cycling cells were annotated using a similar scoring approach with the cell cycle genes               
defined in Seurat. Lastly, cells were classified using the immunoStates reference using a             
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Bayesian classifier described previously (Vallania et al., 2018; Zemmour et al., 2018; Zilionis et              
al., 2019). This classifier generates a probability for each cell and each type in the               
immunoStates reference. We summed the results from each macrophage label or dendritic cell             
label to define the overall macrophage or dendritic cell likelihood. 
 
Mononuclear phagocyte gating and selection 
Each dataset was initially classified using an automated approach, then reprocessed and            
cleaned with manual inspection of the measures described previously. First, we define a MNP              
score for each cell, which is the difference between the Travaglini scores for MNP cell types and                 
non-MNP cell types. We then fit a Gaussian mixture model to this score and define an upper                 
threshold of 2.5σ above µ. Clusters with a median score above this threshold were labeled as                
MP for the second round of classification. Cycling cells above this threshold were also included.               
Clusters that did not reach the median score threshold or contained more than 50% of other cell                 
types (as classified by the maximum Travaglini score) were not MPs. This approach was              
repeated a second time on initial MP clusters. A second round of preprocessing and annotation               
revealed contaminating non-MP clusters that were manually inspected and removed. To aid in             
this procedure, a list of non-MP marker genes were defined for each dataset that included the                
highly predictive (auROC > 0.9) markers of non-MP clusters, lymphocyte receptor genes, and             
neutrophil genes (CSF3R, NAMPT). These excluded genes were used to identify contaminating            
clusters defined by excluded genes after reprocessing. These clusters are most likely due to              
ambient RNA distortion, suboptimal clustering, or unidentifiable heterotrophic doublets. While          
we cannot rule out the possibility that these cells are bona fide profiles representing a single cell                 
expressing dominant and predictive transcripts of multiple clusters, further investigation is out of             
the scope for this study. 
 
Unsupervised phagocyte classification 
We utilized scmap (R package) to perform unsupervised projection of phagocyte clusters across             
all datasets, considering its speed and performance (Abdelaal et al., 2019; Kiselev et al., 2018)               
To compile a feature set for projection, we collated the marker genes for all clusters across all                 
datasets and calculated their frequency and median auROC. We took the top 1000 genes that               
were identified in 4 or more datasets. These genes were then used to index each cluster from                 
each dataset. The cluster indices (n = 290) were then projected to each dataset using a                
threshold of 0.3 to determine assignments. This procedure assigned a cluster label (or             
unassigned label) from each dataset for every cell within the query dataset. For each pair of                
query cells and reference dataset indices, we calculate the proportion of each reference             
assignment grouped by query clusters. This provides a voting-based similarity measurement for            
each pair of query and reference clusters. We sparsify these similarities by zeroing any              
proportions where the number of labeled cells is below 5 or the proportion is below 1%. We                 
collate the similarities for each pair to generate a matrix of query clusters by reference clusters                
describing a complete bidirectional dictionary of cluster projections. 
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Generation of cluster-defining genes for marker comparisons 
Filtered cells were clustered using the Leiden algorithm on the SNN graph, implemented in              
leidenbase (R package) utilizing the default parameters. First, resolution values were scanned            
for parameters that generated between 5 and 30 clusters. 30 resolution parameters were then              
tested between this range to identify the value that generated the maximal modularity. This              
value is then used for an additional 30 iterations to determine a final clustering. Any clusters                
with less than 5 cells were merged utilizing a modified implementation of GroupSingletons             
(Seurat R package). Clusters are then hierarchically clustered in the low-dimensional PCA            
space and renumbered for convenience. Mann-Whitney U and auROC testing is performed            
(wilcoxauc, Presto R package) and the second-to-max log fold change (LFC) is calculated,             
which is the fold change between the top two expressing clusters. Clusters that fail to be defined                 
by gene markers (LFC > 1.25, second-to-max LFC > 1.05, AUC > 0.5, BH-adjusted P value <                 
1E-3) are then merged with the nearest cluster. Clusters are not merged if they are to be                 
merged with multiple clusters (a node in the hierarchical tree) or a cluster defined by more than                 
50 markers. This prevented merging of poorly defined clusters with well-defined clusters, which             
could increase noise in the markers. 
 
Comparison and clustering of gene sets 
To directly compare gene sets that define clusters or factors, we utilize the Jaccard distance, as                
described previously (Kinker et al., 2019). We compute the symmetric Jaccard distance matrix             
and remove sets with no occurrences of a Jaccard similarity of more than 0.2. We perform                
agglomerative hierarchical clustering on this filtered Jaccard distance matrix and cut the tree to              
generate k partitions based on heuristic assessment of the within-sum-of-squares and silhouette            
plot across a range of potential k values. To assist in selection, we calculate a combined rank                 
for each k by adding the sorted index of the within sum-of-squares and silhouette values and                
take the minimum as a suggestion for the minimal k. In practice, we set k on the higher end of                    
potential values to generate more clusters and refine the partitions subsequently. For each             
partition, we then collate the original data (e.g. differential expression results, factor loadings) to              
generate consensus descriptions of each partition (see Methods sections Generation of           
consensus markers, Generation of consensus gene expression programs). We admiringly          
acknowledge that, during the course of this study, a method proposing a similar workflow with               
favorable results was published (Gao et al., 2019). This supports our approach and provides              
useful, additional bioinformatic tools for researchers.  
 
Although attempted (not published), methods that integrate individual datasets are          
computationally prohibitive as cell population scales and are more difficult to interpret and             
validate, especially when looking at one cell type. By focusing on the easily interpretable              
Jaccard index and auROC metrics, we efficiently minimize study-specific effects and noise. 
 
Generation of consensus markers 
After generating partitions of cluster markers based on the Jaccard distances, the median AUC,              
median log FC, and number of contributing clusters for each gene was calculated. Resulting              
partitions were removed if they contained only 1 source dataset or were defined by gene               
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families associated with technical covariates (see Preprocessing). Partitions consisting of one           
dataset were also removed after inspection. less We then filtered genes that did not appear in at                 
least a third of contributing clusters (minimum of at least 2) and then sorted these by                
descending median AUC. The top 50 genes were chosen to represent an efficient, consensus              
gene set that defines clusters across datasets. This Jaccard-based approach was validated            
using additional marker gene sets and scmap (R package). 
 
Integrative non-negative matrix factorization 
Integrative non-negative matrix factorization was performed in LIGER as published(Welch et al.,            
2019). For each dataset, the MPs were integrated by batch across 30 dimensions with k = 20                 
and λ=5. K was chosen based on previous procedures (see Downstream dimensionality. This             
produced a usage matrix, H, a shared factor matrix, W, and donor-specific factor matrices V.               
This procedure was executed 30 times for each dataset. These replicates were compiled to              
generate robust W matrices using a modified procedure from consensus NMF(Kotliar et al.,             
2019). Briefly, all metagenes in all replicates (n = 600) were compiled into a single matrix and                 
L2-normalized. The top 9 nearest neighbors were identified (ρ = 0.3). Factors beyond the 90th               
percentile of the average distance to the top 9 nearest neighbors were removed and the               
remaining factors were clustered on their loadings using K-Means (kmeans, stats) with 30             
random starts to obtain 20 factor clusters. Grouped factors were compiled into a final set of                
factors by taking the median loadings. This consensus iNMF procedure generates a matrix W              
describing 20 donor-agnostic gene expression programs for each dataset used for downstream            
comparison. 
 
Generation of consensus programs 
Similar to generating consensus markers, factors were partitioned into groups using the            
procedure outlined previously (see Comparison and clustering of gene sets). Factors were            
defined by the top 5% of genes based on the non-zero loadings. The Jaccard distance was                
calculated and clustered using agglomerative hierarchical clustering with the Ward method           
(hclust R package, stats R package). Consensus genes were compiled based on their             
frequency in at least a third of the factors within each partition. Additionally, median consensus               
loadings were computed from respective factors within each partition for visualization. 
 
Gene set scoring 
We scored gene sets to generate a new aggregate expression level corrected for background              
expression of each cell, as described previously (Smillie et al., 2019; Stuart et al., 2019; Tirosh                
et al., 2016). In preprocessing, gene sets were scored using the AddModuleScore function in              
Seurat (R package). Downstream analyses utilized a modified version of this function in which              
scaled expression, not normalized expression, was used to aggregate the score. Briefly, gene             
sets were scored by aggregating the expression of each gene within the dataset minus the               
expression from control genes. For each gene, 30 control genes within the bin of expression (20                
bins) for the gene of interest were selected. 
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Defining score thresholds and fraction of cells above threshold 
After scoring cells for the broad expression of a gene set, we characterized the distribution of                
the scores amongst the cells of interest. We described the distribution of these scores as a                
bimodal mixture of Gaussian distributions (normalmixEM, mixtools R package) after visual and            
statistically inspection (diptest, Pearson diagram) where distributions were typically right skewed           
or bimodal. Given the difficulty of inspecting and fitting accurate models for every dataset and               
score, we utilized bimodal Gaussian distributions to capture cells either in the upper quantile of               
gene set expression or cells describing the second mode. We determine a threshold based on               
2σ above the minimum peak µ in the fitted Gaussian mixture model. We also used the 90th                 
quantile to determine shifts in scores. To do so, we bootstrapped the scores 1000 times from                
each condition label of interest and calculated the summary statistic distribution to report. 
 
Comparison to M1 and M2 signatures 
We derived M1-like and M2-like signatures from Martinez et al. and calculated their scores as               
previously described (Martinez et al., 2006). We report the Pearson correlation of these scores              
with program scores. 
 
Enrichr enrichment analysis 
We utilized Enrichr (enrichR, R package) to perform gene set enrichment analysis on our              
findings (Kuleshov et al., 2016). The ARCHS4, Reactome Pathway, and most recent GO             
databases were used (Ashburner et al., 2000; Lachmann et al., 2018). 
 
NicheNet ligand activity 
NicheNet was used to identify potential ligand-receptor activity within MNP populations, as            
outlined in the method vignettes (Browaeys et al., 2020). We define sender and receiver              
populations, background and target gene sets, and potential ligands. NicheNet returns ligand            
activities based on target genes relative to background genes. Potential receptors are then             
identified from top ligands. In this application, we defined sender populations as all non-MNP              
cells. The receiving population was defined as cells in the top two clusters based on the gene                 
set score of interest. The Pearson correlation coefficient and auROC is reported as a measure               
of suggested ligand activity. 
 
Surface protein-gene set correlation analysis 
To identify surface protein expression correlated with gene set expression, we calculated the             
Spearman correlation of receptor counts with gene set scores. Putative surface proteins were             
selected based on the Cell Surface Protein Atlas (Bausch-Fluck et al., 2015). 
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FIGURE LEGENDS 
 
Figure 1. Collation and identification of mononuclear phagocyte single cell          
transcriptomic profiles reveals robust markers and variable genes.  
(A) Data are harmonized, filtered, batch-corrected and annotated using a standardized pipeline            
MNP profiles are identified using reference gene markers and classifiers. (B) 20-gene signature             
of the most predictive genes for MNP clusters across datasets. Marker genes are identified by               
testing each MNP cluster against all non-MNP cells within that dataset. Each column represents              
a dataset, labeled as either MNPs or non-MNP cells. (C) MNP signature score (average              
expression of genes above baseline expression) is highly predictive across datasets between            
MNP and non-MNP cells. AUCs range from 0.866 (Valenzi 2019 Disease) to 0.996 (Lambrechts              
2018 Disease). (D) Phagocyte proportion varies widely within and between datasets and            
diseases (summarized as interstitial lung disease (ILD), healthy, and cancer). Black bars            
represent median percentage. (E) Average variance (log(standardized variance + 1)) and           
average expression (log(mean expression)) of all genes within the mononuclear phagocyte           
compartment across all datasets highlight consistent highly variable genes. Consensus variable           
genes, colored green, represent the top 3000 well-detected, consistently genes ranked by the             
number of datasets the gene was independently identified as variable. Selected high variance             
genes are labeled. Genes colored blue represent unique variable genes not identified in other              
datasets. Orange genes represent variable genes identified in the MP population that are strong              
predictive markers of non-MP cell types. Excluded genes represent a combination of            
unannotated and receptor genes. (F) Variable genes are enriched (GO Biological Process,            
enrichR) for diverse functions, semantically summarized using REViGO (similarity allowed 0.7). 
 
Figure 2. Cluster-defining genes are similar across datasets and represent conserved cell            
subsets.  
(A) Clusters are defined and refined based on modularity and marker characteristics. Markers             
for each cluster are compiled and the Jaccard distance is calculated between all intra- and               
inter-dataset comparisons of clusters.Example similarity analysis utilizes disease samples from          
Lambrechts and Laughney studies. (B) Hierarchical clustering of the Jaccard distance matrix            
between all clusters’ marker genes reveals distinct partitions of similar cell states. Markers are              
defined by the Wilcoxon rank sum test, auROC, and a minimum second-to-max log fold change               
of 1.05. Matrix is clustered based on agglomerative hierarchical clustering (k = 21). Clusters with               
less than 5 markers or no matches above a Jaccard index of 0.2 are not included. (C) Each                  
partition contains cell states from different studies. Each filled tile represents the presence of              
that dataset within that partition. Shannon diversity is plotted above, highlighting values primarily             
between 1.5 and 2.5. (D) Partitions are defined by high, median auROC values. The top 3                
marker genes defined by clusters identified in (A) are labeled. Low quality partitions are              
removed. (E) Enrichment of programs using the Reactome Pathway Database underlines           
distinct cell states across MNPs. All terms are enriched at adjusted P value < 0.05. Color                
represents -log10(adjusted P value).  
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Figure 3. Gene expression programs are conserved across datasets, complementary to           
differentially-expressed genes, and describe the continuous identity and activity of          
phagocytes. 
(A) GEPs are identified through consensus results from iNMF. iNMF generates factors which             
are compiled over 30 replicates. The top 5% of genes for each compiled factor are then used for                  
comparison using the Jaccard distance. (B) Factors are partitioned (k = 23) using agglomerative              
hierarchical clustering on all GEPs defined using procedure in (A). (C) Diversity indices and              
binary presence matrix highlights diverse dataset membership. (D) Comparison of consensus           
gene expression programs defined in this figure with consensus gene markers defined in Figure              
2 underlines similar and unique gene sets. Size indicates significance of gene overlap and color               
represents the Jaccard index. (E) GEPs can be visualized in a UMAP embedding, highlighting              
no dataset-specific effects. Points are colored by dataset. (F) GEPs grouped by partition are              
localized in UMAP embedding. (G) Partitions are defined by median gene loadings. Each value              
represents the median loading of a gene calculated from each dataset-specific factor within that              
partition. (H) Consensus GEPs are enriched using the Reactome Pathway database. All terms             
are enriched at an adjusted P value < 0.05. Color represents -log10(adjusted P value). 
 
Figure 4. Consensus markers and programs describe disease-associated trends in the           
phagocyte compartment.  
(A) Mixed linear model coefficients (gene set score ~ condition + (1 | batch) for each marker and                  
program gene set across datasets represent association with health or disease. P values are              
calculated using the likelihood ratio test and are Benjamini-Hochberg adjusted. Manually           
selected, highly associated genes are labeled for each marker and program gene set.             
Significant P values are marked with an “x”. (B) M10 scores are higher in disease samples for                 
three datasets with pulmonary fibrosis samples. Bootstrapped 90th quantile differences between           
health and disease samples are also shown with median quantile intervals. Each score             
distribution between healthy and disease samples is significant (Mann-Whitney U test, P values             
< 2.2e-16). (C) P17 scores and DC likelihood per cell for each individual dataset identify shifts in                 
a small subset of DCs within each dataset, representing CCR7+ activated dendritic cells. 2D              
hexagonal density plot of the UMAP embeddings for each data is shown right with the median                
score of each bin shown. (D) P9 scores are variably associated with disease in each dataset                
shown in (A). Bootstrapped 90th quantile differences also shown, similar to (B). (E) Pearson              
correlation of each program score with monocyte, macrophage, or dendritic cell likelihood            
underline the transcriptional spectrum describing the MNP compartment. 
 
Figure 5. Application of consensus gene sets to COVID-19 bronchoalveolar lavage           
samples reveals novel aspects of phagocyte dysregulation.  
(A) Clusters, marker genes, and hierarchical trees for disease and healthy samples describe             
MNP populations. (B) Marker and program geneset scores and average detection rate across             
healthy, mild, and severe samples highlight high and low expression trends in infected samples              
vs. healthy samples. Genesets are sorted from left to right based on the average score of                
severe samples. (C) Shifts in population structure, defined by the percent of cells above              
threshold cells, are observed across selected marker and program scores. (D) P8 score             
(correlated with macrophage likelihood) vs. P1 score (correlated with monocyte likelihood),           
colored by sample condition, highlights a dominant reorganization of the lung MNP            
compartment. 
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Figure 6. Enrichment of consensus gene sets suggests diverse molecular contributors           
and distinct roles.  
(A) Transcription factor coexpression enrichment for both program and marker gene sets using             
ARCHS4 identifies associated TFs with consensus GEPs. Top TF and corresponding adjusted            
P value is shown for each program. (B) NicheNet ligand activity analysis for programs identifies               
potential ligands driving program genes’ expression. Aggregated mean Pearson correlation          
coefficients represent ligand activity across all datasets for each program geneset. Only the top              
2 MP clusters were used for each calculation. (C) Spearman correlation of annotated cell              
surface proteins with program scores averaged across datasets identifies associated surface           
markers. Cell surface proteins visualized are selected based on top 5 highest or lowest              
correlation per program. 
 
Figure S1. Datasets are processed uniformly to identify MNPs.  
(A) Number of genes mapping to current gene databases and changed. (B) Thresholds of each               
technical covariate for each study (n = 12). (C) Number of cells passing quality control filters                
from each dataset. (D) Fraction variance explained for all cells using Harmony-corrected            
components. Black line represents the average curve. (E) Example scores using           
differentially-expressed genes from Travaglini et al. 2020 applied to tumor samples from            
Lambrechts et al. 2018. (F) Cluster cell counts for each broad cell class from Lambrechts et al.                 
2018 tumor sample data. Each cluster comprises, to varying degrees of purity, cells classified as               
either endothelial, epithelial, immune, or stromal cells broadly. (G) Adjusted rand index,            
sensitivity, and specificity metrics for the agreement between classifying MNPs in this work             
versus published annotations where available. (H) Total number of cells analyzed and total             
number of MNPs identified from each dataset, split by disease status. 
 
Figure S2. Consensus markers clustering metrics support distinct, robust partitions. 
(A) Within sum-of-squares distances and the silhouette coefficient for hierarchical clustering and            
resulting partitions (k = 21). (B) Mean bootstrap similarities across partitions (1000 replicates,             
clusterboot R package). (C) Average distance within partitions versus non-members for each            
partition. (D) Distribution of scmap similarities for clusters within partitions and random partitions             
sampled 30 times for each partition based on partition length. (E) Correlation of partitions based               
on median auROC values for defining genes. (F) UMAP embedding of all clusters from all               
datasets passing filters using auROC metrics for defining genes, colored by partition. NA             
clusters were not included in clustering based on below threshold similarity. (G) UMAP             
embedding of final clusters and final consensus markers. Consensus markers defined by            
median auROC values from each member cluster are shown in green. 
 
Figure S3. Consensus programs clustering metrics support distinct, robust partitions. 
(A) Monocyte, dendritic cell, and macrophage likelihoods plotted against each other for all             
clusters from all datasets, colored by dataset. Clusters fall along the ternary spectrum between              
each of these cell types. (B) Within sum-of-squares distances and the silhouette coefficient for              
hierarchical clustering and resulting partitions (k = 23). (C) Mean bootstrap similarities across             
partitions (1000 replicates, clusterboot R package). (D) Average distance within partitions vs.            
non-members for each partition. (E) Pearson correlation of partitions based on median auROC             
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values for defining genes. (F) Pearson correlation of M1 and M2 gene signature scores with               
program scores. Each point represents one of the 6 studies used in Figure 4. 
 
Figure S4. Consensus marker and program scores are variable across all clusters. 
(A) All marker and program scores for each cluster defined in the six comparative studies used                
in Figure 4. Darkness intensity represents higher expression of the gene set. The top two               
clusters for each gene set is highlighted with an orange outline. (B) M7 scores and bootstrapped                
90th quantile differences for all six comparative studies. 
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Figure 5
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Figure 6

P1
P2
P3
P4
P5
P6
P7
P8
P9
P10
P11
P12
P13
P14
P15
P16
P17
P18
P19
P20

AM
IG
O2

AN
PE
P
AR
EG
CD
10
9

CD
27
6
CD
48
CD
55
CD
63
CD
68
CD
74
CD
83

CL
EC
5A
CT
SD
FG
L2 FN

1

GP
NM
B
GR
N

HL
A−D
PA
1

HL
A−D
PB
1

HL
A−D
QA
1

HL
A−D
QB
2

HL
A−D
RA HP

ICA
M1
ICA
M3
IL1
R2 IL7

R
JA
ML

LA
MP
1

LG
AL
S3
BP

LIL
RA
5

ME
RT
K
MM
E
MR
C1
NR
P2

PL
AU
R
PL
TP

SE
RP
INA
1

SE
RP
INF
1

SE
RP
ING
1

SIG
LE
C1
ST
AB
1
TIM
P1

VA
MP
5
VC
AN

Gene

Pr
og

ra
m

-0.25
0.00
0.25
0.50

Mean
Spearman
correlation

ATF3
ATOH8
BATF2
BCL6
CD36

CEBPA
CREB5
CREBL2
DEPDC1

DEPDC1B
E2F8
EGR2
ELK3
ETV3
ETV3L
ETV7
EZH2
FLI1

FOSB
FOSL1
FOXC2
FOXL1
HIC1

HLA−DQB1
HLA−DRB3

HMGB2
IGHM
IKZF2
IKZF3
IRF2
IRF4
IRF8
JUN

KLF10
KNTC1
MAF

MAFB
MSC
MTF1
MXD1

NEUROG3
NFE2L2
NR1H3
NR4A2
NR4A3
PARP12
PAX5

PLEK2
PLEKHA4
PLXNC1
PPARG
RAD51
RUNX2
SOX18
SP110
SPIB
STAT1
STAT2
ZBP1

ZBTB32
ZNF467
ZNF697
ZNFX1

P1 P2 P3 P4 P5 P6 P7 P8 P9 P1
0
P1
1
P1
2
P1
3
P1
4
P1
5
P1
6
P1
7
P1
8
P1
9
P2
0

Consensus gene programs

Tr
an

sc
rip

tio
n
fa
ct
or

en
ric

hm
en

t(
A
R
C
H
S4

)

10
20
30
40
50

-log10
adj. P value

A

C

B

P1
P2
P3
P4
P5
P6
P8
P9
P10
P11
P12
P13
P14
P15
P16
P17
P18
P19
P20

AD
AM
15
AD
M
AG
T

AN
XA
1
AP
LN

AP
OA
1
AP
P
AR
EG
BD
NF
BM
P2
BM
P6 C5

CA
DM
1

CA
LC
A
CC
L1
5
CC
L2

CC
L2
4

CC
L3
L3
CC
L8
CD
80
CD
86
CD
H1

CL
DN
11

CO
L4
A1CR

H
CR
LF
2

CR
TA
M

CX
CL
14

CX
CL
2

CX
CL
9
DL
L1
DL
L3
DL
L4
EB
I3

EF
EM
P1EG

F
ER
EG
FG
F1

FG
F1
3

FG
F1
4
FG
F2
FG
F7
FL
RT
2
FL
RT
3

HM
GB
2
IBS
P
ICA
M5IFN

G
IG
F1IL1

0
IL1
3
IL1
8
IL1
A
IL1
B
IL1
RNIL3

3
INH
BA
JA
G1

LA
MA
2 LIFLT

F
MD
K
MI
F

NL
GN
1
NO
V
NR
G1
OM
G

PD
GF
B

PG
LY
RP
1

PR
OS
1

PT
PR
T
PY
Y

RO
BO
1

RO
BO
2

SC
GB
3A
1
SD
K1
SL
IT2
SP
P1

TG
FB
2

TG
FB
3
TN
F

TN
FS
F1
3B
TS
LP

VE
GF
A
WI
SP
2

Ligands

Pr
og

ra
m

Pearson
correlation
coefficient

0.1
0.2
0.3
0.4
0.5

auROC
0.4
0.5
0.6
0.7

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 7, 2020. ; https://doi.org/10.1101/2020.08.06.240424doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.06.240424
http://creativecommons.org/licenses/by-nc/4.0/


Figure S1
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Figure S2
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Figure S3
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Figure S4
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