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Abstract— We develop foundations and several constructions
for security protocols that can automatically detect, without false
positives, if a secret (such as a key or password) has been misused.
Such constructions can be used, e.g., to automatically shut down
compromised services, or to automatically revoke misused secrets
to minimize the effects of compromise. Our threat model includes
malicious agents, (temporarily or permanently) compromised
agents, and clones.

Previous works have studied domain-specific partial solutions
to this problem. For example, Google’s Certificate Transparency
aims to provide infrastructure to detect the misuse of a certificate
authority’s signing key, logs have been used for detecting endpoint
compromise, and protocols have been proposed to detect cloned
RFID/smart cards. Contrary to these existing approaches, for
which the designs are interwoven with domain-specific consider-
ations and which usually do not enable fully automatic response
(i.e., they need human assessment), our approach shows where
automatic action is possible. Our results unify, provide design
rationales, and suggest improvements for the existing domain-
specific solutions.

Based on our analysis, we construct several mechanisms for
the detection of misuse. Our mechanisms enable automatic
response, such as revoking keys or shutting down services,
thereby substantially limiting the impact of a compromise.

In several case studies, we show how our mechanisms can
be used to substantially increase the security guarantees of a
wide range of systems, such as web logins, payment systems,
or electronic door locks. For example, we propose and formally
verify an improved version of Cloudflare’s Keyless SSL protocol
that enables key misuse detection.

1 Introduction

Most secure systems depend on secrets, and in particular cryp-
tographic keys. Consequently, many technical and procedural
measures have been developed to prevent the leakage of secrets,
such as hardware security modules.

In reality, secrets are often compromised in various ways,
either through compromising a system holding them, implemen-
tation bugs, or cryptanalysis. This has driven the need to design
mechanisms to cope with the compromise of a secret, such as
key revocation procedures, user blacklisting, or disabling the
relevant services entirely. However, independently of designing
these response mechanisms, a core question remains: how can
we tell if a secret has been compromised? In other words: when
are we supposed to invoke these response mechanisms?

If an attacker compromises a secret but never makes any
visible use of it, it can be hard (or even impossible) to detect
the compromise. However, in many cases, the attacker has
some other goal, which it can only perform using the secret.
For example, to log into a service, to request a document, or
to trigger a specific action of the system like opening a door.

This observation is used by mechanisms like SSH’s reporting
of the last login, or Gmail’s reports of current sessions. In these
settings, the service informs the user about the details of their
prior session(s). If an attacker compromises the user’s secret
and logs in, the user could, in theory, detect this manually upon
their next login. In practice, users often ignore this information
or cannot be expected to remember precisely when they logged
in to each service they use.

Further mechanisms that aim to facilitate detection include
Certificate Transparency and its relatives, which aim to make
relevant uses of certificate authority (CA) publicly observable,
thereby making it possible to detect misuse. However, while
these mechanisms typically provide a means to observe key
uses, they do not prescribe how to determine if the observed
key use is honest or when to invoke a response mechanism if it
is not. In practice, a domain owner or CA must manually check
for an inappropriately issued certificate in the log, and then
decide to take action—which may involve further out-of-band
communication to obtain additional details not visible in the
log—before any response mechanism is invoked.

This leads to several questions. First, is it possible to
automatically determine that a secret is being misused at the
protocol layer, to avoid reliance on human input? In this case,
what guarantees could be given? In particular, we focus on
detection mechanisms that do not yield false positives, which
enables a positive detection to automatically trigger a response
mechanism that is appropriate for the secret involved (such as
key revocation).

Second, what are the underlying observations that make such
mechanisms work? Is there any connection between the various
mechanisms that aim to detect the misuse of secrets? What are
the limits of detection, and what principles would be useful to
protocol designers, in the style of [2]?

Contributions. Our main contributions are the following:
First, we provide the first general foundations for provably
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allows for automatic response. Our focus on detection as
a verifiable security property without false positives leads
to solutions that can be used to automatically revoke keys,
access, or invoke other countermeasures. Our foundational
approach also provides new insights into the design choices in
existing mechanisms. For example, for detecting the misuse of a
Certificate Authority’s key on the internet, our results show that
both the domain owner and the CA could automatically perform
a certain kind of detection (“acausal detection”) that no other
parties can perform, which leads to suggestions for improving
detection mechanisms in this domain, such as Certificate
Transparency. More generally, our results reveal which agents
can perform which types of detection automatically, clearly
delineating what is possible and impossible to achieve in theory.

Second, we apply our foundational work to identify and
develop several principles and generic protocol constructions
to automatically detect the misuse of secrets. We then show how
such constructions can be applied to improve the security of a
variety of existing mechanisms, ranging from the previously
mentioned certificate authorities to card-based door access. For
example, we propose a simple modification to Cloudflare’s
Keyless SSL protocol [10] to enable the customer to detect
misuse of the CDN’s keys, which can directly trigger revocation.
We formally verify our proposals using the TAMARIN prover.
We additionally use our techniques to suggest improvements
to the Common Access Card [23], and the certificate creation
procedures of CAs.

We proceed as follows. In Section 2, we provide an informal
introduction to the idea of misuse detection. We then, in
Section 3, develop foundations and protocols for the automatic
detection of the misuse of secrets. We construct example
protocols and apply these constructions to concrete application
examples in Section 4. We describe related work in Section 5
and conclude in Section 6.

2 Foundations: an informal introduction
In this work we investigate a problem which has only been
studied in limited instances so far: the automatic detection
of the misuse of secrets. In an ideal world it would be
possible to indefinitely prevent secrets from being compromised.
Realistically, we cannot assume this is guaranteed, which drives
the need for mechanisms and procedures that can mitigate the
damage of a compromised secret.

We observe that if an attacker silently obtains a secret but
performs no visible actions based on this information, the
compromise fundamentally cannot be detected. Furthermore,
if the attacker obtains all necessary secrets to impersonate the
original owner, performs actions using those secrets that are
identical to the expected behaviour of the original owner, and
the original owner performs no further actions (e.g., because
they are deceased), then to all other participants the attacker’s
behaviour is indistinguishable from the original owner. In a
way, the attacker would have completely taken over the life of
the original owner. Thus, informally, the only situation in which

we can hope to detect the misuse of those secrets is when the
attacker deviates—or rather, is forced to deviate—from the
original owner’s behaviour or ongoing actions.

In this work, we are interested in protocols in which
participants obtain specific evidence of deviation (that is, there
are no false positives). This would allow detecting agents
to immediately trigger appropriate countermeasures, such as
disabling a service, revoking keys, or blacklisting users. Thus,
our work contrasts with the field of anomaly detection, where
one of the challenges is to detect behaviours that are allowed
by the specification, but unlikely to occur during normal usage;
such detection is typically plagued by false positives, and it is
hard to take countermeasures as a result.

Consider the following examples of protocols which allow
agents to differentiate adversary action from action by the
honest agents, which each examine a different aspect of
detection that we will return to in Section 3.

Example 1. Alice has a secret kA which she can use to
authenticate messages. The adversary compromises this secret,
and sends an authenticated message which is obviously
incorrect. For example, the authenticated message might be “I
compromised this secret”.

Example 1 is unlikely to occur in practice, but it is still a
valid action the attacker could take so it is important to take it
into account.

Example 2. Alice and Bob have signing keys kA and kB
respectively, and send each other messages authenticated with
their keys over a public channel. They each maintain a counter,
and when Alice sends a message to Bob she increments her
counter, generates a new nonce nA and includes them both
in her message along with the last nonce received from Bob.
Upon receiving this message Bob checks that his last nonce
matches, increments his counter, and checks that it matches
the one in the message. Similarly, when Bob sends a message
to Alice, he includes a newly generated nonce nB , his counter
value, and Alice’s last nonce nA. The next message from Alice
contains a new nonce n′A, nB , and an incremented counter
value, the next message from Bob a nonce n′B , n′A, and his
counter value, etc.

Example 2 illustrates a simple case in which misuse can
be detected. If an attacker gains knowledge of kA and the
current value of the counter, and injects a new message
purporting to be from Alice, then Alice’s and Bob’s value
of the counter will become de-synchronised and they could
detect upon comparison that kA was misused. However, this is
somewhat limited, as an attacker with knowledge of both keys
who observes a counter value could strike up conversations with
Bob, then wait for Alice to send messages. By intercepting these
and returning a message to Alice which appears to be from Bob
the adversary can increment Alice’s counter until it matches,
and then inject one more message to each to resynchronize
their nonces. Alice and Bob are left in a state as if the attacker
were never involved.

Note that because Alice and Bob’s counter values rely only
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on the number of messages exchanged and not on their content,
it is impossible to determine if they agreed on all previous
message content. Thus, the attacker can resynchronize them
even after they have disagreed about the messages exchanged.

Example 3. Instead of using a counter, Alice and Bob adopt a
system of ‘rolling nonces with hash chains’. When Alice sends
her authenticated message to Bob, she includes a new nonce
nA and a hash chain of the previous nonces used by both
parties in the conversation. Bob then checks the value of the
hash chain matches his own, and when sending a message to
Alice does likewise, including a new nonce nB and extending
the hash chain with nA. The next message from Alice contains
a new nonce n′A and the hash chain extended with nB , etc.

In Example 3, suppose an attacker obtains Alice’s key kA
along with the current nonce and hash chain. The attacker
can inject conversations with Bob, which necessarily extends
Bob’s hash chain with new values. If the attacker ever stops
intercepting messages between the two, his session will be
detected, since the hash chain of Alice will not match and the
adversary has no way to ‘rewind’ Bob’s additions to his hash
chain. Indeed, even if both keys kA and kB are compromised,
this example with hash chains allows for detection if ever the
attacker tries to back out of the conversation, as any session
the attacker carries out with either of them has an irreversible
effect on their state.

3 Foundations and design space

In this section, we develop formal foundations and explore
the design space for detecting of secret misuse. While our
contributions can be informally understood and applied in
practice by skipping most of this section and immediately
moving to Section 3.5, our formal work serves the following
purposes: it enables us to precisely define the relevant concepts,
explore the design space more systematically, and will enable
us later to prove that some protocols indeed achieve detection.
We will use the resulting definitions in Section 4 to develop
concrete protocols, prove their correctness, and show how to
improve existing systems.

First, in Sections 3.1 to 3.3, we build the necessary
framework to formally define what it means to soundly detect
compromise, and what is necessary for detection. This leads us
to classify the possible ways misuse can be observed into three
broad categories in Section 3.4 and show that they together
form a complete categorization. Finally, we combine these
elements for the design space in Section 3.5.

3.1 Basic mechanisms
We introduce basic notation for a generic class of protocols
and an abstract notion of detection. This enables us to formally
define what it means to (soundly) detect compromise, and what
is necessary for detection. We then isolate in Section 3.4 three
different ways agents can observe key misuses: inconsistency

with a protocol specification, contradictions, and acausality. We
will use these three types of observation to guarantee detection
in particular scenarios, and apply this in Section 4 to design
and improve protocols.

We assume a finite set of agents Agent as participants,
each of which has some associated state, access to a random
number generator, and which can communicate only through
sending and receiving messages on a network. Agents perform
actions according to a protocol. A protocol is a deterministic
algorithm to be run on a Turing machine with agent state as
input, which returns an action to perform. Such actions may
include sampling the random number generator, sending or
receiving messages on the network, modifying their state, etc.
We write Protocol to denote the set of all protocols.

To model adversarial activity, we assume the existence
of an adversary with similar resources to the agents, but
with the additional ability to perform actions which remove
messages from the network and compromise parts of agent state.
Adversary actions are provided by a deterministic algorithm,
which we call an adversary model. It runs on a Turing machine,
taking adversary state as input and outputting an action for
the adversary to perform. We denote the set of all adversary
models Adv.

The definition above does not allow for malicious agent
activity, since all agents are assumed to follow the protocol.
We emulate malicious agents instead through the adversary
model, which may include completely compromising the state
of some agents. Since agent actions are a function of their
state, and since all communication with other agents occurs
through the adversary-controlled network, this is sufficient to
allow adversary emulation of an agent. This makes it easier
to abstractly distinguish potentially malicious actions from
honest and correct actions in the trace, while allowing for
over-approximation of the abilities of malicious agents (since
the adversary model may include controlling the network or
compromising additional agents).

Each combination of a protocol P ∈ Protocol and adversary
model A ∈ Adv gives rise to a transition system with agent
states, the network as a set of messages, and the state of the
adversary. We log each action performed by agents or the
adversary as events in a trace, with the requirement that the
trace contains sufficient information to reconstruct the state
of the adversary and every agent at the end of the trace. For
example, an agent performing an action to sample the random
number generator would be logged as an event including the
resulting value. We call a set of all possible traces arising
from some protocol and adversary model a trace set, and use
Tr(P,A) to refer to the trace set of a particular protocol P and
adversary A. Note that trace sets are prefix-closed, as individual
transitions are assumed to be atomic and the participants can
stop at any time.

Generally we do not care about the specific actions performed
by the agents or the adversary, or their resulting encoding
in the trace, other than requiring an abstract way to refer to
certain events relevant to detection. This allows us to restrict the
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actions of participants as little as possible while still having well
defined communication structure. We use compromise(k) to
refer to any adversary event that compromised some data k from
any agent’s state; this allows us to refer to, for example, the
subset of traces in a trace set in which a particular term is never
compromised. We use send and recv to refer to any agent
event which sent (resp. received) on the network, parametrized
by the message involved. Finally, we denote detection of a
compromised k by a special agent event detect(k).

The initial state of the agents includes both agent-specific
data as well as any public data assumed to be known to the
adversary as well as the agent (e.g. some settings may assume a
public key infrastructure). Adversary initial state contains only
this public data. Since we do not bound the computation time
of the agents or adversary, we instead assume a symbolic model
of security in which a term algebra (e.g. that of TAMARIN [19])
defines how terms may be derived.

In order to discuss a particular subsequence of events in a
trace, we define the sequence projection operator. For a set S
of trace events, the projection |S is defined as

〈〉|S = 〈〉

(〈e〉 · tr′) |S =

{
tr′|S if e 6∈ S
〈e〉 · (tr′|S) if e ∈ S.

We define the projection -S as the projection onto the
complement of S, |Sc . For shorthand, we enumerate some
common projections that we will use throughout this section:
• For a set X ⊆ Agent, |X for all trace events e such that

one of the agents in X is performing e,
• |c(k) for all compromise(k) events,
• and |event for all trace events e of type event.

Projection is distributive over sets of sequences, so a projection
of a set of sequences is the set of each sequence with the
projection applied. We address elements of a sequence s as
s1 . . . s|s| from the first to the last element. We overload set
notation for sequences and write e ∈ s for a sequence s if and
only if ∃i . si = e.

We focus on detection protocols that can automatically
trigger an appropriate response when they detect, such as
key revocation, disabling services, or blacklisting users. To
enable this, it is important that there are no false positives.
Formally,

Definition 4 (Soundly detecting protocol). We say a detecting
protocol P ∈ Protocol is sound with respect to an adversary
model A ∈ Adv if

sound(P,A) ≡ ∀tr . tr ∈ Tr(P,A) =⇒
∀k .

(
detect(k) ∈ tr =⇒ compromise(k) ∈ tr

)
.

In this paper we do not prescribe a response mechanism for
key compromise, since this is an orthogonal area of research
(and often involves side-channels or other scenario- or system-
specific resources). We instead discuss which parties can
detect and when. Soundness enables any detecting party to
immediately trigger whichever response mechanism it deems
appropriate.

3.2 Reasoning about agents

In order to reason about agent capabilities, we must be able
to talk about their state as well as the possible actions they
can perform under particular constraints. We begin with some
notation to discuss the state of agents after a trace. Since trace
events are, by definition, enough to determine how agent state
changes with each action, the state of some agents at some time
along with a sequence s of events are sufficient to determine
the state of those agents after s. This is formally stated in
Corollary 6.

Definition 5 (State after a trace). For a set of agents X ⊆
Agent, we introduce the notation state(tr,X) to represent the
collective state of the agents of X after a trace tr.

Corollary 6 (State convergence). Let tr and tr′ be two traces
in a trace set T such that state(tr,X) = state(tr′, X), and
X ⊆ Agent. Then

∀s . tr · s ∈ T ∧ tr′ · s ∈ T =⇒
state(tr · s,X) = state(tr′ · s,X).

The state of particular agents’ after trace tr are, by necessity,
some function of tr|X , since all state changes of an agent
arise from actions they perform. Notably, this requires that
state(tr,X) = state(tr′, X) if tr|X = tr′|X .

State convergence is a particularly useful property, because
it implies that a subset of agents cannot differentiate two traces
in which their combined states are the same, unless they later
receive a message that is only possible in one of the two. In
fact, we can lift this to prove practical limitations on when
it is possible to detect even when agents can run an arbitrary
protocol between themselves. We define protocol extensions
to capture the events that could occur running a secondary
protocol, without an adversary, after a particular trace.

Definition 7 (Protocol extension). Let T = Tr(P,A) for some
protocol P and adversary A. A protocol extension performed
by a set X ⊆ Agent beginning from the trace tr is the set
of all sequences of agent events s performed by agents in X
such that tr · s ∈ T , and s is independent of all prior network
events. Formally,

SP (tr, T,X) ≡ {s | (tr · s) ∈ T ∧ (s|X = s) ∧
∀m, i .

(
si = recv(m) =⇒

∃j < i . sj = send(m)
)}

.

We use SP (tr, T ) as shorthand for SP (tr, T,Agent), which
is equivalent to omitting only adversary events from the
protocol extensions.

Intuitively, these protocol extensions represent what a set of
agents can do by running a protocol amongst themselves after
a particular trace, in an ideal environment where no adversary
interferes. State convergence can be leveraged to show a useful
property of the protocol extensions across all possible protocols.
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Lemma 8. Let T = Tr(P,A) for some protocol P and
adversary A, and X ⊆ Agent a set of agents. Then

∀tr, tr′ ∈ T . (state(tr,X) = state(tr′, X)) =⇒
SP (tr, T,X) = SP (tr′, T,X).

That is, for every protocol, any two traces tr and tr′ where
state(tr,X) = state(tr′, X) have the same X-protocol exten-
sions.

Proof. Assume otherwise; that is, there is a trace suffix s in
SP (tr, T,X) that is not in SP (tr′, T,X).

If s 6∈ SP (tr′, T,X), then by the definition of protocol
extensions either s|X 6= s, or there are recv events with no
corresponding send in s, or tr′ · s 6∈ T . The first two are
trivially false by the requirement that s ∈ SP (tr, T,X), so it
must be true that tr′ ·s 6∈ T . We will construct tr′ ·s recursively
to show that this is false.

Take the first element of s, which we will call e such that
s = 〈e〉 · s′ for some sequence s′. The set T is prefix-closed
since it is generated by a protocol, and by the definition of
protocol extension, tr · s ∈ T , so tr · 〈e〉 ∈ T .

If tr′ · 〈e〉 6∈ T , then this must be because the action
corresponding to the event e cannot be performed after tr′.
The event can only rely on receivable messages on the network,
the output of the random number generator, or the state of
the agent, so one of these must differ between tr and tr′.
However, the antecedent requires that both the states and sent
messages are identical, and the random number generator does
not depend on the prior trace, so none of these can be the case
and thus tr′ · 〈e〉 ∈ T .

By Corollary 6, state(tr · 〈e〉, X) = state(tr′ · 〈e〉, X), and
because every trace is finite we are left with a shorter s′ on
which we can repeat the argument above to eventually find
that tr′ · s ∈ T , a contradiction.

Lemma 8 allows us to begin reasoning about the space of
possible actions a set of agents can take. It shows that after a
trace, a set of agents performing any protocol at all amongst
themselves are still limited to some computation over their
collective state.

Note there is an equivalent definition of soundness in terms
of protocol extensions.

Lemma 9 (Equivalent definition of soundly detecting). For a
detection protocol P ∈ Protocol and adversary model A ∈
Adv,

sound(P,A) ⇐⇒
∀tr, s . tr ∈ Tr(P,A) ∧ s ∈ SP (tr, T r(P,A)) =⇒
∀k . (detect(k) ∈ s =⇒ compromise(k) ∈ tr) .

Proof. (Sketch) If a protocol is sound, then detect(k) events
must be preceded by a compromise(k) event in all traces.
Since compromise(k) cannot occur in the protocol extension
s by definition, a detect event in s implies a compromise
event in tr.

In the other direction, let us assume that detect events in
protocol extensions imply a compromise event in the trace,
but the protocol is not sound. Since it is not sound, and trace
sets are prefix-closed, there exists a trace tr′ · 〈detect(k)〉
that ends with a detect event but with no compromise event
in tr′. But then the protocol extension of tr′ also contains this
detect event, a contradiction.

3.3 Observability of misuse
Whether a usage of a key is ‘correct’ in general may not be
possible to determine from the limited perspective of an agent.
To detect misbehaviour, and its subsequent attribution to the
misuse of a secret, the protocol (or in a wider sense, the security
mechanism) must be designed to make the misuse observable
by the agent in question. We first give two examples to provide
intuition about the type of designs that (fail to) accomplish
this, before providing a more formal treatment of observable
misuse to build useful detection protocols.

Ideally, it would be possible to soundly detect any compro-
mise by the adversary. There is however an upper bound on
how much can be detected: intuitively, there is no possible
protocol for a set of agents to soundly detect secret misuse if
that misuse had no effect on them. We formalize this below,
using the protocol extension properties discussed above.

Lemma 10 (Sound detection requires state). For a secret k, a
set X of agents, and a trace tr in a trace set T = Tr(P,A)
generated by a protocol P with adversary A,

∀s, tr′ . s ∈ SP (tr, T,X) ∧ detect(k) ∈ s ∧
tr′ ∈ T ∧

(
tr′|c(k) = 〈〉

)
∧

state(tr,X) = state(tr′, X) =⇒
¬sound(P,A).

That is, if a set X of agents detect the misuse of k in a trace
tr ∈ Tr(P,A) when that state could also be reached in a
trace without compromise, then the protocol cannot be sound.

Proof. Assume it is possible for the agents in X to soundly
detect after tr, and thus there exists a suffix s ∈ SP (tr, T,X)
where detect(k) ∈ s.

The antecedent requires a trace tr′ where

tr′ ∈ T ∧
(
tr′|c(k) = 〈〉

)
∧ (state(tr,X) = state(tr′, X)),

and from Lemma 8,

SP (tr, T,X) ⊆ SP (tr′, T,X).

Thus s ∈ SP (tr′, T,X). Since the agents detect in s after
a trace with no compromise events, the detection cannot be
sound.

The requirement that the state of the agents could arise in a
restricted trace set (in this case, traces with no compromise of
k) is a useful one, which we formalize in terms of agent state
being consistent with a trace set.
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Definition 11 (State consistent with a trace set). Let T =
Tr(P,A) generated by a protocol P with adversary A. The
state of some agents X ⊆ Agent after a trace tr is consistent
with the trace set T if there is at least one trace in T which
leaves the agents in X in the same state as tr.

consistent(X, tr, T ) ≡ ∃tr′ ∈ T .

(state(tr,X) = state(tr′, X)) .

We say that misuse of a secret k in a trace tr ∈ Tr(P,A)
is unobservable by a set X of agents when

consistent(X, tr, {t | t ∈ T ∧ t -c(k) ∈ T}).

A trace involving key misuse which leaves the agents in some
state that is also reachable without a compromise of the key
limits the ability of the agents in X to detect; by Lemma 10
there is no idealized protocol the agents of X could run to
detect the misuse.

It is important to note that, while observability of secret
misuse is necessary for a set of agents to soundly detect it, it
is not sufficient to guarantee that deciding whether to detect
can be done tractably (i.e. in a polynomial amount of time).
For example, consider a toy protocol where an agent generates
a random value with some property and sends the output of a
one-way permutation applied to that value over the network
signed with their key—detecting misuse of that key may require
inverting the permutation to check if the input value had the
correct property.

3.4 Categorizing observable misuse
Lemma 10 shows that a set X ⊆ Agent must reach a collective
state inconsistent with the set of all traces without compromise
of k to have a possibility of soundly detecting it. In this section
we show a categorization of different ways an inconsistent state
might be reached, and prove some properties of them which
should be considered when designing or modifying a protocol
to detect secret misuse.

We divide the ways of observing misuse into three categories,
based on the messages received by an agent. The first, trace-
independent inconsistency refers to a received message that
could not have occurred at all without compromise. The second,
an observation of contradiction, refers to the observation of a
sequence of messages which, while each individually possible,
could not occur in that sequence without compromise. Finally,
an observation of acausality is when a sequence of received
messages requires action on the part of an agent in order to
occur in a trace set, but has occurred without such an action.
This final type of observation requires agents to be in a position
where they would know if the action did not occur.

3.4.1 Trace-independent inconsistency

The simplest way in which agents can determine that the
current trace is inconsistent with a trace set is by receiving a
message which could not occur in any trace of that trace set.

This category of misuse event is observable ‘statelessly’ in the
sense that it is inconsistent with the trace set independently
of the current trace. As such, we refer to this category of
observability as trace-independent inconsistency.

We formalize it as the negation of the predicate spec,
representing the ability to receive a message in any trace
within an arbitrary trace set T , where

spec(m,T ) ≡ ∃tr ∈ T . recv(m) ∈ tr.

and messages which cannot be received in a trace set are
referred to as out-of-specification. The latter are not expected
to arise often. Example 1 in Section 2 illustrates this.

3.4.2 Observing contradictions

The messages in a trace are contradictory compared to a trace
set if each message can occur individually but the sequence
cannot occur in any trace of the trace set. This is formalized
with the predicate contra.

Definition 12 (Contradictory messages). Given a set X ⊆
Agent, a trace tr, and a trace set T , we say that the agents of
X have received a contradictory sequence of messages when

contra(X, tr, T ) ≡(
∀m . recv(m) ∈ tr =⇒ spec(m,T )

)
∧(

∀tr′ ∈ T . tr|X |recv 6= tr′|X |recv
)
.

Example 2 in Section 2 can detect because of the observabil-
ity of contradictory messages. In that example, each message
received from the other party is expected to include the next
counter value, so an agent could detect if they saw two messages
with the same counter value even if each message would be
valid on its own.

A stronger example making use of contradictory messages
to detect is found in transparency overlays like Certificate
Transparency, where the public log produces signed tree heads
for the auditors. These signed tree heads are expected to be
mutually consistent, and misuse of the log server’s key could
be detected in principle by receiving a tree head which is not
consistent with another tree head produced with the key.

Both trace-independent inconsistency and contradictory
messages allow an agent to store evidence of key misuse,
since the message or messages involved are enough to detect
irrespective of the receiving agent’s state. This allows, in
transparency overlays for example, the misuse of a log server’s
key to be proven to third parties by showing them two
inconsistent signed tree heads.

3.4.3 Observing acausality

While the previous two categories reason about received
messages, it is also possible to detect based on agent state
directly by counterfactual reasoning. For example, an agent
storing all prior uses of their key can identify misuse of their
key if they see a usage that is not in their state. This extends
in more complex ways: transparency overlays are based on the
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ability of an identity or domain owner to notice an entry in
the log that they did not request, on the assumption that only
the owner should be initiating the process to add an entry to
the log.

We define a notion of causal precedence, where an agent
causally preceding the messages of a trace has some guarantee
that they are required every time some sequence of messages
occurs in the trace set.

Definition 13 (Causal precedence). A set of agents X causally
precedes the messages of a trace tr in a trace set T if there
is some trace in which those messages can be received, and
in every such trace some agent in X must have participated
by sending at least one message. Formally,

causal(X, tr, T ) ≡
(
∃tr′ ∈ T . tr|X |recv = tr′|X |recv

)
∧(

∀tr′ ∈ T . tr|X |recv = tr′|X |recv =⇒ tr′|X |send 6= 〈〉
)
.

Since the agents of X would expect to have performed some
action before or during a sequence of messages, their state may
become inconsistent with an uncompromised trace. In fact, the
only way the agents’ states can become inconsistent with a
trace set upon receiving an otherwise valid series of messages
is if they causally precede those messages in that trace set. We
formalize this in Lemma 14.

Example 3 in Section 2 makes use of causal precedence
to observe misuse, as Alice would expect to have generated
the nonce received in Bob’s message if the adversary has
compromised neither key. Note that in this case, Alice does not
causally precede Bob’s message if either of their keys has been
compromised, so it is not possible for Alice to determine which
key has been compromised if this occurs—that is, Alice’s state
will not be inconsistent with either trace set where one key is
compromised, just inconsistent with traces where neither key
is compromised.

Lemma 14 (Complete categorization). For a secret k, a set
X ⊆ Agent, and a trace set T = Tr(P,A), let tr ∈ T and
Tuc = {t | t ∈ T ∧ t -c(k) ∈ T}. If tr leaves the agents of
X in a state inconsistent with any uncompromised trace, then
compared to the trace set Tuc:

i) a message in tr is not possible in any trace, or
ii) the message sequence observed in tr is contradictory, or

iii) X causally precedes the messages observed in tr.

Formally,

¬consistent(X, tr, Tuc) =⇒(
∃m . recv(m) ∈ tr ∧ ¬spec(m,Tuc)

)
∨

contra(X, tr, Tuc) ∨ causal(X, tr, Tuc).

Proof. Assume this is not true, so that X is not causal, nor
contains contradictory messages, nor are any of the messages
impossible in an uncompromised trace. From this, we will
reach a contradiction by constructing a trace in Tuc which
leaves the agents of X in the same state as tr.

If the antecedent is false, then expanding the definitions,(
∀recv(m) ∈ tr . spec(m,Tuc)

)
∧(

∃tr′ ∈ Tuc . tr|X |recv = tr′|X |recv
)
∧(

∃tr′ ∈ Tuc . tr|X |recv = tr′|X |recv ∧ tr′|X |send = 〈〉
)
.

Thus, there exists a trace tr′ ∈ Tuc where tr|X |recv =
tr′|X |recv and tr′|X |send = 〈〉. Since this trace is in Tuc we
can also conclude that tr′ -X ∈ Tuc, as the only way the agents
of X can influence the actions of the other agents or the
adversary is through send events.

We can now concatenate all events of tr|X onto this trace.
Each event is either local or relies on the state of the network;
by the assumption above tr′ must contain the same receive
events, so either the network already contains or the adversary
can already generate all of these messages after the trace tr′ -X .
Thus, tr′ -X · tr|X ∈ Tuc, and given that all the state transitions
of X are identical to those in tr, state(tr′ -X · tr|X , X) =
state(tr,X).

Note that in most cases, detection would only be feasible
when the set of agents X that observes the misuse is a singleton.
Nonetheless, knowing that some set of agents is able to observe
misuse can be valuable for guiding protocol design, as it may
be possible to modify the protocol so that these agents can
communicate enough to detect, or to narrow the number of
agents required to observe misuse. Alternatively, for some
systems it may be practical to assume some out-of-band channel
for communication between the observing agents, and perform
detection that way.

As an example, if a protocol requires at least one agent
from a set to make a request before a particular token is
produced, then that set of agents collectively causally precedes
the production of that token but none of the agents individually
do. However, if the protocol can be modified such that the
token produced depends on which agent requested it, then each
agent individually could causally precede the production of
their tokens. We distill lessons like these into general design
principles and constructions below.

3.5 Design space
We now revisit our observations to identify the possible
observation mechanisms and summarize design principles.

3.5.1 Main detection mechanisms

We identify three main mechanisms by which secret misuse
can become observable. Ultimately, all of them rely on the
observations that agents make through their interactions with
the network. The difference in approaches mainly depends on
the extent to which they take this information and their own
actions into account.

Recall that state inconsistency is necessary but not sufficient
for detection. Nonetheless, the categorization of observability
conditions provides a categorization of the types of detection
that can be designed into a detecting protocol.
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1) Trace-independent observability of any single message
in the trace set, which requires no knowledge of the prior
trace events.

2) Contradicting observations when a sequence of ob-
served messages cannot occur in a single honest trace. This
requires enough knowledge of prior observed messages
to determine if new observations contradict.

3) Acausal observations when the observed messages con-
tradict the agents’ knowledge of their own activity. This is
only possible for agents who causally precede the observed
message sequence in honest traces, and it requires enough
knowledge of past agent actions as well as prior observed
messages to determine whether the agent caused the
observed messages.

All agents can detect based
on trace-independent observability

Stateful agents can detect
based on inconsistent observations

Stateful agents that causally
precede the use of a secret can
detect based on acausal observations

Fig. 1. Venn Diagram of the type of agents and the detection mechanisms
that they might be able to use. Only stateful agents that causally precede the
use of a secret can use all three types.

3.5.2 Design principles

The combination of the three types of detection and the concrete
detection mechanisms leads to a number of design principles
for detecting the misuse of secrets.

We note that for any given application, there may be
practical and security considerations that affect whether and
how the principles can be applied. For example, the wish to
maintain confidentiality and unlinkability of messages may
limit the application of Principle 3. Restrictions on message
size, communication complexity, and storage size may limit
the applicability of any of the principles. This directly results
in a trade-off between such restrictions and the ability to detect
the misuse of secrets.
• Principle 1: Protocol messages should be tightly coupled

to prior messages. This helps maximise the possibility
of any misuse detection, and prevents an adversary from
‘resychronizing’ agents after misusing keys (e.g. the attack
described in Example 2). Stateless protocols necessarily
violate this principle.

• Principle 2: Include unique and unpredictable values
in messages. This helps to establishing contradicting
observations, and ensure an adversary cannot correctly
predict what an agent will do next. If values are not unique,
then agents could get identical observations from messages
sent at different points, making them indistinguishable.
If an adversary could predict the next exchange, they

could potentially carry it out in advance with one of the
participants and then take their place in the real exchange
without leaving any evidence.

• Principle 3: Maximize the spread of data that other
parties might find contradictory or acausal. Detection
requires observations, so it is important to increase the
opportunities for that to happen. Ideally, some observations
could be broadcast to all participants (e.g., used when dis-
seminating transactions in Bitcoin-like systems [12,15,21]
to detect double spending), but for many applications this
is not feasible. This motivates the need for compromise
solutions such as a gossip protocol (e.g., [9]).

• Principle 4: Identify which agents causally precede
important messages, and ensure they can observe those
messages. Agents who causally precede a sequence of
messages can detect more than agents who can only detect
by observing contradictions. It is therefore worthwhile to
ensure that the protocol enables the detection of acausal
observations as much as possible.
For example, in the PKI setting, the agents with causal
precedence are the domain owner and the CA, since a
certificate for domain signed with a CA’s key should only
exist after it has been requested by the domain and then
signed by that CA. If such a certificate occurs without
the request, or without the CA signing it, then the key
must have been misused. This principle is implicitly used
in systems like Certificate Transparency [17] and other
systems based on transparency overlays, which we will
return to in Section 4.3.

Some minor aspects of the above principles are similar to
principles from earlier work [2], but there are crucial differences.
Principle 1 explicitly requires state, which leads to a trade-
off between security guarantees and keeping track of state.
Principle 2’s unique values have been suggested before, but
not all messages need to have unpredictable values for other
security properties. This unpredictability is specifically useful
for detection. Principle 3, which suggests spreading data,
improves detectability at a clear cost in terms of transmissions,
which would be avoided by previously proposed principles
(except perhaps accountability). To the best of our knowledge,
Principle 4 is entirely derived from our detection-based
observations, though it is implicitly used in some systems.

4 Applications

The design principles discussed in Section 3.5 are general
and can be used to improve existing systems in practice. In
this section, we illustrate this by applying the techniques
from Sections 3.4 and 3.5 to construct example protocols,
and use them as guides to modify existing real-world protocols,
including Keyless SSL [10], the Common Access Card (CAC)-
based physical access control [23], and the certificate creation
procedures of CAs. We show how these protocols can make use
of misuse detection methods to be resilient against compromise.
Finally, at the end of the section, we provide a collection of
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other popular systems, and briefly discuss each of them. In
particular, we show how they fit into our design principles,
and how our design principles can improve some of them.

We formally verified several of our case studies with the
TAMARIN prover [19], a tool for symbolic analysis of security
protocols. In its framework, properties are expressed in a
fragment of first-order logic that allows quantification over
timepoints. We provide the full models in [1].

For our TAMARIN models, we consider an arbitrary (un-
bounded) number of agents and sessions. We only restrict the
models in the sense that each agent executes sequentially. More
precisely, an agent doesn’t run two sessions concurrently with
the same peer. In all other respects our models are as accurate
as possible within the symbolic setting.

To help TAMARIN prove the properties, we manually
formulated several invariants (referred to as reusable lemmas
in the TAMARIN framework). Once these are formulated,
TAMARIN automatically proves the invariants and uses them
to prove the desired properties, i.e., no interaction is required.

4.1 Counting precedence and Keyless SSL

To illustrate the application of the principles, we imagine a
simple protocol in which one agent increments a counter each
time the other provides a fresh signature, similar to example 2.
In this setting, the causal structure is very clear: the counter
value is increased at most once for each signing key use.

The counter protocol is based on this idea, shown in Figure 2.
Note that throughout this section, a message m signed by using
signing key sk is presented as {|m |}sk, which includes both
the signature on m and the plaintext message m.

The counter protocol demands that R increase their counter
once for each unique signed message by I , where uniqueness
is ensured by requiring I to include a nonce generated by R
during the previous session. As such, I can determine whether
they caused each increment of R’s counter by comparing their
counter state with the counter returned by R. Hence, the counter
and nonce implement a minimal form of Principles 1 and 2:
while the values should be unique, the dependency on previous
messages is still relatively loose. From Principle 4 we find
that I causally precedes the signed messages and can therefore
perform causal detection.

Despite its simplicity, the counter protocol has a number of
desirable detection properties, which we formally verified with
Tamarin.

1) Soundness if sk(R) cannot be compromised: detection
events of a term imply it was compromised, for all traces
in T = Tr(P,A) where A cannot compromise sk(R).

∀t ∈ T, i, k . ti = detect(k) =⇒ (∃j < i . tj = compromise(k)) .

Note that if sk(R) can be compromised, detect(sk(I))
instead implies that sk(I) or sk(R) is compromised, which
may still be a useful property.

I R

- create a nonce nii
- m1 := {| I, R, nii, nri−1 |}sk(I)

m1

- verify m1 and I, R, nri−1

- generate a nonce nri
- cri := cri−1 + 1
- m2 := {|R, I, nri, nii, cri |}sk(R)

session(Resp, I, 〈nri, nii, cri〉)

m2

- verify m2 and R, I, nii
- detect (sk(I)) if cri 6= cri−1 + 1
session(Init, R, 〈nri, nii, cri〉)

Fig. 2. The counter protocol. The inclusion of nri−1 in m1 could instead
be provided as a nonce in an additional message m0 = {|R, I, nri |}sk(R),
as in the Keyless SSL example in Figure 3

2) Detection guarantee for past sessions if sk(R) cannot be
compromised: In the trace set T = Tr(P,A) where A
cannot compromise sk(R), if there is a matching session in
which I did not detect, then every session before matched.

∀t ∈ T, I, R, i1 < i2 < i3, data1, data2 .

ti1 = session(Init, R, data1) ∧ ti2 = session(Resp, I, data2) ∧
ti3 = session(Init, R, data2)∧¬(∃k, i1 < j < i3 . tj = detect(k))

=⇒ (∃j < i1 . tj = session(Resp, I, data1)) .

Keyless SSL: Keyless SSL was designed by CloudFlare
to allow the provision of CDN services to web services that
cannot or do not want to cede their certificates’ private keys to
CloudFlare [10]. In Keyless SSL, CloudFlare’s servers interact
with a customer-provided key server, which decrypts pre-master
secrets as needed for CloudFlare to carry out key exchanges
as if they knew the customer’s private key.

In practice, this means that a large number of different private
keys are each sufficient to use the customer’s key server as
an oracle, with much greater control over key issuance and
revocation than in a typical TLS environment. This makes
detection of key misuse especially valuable.

We consider the TLS DHE carried out between a CDN
server C (the initiator), and a web service owner W . C and W
each hold secret keys sk(C) and sk(W ), respectively. They also
have some means to validate each other’s public keys–typically,
pk(W ) would be provided through some authenticated side
channel while pk(C) is signed by a CDN-specific CA known to
W . In this setting, we wish to provide some security guarantee
against an attacker who obtains sk(C) and all state information
(i.e. nonces) of C generated in any session. The protocol
currently violates Principle 1, as it is essentially stateless.
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C W

nci, . . .

. . . , {|nci, nwi, . . . |}sk(W )

- verify signature and nci
- cci := cci−1 + 1
- derive kci, kwi from DH parameters
- m3 :=

(
. . . , {| cci,H(m1,m2), . . . |}sk(C)

)
m3

- verify m3

- detect if cci 6= cci−1 + 1
- derive kci, kwi from DH parameters
- m4 := . . . , MACkwi(H(m1,m2,m3), . . . )

m4

- verify m4

Fig. 3. An example of the additions to the i-th session of the TLS mutually-
authenticated key exchange in Keyless SSL. For clarity, we omit terms in the
messages that are not relevant. Our modifications are highlighted in bold blue.

The goal of our protocol modification is to detect the
compromise of sk(C), and we apply Principles 1, 2, and
4 to achieve this. In the first session, the counter begins at
some known value, say ‘0’. In the ith session, when C is
establishing a shared secret with W , C begins a mutually-
authenticated TLS exchange by creating a new nonce nci and
sending the ClientHello message to W . Upon receiving
this message, W generates its own nonce nwi and replies to
C with, among many other things, a signature on nci and nwi

in m2. Note that the exchange so far is unmodified from the
standard TLS mutually-authenticated DHE.

Upon verifying m2, C is certain that sk(W ) is being actively
used in the current session, and so increments its counter cci.
This counter value is then included in m3. This is the only
modified message of the protocol.

If cci does not match what W expects but the hash and
signature are valid, a detection event will be raised at which
point W can immediately revoke C’s key to limit the potential
damage of the compromise; W can later contact C through
an out-of-band channel to begin remediation and attempt to
discover the cause.

Our modified Keyless SSL protocol, shown in Figure 3,
satisfies equivalent detection properties to the counter protocol,
namely, both soundness and a detection guarantee when W
is uncompromised. In [1] we provide symbolic verification,
as well as an alternative protocol which allows C to detect
instead of W . The assumption that W is uncompromised is
reasonable considering W ’s role as a signing oracle. If W
were compromised as well, then it is possible for the adversary
to avoid detection by playing to role of W to resynchronize

C. As discussed, this could be remedied by requiring W to
provide a signed fresh token to be returned by C in the next
session, however this requires an additional signing operation
and provides benefit only when W might also be compromised.

Practical implications: The implementation of our mod-
ified protocol allows the CDN’s customers to have assurance
that either they have not been used to sign requests for an
adversary that has gained access to a valid CDN server key,
or if they were then the misuse of the key will be detected in
short order. Furthermore, customers can immediately revoke
to limit their risk, without requiring other parties to act. The
proposed protocol requires very little modification and minimal
storage requirements: a single counter value for each CDN
server.

4.2 Commitment and the Common Access Card
Principles 1 and 4 suggest that the message sequences in a
protocol are tightly coupled. This can be achieved, e.g., by
having each session contain a pre-commitment to some aspect
of the next session, ideally with a commitment that can only
be fulfilled with knowledge of the agent’s state (to limit the
risk of compromised state).

We show an example of such a construction in Figure 4,
with an example of a commitment protocol, and an application
in a high-security environment where the detection of cloning
is valuable. R generates an asymmetric key pair and presents
I with a fresh commitment constructed by signing session
data with the secret key, as well as the secret key used for
the previous commitment to ensure continuity. In the session
following, R provides the public key that allows I to verify
that the commitment is correct based on previous session data.
R never reveals the commitment key, and hence the adversary
can’t authenticate their own session data even if they trick R
into revealing an arbitrary number of commitments and proofs.

This commitment protocol has a number of desirable
properties, which we also formally verified using TAMARIN.
We include the model of this protocol in [1].

1) Soundness: A detection event implies compromise.

∀t ∈ T, i, k . ti = detect(k) =⇒ (∃j < i . tj = compromise(k)) .

2) Detection guarantee against key compromise: Against an
adversary compromising both sk(I) and sk(R), when I
completes a session with R and some data, then either R
also completed with that data or I detected they did not.

∀t ∈ T, I, R, i, data . ti = session(Init, R, data) ∧
¬(∃j < i . tj = detect(sk(R)))

=⇒ ∃j < i . tj = session(Resp, I, data).

3) Detection guarantee after an uncompromised session:
Against an adversary who can reveal all agent state, if
there was a previous correct session and the adversary has
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I R

- create a nonce ni

- m1 := {| I, R, ni, ci−1 |}sk(I)

m1

- verify m1 and ci−1

- generate a new keypair (ski, pki)
- ci := {| ′Commit′, R, I, ni |}ski

- ncci := {|ni, ci−1, ci |}ski−1

- m2 := {|R, I, pki−1, ci, ncci |}sk(R)

session(Resp, I, 〈ni, ci−1, pki−1, ci〉)

m2

- verify m2

- verify ncci using pki−1

- detect (sk(R)) if pki−1 doesn’t verify ci−1

session(Init, R, 〈ni, ci−1, pki−1, ci〉)

Fig. 4. A commitment protocol.

not revealed R’s state since that session, then any session
I completes with R will also be correct or I will detect.

∀t ∈ T, I, R, j1 < i1 < i2, data1, data2 .

ti1 = session(Init, R, data1) ∧ tj1 = session(Resp, I, data1) ∧
ti2 = session(Init, R, data2) ∧ ¬

(
∃s, i1 < c . tc = compromise(s)

)
=⇒ (∃j1 < j2 < i2 . tj2 = session(Resp, I, data2))⊕

(∃d < i2 . td = detect(sk(R))).

Common Access Card: The Common Access Card
(CAC) is the standard identification card for United States
Defense personnel. The CAC has been used as an authentication
token for security network systems and also for physical access
to sensitive areas [7]. It supports asymmetric key cryptography
and has writable memory. The CAC provides a useful example
of a high-security domain where it is valuable both to detect
if a cloned card has previously been used, as well as ‘heal’
compromise so that any clone becomes useless unless used
immediately. To show an implementation, we exhibit a modified
ISO-IEC 9798-3-3 protocol (Figure 5) in the scenario of
the CAC physical access control. Here, the initiator I is a
card reader which is connected to a back-end server, and the
responder R is the CAC.

In our modified protocol, each CAC stores a unique com-
mitment cr created by the back-end server. In the i-th session,
when a reader detects a CAC, the reader communicates with
the back-end server, which generates a message m1 signed
with the server’s private key sk(I) containing the identities
of the server and card, a fresh nonce ni, and the previous
commitment provided by the card cri−1. The reader forwards
this to the card.

I R

- create a nonce nii
- m1 := {| I,R, nii, ci−1 |}sk(I)

m1

- verify m1

- verify cri−1

- generate nri, and a new keypair (ski, pki)
- ci := {|R, I, nii |}ski

- ncci := {|nii, ci−1, ci |}ski−1

- m2 := {|R, I, nri, nii,pki−1, ci, ncci |}sk(R)

m2

- verify m2

- verify ncci
- detect (sk(R)) if pki−1 doesn’t verify ci−1

Fig. 5. The i-th session of the modified ISO-IEC 9798-3-3 standard protocol.
Modifications are highlighted in bold blue.

The card verifies the signature, and that the provided cri−1
agrees with its local memory. If these verifications succeed, the
CAC generates a new nonce nri and a pair (ski, pki) of signing
and verification keys. The CAC creates a new commitment cri
using ski, signs cri again using ski−1, and uses its long-term
key sk(R) to create a signed message m2 from the identities
(R, I), the two nonces (nr, ni), the signed cri, and the public
key that verifies the previous commitment cri−1. The CAC
then sends this message to the reader to be forwarded back to
the server. The server can check that the message contents are
correct, and then verifies the signatures of the commitments
cri−1 and cri against the provided proof pki−1, raising a
detection alert if this validation fails; if it succeeds, the back-
end server updates its memory. The CAC also updates the
old values in their memory with the new ones. After both the
server and the CAC have updated their local memory, either
the door will release or a signal will be displayed to security
guards to grant access to the facility. If any of the verification
in the protocol fails, then an alarm of detection raises.

In this scenario, the modified protocol provides both detec-
tion of acausal action and of contradicting commitments, even
if the attacker can extract all information from the CAC. In
other words, the provided security guarantee is that when an
attacker has a cloned copy of a CAC at time t, and used the
cloned card at time t′, then if the original card has been used
in the time interval between t and t′, the cloning of the card
will be detected. If the original card is not used in the time
interval between t and t′, then the attacker can use the card to
get access, but the cloning attack will be detected as soon as
the original card is used again.

The modified ISO-IEC-9798-3-3 protocol achieves equivalent
detection properties to the commitment protocol. These have

11



been formally verified using TAMARIN, and the model of this
protocol is included in [1].

Note that while this protocol requires three signing operations
on the part of the card, two of these are by temporary
commitment keys which only need to remain secure until
the next authentication. As such, a weaker and faster signature
computation could be used for these to reduce the computation
required by the card.

Practical implications: The CAC is used in high-security
applications where an adversary may have high incentive
to attempt card cloning, especially since cloned cards may
remain a valuable strategic asset for some time. We show
with a modified standard protocol that it is possible for a
smartcard authentication protocol to not only swiftly detect
and revoke cloned cards, but also invalidate any existing
clones every time a card authenticates. This is done in such
a way that an attempt to use an earlier clone results in
immediate detection and revocation of privilege before the
card successfully authenticates. Furthermore, this is possible
even with the key of the reader compromised, and messages
between the card and the reader intercepted.

4.3 Improving detection in transparency overlays
Transparency overlays and related public log-based systems [3,
4, 8, 17, 24, 25] are designed to make participants’ behaviour
public through the use of a third-party log, enabling misuse
detection on the basis of acausal observations. To avoid having
to trust the log maintainer, transparency overlays set up the
log structure so that the maintainer must be able to prove
that any two authenticated log states are consistent with each
other. This allows a compromised log to be detected through
observation of contradictory log states, and this misuse can be
proven to other participants. Whereas the mechanisms from
previous sections did not make much use of Principle 3 to
more widely distribute information, this is in fact one of the
core principles underlying transparency overlays.

Participants examine log entries and detect if it contains
entries they know it should not. For example, detection of a
misissued certificate in Certificate Transparency may be done
by domain owners checking the log and discovering a log entry
for a certificate that they did not request, conform Principle 4.
As discussed in Section 3.4, this cannot be done by any party
that would not necessarily causally precede that certificate’s
issuance, nor can any misuse be proven to other parties. The
detecting party can revoke the certificate as invalid, but there is
no evidence that the CA’s key has been misused to produce it. In
practice, it is assumed that misuse of the CA’s key would instead
be determined manually based on multiple independent—or
suspicious enough—certificates requiring revocation.

Though transparency overlays make use of contradicting
observations to detect misuse of a log server’s key, they
rely entirely on acausal observations to detect misuse of a
secret belonging to any of the parties committing to the log.
From Section 3.4, we know that if a submitting party was
compromised and their secrets were misused to authenticate

(valid) submissions to the log, the only way for the participants
to detect this misuse (without causal precedence) is through
observing entries that are contradictory. Currently, however,
applications like CT have no standard way that two otherwise
valid entries in the log can contradict each other.

Based on our design Principles 1 and 2, we propose that
CT-like transparency applications can be extended to allow
dependencies between submissions from the same source,
adding a further line of defense to transparency overlays
and improving attribution when misuse is detected. Taking
Certificate Transparency as a canonical example, we propose
to add into each certificate a value dependent on previous
certificate submissions. For example, the value could be the
number of certificates n, indicating that this is the n-th
certificate authenticated by that CA, starting at 0; or it could
be the hash of certificate n− 1.

Contradiction testing: With an addition that allows log
commitments to contradict each other, a log server can deter-
mine whether the CA knew about the previous commitment
authenticated by them, or whether it might have been committed
without their knowledge.

When contradictory certificates are submitted to a log server,
the log server can swiftly notify the CA that either its key has
been compromised or its system has not updated with issued
certificates. On the other hand, if all certificates in the log are
consistent with each other, then a domain owner discovering a
misissued certificate for its domain in the log knows that the
CA’s own system must have been updating their state when the
certificate was issued–an indication that the CA should have
some record of issuing that certificate.

Implementation considerations: Our proposed additions
(as applied to CT) make the CAs stateful in their creation
of certificates, though with negligible overhead introduced.
Importantly, the state kept by the CA depends only on local
operations, and not on any feedback from log servers, so no
latency is introduced into the process of issuing certificates.
If all new certificate submissions to the log in Certificate
Transparency were required to include this information, it
would immediately benefit detection of CA key compromise.

This proposal is only one example of an addition which
would force contradictions between log submissions from the
same submitter in a transparency overlay. More elaborate
constructions like the consistency proofs used by log servers
could be leveraged to make submissions to a log from a misused
key contradict a larger set of prior entries, for additional
redundancy or for tying together multiple independent logs.
In other transparency overlay applications, the commitment
protocol shown in Section 4.2 could be used to ensure that
future log submissions come from the same party that generated
the pre-commitment in the prior entry.

4.4 Analysing other system designs
As mentioned and illustrated previously, our design principles
are general and can be used to improve existing systems in
practice. Here, we collect existing work that already conforms

12



in part with the foundations and principles discussed in this
paper. We show how existing systems fit into our design
principles, and how they can be further improved by applying
our work where relevant.

a) RFID tag cloning detection: Mechanisms [5, 18, 26,
27] for detecting cloned RFID tags in the supply chain have
been widely studied. In [27], the RFID readers write random
values to RFID tags as they pass through the supply chain so
that the tag accumulates a sequence of random values. Cloned
tags are then detected by observing contradicting sequences
for the same tag identity.

This design follows both Principle 1 and Principle 2. The
tags are written with random values, and the sequence of values
grows longer each time a reader is passed, making it very likely
that a cloned tag will exit the supply chain with a different
sequence written to it than the original.

More complex solutions could give stronger guarantees, but
the resource constraints of RFID tags make it difficult to suggest
further improvement.

b) The Double Ratchet Algorithm: The Double Ratchet
algorithm [20] is designed for messaging systems to prevent
replay, reordering or deletion of messages while encrypting with
forward-secrecy in an asynchronous setting. Every message sent
and received is encrypted with a new ephemeral symmetric key
generated from two interlocking key ratchets, one of which is
iterated with each message sent and the other when a message
is received. A compromised message key will not help an
attacker decrypt messages exchanged in previous sessions, and
an adversary making use of a compromised message key causes
the newly derived key to differ between the communicating
agents.

The design of the double ratchet derives new keys each
message, but this is still vulnerable to a persistent MITM
attacker who was able to compromise both keys at some prior
time. This could potentially be remedied by applying Principle
3 (for example, through the use of the second concrete
mechanism we describe). This would allow communicating
agents to confirm that they agree on the keys being used, though
at the cost of some privacy; care would have to be taken to
anonymize log entries, etc.

c) Key-evolving cryptosystems: Key-evolving cryp-
tosystems (e.g. [6, 13, 14]) were proposed to mitigate damage
from compromised secret keys, through the use of periodic key
refreshment. In the symmetric setting, a sender and a receiver
share an initial long-term secret from which they derive a set
of keys valid for a certain (application-specific) time period.
In the asymmetric setting, one party holds only the public part
of another party’s private key, and updates it when they see
the use of a new private key without further communication.

Though key-evolving cryptosystems have desirable proper-
ties, they could be improved through an application of our
design principles. For example, by ensuring that key changes
cannot be reset to any previous key (Principle 1) through some
derivation process that relies on the prior keys.

d) TPM authentication protocol: The Trusted Platform
Module (TPM) [22] is a chip designed to allow platforms to

provide better security guarantees by securing cryptographic
keys in its shielded memory. The authorisation protocols use
‘rolling nonces’ to prevent replay attacks: in each new session,
the nonces generated in the previous session will be included
in the authenticating MAC.

The use of unique nonces follows our design Principle 2,
though an adversary who could inject messages would not be
prevented from making use of the TPM and then injecting
a message to resynchronize the nonces between the client
and TPM. This could be prevented through the application of
Principle 1, by deriving future nonces from past sessions so
that an adversary cannot resynchronize them.

5 Related work
We present related work on security guarantees after key com-
promise, and on protocols with accountability and verifiability.

a) Post-compromise security: In [11], Cohn-Gordon et
al. introduce post-compromise security: security guarantees for
communication after a party’s long-term keys are compromised.
This is accomplished using dynamic secrets, similarly to
the commitment protocol above (though the secrets in the
commitment protocol are used only for authentication).

Post-compromise security as described differs from detection
in what is done after attempting to establish a ‘correct’ session
fails. If a guarantee of security is the only objective, then it
makes sense to simply not allow a session that uses an incorrect
key even if the long-term key is correct; doing so, however,
discards information that may be sufficient to determine the
compromise of a long-term key. Detection and post-compromise
security are therefore–while conceptually similar–orthogonal
in nature and can be realized independently.

b) Accountability and verifiability: Küsters, Truderung,
and Vogt have proposed definitions of accountability and
verifiability [16] which aim to be widely applicable. The
proposed definitions share some similar intuition with ours, i.e.,
they aim to discover if something went wrong. A conceptual
difference is that they focus on misbehaving parties (for
example, election authorities that are expected to behave in a
certain way, but might not do so). In contrast, we focus on
compromised parties, whose key material is in the possession
of both the party and the adversary.

6 Conclusions
We have described and explored designs for protocols that
detect when an adversary misuses an agent’s secrets. Our
design principles and constructions directly led to suggesting
improvements for many deployed systems, enabling them to
automatically detect the misuse of secrets. We have given exam-
ple protocols and applications, described them systematically
and verified their properties in the TAMARIN prover.

Concretely, our suggested improvements of existing systems
such as CA’s, the Common Access Card, or Cloudflare’s Key-
less SSL can significantly reduce the impact of a compromise,
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since they can be used to immediately revoke keys or shut
down the related service.

There are some limitations to the proposed approaches.
First, while our mechanisms are not applicable to all scenarios
(e. g., because keeping synchronised state can be expensive or
problematic in some use cases), it is clear that there are many
applications whose security can be significantly improved by
introducing these detection mechanisms. We therefore expect
our mechanisms to find their way into many applications in
the near future.
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